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Notation

Einstein summation. Indices i, j, ... = 1, 2, 3; α, β, ... = 1, 2, 3, 4.

Maxwell equations

System of 8 first-order partial differential equations for 12 quantities:
Ei ... electric field
Bi ... magnetic induction
Di ... electric displacement
Hi ... magnetic field

System of 6 constitutive equations

Tellegen representation:
Di = Di(Em,Hn)
Bi = Bi(Em,Hn)

Boys-Post representation:
Di = Di(Em, Bn)
Hi = Hi(Em, Bn)



Special cases of the constitutive equations
in the Boys-Post representation

Linear isotropic medium:
Di = ε Ei ε ... permitivity
Hi = µ−1Bi µ−1 ... inverse permeability

Linear isotropic chiral medium:
Di = ε Ei + α Bi α ... chirality parameter
Hi = α Ei + µ−1Bi

Linear biisotropic medium:
Di = ε Ei + α Bi α, β ... magnetoelectric parameters
Hi = β Ei + µ−1Bi

Linear anisotropic medium: Counterpart of elastic anisotropy:
Di = εij Ej Di = ε Ei

Hi = µ−1Bi Hi = µ−1
ij Bj

Linear bianisotropic medium
Di = εij Ej + αi

j Bj αi
j , β

j
i ... magnetoelectric matrices

Hi = β
j

i Ej + µ−1
ij Bj



Vector potential

We may express 6 components Ei and Bi in terms of 6 skew combinations
Aα,β −Aβ,α of the derivatives of the components of covariant 4-vector
potential Aα.

Then 4 Maxwell equations for Ei and Bi are identically satisfied.

Remaining 4 Maxwell equations:
for Di = Di(Aα,β−Aβ,α) and Hi = Hi(Aα,β−Aβ,α) .

In this case, the Boys-Post representation is superior to the Tellegen
representation.

Aharonov-Bohm experiment

Electrons propagate around a solenoid through a region where Ei = 0
and Bi = 0, but Aα 6= 0.

Interference of electrons depends on Aα.

The electromagnetic field cannot be completely described by Ei and Bi.
The electromagnetic field is better described by Aα.



Electromagnetic wave equation

Maxwell equations for a linear bianisotropic medium in the Boys-Post
representation:

[χαβγδ(xµ)Aδ,γ(xν)],β = Jα(xµ) . (23)

Electromagnetic vector potential Aα is a covariant 4-vector.
Constitutive tensor χαβγδ is a contravariant tensor density of weight −1.
Current density Jα is a contravariant 4-vector density of weight −1.

The constitutive tensor is skew with respect to its first and second indices,
and with respect to its third and fourth indices:

χαβγδ = −χβαγδ , (20)

χαβγδ = −χαβδγ . (21)

The equation numbers correspond to Klimeš (2016).



Components of the constitutive tensor

Constitutive tensor χαβγδ has 36 independent components represented
by 36 constitutive parameters εij , αi

j , β
j

i , µ−1
ij :





χ1414 χ1424 χ1434

χ2414 χ2424 χ2434

χ3414 χ3424 χ3434



 = −





ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33









χ1423 χ1431 χ1412

χ2423 χ2431 χ2412

χ3423 χ3431 χ3412



 = −





α1
1 α1

2 α1
3

α2
1 α2

2 α2
3

α3
1 α3

2 α3
3









χ2314 χ2324 χ2334

χ3114 χ3124 χ3134

χ1214 χ1224 χ1234



 =





β 1
1 β 2

1 β 3
1

β 1
2 β 2

2 β 3
2

β 1
3 β 2

3 β 3
3









χ2323 χ2331 χ2312

χ3123 χ3131 χ3112

χ1223 χ1231 χ1212



 =





µ−1
11 µ−1

12 µ−1
13

µ−1
21 µ−1

22 µ−1
23

µ−1
31 µ−1

32 µ−1
33







Differentiating the above Maxwell equations, we obtain the continuity
equation

Jα
,α = 0 . (24)

We can thus replace the fourth Maxwell equation by its initial conditions
and by the continuity equation for the source terms. For the electromag-
netic wave propagation, we then need just the first three of four Maxwell
equations

(χiβγδAδ,γ),β = J i . (25)

In our coordinate system, we choose the Weyl gauge condition

A4 = 0 . (26)

Maxwell equations (25) then simplify to

(χiβγlAl,γ),β = J i . (27)



We assume that the structure is time-independent (static) in our coordi-
nate system,

χαβγδ = χαβγδ(xm) . (30)

We can thus apply the ray-theory approximation in the frequency domain.

In frequency domain, the Maxwell equations for Ai = Ai(x
m, ω) with

linear constitutive relations in the Boys-Post representation read

(χijklAl,k),j − iω(χij4lAl),j − iωχi4klAl,k − ω2χi44lAl = J i , (32)

where ω is the circular frequency. Electric current density J i represents
the source term and vanish outside the source.

Electric field strength:
Ek = iω Ak . (34)

Magnetic induction:
Bk = ǫklmAm,l . (4)



Standard ray series

We express frequency-domain magnetic vector potential Aj = Aj(x
m, ω)

in terms of its vectorial amplitude ai = ai(x
m, ω) and travel time τ =

τ(xm) as
Ai = ai exp(iωτ) . (35)

We express the vectorial amplitude in the form of asymptotic series

ai =
∞
∑

n=0

(iω)−n a
[n]
i , (36)

where a
[n]
i = a

[n]
i (xm, ω) is the n-th order vectorial amplitude.



We consider standard anisotropic ray theory assuming strictly decoupled
waves, and proceed according to Červený (2001) using differential oper-
ators

N i(am, τ,n) = Γil(xm, τ,n,−1) al , (42)

M i(am, τ,n) = χijklτ,jal,k +(χijklτ,kal),j −χi4jlal,j − (χij4lal),j , (43)

Li(am) = (χijklal,k),j . (44)

Kelvin-Christoffel matrix

Γil(xm, pn, p4) = χiβγl(xm)pβpγ (41)

is a function of six phase-space coordinates xm, pn formed by three spatial
coordinates xm and three slowness-vector components pn. We shall insert
p4 = −1.



The Kelvin-Christoffel matrix is not symmetric. Its right-hand eigenvec-
tors differ from its left-hand eigenvectors.

Right-hand eigenvector gi = gi(x
m, τ,n), corresponding to selected eigen-

value G = G(xm, τ,n) of the Kelvin-Christoffel matrix:

Γil gl = G gi .

Corresponding left-hand eigenvector ~gi = ~gi(x
m, τ,n):

~gi Γil = ~gl G .

We denote by G⊥ the other two eigenvalues of the Kelvin-Christoffel ma-
trix, by g⊥i the corresponding right-hand eigenvectors, and by ~g⊥i the
corresponding left-hand eigenvectors. Superscript ⊥ takes two values.
The three right-hand eigenvectors of the Kelvin-Christoffel matrix and
the three left-hand eigenvectors of the Kelvin-Christoffel matrix are mu-
tually biorthogonal, and we choose them mutually biorthonormal.

Eikonal equation
G(xm, τ,n) = 0

can be solved by standard methods developed for solving the Hamilton-
Jacobi equation (Hamilton, 1837; Červený, 1972; Klimeš, 2002; 2010).



Hamilton’s equations of rays:

dxi

dγ
=

∂H

∂pi

(xm, pn) , (77)

dpi

dγ
= −∂H

∂xi
(xm, pn) . (78)

Phase-space derivatives of the Hamiltonian function:

∂H

∂xi
= − 1

2 ̺
~gaχ

aβγd
,i pβ pγ gd , (82)

∂H

∂pi

= − 1

2 ̺
~ga

(

χaiγd+χaγid
)

pγ gd , (83)

where p4 = −1 and

̺ = −1
2

~ga

(

χa4γd+χaγ4d
)

pγ gd . (84)



Decomposition of a vectorial amplitude into principal amplitude compo-
nent a[n] and two additional amplitude components a⊥[n]:

a
[n]
i = a[n]gi +

∑

⊥

a⊥[n] g⊥i . (85)

Additional amplitude components:

a⊥[n] = −
[

~g⊥i M i(a
[n−1]
k , τ,n) + ~g⊥i Li(a

[n−2]
k )

] (

G⊥)−1 (87)

with both a⊥[0] = 0.

Zero-order principal amplitude component:

a[0] = a
[0]
0 (̺0 J0)

1

2 (̺ J)−
1

2 exp
(∫ τ

τ0

dγ S
)

. (95)

Squared geometrical spreading

J = det

(

∂xi

∂γa

)

(96)

represents the Jacobian of transformation from ray coordinates γ1, γ2, γ3

to spatial coordinates xi. These ray coordinates are composed of ray
parameters γ1 and γ2, and of travel time γ3 =τ along rays.



Amplitude factor exp
(∫ τ

τ0

dγ S
)

accounts for the non-reciprocity of the
tensor Green function caused by the difference between symmetric and
non-symmetric constitutive tensors with respect to the exchange of the
first pair of indices and the second pair of indices:

S =
1

4 ̺

∑

⊥

(

~gk

∂Γkl

∂xj
g⊥l ~g⊥r

∂Γrs

∂pj

gs − ~gk

∂Γkl

∂pj

g⊥l ~g⊥r
∂Γrs

∂xj
gs

)

(

G⊥
)−1

+
1

4 ̺
~gi

(

χijkl−χikjl
)

,j
τ,kgl −

1

4 ̺
~gi

(

χij4l−χi4jl
)

,j
gl − ~gi

dgi

dγ
. (115)

Term ~gi
dgi

dγ
represents just the correction of principal amplitude a[n] due

to the undefined length of right-hand eigenvector gi, and may be put to
zero.

Quantity S may be singular at slowness-surface singularities, but is reg-
ular at spatial caustics.

Quantity S vanishes for a constitutive tensor symmetric with respect to
the exchange of the first pair of indices and the second pair of indices.
For a non-symmetric constitutive tensor, quantity S vanishes in a homo-
geneous medium.



Symmetry axis x1

Example of S in a bigyrotropic medium

∇η,∇ν

ǫij =





ǫ 0 0
0 ǫ −iη
0 iη ǫ





µ−1
ij =





µ−1 0 0
0 µ−1 −iν
0 iν µ−1







Symmetry axis x1

∇η,∇ν

Polarization

S(1) = i
2 ∇ν µ p−1 S(2) = − i

2 ∇η ǫ−1 p−1



Higher-order principal amplitude components

a[n] = a[0]

[

a
[n]
0

a
[0]
0

+

∫ τ

τ0

dγ
Z [n−1]

a[0] √̺

]

, (97)

where

Z [n−1] =
1

2
√

̺

[

∑

⊥

~giM
i
(

a⊥[n]g⊥k , τ,n

)

+ ~giL
i
(

a
[n−1]
k

)

]

. (93)
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Klimeš, L. (2016): Ray series for electromagnetic waves in static hetero-
geneous bianisotropic dielectric media. Seismic Waves in Complex

3–D Structures, 26, 167–182, online at “http://sw3d.cz”.



Acknowledgements

The research has been supported:
by the Grant Agency of the Czech Republic under contract 16-01312S,

and by the consortium “Seismic Waves in Complex 3-D Structures”

S
E

I
S
M

I C
WAV ES I N

COM PLEX 3 − D
S

T
R

U
C

T
U

R
E
S

http://sw3d.cz


