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Notation

Einstein summation. Indices ¢,7,... =1,2,3; «,3,... =1,2,3,4.

Maxwell equations

System of 8 first-order partial differential equations for 12 quantities:
FE; ... electric field

B' ... magnetic induction

D¢ ... electric displacement

H; ... magnetic field

System of 6 constitutive equations

Tellegen representation:
D' = DY(E,,, H,)
B' = BY(E,,, Hy,)

Boys-Post representation:
D! = DY(E,,, B")
H; = H;(E,,,B")



Special cases of the constitutive equations
in the Boys-Post representation

Linear isotropic medium:
D*'=c¢E; € ... permitivity
H;=p B p~1 ... inverse permeability

Linear isotropic chiral medium:
Di=e¢E;+aB’ « ... chirality parameter
H,=aF; + ,u_lBl

Linear biisotropic medium:
D' =¢E;+aB’ a, 3 ... magnetoelectric parameters
Hy=BE;+p'B’

Linear anlsotroplc medium: Counterpart of elastic anisotropy:
Dt =¥ E; D' =¢E;
H; = ‘1B’ H; = ;' B

Linear blamsotroplc medlum
D'=cYE; +a BJ o', B;7 ... magnetoelectric matrices

= @J EJ + /v%_le7



Vector potential

We may express 6 components F; and B* in terms of 6 skew combinations
Anp— Ao of the derivatives of the components of covariant 4-vector
potential A,.

Then 4 Maxwell equations for E; and B* are identically satisfied.

Remaining 4 Maxwell equations:
for DZ == Di(Aaﬁ—A/g,a) and Hz == Hi(AOC?ﬁ—Aﬁ’a) .

In this case, the Boys-Post representation is superior to the Tellegen
representation.

Aharonov-Bohm experiment

Electrons propagate around a solenoid through a region where E; = 0
and B* =0, but A, # 0.

Interference of electrons depends on A,.

The electromagnetic field cannot be completely described by E; and B®.
The electromagnetic field is better described by A,,.



Electromagnetic wave equation

Maxwell equations for a linear bianisotropic medium in the Boys-Post
representation:

X (@) Ay ()], = T (") (23)

Electromagnetic vector potential A, is a covariant 4-vector.
Constitutive tensor Y*?7? is a contravariant tensor density of weight —1.
Current density J“ is a contravariant 4-vector density of weight —1.

The constitutive tensor is skew with respect to its first and second indices,
and with respect to its third and fourth indices:

X0 = —y P (20)
X = o @)

The equation numbers correspond to Klimes (2016).



Components of the constitutive tensor

Constitutive tensor y*%7° has 36 independent components represented
by 36 constitutive parameters €'/, o', 3;”, ,ui_jlz
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X2414 X2424 X2434 — _ 521 822 823
X3414 X3424 X3434 631 632 833
1423 1431 1412 1 1 1
X X X aq Qg Qg
2423 2431 2412 _ 2
X \ X \ X ) =—| o a% a%
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Differentiating the above Maxwell equations, we obtain the continuity
equation
Jo =0 . (24)

, O

We can thus replace the fourth Maxwell equation by its initial conditions
and by the continuity equation for the source terms. For the electromag-
netic wave propagation, we then need just the first three of four Maxwell

equations . .
(X As5) 5 =" (25)

In our coordinate system, we choose the Weyl gauge condition
Ay =0 . (26)
Maxwell equations (25) then simplify to

(XA g =T (27)



We assume that the structure is time-independent (static) in our coordi-

nate system,
X0 = X (@) (30)

We can thus apply the ray-theory approximation in the frequency domain.

In frequency domain, the Maxwell equations for A; = A;(z™,w) with
linear constitutive relations in the Boys-Post representation read

(T AL) g — (A 5 — iox ™ Ay — A = T (32)

where w is the circular frequency. Electric current density J* represents
the source term and vanish outside the source.

Electric field strength:

Magnetic induction:
BF =eMma, . (4)



Standard ray series

We express frequency-domain magnetic vector potential A; = A;(2™,w)
in terms of its vectorial amplitude a; = a;(z™,w) and travel time 7 =
T(z™) as

A; = a;exp(iwT) . (35)

We express the vectorial amplitude in the form of asymptotic series
oo
ai=3 () "a" (36)
n=0

where /™ = o™ (2™, w) is the n-th order vectorial amplitude.
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We consider standard anisotropic ray theory assuming strictly decoupled
waves, and proceed according to Cerveny (2001) using differential oper-

ators _ _
NZ(CLm,T,n) - FZl(xmyT,ny_l) a, , (42)

Tiae + (XM ear) s — x M la; — (X Mar) ;, (43)
L'am) = (xX"™Marr); - (44)

Kelvin-Christoffel matrix

ijkl ij4l

Mi(am77_,n) =X

(2™, pr,pa) = X7 (™)pap, (41)

is a function of six phase-space coordinates =™, p,, formed by three spatial
coordinates ™ and three slowness-vector components p,,. We shall insert

P4 = —1.



The Kelvin-Christoffel matrix is not symmetric. Its right-hand eigenvec-
tors differ from its left-hand eigenvectors.

Right-hand eigenvector g; = ¢;(2™, 7., ), corresponding to selected eigen-
value G = G(2™,1,,) of the Kelvin-Christoffel matrix:

r a=Gg
Corresponding left-hand eigenvector g; = g; (™, 7,):
G =gaGa

We denote by G+ the other two eigenvalues of the Kelvin-Christoffel ma-
trix, by g;- the corresponding right-hand eigenvectors, and by G- the
corresponding left-hand eigenvectors. Superscript - takes two values.
The three right-hand eigenvectors of the Kelvin-Christoffel matrix and
the three left-hand eigenvectors of the Kelvin-Christoffel matrix are mu-
tually biorthogonal, and we choose them mutually biorthonormal.

Eikonal equation
Gz, 7,) =0

can be solved by standard meth0d§ developed for solving the Hamilton-
Jacobi equation (Hamilton, 1837; Cerveny, 1972; Klimes, 2002; 2010).



Hamilton’s equations of rays:

da? B 8H( mop)
d’)/ - apz x 7pn 9
dpi . _8H (.CL‘m )
dy  Oxt P

Phase-space derivatives of the Hamiltonian function:

oH 1

0H 1

- ___ 0 a,nyd
8.%_,& 2 Q O’X,Z pﬁp’)/gd 9

—— G (X" X" pyga

Opi 20

where py = —1 and

0=—3% G (X" X" p, g4

(77)

(78)

(82)

(83)

(84)



Decomposition of a vectorial amplitude into principal amplitude compo-
nent al™ and two additional amplitude components a* "

a™ = allg; + Z atPlgl . (85)
L

Additional amplitude components:
att = —[gE M (@ ) + G L @] (6T 8)
with both a*% = 0.
Zero-order principal amplitude component:
al’ = aEO] (00 JO)% (o J)_% exp(f;dfy S) : (95)

Squared geometrical spreading

ox’
J = det( 87“) (96)

represents the Jacobian of transformation from ray coordinates v!,~?2, 3
to spatial coordinates z'. These ray coordinates are composed of ray
parameters v and 72, and of travel time 3 =7 along rays.



Amplitude factor exp( f:odv S) accounts for the non-reciprocity of the
tensor Green function caused by the difference between symmetric and
non-symmetric constitutive tensors with respect to the exchange of the
first pair of indices and the second pair of indices:

orkt . orrs orkt . orrs =
——Z(gka ~9i 9, T L 5 s>(G )

I kil L i 451 _ dg;
- Yz v . - Yy K - v . — YoV . 115
T i );mkg — G (X=X 0 — g 3, - (115)

Term g_]}‘il i represents just the correction of principal amplitude a!™ due
to the undefined length of right-hand eigenvector g;, and may be put to
ZEro.

Quantity S may be singular at slowness-surface singularities, but is reg-
ular at spatial caustics.

Quantity S vanishes for a constitutive tensor symmetric with respect to
the exchange of the first pair of indices and the second pair of indices.
For a non-symmetric constitutive tensor, quantity S vanishes in a homo-
geneous medium.



Example of S in a bigyrotropic medium
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Polarization

S = —% Vnelp!

Symmetry axis xq

=




Higher-order principal amplitude components

% n] T Z[n—l]
o] P+ | v
0 TO a \/E

ol = o]

where

7ln—1] QIIZQZMZ gk:? )_{_gZLz( [n— 1])] . (93)
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