Sensitivity of electromagnetic waves to a heterogeneous bianisotropic structure

Luděk Klimeš

Department of Geophysics Faculty of Mathematics and Physics Charles University in Prague

http://sw3d.cz

Notation

Einstein summation. Indices $i, j, \ldots = 1, 2, 3; \ \alpha, \beta, \ldots = 1, 2, 3, 4.$

Maxwell equations

System of 8 first-order partial differential equations for 12 quantities: E_i ... electric field

- B^i ... magnetic induction
- D^i ... electric displacement
- H_i ... magnetic field

System of 6 constitutive equations

Tellegen representation:

 $D^{i} = D^{i}(E_{m}, H_{n})$ $B^{i} = B^{i}(E_{m}, H_{n})$

Boys-Post representation:

$$D^{i} = D^{i}(E_{m}, B^{n})$$
$$H_{i} = H_{i}(E_{m}, B^{n})$$

Special cases of the constitutive equations in the Boys-Post representation

Linear isotropic medium:

$$D^{i} = \varepsilon E_{i}$$
$$H_{i} = \mu^{-1} B^{i}$$

Linear isotropic chiral medium:

$$D^{i} = \varepsilon E_{i} + \alpha B^{i}$$
$$H_{i} = \alpha E_{i} + \mu^{-1} B^{i}$$

Linear anisotropic medium: $\begin{array}{l} D^i = \varepsilon^{ij} \, E_j \\ H_i = \mu^{-1} B^i \end{array}$

Linear bianisotropic medium $D^i = \varepsilon^{ij} E_j + \alpha^i_{\ i} B^j$

 $H_i = \beta_i^{\ j} E_j + \mu_{ij}^{-1} B^j$

 ε ... permitivity μ^{-1} ... inverse permeability

 α ... chirality parameter

Counterpart of elastic anisotropy: $D^i = \varepsilon E_i$ $H_i = \mu_{ij}^{-1} B^j$

 $\alpha^{i}_{\ j}, \beta_{i}^{\ j}...$ magnetoelectric matrices

Vector potential

We may express 6 components E_i and B^i in terms of 6 skew combinations $A_{\alpha,\beta} - A_{\beta,\alpha}$ of the derivatives of the components of covariant 4-vector potential A_{α} .

Then 4 Maxwell equations for E_i and B^i are identically satisfied.

Remaining 4 Maxwell equations: for $D^i = D^i(A_{\alpha,\beta} - A_{\beta,\alpha})$ and $H_i = H^i(A_{\alpha,\beta} - A_{\beta,\alpha})$.

In this case, the Boys-Post representation is superior to the Tellegen representation.

Aharonov-Bohm experiment

Electrons propagate around a solenoid through a region where $E_i = 0$ and $B^i = 0$, but $A_{\alpha} \neq 0$.

Interference of electrons depends on A_{α} .

The electromagnetic field cannot be completely described by E_i and B^i . The electromagnetic field is better described by A_{α} .

Electromagnetic wave equation

Maxwell equations for a linear bianisotropic medium in the Boys-Post representation:

$$[\chi^{\alpha\beta\gamma\delta}(x^{\mu})A_{\gamma,\delta}(x^{\nu})]_{,\beta} + J^{\alpha}(x^{\mu}) = 0 \quad .$$
⁽²⁾

Constitutive tensor $\chi^{\alpha\beta\gamma\delta}$ is a contravariant tensor density of weight -1. Current density J^{α} is a contravariant 4-vector density of weight -1.

The constitutive tensor is **skew** with respect to its first and second indices, and with respect to its third and fourth indices:

$$\chi^{\alpha\beta\gamma\delta} = -\chi^{\beta\alpha\gamma\delta} = -\chi^{\alpha\beta\delta\gamma} \quad . \tag{3}$$

Components of the constitutive tensor

Constitutive tensor $\chi^{\alpha\beta\gamma\delta}$ has 36 independent components represented by 36 constitutive parameters ε^{ij} , $\alpha^{i}_{\ j}$, $\beta^{\ j}_{i}$, μ^{-1}_{ij} :

$$\begin{pmatrix} \chi^{1414} & \chi^{1424} & \chi^{1434} \\ \chi^{2414} & \chi^{2424} & \chi^{2434} \\ \chi^{3414} & \chi^{3424} & \chi^{3434} \end{pmatrix} = - \begin{pmatrix} \varepsilon^{11} & \varepsilon^{12} & \varepsilon^{13} \\ \varepsilon^{21} & \varepsilon^{22} & \varepsilon^{23} \\ \varepsilon^{31} & \varepsilon^{32} & \varepsilon^{33} \end{pmatrix}$$

$$\begin{pmatrix} \chi^{1423} & \chi^{1431} & \chi^{1412} \\ \chi^{2423} & \chi^{2431} & \chi^{2412} \\ \chi^{3423} & \chi^{3431} & \chi^{3412} \end{pmatrix} = - \begin{pmatrix} \alpha^{1}_{1} & \alpha^{1}_{2} & \alpha^{1}_{3} \\ \alpha^{2}_{1} & \alpha^{2}_{2} & \alpha^{2}_{3} \\ \alpha^{3}_{1} & \alpha^{3}_{2} & \alpha^{3}_{3} \end{pmatrix}$$

$$\begin{pmatrix} \chi^{2314} & \chi^{2324} & \chi^{2334} \\ \chi^{1214} & \chi^{1224} & \chi^{1234} \end{pmatrix} = \begin{pmatrix} \beta_{1}^{1} & \beta_{1}^{2} & \beta_{1}^{3} \\ \beta_{2}^{1} & \beta_{2}^{2} & \beta_{2}^{3} \\ \beta_{3}^{1} & \beta_{3}^{2} & \beta_{3}^{3} \end{pmatrix}$$

$$\begin{pmatrix} \chi^{2323} & \chi^{2331} & \chi^{2312} \\ \chi^{1223} & \chi^{1231} & \chi^{1212} \end{pmatrix} = \begin{pmatrix} \mu_{11}^{-1} & \mu_{12}^{-1} & \mu_{13}^{-1} \\ \mu_{21}^{-1} & \mu_{22}^{-1} & \mu_{23}^{-1} \\ \mu_{31}^{-1} & \mu_{32}^{-1} & \mu_{33}^{-1} \end{pmatrix}$$

Our additional assumptions about the constitutive tensor

In order to simplify the application of the ray-theory approximation, we are assuming here that the constitutive tensor is real-valued, and is symmetric with respect to its first and second pairs of indices:

$$\chi^{\alpha\beta\gamma\delta} = \chi^{\gamma\delta\alpha\beta} \quad . \tag{4}$$

For the sake of simplicity, we are also assuming here that the structure is time-independent:

$$\chi^{\alpha\beta\gamma\delta} = \chi^{\alpha\beta\gamma\delta}(x^m) \quad . \tag{5}$$

Gabor representation of medium perturbations

We consider infinitesimally small perturbations $\delta \chi^{\alpha\beta\gamma\delta}$ of the constitutive tensor $\chi^{\alpha\beta\gamma\delta}$ in the electromagnetic wave equation.

We decompose the perturbations of the constitutive tensor into Gabor functions $g^{\Omega}(x^m)$ indexed here by Ω :

$$\delta \chi^{\alpha\beta\gamma\delta}(x^m) = \sum_{\Omega} \chi^{\alpha\beta\gamma\delta}_{\Omega} g^{\Omega}(x^m) \quad , \tag{7}$$

$$g^{\Omega}(x^{m}) = \exp\left[i \, k_{i}^{\Omega} \left(x^{i} - x_{\Omega}^{i}\right) - \frac{1}{2} (x^{i} - x_{\Omega}^{i}) \, K_{ij}^{\Omega} \left(x^{j} - x_{\Omega}^{j}\right)\right] \quad . \tag{8}$$

Gabor functions $g^{\Omega}(x^m)$ are centred at various spatial positions x^i_{Ω} and have various structural wavenumber vectors k^{Ω}_i .

The wavefield scattered by the perturbations is then composed of waves $A^{\Omega}_{\alpha}(x^{\mu})$ scattered by the individual Gabor functions,

$$\delta A_{\alpha}(x^{\mu}) = \sum_{\Omega} a^{\Omega}_{\alpha}(x^{\mu}) \quad . \tag{9}$$

Applied approximations

Short-duration broad-band wavefield with a smooth frequency spectrum incident at the Gabor function, expressed in terms of the amplitude and travel time.

First-order Born approximation of each wave $A^{\Omega}_{\alpha}(x^{\mu})$ scattered by one Gabor function.

Ray-theory approximation of the Green tensor in the Born approximation.

High-frequency approximation of spatial derivatives of both the incident wave and the Green tensor. In this high-frequency approximation, we neglect the derivatives of the amplitude, which are of order 1/frequency with respect to the derivatives of the travel time.

Paraxial ray approximation of the incident wave in the vicinity of central point x_{Ω}^{i} of the Gabor function.

Two-point paraxial ray approximation of the Green tensor at point x_{Ω}^{i} and at the receiver. The paraxial ray approximation consists in a constant amplitude and in the second-order Taylor expansion of the travel time.

Sensitivity Gaussian packets

The mentioned approximations enable us to calculate the waves scattered by Gabor functions analytically.

Wave $A^{\Omega}_{\alpha}(x^{\mu})$ scattered by one Gabor function is composed of a few (i.e., 0 to 3 as a rule) Gaussian packets. Each of these "sensitivity" Gaussian packets has a specific frequency and propagates from point x^{i}_{Ω} in a specific direction:

A single Gabor function Broad-band wave inci- Scattered wave $A^{\Omega}_{\alpha}(x^{\mu})$ $g^{\Omega}(x^{i}_{\Omega})$ centred at point dent at the Gabor func- composed of one sensi x^{i}_{Ω} . tion. tivity Gaussian packet. Each of these sensitivity Gaussian packets scattered by Gabor function $g^{\Omega}(x^m)$ is sensitive to just a single linear combination

$$R^{\Omega} = \frac{\chi_{\Omega}^{\alpha\beta\gamma\delta} E_{\alpha} P_{\beta} e_{\gamma} p_{\delta}}{-2 \chi^{\alpha\beta\gamma\delta}(x_{\Omega}^{n}) e_{\alpha} P_{\beta} e_{\gamma} p_{\delta}}$$
(41)

of coefficients $\chi_{\Omega}^{\alpha\beta\gamma\delta}$ corresponding to the Gabor function.

- P_i ... slowness vector of the incident wave; $P_4 = -1$
- E_{α} ... polarization vector of the incident wave
- p_i ... slowness vector of the sensitivity Gaussian packet; $p_4 = -1$ e_{α} ... polarization vector of the sensitivity Gaussian packet

Coefficient R^{Ω} represents the weak-contrast reflection-transmission coefficient at the interface at which the constitutive tensor changes by $\chi^{\alpha\beta\gamma\delta}_{\Omega}$.