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Transport equation for the scalar amplitude

Multivalued zero-order ray-theory scalar amplitude A of a general elastic
wavefield satisfies transport equation

∂

∂xi

(

A2̺ V i
)

= 0 , (21)

where V i is the ray velocity vector. Function ̺ is a function parametrizing
the transport equation. If A is the amplitude of the displacement of an
elastic wavefield, ̺ is the density.

The transport equation is a partial differential equation for the square
A2 of the amplitude, not for the amplitude itself. Even if the solution A2

of the transport equation is real-valued, amplitude A becomes complex-
valued if its square A2 becomes negative. Amplitude A is thus complex-
valued. Since the complex-valued square root has two branches, it is
difficult to determine amplitude A from its square A2. We must determine
which branch of the amplitude is correct.



Complex modulus of the scalar amplitude and phase shift due
to caustics

We thus separate square root A =
√

A2 into its complex modulus |A| and
complex argument ϕ:

A = |A| exp(iϕ) , (22)

where ϕ is the phase shift due to caustics.

For the rules of determining the phase shift of a wavefield with general
initial conditions due to caustics refer to Klimeš (2014a).

For the rules of determining the phase shift of the Green tensor due to
caustics refer to Klimeš (2010).

In this contribution, we summarize various expressions for the complex
modulus of the scalar amplitude of a wavefield with general initial condi-
tions, and for the complex modulus of the scalar amplitude of the elastic
Green tensor. The expressions are related to various solutions of the
equations of geodesic deviation either in Cartesian coordinates or ray-
centred coordinates. The equations are numbered according to Klimeš
(2014b).



Ray-centred coordinates

Along a particular ray, we define ray-centred coordinates qa (Klimeš,
2006).

We parametrize the points along the ray by an arbitrary monotonic vari-
able q3. At each point xi(q3) of the ray, we choose two contravariant
basis vectors hi

1(q
3) and hi

2(q
3) perpendicular to slowness vector pi,

hi
A(q3) pi = 0 . (6)

Contravariant basis vectors hi
A should vary smoothly along the ray.

The transformation from the ray-centred coordinates qa to Cartesian co-
ordinates xi is defined by relation

xi = xi(q3) + hi
A(q3) qA . (7)

Three contravariant basis vectors of the ray-centred coordinate system
are

hi
a =

∂xi

∂qa
. (8)

In the matrix notation, we shall denote the first two contravariant basis
vectors as h1 and h2.



Amplitude of a general wavefield in terms of the paraxial vectors
of geometrical spreading in Cartesian coordinates

A =
C

√

̺ |εijkXi
1X

j
2V k|

exp(iϕ) (25)

(Gajewski & Pšenč́ık, 1990, eq. 7; Kendall, Guest & Thomson, 1992, eqs.
3–4), where V i is the ray velocity vector, C is the reduced amplitude,
and ϕ is the phase shift due to caustics.

Paraxial vectors

Xi
A =

∂xi

∂γA
(11)

of geometrical spreading represent the derivatives of Cartesian coordi-
nates with respect to the ray parameters.



Amplitude of a general wavefield in terms of the matrix of ge-
ometrical spreading in ray-centred coordinates

A(x, x̃) =
C

√

̺ v |h1×h2| |det(QI
A)|

exp(iϕ) (37)

(Klimeš, 2012, eqs. 7, 9), where C is the reduced amplitude and ϕ is the
phase shift due to caustics.

Matrix

QI
A =

∂qI

∂γA
(13)

is the 2×2 paraxial matrix of geometrical spreading in ray-centred coor-
dinates.

The contravariant basis vectors h1 and h2 of the ray-centred coordinate
system are defined as

hi
A =

∂xi

∂qA
. (8)



Amplitude of the elastic Green tensor

The scalar amplitude of the elastic Green tensor from point x̃ to point x
in the frequency domain:

AG(x, x̃) =
1

4π

1
√

̺(x) v(x) ̺(x̃) v(x̃)L(x, x̃)
exp[iϕ(x, x̃)] (38)

(Klimeš, 2012, eq. 55), where ̺ is the density, v is the phase velocity, and
ϕ(x, x̃) is the phase shift of the Green tensor due to caustics.

Here L(x, x̃) is the relative geometrical spreading.



Relative geometrical spreading in terms of the paraxial vectors
in Cartesian coordinates

L(x, x̃) =

√

|εijkXi
1(x)Xj

2(x)V k(x)|V (x̃)

v(x) |Y1(x̃)×Y2(x̃)| v(x̃)
(61)

(Chapman, 2004, eq. 5.4.19), where V i is the ray velocity vector, V is
the ray velocity, and v is the phase velocity.

Paraxial vectors

Xi
A =

∂xi

∂γA
(11)

of geometrical spreading represent the derivatives of Cartesian coordi-
nates with respect to the ray parameters.

Paraxial vectors Y1 and Y2, defined as

YiA =
∂pi

∂γA
, (12)

represent the derivatives of the slowness vector with respect to the ray
parameters.



Relative geometrical spreading in terms of the paraxial matrices
in ray-centred coordinates

L(x, x̃) =
√

|h1(x)×h2(x)| |det[Q(x)]| |det[P(x̃)]|−1 |h1(x̃)×h2(x̃)| .

(51)

Matrix Q, defined as

QI
A =

∂qI

∂γA
, (13)

is the 2×2 paraxial matrix of geometrical spreading in ray-centred coor-
dinates qa.

Matrix P, defined as

PIA =
∂p

(q)
I

∂γA
, (14)

represents the 2×2 paraxial matrix of derivatives of slowness vector p
(q)
i

in ray-centred coordinates with respect to the ray parameters.

The contravariant basis vectors h1 and h2 of the ray-centred coordinate
system are defined as

hi
A =

∂xi

∂qA
. (8)



Relative geometrical spreading in terms of the propagator ma-
trix of geodesic deviation in Cartesian coordinates

L(x, x̃) =

√

|V k(x)Ckl(x, x̃)V l(x̃)|
v(x) v(x̃)

(70)

(Kendall, Guest & Thomson, 1992, eq. 17b; Chapman, 2004, eq. 5.4.23),
where V i is the ray velocity vector and v is the phase velocity.

Here
Ckl(x, x̃) = 1

2
εkij εlmn Xim

2 (x, x̃)X
jn
2 (x, x̃) (69)

is the matrix of the cofactors of the 3×3 upper right submatrix Xim
2 (x, x̃)

of the 6×6 propagator matrix of geodesic deviation in Cartesian coordi-
nates, defined as the derivative

X
ij
2 =

∂xi

∂p̃j

(19)

of Cartesian coordinates xi with respect to initial slowness vector p̃j .



Relative geometrical spreading in terms of the propagator ma-
trix of geodesic deviation in ray-centred coordinates

L(x, x̃) =
√

|h1(x)×h2(x)| |det[Q2(x, x̃)]| |h1(x̃)×h2(x̃)| (39)

(Klimeš, 2012, eq. 13).

The 2×2 upper right submatrix Q2(x, x̃) of the 4×4 propagator matrix of
geodesic deviation in ray-centred coordinates is defined as the derivative

QIJ
2 =

∂qI

∂p̃
(q)
J

(20)

of ray-centred coordinates qI with respect to initial slowness vector p̃
(q)
J

in ray-centred coordinates.

The contravariant basis vectors h1 and h2 of the ray-centred coordinate
system are defined as

hi
A =

∂xi

∂qA
. (8)



Relative geometrical spreading in terms of the second-order
derivatives of the characteristic function in Cartesian coordi-
nates

L(x, x̃) = 1
/

√

|pi(x)W il(x, x̃) pl(x̃)| v(x) v(x̃) , (91)

where pi is the slowness vector and v is the phase velocity.

Here

W il(x, x̃) = 1
2
εijkεlmn ∂2τ

∂xj∂x̃m
(x, x̃)

∂2τ

∂xk∂x̃n
(x, x̃) (88)

is the matrix of the cofactors of matrix

∂2τ

∂xk∂x̃l
(x, x̃) (86)

of the mixed second-order derivatives of the characteristic function with
respect to source coordinates x̃l and receiver coordinates xk.



Relative geometrical spreading in terms of the second-order
derivatives of the characteristic function in ray-centred coor-
dinates

L(x, x̃) =

√

|h1(x)×h2(x)|
∣

∣

∣

∣

det

(

∂2τ

∂qA∂q̃B
(x, x̃)

)
∣

∣

∣

∣

−1

|h1(x̃)×h2(x̃)| .

(84)

Here
∂2τ

∂qA∂q̃B
(x, x̃) = hk

A(x)
∂2τ

∂xk∂x̃l
(x, x̃)hl

B(x̃) (76)

is the 2×2 matrix of the mixed second-order derivatives of the charac-
teristic function with respect to source ray-centred coordinates q̃B and
receiver ray-centred coordinates qA.

The contravariant basis vectors h1 and h2 of the ray-centred coordinate
system are defined as

hi
A =

∂xi

∂qA
. (8)



References

Chapman, C.H. (2004): Fundamentals of Seismic Wave Propagation.

Cambridge Univ. Press, Cambridge.
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Klimeš, L. (2012): Zero-order ray-theory Green tensor in a heterogeneous
anisotropic elastic medium. Stud. geophys. geod., 56, 373–382.
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