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Summary

The exact analytical solution for the plane S wave, prop-
agating along the axis of spirality in the simple 1-D
anisotropic \twisted crystal" model is numerically com-
pared with eight approximate ray{theory solutions of var-
ious provenance.

1 Introduction

The \twisted crystal" model is created of a homogeneous
anisotropic elastic material by uniformly helicoidally
twisting the x1x2 coordinate plane along the x3 axis. It
is one of the simplest models useful for demonstrating
the limits of applicability of the zero{order isotropic and
anisotropic ray theories and to test the coupling ray theory
(Coates & Chapman 1990), which is the generalization of
both the zero{order isotropic and anisotropic ray theories
and provides continuous transition between them.

The great advantage of this model is that the exact ana-
lytical solution for the plane S wave propagating along the
axis of spirality can be examined analytically (Lakhtakia
1994, Klime�s 1999). The general plane{wave solution for
the general initial conditions expressed in terms of dis-
placement and stress was derived by Lakhtakia (1994),
who also presented explicit analytical equations for the
simpli�ed model with vanishing a1333 and a2333 , in which
the u1 and u2 displacement components are strictly sepa-
rated from the longitudinal u3 component. Klime�s (1999)
concentrated to the 2� 2 one{way propagator matrices
in the simpli�ed model, suitable for comparison with the
coupling ray theory.

This expanded abstract brie
y summarizes the main re-
sults of much more detailed papers by Klime�s (1999) and
Bulant, Klime�s & P�sen�c��k (1999), in which the exact solu-
tion and eight ray{theory approximate solutions of various
provenance are theoretically and numerically compared.
The eight approximate solutions are: (a) coupling ray the-
ory of Coates & Chapman (1990), calculated by (a1) eval-
uating the analytical solution of the coupling ray theory
equations, (a2) 3-D ray tracing package CRT, (a3) 3-D ray
tracing package ANRAY; (b) zero{order approximation of
the quasi{isotropic approach to the coupling ray theory
according to P�sen�c��k (1998a, 1998b), P�sen�c��k & Dellinger

(2000) and �Cerven�y (2000), calculated by (b1) evaluat-
ing the analytical solution of the quasi{isotropic ray the-
ory equations, (b2) 3-D ray tracing package ANRAY; (c)
anisotropic ray theory solution, calculated by (c1) evalu-
ating the analytical solution of the anisotropic ray theory
equations; (d) isotropic ray theory solution, calculated by
(d1) evaluating the analytical solution of the isotropic ray
theory equations, (d2) 3-D ray tracing package CRT.

2 \Twisted crystal" model

The elastodynamic equation in the frequency domain
reads

[%aijkluk;l];j = �%!2
ui ; (1)

where aijkl are the density{normalized elastic parameters
(sti�ness tensor). The lower{case subscripts take values
i; j; k; ::: = 1; 2; 3, the upper{case subscripts take values
I; J;K; ::: = 1; 2; the Einstein summation over the pairs
of identical indices is used.

For plane wave ui = ui(x3) propagating along the x3 axis
in the 1-D anisotropic model ai3k3 = ai3k3(x3) with con-
stant density %, elastodynamic equation (1) simpli�es to

[ai3k3uk;3];3 = �!2
ui : (2)

In the simpli�ed 1-D anisotropic \twisted crystal" model
we take

a33K3 = 0 : (3)
Components uK are then fully separated from u3. We
choose parameters aI3K3 in the form of�

a1313 a1323

a2313 a2323

�
= v

2
0B (4)

with

B =

�
1 + " cos(2Kx3) " sin(2Kx3)

" sin(2Kx3) 1� " cos(2Kx3)

�
: (5)

Due to the separation of plane waves, other parameters
than ai3K3 may be arbitrarily dependent on x3. Elasto-
dynamic equation (2) for the plane S wave in the \twisted
crystal" model then reads

[Bu0]0 = �k20u ; (6)

where the prime denotes the derivative with respect to x3

and

u =

�
u1

u2

�
; k0 =

!

v0

: (7)

Note that the relation to Vavry�cuk's (1999) notation is

" =
�
 sin2(�)
1 + 
 sin2(�)

; v
2
0 = a44[1+
 sin2(�)] ; ' = Kx3 : (8)

3 Analytical solutions

The 2 � 2 one{way propagator matrix U of elastody-
namic equation (6) may be described by four frequency{
dependent coe�cients F0, F1, F2 and F3 (Klime�s 1999),
U=exp(iReF0x3) [1 cos(Kx3)� i�2 sin(Kx3)]

� [1 cos(Re'x3) + i� sin(Re'x3)]

� exp(�ImF0x3) [1 cosh(Im'x3)�� sinh(Im'x3)] ; (9)

where 1 is the 2�2 identity matrix,

� = [F1i�1 + F2�2 + F3�3]'
�1

; (10)

' =
p

F
2
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2 � F
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1 (11)
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and

�1 =
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0 1

1 0

�
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�
0 �i
i 0

�
; �3 =

�
1 0

0 �1

�
; (12)

are the Pauli matrices.

Exact one{way propagator matrices have coe�cients

F1=
"Kk

2
0

(k20�K2)
p
1�"2
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q
1�"2

�
K2
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0
�K2

�2 i ; (13)

F2 = K + "F1 ; (14)
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�
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The sign of F0 has to be determined according to the de-
sired direction of the one{way plane{wave propagation.
Two possible signs of F0 correspond to the two one{way
propagator matrices in the opposite directions. For exam-
ple, if the time factor is exp(�i!t) for positive circular fre-
quencies !, positive ReF0 corresponds to the propagation
in the direction of the positive half{axis x3, and negative
ReF0 to the propagation in the direction of the negative
half{axis x3. For resonant frequencies within domain

(1 � j"j)K2 � k
2
0 � (1 + j"j)K2

; (17)

where F0, F1, F2 and F3 are complex{valued, we may
determine F1 from equation (13), arbitrarily selecting one
of the complex{conjugate roots. After insertion into (16)
and determination of F0 with its real part corresponding
to the desired direction of propagation, we check for the
proper sign of the imaginary part of F0. The imaginary
part of F0 has to compensate the exponential increase
of cosh in equation (9). That is why ImF0 should be
positive for propagation in the direction of the positive
half{axis x3 and negative for propagation in the direction
of the negative half{axis x3, independently of time factor
exp(�i!t). If the imaginary part does not correspond to
the direction of propagation, we replace F0 and F1 by
their complex{conjugates. Equations (14), (15) and (9)
are then used as they are.

The coupling ray theory implemented by Bulant &
Klime�s (1998) according to the equations of Coates &
Chapman (1990) yields, in the \twisted crystal" model,
the approximate solution in the form of (9) with

F
crt
0 = k0

p
1 + "+

p
1 � "

2
p
1� "2

; (18a)

F
crt
1 = 0 ; (18b)

F
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2 = K ; (18c)
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The quasi{isotropic approximation of the coupling
ray theory implemented according to P�sen�c��k (1998)
yields, in the \twisted crystal" model with reference ve-
locity vR, the approximate solution in the form of (9) with

F
qi

0 = k0
v0

vR
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2
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�

; (19a)

F
qi

1 = 0 ; (19b)
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The zero{order anisotropic ray theory yields, in the
\twisted crystal" model, the approximate solution in the
form of (9) with

F
ani
0 = F

crt
0 ; F

ani
1 = F

crt
1 ; F

ani
2 = 0; F

ani
3 = F

crt
3 : (20)

The zero{order isotropic ray theory is applied to the
isotropic material which is in some sense close to the
anisotropic material. The most accurate approach is to
select the velocity in the vicinity of each isotropic ray such
as to yield a travel time equal to the arithmetic average
of the anisotropic travel times of both S{wave polariza-
tions along the same phase{space curve in the anisotropic
material. This application of the zero{order isotropic ray
theory yields, in the \twisted crystal" model, the approx-
imate solution in the form of (9) with

F
iso
0 = F

crt
0 ; F

iso
1 = F

crt
1 ; F

iso
2 = F

crt
2 ; F

iso
3 = 0: (21)

4 Model for the numerical comparison

We use the \twisted crystal" model designed by Vavry�cuk
(1999). The selected numeric values in (8) are


 sin
2
(�) = 0:15� 0:75 = 0:1125 ; (22)

v
2
0 = 6:0 km

2
s
�2� [1+0:15�0:75] = 6:675 km

2
s
�2

: (23)
The square of the reference isotropic velocity used in pack-
age ANRAY is

v
2
R = 6:9 km

2
s
�2

: (24)

Parameter K describing the rotation of the crystal axes
along the x3 axis has the value

K = 0:032 km�1
: (25)

The source{receiver distance corresponds to the crystal
axes rotated by � radians,

x3 =
�

K
' 98:17477 : (26)

The resonant frequency, see (17), is

F =

���v0K
2�

��� ' 0:0132Hz (27)

and the coupling frequency (Klime�s 1999, section 4.1) is���2
"

���F ' 0:260Hz : (28)

The anisotropic ray theory travel times are
�1 ' 36:212310 s ; �2 ' 40:079682 s : (29)

Their arithmetic average, which is the best isotropic travel
time, is

� ' 38:145996 s : (30)

5 Numerical comparison and discussion

For the numerical comparison, we de�ne the relative (with
respect to the initial conditions) di�erence between one{
way propagator matrices U and U0 as

� =

r
1

2
Tr
�
[U0 �U]

+

[U0 �U]
�

: (31)
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If only the �rst columns u and u0 of propagator matrices
U andU0 are available for comparison (package ANRAY),
we de�ne the relative di�erence analogously as

� =

q
[u0 � u]

+

[u0 � u] : (32)

The numerical comparison has been divided into two
steps:
(A) The comparison of the results of 3-D ray tracing pack-
ages ANRAY and CRT of compact disk SW3D{CD{3
(Bucha & Klime�s 1999) with the corresponding numer-
ically evaluated analytical solutions in order to check the
equations and to debug both the 3-D codes and one{
purpose programs for the analytical solutions of the com-
pact disk.
(B) The comparison of the exact solution with the analyt-
ical solutions of the equations for the zero{order isotropic
and anisotropic ray theories, for the coupling ray theory of
Coates & Chapman (1990), and for the zero{order quasi{
isotropic approximation to the coupling ray theory accord-
ing to P�sen�c��k (1998a, 1998b) and �Cerven�y (2000).

5.1 Ray tracing packages CRT and ANRAY

Relative di�erences between the numerical results of pack-
age CRT, version 5.30 (isotropic and coupling ray meth-
ods) and the corresponding analytical solutions are at the
level corresponding to the rounding{o� errors of the travel
time, i.e., less than 0.1%.

The relative di�erences between the numerical results of
package ANRAY at frequency f = 2:6Hz and the corre-
sponding analytical solutions are about 2% for the zero{
order quasi{isotropic approximation and about 2.5% for
the coupling ray theory, which is in good agreement with
the estimate of 2.8% for the error of the Euler method with
step �� = 0:025 s along a ray, used to solve the coupling
equations in package ANRAY numerically.

5.2 Comparison of four analytical ray{theory so-
lutions with the exact solution

The relative di�erences of the analytical solutions of the
equations for the zero{order isotropic and anisotropic
ray theories, the coupling ray theory and the zero{order
quasi{isotropic approximation to the coupling ray theory
from the exact solution are plotted on a log{log scale in
Figure 1. Note that the isotropic ray theory is applied
to the isotropic model with the best propagation velocity
as suggested by Klime�s (1999) and that the results of the
zero{order quasi{isotropic approximation depend on the
reference velocity.

The di�erences from the exact solution correspond to
the theoretical discussion of Klime�s (1999). The zero{
order quasi{isotropic approximation to the coupling ray
theory cannot bridge the gap between the isotropic and
anisotropic ray theories, there are frequencies where both
zero{order quasi{isotropic and anisotropic methods dis-
play a relative error of 60%. On the other hand, the
coupling ray theory of Coates & Chapman (1990) yields
excellent results in this model, except for the resonant fre-
quencies, which are far outside the validity regions of the
ray theories.
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Rel.  
error 

1.000

0.100
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Figure 1. The relative di�erences of the coupling ray theory
of Coates & Chapman (1990) [solid line], zero{order quasi{
isotropic approximation to the coupling ray theory according

to P�sen�c��k (1998a, 1998b) and �Cerven�y (2000) [dashed lines],
zero{order anisotropic ray theory [bold dotted line] and zero{
order isotropic ray theory [thin dotted line] from the exact so-
lution. The two vertical lines denote the resonant and coupling
frequencies (27), (28). The relative error of 200% occurs, e.g.,
for an opposite polarization or an opposite phase. The upper

(up to 1Hz) quasi{isotropic curve corresponds to reference ve-
locity (24) used in package ANRAY, the lower quasi{isotropic
curve corresponds to reference velocity (23).

Note that the only di�erence between the coupling ray
theory and the zero{order approximation of the quasi{
isotropic approach is the calculation of the anisotropic
ray theory travel times used in the coupling equations.
Whereas the travel times are calculated by the numeri-
cal quadratures of the corresponding slownesses along the
reference ray (Bulant & Klime�s 1998, equation 2), the
quasi{isotropic approximation just corrects the reference
travel time by the linear perturbation with respect to the
density{normalized elastic parameters. If the reference
ray corresponds to a polarization selected according to the
zero{order anisotropic ray theory, the travel time of the
selected polarization is exact, and the coupling ray the-
ory may also be used at high frequencies because only the
travel{time di�erence describing the coupling due the low{
frequency scattering is approximate. The high{frequency
accuracy of the coupling ray theory may thus deteriorate
at the most by the common ray approximation for both S{
wave polarizations, the accuracy of which should be stud-
ied further.

5.3 Synthetic seismograms for �ve analytical so-
lutions

The synthetic seismograms corresponding to the exact so-
lution and to the analytical solutions of the equations for
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Figure 2. Synthetic seismograms for prevailing frequency
1:3Hz. The x1 displacement is on the left, the x2 displacement
on the right. The exact solution is shown as the bold solid line,
the coupling ray theory of Coates & Chapman (1990) by the
thin solid line and is obscured here by the exact solution, the
zero{order quasi{isotropic approximation according to P�sen�c��k
(1998a, 1998b) and �Cerven�y (2000) is the dashed line, the zero{
order anisotropic ray theory is the bold dotted line, the zero{
order isotropic ray theory is the thin dotted line. The two hori-
zontal lines denote the anisotropic ray theory travel times (29).

the coupling ray theory, the zero{order quasi{isotropic ap-
proximation of the coupling ray theory and the zero{order
isotropic and anisotropic ray theories are shown in Figures
2 and 3. The reference velocity given by (24) is used.

The initial displacement at x3 = 0 has the direction of
the x1 axis and the time dependence in the form of the
symmetric Gabor signal

exp

�
�
h
2�f0t

4

i2�
cos (2�f0t) (33)

with prevailing frequency f0 = 1:3Hz for Figure 2, �l-
tered by the cosine band{pass �lter described by frequen-
cies (0:00Hz, 0:13Hz, 2:47Hz, 2:60Hz). As the prevailing
frequency in Figure 2 is �ve times larger than the coupling
frequency, the two S{wave arrivals are clearly split, and
the only visible di�erence between the exact solution and
the anisotropic ray theory is the slightly di�erent polar-
ization. The coupling ray theory is nearly exact.

The analogous seismograms for the prevailing frequency,
equal to the coupling frequency f0 = 0:26Hz, are shown
in Figure 3. The cosine band{pass �lter has been changed
to (0:00Hz, 0:026Hz, 2:47Hz, 2:60Hz).
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