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Summary

The equations for the linear paraxial approximation of the polarization vectors and for the variation of the polarization
vectors with a velocity perturbation are presented.

Introduction

The equations for the linear paraxial approximation of the polarization vectors and for the variation of the polarization
vectors with a velocity perturbation were derived by Coates & Chapman (1990). Here the equations are derived in
more detail, and the final equations presented make it more obvious which numerical quadratures along the central
ray are required.

Notation and coordinates

In the case of component notation, the capital-letter indices take values K, L,... = 1,2; the lower—case indices take
values k,l,... = 1,2,3. The Einstein summation convention is used with respect to repeated subscripts. Let us
introduce three coordinate systems: (a) Cartesian coordinates ;. (b) Ray coordinates v;, where 41, 72 are the take-
off ray parameters and +s is an independent variable along rays (e.g., travel time 7, arclength s, o = f vds, or another
parameter). (c) Ray—centred coordinates ¢; connected with the central ray, where ¢; are Cartesian coordinates in
plane g3 = constant perpendicular to the central ray, and g3 is the arclength s along the central ray.

Polarization vectors

We denote by H;x two mutually perpendicular unit vectors, perpendicular to the ray (polarization vectors in the
case of an S wave). We require them not to rotate with respect to the ray. Similarly, we denote by His,

His =piv (1)
the unit vector tangent to the ray (polarization vector in the case of a P wave). At the central ray,
ox;
Hip = = (2)

Iqk
Geometrical spreading matrix and the travel-time derivatives

We denote by Qi the matrix of geometrical spreading,
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where 6;; is the Kronecker delta (components of the identity matrix). At the central ray, relation (4) yields
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Matrices Qim and Pip, are related as
Pim = Mi;Qjm (6)
where )
T
M = —— 7
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is the matrix of the second travel-time derivatives in the ray—centred coordinates.
Equation for the polarization vectors

The very simple form of the equation to trace the polarization vectors along rays reads (Coates & Chapman 1990,
equation C3)
OHiy
8’73

=W, Hj, (8)
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where
dpiv Opsv_ Opi 5 Op; o (9)
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For the sake of conciseness, we shall express similar equations in a form analogous to

dpiv
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Note that the derivative with respect to s in (8) is really a partial derivative, because it is applied for v1, v2 constant.

Paraxial polarization vectors

We are interested in the derivatives

OH ;i OHix 1
= 11
e T (1)
of the polarization vectors in ray—centred coordinates. Equation (8) together with the ray tracing equations yields
OH (api 2> Opj 2) dv dv
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where s is the arclength along the ray. Since H;s is a unit vector perpendicular to the wavefront,
OH;s
N

:HiLMLN'U s (13)

where M1 are the second travel-time derivatives in the ray—centred coordinates, see (7) Unit vectors H;1, Hiz are
mutually perpendicular and both of them are perpendicular to H;3. Their derivatives can thus be expressed as

0H;x

=exrHitQn — HaMinyv (14)
dqn
where €11 = €220 = 0, €12 = —€21 = 1 and
aHﬂ 8H12
N Dan 2 Dan 1 (15)

Note that equation (14) is equivalent to equation C9 of Coates & Chapman (1990). We now have to find the equations
for 21 and €25.

Equations for the paraxial polarization vectors

The differentiation of (8) with respect to ray coordinates vy, yields
0 OHi —w 0 H i, n oW,
vz 0Ym ” IYm IYm

Assume that H;j is a unitary 3 x 3 matrix satisfying equation (8). The solution of (16) may then be expressed in the

form

Hj . (16)
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Note that equations (16) and (17) are identical to equations C5 and C6 of Coates & Chapman (1990), who introduce
3 x 3 propagator matrix E,;(v3,~9) = an(yg)H;il(yg) by equation C4.

We shall now consider the integral on the right—hand side of this relation,
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see (10). Since p;v = Hya, see (1), and Hin 222 = 0,

3 v
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Since (19) is skew (antisymmetric) in indices &k and I,
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is the velocity gradient in the ray—centred coordinate system at the central ray. Insertion of (12) into (5) yields
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Considering (24), relation (22) takes the form
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Equations (11) and (17) yield
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Inserting (25) into (26), we arrive at
s(v3)
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Inserting this into (15) and applying (11) for 42 = 43, we obtain this expression for Qu:
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which follows from (3), (4) and (8), equation (28) becomes
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which is equivalent to equation C10 of Coates & Chapman (1990). Here Qun and Py are the standard 2 x 2
paraxial ray tracing matrices in the ray—centred coordinate system. In order to evaluate the paraxial changes of the
S—wave polarization vectors, we need to compute two integrals

s(vs)
/ ds (‘/1P2M_‘/2P1M) (31)
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along the ray.
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Variation of the polarization vectors with a velocity perturbation

We denote by 6A the variation of quantity A with respect to any of the model parameters. During the velocity
perturbations, we keep the coordinate systems fixed. The perturbations (i.e. the variations with respect to the model
parameters) then have the properties of partial derivatives, and commute with the partial derivatives with respect

to the coordinates. Equations (16)—(22) thus remain valid if we replace partial derivative % by variation § with

respect to a model parameter. With this substitution, equations (17) and (22) yield
Hni(72) = Hor(7) | Hin(v8)6 Hu(3)

s(v3)
+ (8 rbar — b3rdrr) v(va) [Hz‘f((73)5pi(73) — Hm(vg)&pi(vg)] — (6rrbr1 — 5Lk5]\"l)/ dsVrx Hizbpi|. (32)
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This equation may be rearranged to read
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In order to evaluate the perturbation of the S—wave polarization vectors, we need to compute the integral

s(vs)
/ ds (Vi6P, — Va6 P1) (34)
s(vg
along the ray. Here

6Py = Hirbp; (35)

is the slowness vector perturbation in ray—centred coordinates.
Conclusions

Equations (12), (13) and (14) with (30) may be used to calculate the first derivatives of the polarization vectors. Two
numerical quadratures (31) are required to calculate the derivatives of the S—wave polarization vectors perpendicularly
to the ray.

Equation (33) may be used to calculate the variations of the polarization vectors with velocity perturbations. Equation
(33) takes a very simple form for the variation of the P—wave polarization vector or for the ray—tangent component
of the variation. In addition to the quadratures for the variation of the central ray (Farra & Madariaga 1987), one
numerical quadrature (34) is required for the ray—normal components of the variation of the S—wave polarization
vectors per each perturbation.

The numerical quadratures can be calculated after ray tracing, along rays stored together with the polarization
vectors and the paraxial ray propagator matrix in disk files (Cerveny, Klimes & Psencik 1988, section 7.26).
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