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Generation of triplications in transversely isotropic media
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Triplications and cusp edges can occur in homogeneous transverse isotropy~TI! provided the strength of
anisotropy exceeds a critical value. The critical strength of anisotropy is 9.50% for axial triplication, 9.71% for
basal triplication, 8.86% for oblique triplication, and 9.72% for double triplication. No TI with strength less
than the critical can display triplications. On the other hand, high values of the strength of anisotropy do not
guarantee the existence of triplications. Hence, observations of triplications on the wave surface cannot serve
as a unique criterion defining strong TI.
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I. INTRODUCTION

Triplications and cusp edges on the wave front can s
nificantly complicate modeling of wave fields. They produ
energy focusing1–9 and phase shifting of signals.10,11 In ho-
mogeneous transverse isotropy with normal polarizati
triplications can occur for the SV wave only and can
classified into four different types~see Fig. 1!: ~i! oblique,
~ii ! axial, ~iii ! basal, and~iv! double~axial and basal! tripli-
cations. The existence of triplications is conditioned by
existence of concave or saddle-shaped areas on the slow
surface~see Fig. 2!. These areas are separated from the c
vex areas by parabolic lines, formed by points of zero Gau
ian curvature.12–15Generally, the stronger the anisotropy, t
larger the part of the slowness surface which may be conc
or saddle shaped, and the more developed the triplication
anisotropy is decreased, the concave or saddle-shaped
are reduced and the triplications are restricted to a narro
interval of angles. If two cusps defining the triplication co
lesce into one~the width of the triplication reduces to onl
one direction!, we speak of ‘‘incipient’’ triplication. In this
case, the medium represents a borderline between the m
with and without a triplication.16

Triplication conditions in transverse isotropy~TI! yield
inequalities, with which one can uniquely decide whether
TI under study triplicates or not.17–24 The inequalities are
however, rather complicated and difficult to understa
Hence, it is possible to classify any specific TI, but it is n
easy to establish simple generalizations. We expect tha
triplication can occur in a sufficiently weak TI,15 but we have
no understanding of which combinations of elastic para
eters generate triplication and how strong anisotropy mus
to generate triplications. Furthermore, it is not clear whet
the occurrence of a triplication can be used as a criterion
distinguishing weak from strong TI.

II. TRIPLICATION CONDITIONS

We consider TI media, which satisfy the ‘‘stability
conditions16,25

a33.0, a44.0, a66.0, a112a66.0,

a33~a112a66!.a13
2 , ~1!
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and the conditions that prevent theP and SV slowness or
phase-velocity surfaces to intersect one another:

a112a44.0, a332a44.0, ~2!

a131a44.0, ~3!

where akl are the density normalized elastic parameters
the Voigt notation. Equation~3! is also the condition for the
so-called ‘‘normal polarization’’ ofP and SV waves.26 For
the analysis under less restrictive conditions, see Payton20 or
Alshits and Chadwick.22

The following equation conditions the axial triplication
@see Musgrave,17 Eq. ~8.3.4!#

~a131a44!
22a11~a332a44!>0; ~4!

the basal triplications@see Musgrave,17 Eq. ~8.3.5!#,

~a131a44!
22a33~a112a44!>0; ~5!

and the oblique triplications@see Dellinger,27 Eq. ~2.19!; Th-
omsen and Dellinger,24 ~Eq. 9!#,

3a44
2 2~a131a44!

22a44~a331a11!13a11a33

22A~a332a44!~a112a44!
a11a332a44

2

a131a44
<0, ~6!

where the equality sign stands for the incipient triplicatio
The slowness angleu i of the incipient triplication isu i50°
for the axial triplication,u i590° for the basal triplication,
and

sin2 u i5
a332a44

a111a3322a44
, cos2 u i5

a112a44

a111a3322a44
~7!

for the oblique triplication. Note that Eq.~6! is the exact
opposite of the approximate conditions proposed by vari
authors.18,19,21–23

III. ANISOTROPY PARAMETERS

Triplication conditions~4!–~6! can also be expressed i
terms of parameters«, g, s, k, anda44, which represent an
alternative parametrization of TI:28,29
©2003 The American Physical Society07-1
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FIG. 1. Types of triplications in transvers
isotropy. Vertical sections of wave surfaces a
shown for~a! oblique,~b! basal,~c! axial, and~d!
double triplications.

FIG. 2. Vertical sections of slowness surfac
generating different types of triplications. For de
tails, see the caption of Fig. 1. Parabolic poin
~marked by dots! separate convex~solid line!,
concave~dotted line!, and saddle-shaped~dashed
line! areas.
054107-2
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«5
a112a33

2a33
, ~8!

g5
a662a44

2a44
, ~9!

s5
1

2a44
Fa112a442

~a131a44!
2

a332a44
G , ~10!

k5a33/a44. ~11!

Parameters«, g, ands are called the anisotropy paramete
and are frequently used for describing weak TI. For exam
they control the angular variations of phase velocities
weak TI as follows:

~cP!25ka44S 112« sin2 u22
s

k
sin2 u cos2 u D , ~12!

~cSV!25a44~112s sin2 u cos2 u!, ~13!

~cSH!25a44~112g sin2 u!, ~14!

where u is the angle between the slowness vector and
axis of symmetry. The anisotropy parameters become zer
isotropy and can thus serve as a measure of strength o
Therefore, expressing the triplication conditions using th
parameters provides a better understanding of how strong
anisotropy must be for the triplication to occur.

Equations~1!–~3! limit the values ofk, «, g, ands. Equa-
tion ~2! yields for k and«

2«112
1

k
.0, k.1, ~15!

Eqs.~1!, ~2!, and~10! yield for s

1

2a44
Fa112a442

~Aa11a331a44!
2

a332a44
G,s,

1

2a44
~a112a44!,

~16!

and using Eq.~1!, we obtain forg

2
1

2
,g,

1

2 S a11a332a13
2

a33a44
21D . ~17!

IV. TRIPLICATION CONDITIONS EXPRESSED USING
ANISOTROPY PARAMETERS

Following Thomsen and Dellinger,24 the conditions for
the axial and basal triplications can be expressed as follo

s<sc , ~18!

with sc expressed for the axial triplication (u i50°) as

sc52
1

2
, ~19!

and for the basal triplication (u i590°) as
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sc52
1

2
2«

k

k21
. ~20!

Parametersc is the critical value ofs under which the in-
cipient triplication occurs. The condition for oblique triplica
tion ~6! yields the following cubic equation:

sc
31Asc

21Bsc1C50, ~21!

where

A5
1

k21 F3

2
k2~2«11!1k~«11!1

3

2G ,
B52

k

~k21!2 ~«11!@k2~2«11!11#,

C522
k2

~k21!2 @k~2«11!222«21#. ~22!

The solution of Eq.~21! yields the interval of values for the
s parameter under which the medium triplicates@for an
equivalent solution in a different notation, see Payton,20 Eq.
~2.4.12!#

s>sc , ~23!

where

sc5u1n2
1

3
, ~24!

u5F2
q

2
1AS q

2
D 2

1S p

3
D 3G 1/3

,

n5F2
q

2
2AS q

2
D 2

1S p

3
D 3G 1/3

, ~25!

p5B2
1

3
A2, q52

1

3
AB1

2

27
A31C. ~26!

Note that the triplication conditions do not depend on para
etera44, which is only a scaling factor, and on parameterg,
which controls the propagation of theSH wave.

V. BEHAVIOR OF CRITICAL s

We consider only the basal and oblique triplications, sin
the condition for the axial triplication is elementary. Figure
showssc dependent on« and k ranging in the intervals 1
,k,10 and20.2,«,0.2. The total interval fork is sub-
divided into two intervals, 1,k,2 ~lower plots! and 2,k
,10 ~upper plots!, because the variation ofs for small k is
very strong. Figure 3 indicates thatsc attains negative value
for the basal triplication, but positive values for the obliq
triplication. Hence, the basal and oblique triplications can
occur simultaneously under the same TI. The figure a
shows that triplications can occur fors very close to zero. If
7-3
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FIG. 3. Behavior of the critical
value of s. The blank areas in the lef
corner of the bottom plots are the are
in which Eq.~15! is not satisfied.

FIG. 4. Minimum values of theP-, SV-, andSH-wave anisotropy as a function of parametersk and« for the incipient axial triplication.
054107-4
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FIG. 5. Minimum values of theP-, SV-, andSH-wave anisotropy as a function of parametersk and« for the incipient basal triplication.

FIG. 6. Minimum values of theP-, SV-, and SH-wave anisotropy as a function of parametersk and « for the incipient oblique
triplication.
054107-5
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FIG. 7. Minimum values of the total anisotropy as a function of parametersk and « for the incipient axial~left!, basal~middle!, and
oblique ~right! triplications. The lower plots show the detailed behavior of anisotropy near its minimum.
ld

t
e
e
o

as

ie
y
ng

he
-

ll

he
It
-

,
we
in

r,
s

n-

ch
the
ip-
a-
is
k→1 and«50, thensc→0. This means that no thresho
value forsc exists for either triplication.

VI. CRITICAL STRENGTH OF ANISOTROPY

We now ask how strong transverse isotropy must be
generate triplications. Figures 4–6 show the critical valu
of the P-, SV-, andSH-wave anisotropy for the occurrenc
of the axial, basal, and oblique triplications as a function
parametersk and«. The strength of anisotropy is defined

aW52
cmax

W 2cmin
W

cmax
W 1cmin

W •100%, ~27!

whereW denotes the type of wave~P, SV, or SH!, andcmax
andcmin denote the maximum and minimum phase velocit
of the P, SV, or SH waves. The total strength of anisotrop
sums the strength of anisotropy of all waves in the followi
way:

a5A~aP!21~aSV!21~aSH!2. ~28!

Interestingly, the pattern of the critical strength of t
P-wave anisotropy is very similar for all types of triplica
tions. The strength is sensitive to«, but almost insensitive to
k. For « close to zero, theP-wave anisotropy is very sma
05410
o
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irrespective ofk. Fork→1 and«50, theP-wave anisotropy
tends to zero. On the contrary, the pattern of theSV-wave
anisotropy depends on the type of the triplication. But t
critical strength of theSV anisotropy can also be zero.
occurs fork→1 and«50 independently of the type of trip
lication. For basal and oblique triplications, zeroSV anisot-
ropy is observed also fork and « close to the borderline
delimiting the area of their permissible values. Hence,
observe thatP andSVanisotropies can simultaneously atta
values very close to zero fork→1 and«50. This means that
the triplications can occur even under infinitesimally weakP
and SV anisotropies and noP and SV anisotropy threshold
exists for the occurrence of triplications in TI. Howeve
where P and SV anisotropy simultaneously attain value
close to zero, theSHanisotropy should be nonzero~see Figs.
4–6, right-hand plots!. This follows from the stability con-
ditions~17!, which constrain the values of theSHanisotropy.
Remember that the triplication conditions yield no other co
straints on theSH anisotropy.

Figure 7 shows the total strength of anisotropy, whi
sums the strength of all waves. The figure shows that
minimum strength of anisotropy for the occurrence of a tr
lication is close to 10%. This applies to all types of triplic
tions. Specifically, the minimum strength of anisotropy
9.50% for the axial triplication («50.04 and k51.16),
9.71% for the basal triplication («520.01 andk51.22),
8.86% for the oblique triplication («50 andk51.46), and
7-6
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FIG. 8. Minimum values of theP-, SV-, and SH-wave anisotropy~dashed lines! together with the total anisotropy~solid line! as a
function of parameterk for the double~left-hand plots! and oblique~right-hand plots! triplications. Parameter« equals zero.
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9.72% for the double triplication («50 andk51.20). These
values represent the global minima of the critical strength
anisotropy. No triplication can occur in TI whose tot
strength of anisotropy is less than these minima. The min
are, however, rather shallow, because the strength of an
ropy increases very slightly with increasingk. On the con-
trary, if k decreases (k→1), the strength of anisotropy rap
idly increases.

A closed view of the strength of anisotropy as a functi
of k is shown in Fig. 8. Parameter« is fixed at zero. The
critical P-wave anisotropy steeply increases from zero
k→1, reaching its maximum at 6% fork51.4 ~double trip-
lication! or for k51.8 ~oblique triplication!. For higher val-
ues ofk, the P anisotropy decreases to less than 2% fork
510. Also the criticalSVanisotropy steeply increases fro
zero (k→1) to 12% fork53. Thereafter theSVanisotropy
increases very slowly, being less than 14% fork510. On the
contrary, theSH anisotropy is high fork→1, but rapidly
decreases with increasingk. The SH anisotropy is zero for
k.1.2 ~double triplication! or for k.1.5 ~oblique triplica-
tion!.

VII. DISCUSSION

The simplest triplication condition in TI is the conditio
for axial triplication. This condition requires thes parameter
to be less than20.5. No other parameters control the occu
rence of this triplication. The condition for the basal triplic
tion is more involved. This triplication is controlled by an
isotropy parameterss and «, and by parameterk. The
triplication condition requiress to be negative. Therefore, i
s is less than20.5, then double~axial and basal! triplication
can occur. For«50, the condition for the axial and bas
triplications becomes identical, hence they cannot be
served separately but only as the double triplication.
05410
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«Þ0 and s.20.5, only basal triplication can occur. Th
condition for this triplication yields

sc52
1

2

a112a44

a332a44
. ~29!

Taking into account Eq.~2!, one can readily see thatsc can
never be positive. The maximum value thatsc can attain is
zero.

The most complicated condition is established for the
lique triplication. This triplication is controlled by anisotrop
parameterss and « and by parameterk. The triplication
requiress to be positive. A more detailed analysis wou
show that TI conditioned by Eqs.~1!–~3! could never pro-
duce the oblique triplication with negative values ofs.
Hence, the basal and oblique triplications or axial and
lique triplications cannot occur simultaneously under t
same TI.20

Analyzing the strength of anisotropy under which TI tri
licates, we conclude that the critical strength of anisotropy
9.50% for axial triplication, 9.71% for basal triplication
8.86% for oblique triplication, and 9.72% for double tripl
cation. No TI whose strength is less than the critical c
display triplications. On the other hand, high values of t
strength of anisotropy do not guarantee the existence of
lications. This can be illustrated on TI with elliptical angul
dependence of phase velocities. Even an extremely h
strength of such anisotropy produces no triplications. Hen
observations of triplications on the wave surface can
serve as a unique criterion defining strong TI.
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