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ABSTRACT

Although synthetic seismograms can, in many cases, be generated by direct nu-
merical methods, approximate analytical ray–theory solutions are often very useful in
forward and especially inverse problems of seismic wave propagation in complex 3–D
media. In this paper, the frequency–domain zero–order ray–theory Green tensor in
a heterogeneous anisotropic elastic medium is derived from the zero–order ray–theory
approximation using the representation theorem applied in ray–centred coordinates.

Keywords : ray theory, Green tensor, travel time, amplitude, anisotropy,
heterogeneous media, paraxial approximation, wave propagation

1. INTRODUCTION

This paper is devoted to the zero–order ray–theory approximation of the Green
tensor in a heterogeneous anisotropic elastic medium, which is useful for forward
and especially inverse problems of seismic wave propagation in complex 3–D me-
dia. Although synthetic seismograms can, in many cases, be generated by direct
numerical methods, approximate analytical ray–theory solutions are very useful for
various reasons, e.g.: (a) it is often advantageous to combine forward modelling
by means of direct numerical methods with ray–based inverse iterations during
inversion of seismic data; (b) direct numerical methods are still not applicable at
highest frequencies; (c) the accuracy and validity of numerical solutions must be
confirmed by comparison with analytical results; (d) analytical results often provide
more insight into the physical processes involved than rote numerical solutions;
(e) the ray theory often provides a powerful intuitive approach to many problems,
which is computationally simpler and faster than rote application of direct numerical
methods.

The high–frequency asymptotic approximation of the Green tensor for a homo-
geneous anisotropic elastic medium has been derived by many authors, for details
refer to Červený (2001, Sec. 2.5.5). The normal method for finding the zero–order
ray–theory Green tensor in a heterogeneous anisotropic elastic medium is to match

Stud. Geophys. Geod., 56 (2012), 373–382, DOI: 10.1007/s11200-011-9062-0
c© 2012 Inst. Geophys. AS CR, Prague

373



L. Klimeš

a general zero–order ray–theory approximation for a heterogeneous anisotropic elas-
tic medium to the high–frequency asymptotic approximation of the exact Green
tensor for a homogeneous anisotropic elastic medium in the vicinity of a point source.
However, this matching derivation is neither satisfactory, nor comfortable, because
the medium may be heterogeneous at the source, and even the derivation of the
Green tensor for a homogeneous anisotropic elastic medium is non–trivial.

In this paper, we thus provide an alternative method of deriving the zero–
order ray–theory Green tensor by deriving it directly in a heterogeneous anisotropic
elastic medium. The derivation is performed in the frequency domain. We start
with the zero–order ray–theory approximation of the solution of the elastodynamic
equation, and use the representation theorem in ray–centred coordinates to derive
the amplitude coefficients of the Green tensor and the phase shift of the Green
tensor. Although we could perform the derivation in other coordinates, ray–centred
coordinates are most convenient, because we use Červený’s (2001) expressions for
the geometrical spreading in ray–centred coordinates.

The Einstein summation over the pairs of identical Roman indices (both sub-
scripts and superscripts) i, j, k, ... = 1, 2, 3 or I, J, K, ... = 1, 2 is used throughout
this paper.

2. ELASTODYNAMIC EQUATION AND THE GREEN TENSOR

The seismic wavefield in an anisotropic elastic medium specified in terms of elastic
moduli cijkl = cijkl(x) and density ̺ = ̺(x) satisfies the elastodynamic equation
for displacement ui(x, t) (Červený, 2001, Eq. 2.1.17 ). We denote the corresponding
elastodynamic Green tensor (Červený, 2001, Eq. 2.5.37 ) by Gim(x,x′, t).

In this paper, we shall work in the frequency domain with the 1–D Fourier
transform

Gim(x,x′, ω) =

∫

dt Gim(x,x′, t) exp(iωt) (1)

of the elastodynamic Green tensor, and with the analogous Fourier transform of the
displacement. We use the same symbols for a function of time and for its Fourier
transform, and distinguish them by arguments t for time and ω for circular frequency.

Note that the phase shifts derived in this paper correspond to the factor exp(iωt)
in Fourier transform (1), and would be opposite for a factor exp(−iωt).

The anisotropic elastodynamic equation for the displacement in the frequency
domain reads (Červený, 2001, Eq. 2.1.27 )

[

cijkl(x)uk,l(x, ω)
]

,j
+ ω2̺(x)ui(x, ω) + fi(x, ω) = 0 , (2)

where subscript ,j following a comma stands for the partial derivative with respect
to Cartesian spatial coordinate xj . The force density fi(x, ω) represents the source
of the wavefield.

The frequency–domain Green tensor for an elastic medium is the solution of
equation (Červený, 2001, Eq. 2.5.38 )

[

cijkl(x)Gkm,l(x,x′, ω)
]

,j
+ ω2̺(x)Gim(x,x′, ω) + δim δ(x−x′) = 0 , (3)
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analytical with respect to the inverse Fourier transform. The spatial partial deriva-
tives in elastodynamic equation (3) are related to coordinates xi. Here δ(x) is the
3–D Dirac distribution.

We assume that the elastic moduli obey symmetry relation

cijkl(x) = cklij(x) (4)

important for the representation theorem.

3. REPRESENTATION THEOREM

Here we consider volume V which need not contain the support of force density
fi(x, ω) and assume symmetry relation (4). The representation theorem then reads
(Červený, 2001, Eq. 2.6.4 )

um(x′, ω) =

∫

V

d3x Gim(x,x′, ω) fi(x, ω)

+

∮

∂V

dS(x)
[

Gim(x,x′, ω)nj(x) cijkl(x)uk,l(x, ω)

− Gim,j(x,x′, ω) cijkl(x)uk(x, ω)nl(x)
]

,

(5)

where ni(x) is the unit normal to the surface ∂V of volume V pointing outside V .
The integral over volume V represents the wavefield corresponding to the sources

situated inside V . The integral over the surface ∂V of V represents the wavefield
corresponding to the sources situated outside V , and is zero if all sources are situated
inside V .

For fi(x, ω) = δin δ(x−x′′), the above representation theorem (5) yields um(x′, ω)
= Gmn(x′,x′′, ω). Integrating over the whole space, the surface integral in represen-
tation theorem (5) vanishes and we obtain the reciprocity relation (Červený, 2001,
Eq. 2.6.5 )

Gmn(x′,x′′, ω) = Gnm(x′′,x′, ω) . (6)

4. ZERO–ORDER RAY–THEORY APPROXIMATION

The zero–order ray–theory approximation of the solution of elastodynamic equa-
tion (2) may be composed of individual arrivals. Hereinafter, we shall consider just
one of these arrivals. The zero–order ray–theory approximation of one arrival in
a smooth heterogeneous anisotropic elastic medium without structural interfaces
reads

ui(x, ω) ≃
gi(x)

√

̺(x) v(x) L(x)
C exp[iϕ(x)] exp[iω τ(x)] , (7)

where factor C is constant along the ray, ̺(x) is the density, τ(x) is the travel time,
v(x) is the corresponding phase velocity, ϕ(x) is the phase shift due to caustics, and
L(x) is the geometrical spreading measured along wavefronts.
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Hereinafter, notation ≃ means that we have neglected the terms which can
asymptotically be neglected for ω → +∞.

Geometrical spreading L(x) may be expressed in various forms. At each point x

of the ray, we choose two linearly independent vectors h1(x) and h2(x) situated in
the wavefront tangent plane. We may then parametrize points x′′′ of the wavefront
tangent plane by parameters q1(x) and q2(x) called ray–centred coordinates:

x′′′ = h1(x) q1(x) + h2(x) q2(x) . (8)

For a more detailed description of ray–centred coordinates refer to Klimeš (2006).
For the geometrical spreading measured along wavefronts, we use expression

(Červený, 2001, Eq. 4.14.39c)

L(x) =
√

|h1(x) × h2(x)| | det[Q(x)]| , (9)

where |h1×h2| is the norm of the cross product of the contravariant basis vectors h1

and h2 of the ray–centred coordinate system, and Q is the 2×2 matrix of geometrical
spreading in ray–centred coordinates,

QAB(x) =
∂qA(x)

∂γB

, (10)

where γB are the ray parameters.
Note that factor C in Eq. (7) depends on the initial conditions and on the choice

of ray parameters γB. Term |h1×h2| is required if the contravariant basis vectors h1

and h2 of the ray–centred coordinate system are not orthonormal. We may choose
vectors h1 and h2 orthonormal and remove |h1×h2| from all equations without loss
of generality.

Green tensor Gim(x,x′, ω) is the solution of the elastodynamic equation cor-
responding to a point source at point x′. The rays from a point source can be
parametrized by two components p

(q)
K = ∂τ/∂qK of the slowness vector in ray–

centred coordinates. The special case of matrix (10) of geometrical spreading for
γB = p

(q)
B (x′) reads

QAB
2 (x,x′) =

∂qA(x)

∂p
(q)
B (x′)

. (11)

The zero–order ray–theory approximation (7) specified to the Green tensor reads

Gim(x,x′, ω) ≃
gi(x)

√

̺(x) v(x) L(x,x′)
Cm(x,x′) exp[iϕ(x,x′)] exp[iω τ(x,x′)] ,

(12)
where

L(x,x′) =
√

|h1(x) × h2(x)| | det[Q2(x,x′)]| |h1(x′) × h2(x′)| (13)

is the relative geometrical spreading. We have included factor
√

|h1(x′) × h2(x′)|
in definition (13) in order to render the relative geometrical spreading independent
of the choice of ray–centred coordinates and equivalent to the definition of Červený
(2001, Eq. 4.14.45).

Quantities ̺(x), v(x), gi(x), τ(x,x′) and L(x,x′) correspond to the ray from
point x′ to point x and have already been defined. We just need to determine
factors Cm(x,x′) and phase shift ϕ(x,x′) corresponding to the ray from x′ to x.
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5. APPLICATION OF THE RECIPROCITY RELATION

We know that the two–point travel time is reciprocal:

τ(x,x′) = τ(x′,x) . (14)

We insert the zero–order ray–theory approximation (12) of Green tensor into the
reciprocity relation (6), and obtain equations

gi(x)Cm(x,x′)
√

̺(x) v(x) L(x,x′)
=

gm(x′)Ci(x
′,x)

√

̺(x′) v(x′)L(x′,x)
, (15)

and
ϕ(x,x′) = ϕ(x′,x) (mod 2π) . (16)

The decomposition of vector Cm(x,x′) into its norm and a unit vector then must
read

Cm(x,x′) = C(x,x′) gm(x′) . (17)

We now need to determine factor C(x,x′) and phase shift ϕ(x,x′) corresponding to
the ray from x′ to x. These quantities can be determined using the representation
theorem.

6. APPLICATION OF THE REPRESENTATION THEOREM

We assume that point x is situated inside volume V and point x′ outside volume
V . The representation theorem (5) applied to the Green tensor than reads

Gmn(x,x′, ω) =

∮

∂V

dS(x′′′)
[

Gim(x′′′,x, ω)nj(x
′′′) cijkl(x

′′′)Gkn,l(x
′′′,x′, ω)

−Gim,j(x
′′′,x, ω) cijkl(x

′′′)Gkn(x′′′,x′, ω)nl(x
′′′)

]

.

(18)

We apply the high–frequency approximations

Gkn,l(x
′′′,x′, ω) ≃ iω Gkn(x′′′,x′, ω) pl(x

′′′,x′) (19)

and
Gkn,l(x

′′′,x, ω) ≃ iω Gkn(x′′′,x, ω) pl(x
′′′,x) (20)

of the spatial derivatives of the Green tensors to the representation theorem (18),
and arrive at approximation

Gmn(x,x′, ω) ≃ iω

∮

∂V

dS(x′′′)Gim(x′′′,x, ω) cijkl(x
′′′)Gkn(x′′′,x′, ω)

×
[

nj(x
′′′) pl(x

′′′,x′) − pj(x
′′′,x)nl(x

′′′)
]

.

(21)

We separate points x and x′ by a surface coinciding with the wavefront tangent
plane in the vicinity of the ray in which the contributions to integral (21) are not
negligible. We parametrize the wavefront tangent plane by ray–centred coordinates
q1 and q2, see Eq. (8). Then

dS(x′′′) = |h1(x
′′) × h2(x

′′)| dq1 dq2 (22)
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and
ni(x

′′′) = −v(x′′) pi(x
′′,x′) . (23)

We simultaneously apply approximations

pi(x
′′′,x′) ≃ pi(x

′′,x′) , (24)

pi(x
′′′,x) ≃ pi(x

′′,x) = −pi(x
′′,x′) , (25)

and
cijkl(x

′′′) ≃ cijkl(x
′′) (26)

to Eq. (21), which then reads

Gmn(x,x′, ω) ≃ −2iω

∫∫

dq1dq2 Gim(x′′′,x, ω) cijkl(x
′′)Gkn(x′′′,x′, ω)

×pj(x
′′,x′) pl(x

′′,x′) v(x′′) |h1(x
′′) × h2(x

′′)| ,

(27)

where x′′′ = x′′′(q1, q2). We insert the paraxial approximation

Gim(x′′′,x′, ω) ≃
gi(x

′′) gm(x′)C(x′′,x′)
√

̺(x′′) v(x′′)L(x′′,x′)
exp[iϕ(x′′,x′)] exp[iω τ(x′′′,x′)] (28)

with
τ(x′′′,x′) ≃ τ(x′′,x′) + 1

2qKMKL(x′′,x′)qL (29)

of the Green tensor (12) with vector (17) into the integrand of Eq. (27). In paraxial
expansion (29), we have denoted

MKL =
∂τ(x′′,x′)

∂qA∂qB
. (30)

Considering identity

cijkl(x
′′)gi(x

′′)pj(x
′′,x′)gk(x′′)pl(x

′′,x′) = ̺(x′′) (31)

following from the Christoffel equation, relation (27) reads

Gmn(x,x′, ω) ≃
gm(x) gn(x′)C(x′′,x′)C(x′′,x)

L(x′′,x)L(x′′,x′)
|h1(x

′′) × h2(x
′′)| I(x,x′′,x′)

× exp{i [ϕ(x′′,x) + ϕ(x′′,x′)]} exp{iω [τ(x′′,x) + τ(x′′,x′)]} ,

(32)

where

I(x,x′′,x′) = −2iω

∫∫

dq1dq2 exp
{

iω 1
2qK [MKL(x′′,x) + MKL(x′′,x′)]qL

}

. (33)

We replace Green tensor Gmn(x,x′, ω) in Eq. (32) by expression (12) with vector (17)
and obtain equation

C(x,x′) exp[iϕ(x,x′)]
√

̺(x) v(x) L(x,x′)
=

C(x′′,x′)C(x′′,x)

L(x′′,x)L(x′′,x′)
|h1(x

′′) × h2(x
′′)| I(x,x′′,x′)

× exp{i [ϕ(x′′,x) + ϕ(x′′,x′)]} .

(34)
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We calculate integral (33) analogously as Coates and Chapman (1990) or Ursin and
Tygel (1997), and obtain

I(x,x′′,x′) = −2i
2π exp

{

iπ
4 sgn[MKL(x′′,x) + MKL(x′′,x′)]

}

√

| det[MKL(x′′,x) + MKL(x′′,x′)]|
. (35)

We now insert this expression into relation (34). The complex modulus of the
resulting relation reads

C(x,x′)
√

̺(x) v(x) L(x,x′)
= 4π

|h1(x
′′) × h2(x

′′)| C(x′′,x′)C(x′′,x)

L(x′′,x)L(x′′,x′)
√

| det[MKL(x′′,x) + MKL(x′′,x′)]|
,

(36)
and the complex argument reads

ϕ(x,x′) = ϕ(x′′,x) + ϕ(x′′,x′) + π
4

{

sgn[MKL(x′′,x) + MKL(x′′,x′)] − 2
}

(mod 2π) .
(37)

Note that matrix MKL(x′′,x) in relations (35)–(37) corresponds to the direction
of propagation from point x to point x′′, whereas Coates and Chapman (1990)
assumed the opposite direction of propagation. We thus derive, in the next section,
the identity analogous to the identity of Coates and Chapman (1990, Eq. 66) but
corresponding to the directions of propagation considered here.

7. PROPAGATOR MATRIX OF GEODESIC DEVIATION
IN RAY–CENTRED COORDINATES

We assume that the basis vectors hK(x′′) of the ray–centred coordinate system
along the ray from x to x′ and along the ray from x′ to x are equal.

We decompose the 4 × 4 propagator matrix of geodesic deviation in ray–centred
coordinates into four 2 × 2 submatrices:

Π(x,x′) =

(

Q1(x,x′) Q2(x,x′)
P1(x,x′) P2(x,x′)

)

. (38)

The definitions of the individual 2 × 2 submatrices read

QAB
1 (x,x′) =

∂qA(x)

∂qB(x′)
, QAB

2 (x,x′) =
∂qA(x)

∂p
(q)
B (x′)

,

PAB
1 (x,x′) =

∂p
(q)
A (x)

∂qB(x′)
, PAB

2 (x,x′) =
∂p

(q)
A (x)

∂p
(q)
B (x′)

.

(39)

Note that submatrix Q2(x,x′) has already been defined by Eq. (11). In definitions
(38)–(39), the direction of propagation is assumed from point x′ to point x. We
analogously decompose and define propagator matrices Π(x′′,x′) and Π(x,x′′).

Since the propagator matrices are symplectic, the inverse matrix to Π(x,x′′)
reads

[Π(x,x′′)]−1 =

(

PT
2 (x,x′′) −QT

2 (x,x′′)
−PT

1 (x,x′′) QT
1 (x,x′′)

)

. (40)
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Propagator matrix Π(x′′,x) differs from matrix (40) just by the direction of propa-
gation along the same ray segment, and can be expressed as

Π(x′′,x) =

(

PT
2 (x,x′′) QT

2 (x,x′′)
PT

1 (x,x′′) QT
1 (x,x′′)

)

. (41)

The 2×2 matrices (30) of the second–order derivatives of travel time in ray–centred
coordinates read

M(x′′,x′) = P2(x
′′,x′) [Q2(x

′′,x′)]−1 (42)

and
M(x′′,x) = QT

1 (x,x′′) [QT
2 (x,x′′)]−1 = [Q2(x,x′′)]−1Q1(x,x′′) . (43)

Then

M(x′′,x) + M(x′′,x′)

= [Q2(x,x′′)]−1[Q1(x,x′′)Q2(x
′′,x′) + Q2(x,x′′)P2(x

′′,x′)] [Q2(x
′′,x′)]−1 .

(44)

Chain rule
Π(x,x′) = Π(x,x′′)Π(x′′,x′) (45)

for propagator matrices (38) implies relation

Q2(x,x′) = Q1(x,x′′)Q2(x
′′,x′) + Q2(x,x′′)P2(x

′′,x′) . (46)

Relation (44) with Eq. (46) reads

M(x′′,x) + M(x′′,x′) = [Q2(x,x′′)]−1Q2(x,x′) [Q2(x
′′,x′)]−1 , (47)

and we see that
∣

∣ det[M(x′′,x) + M(x′′,x′)]
∣

∣

=
∣

∣det[Q2(x,x′′)]
∣

∣

−1∣
∣ det[Q2(x,x′)]

∣

∣

∣

∣ det[Q2(x
′′,x′)]

∣

∣

−1
.

(48)

8. COMPLETING THE DERIVATION

We now apply the results of previous Sections 5, 6 and 7 to determining factors
Cm(x,x′) and phase shift ϕ(x,x′) in approximation (12).

8 . 1 . A m p l i t u d e C o e f f i c i e n t o f t h e G r e e n Te n s o r

We insert relations (13) and (48) into Eq. (36) and arrive at relation

C(x,x′)
√

̺(x) v(x)
= 4π C(x′′,x′)C(x′′,x) . (49)

We put x′′ = x in Eq. (49) and obtain

C(x,x) =
1

4π

1
√

̺(x) v(x)
. (50)

Since C(x′,x) = C(x,x) and C(x,x′) = C(x′,x′), we analogously obtain

C(x,x′) =
1

4π

1
√

̺(x′) v(x′)
. (51)
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8 . 2 . P h a s e S h i f t d u e t o C a u s t i c s

It is obvious from relation (47) that, for fixed x and x′, sgn[MKL(x′′,x) +
MKL(x′′,x′)] is constant outside the caustics indicated by matrix Q2(x,x′′) =
QT

2 (x′′,x) or by matrix Q2(x
′′,x′). We know that phase shift ϕ(x′′,x′) changes at

the caustic indicated by matrix Q2(x
′′,x′), where matrix MKL(x′′,x′) changes its

signature through infinity, and that phase shift ϕ(x′′,x) changes at the caustic indi-
cated by matrix QT

2 (x′′,x), where matrix MKL(x′′,x) changes its signature through
infinity. If one eigenvalue of matrix MKL(x′′,x′) changes its sign from negative to
positive through infinity, we define ∆sgn[MKL(x′′,x′)] = +2, and analogously for
other changes of its signature due to the caustics indicated by matrix Q2(x

′′,x′).
Phase shift ϕ(x′′,x′) changes at the caustics indicated by matrix Q2(x

′′,x′), where
sgn[MKL(x′′,x)+MKL(x′′,x′)] changes by ∆sgn[MKL(x′′,x′)], and analogously for
phase shift ϕ(x′′,x). The increment of phase shift ϕ(x′′,x′) at caustic x′′ is thus

∆ϕ(x′′,x′) = −π
4 ∆sgn[MKL(x′′,x′)] . (52)

This phase–shift rule is identical to the phase–shift rule of Lewis (1965, Eq. F.19),
and is equivalent to the phase–shift rules of Bakker (1998) and Klimeš (2010).

8 . 3 . I n i t i a l P h a s e S h i f t

We assume that point x is not situated at a caustic corresponding to a point
source at x′. If point x′′ is approaching point x′ against the direction of propa-
gation, matrix MKL(x′′,x′) increases to infinity, and we may neglect finite matrix
MKL(x′′,x). The limit of relation (37) for x′′ → x′ thus yields

ϕ(x,x′) = ϕ(x′,x)+ϕ(x′,x′)+ π
4

{

lim
x
′′→x

′

sgn[MKL(x′′,x′)]−2
}

(mod 2π) . (53)

Because of the reciprocity (16) of the phase shift, Eq. (53) yields

ϕ(x′,x′) = π
4

{

2 − lim
x
′′→x

′

sgn[MKL(x′′,x′)]
}

(mod 2π) . (54)

Note that point x′′ is approaching initial point x′ along the ray against the direction
of propagation.

9. CONCLUSIONS

We insert relation (17) with factor (51) into approximation (12). The zero–order
ray–theory approximation of the Green tensor in heterogeneous anisotropic elastic
media then reads

Gim(x,x′, ω) ≃
1

4π

gi(x) gm(x′)
√

̺(x) v(x) ̺(x′) v(x′)L(x,x′)
exp[iϕ(x,x′)] exp[iω τ(x,x′)] .

(55)
The initial phase shift ϕ(x′,x′) is given by relation (54), and its increment due to
caustics by relation (52). The sign of the phase shift, as well as the amplitude
of the Green tensor correspond to Fourier transform (1). If the right–hand side
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of the Fourier transform included a multiplicative factor of (2π)−
1

2 or (2π)−1, the
right–hand side of expression (55) should be multiplied by the same factor.

The generalization of the Green tensor to velocity models with structural inter-
faces is straightforward (Červený, 2001, Eq. 5.4.17 ).
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