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Vertical Seismic Profile Synthetics by Dynamic Ray Tracing 
in Laterally Varying Layered Anisotropic Structures 

Department of Geophysics, Stanford Universiry, Stanford, Cal$ornia 

Geophysical Institute, Czechlowk Academy 4 Sciences, Prague, Czechdovakia 

Dynamic ray tracing (DRT) is important in evaluating high-frequency seismic wave fields in complicated 
structures. Two formulations of the DRT equations for inhomogeneous anisotropic media are presented. One 
of than is represented by the classical DRT system, suggested by &wen9 15 years ago. Both systems are 
specified in Cartesian coordinates. The DRT equationa are supplemented with formulae for the transformation 
of DRT across a smoothly curved interface between two inhomogeneous anisotropic media Cervenf's for- 
mulation of the DRT is applied to the amputation of vettical seismic p d l e  (VSP) synthetics. The results of 
DRT are used for the evaluation of the geomarical spreading and of the coefficients of the paraxial ray 
approximation for travel times and ray amplitudes. In addition, the DRT is also used in the interval ray trac- 
ing procedure, a procedure searching f a  rays starting from the source and terminating in a specified interval 
on a profile. Results of numerical modeling of VSP measurements in a threedimensional laterally varying 
structure consisting of isotropic and anisotropic layers separated by curved interfaces are presented. Ray 
diagrams of selected elementary waves, time-distance curves, and multisource threecomponent VSP synthet- 
ics generated for two different source locations calculated for the anisotropic model are compared with the 
results determined for a reference isotropic model.'The latter is obtained by averaging phase velocities of the 
anisotropic model. lhis comparison clearly shows the effects of anisotropy and the lateral variation of the 
model on seismic wave fields. The reliability of the ray synthetics is briefly discussed. 

The evaluation of ray amplitudes. as well as the paraxial ray 
approximation of travel times and ray amplitudes, requires the 
knowledge of the partial derivatives of coordinates of a ray and 
of the components of the slowness vectors along this ray with 
respect to ray parameters. These quantities can be determined 
approximately by substitutiig the partial derivatives by finite 
differences and evaluating the differences from the values on 
nearby rays. This approach was adopted by Gajewski and 
P f e d i k  [1987, 19881 and Shearer [1988]. It is simple and does 
not require knowledge of the transformation laws for the partial 
derivatives across interfaces. It may, however, yield inaccurate 
results in some situations. 

Another procedure to evaluate the partial derivatives is based 
on a solution of a system of linear differential equations. the 
dynamic ray tracing (DRT) equations. Thii procedure is widely 
used in ray computations for isotropic media. The DRT equa- 
tions can be written in different coordinate systems. For exam- 
ple. tervenjr et al. 119741 wrote the DRT system in Cartesian 
coordinates. Mostly. however, the DRT equations for isotropic 
media are written in the so-called ray-centered coordinate sys- 
tem in which the number of equations to be solved is consider- 
ably reduced. 
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Dynamic ray tracing equations for smoothly inhomogeneous 
anisotropic media were proposed by tervenjr [1972]. They were 
derived in Cartesian coordinates. Nomofrlov [I9811 derived a 
general DRT system which could also be applied to inhomo- 
geneous anisotropic media. It was written in a coordinate system 
which resembled the ray-centered coordinates for isotropic 
media. A similar approach was used by Hanyga [1982]. Norris 
[I9871 derived formulae for a transformation of the DRT across 
curved interfaces separating homogeneous anisotropic layers. 
Inside the layers, he used the "Cartesian" DRT equations of 
tervenj,  [1972], specified for homogeneous anisotropic media 
Nonis performed the transformation of DRT across an interface 
in a special local orthogonal coordinate system so that at each 
interface a transformation from general Cartesian coordinates 
into the special coordinate system and back was required. A 
similar procedure was used by Virievx et al. [I9881 for layered 
isotropic media Norris [I981 presented numerical examples of 
the application of the DRT to compute pulses propagating in 
anisotropic fiber-reinforced composites. Seismological applica- 
tions of the "Cartesian" dynamic ray tracing on qP waves in 
smooth media without interfaces are given by Kendull Md 
Thomson [1989]. Besides the numerical results these authors 
also present several possible forms of DRT equations. 

Here we concentrate on the "Cartesian" DRT, mostly on the 
clnssical system derived by t e w e n j  [1972]. In addition, an 
alternative DRT system is also given which can be useful in 
special situations. Then we derive formulae for the transfarma- 
tion of the DRT system across a smooth interface between two 
generally varying anisotropic media. The transformation formu- 
lae are derived in the way used by t e rven j  et al. [I9741 for a 
similar problem in isotropic media. In contrast to work by 
Norris [I9871 and Virieiu et al. [1988], the procedure 
presented here requires no transformation of coordinates at the 
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interface. Numerical examples of the application of DRT to 
compute vertical seismic profile (VSP) synthetics for a 
three-dimensional (3-D) anisotropic layered model show possi- 
bilities of the ray code. In order to separate the effects of aniso- 
tropy from the effects of structural variations. the above results 
are compared with the calculations obtained for a reference iso- 
tropic model. The reference model is determined by averaging 
phase velocities of the anisotropic model. Finally. the reliability 
of the presented results is briefly discussed. 

The component notation for vectors and matrices is used 
throughout the paper. The Einstein convention applies over 
repeated right-hand suffixes. The lowercase indices take values 
1, 2, and 3, the capital indices take values 1 and 2. 

BASIC FORMULAE FOR ANISOTROPIC MEDIA 

In the following, we summarize the most important formulae 
of the ray method for inhomogeneous anisotropic media. More 
details are given by tervenjr [I9721 or. e.g.. Gajewski and 
PJenLLik [1987]. 

We seek a solution to the equation of motion for inhomo- 
geneous, perfectly elastic anisotropic media in the form 

The amplitude vector Ui(xj) and the phase function 'r(xj) can be 
determined fiom the basic system of equations of the ray 
method for inhomogeneous anisotropic media, 

(T9 -6fi )Uk =O (2) 

In (2). we denote 

where ciiu=ciju(xm) is a tensor of elastic parameters and p is 
the density. 

The phase function 'r(xj) can be found by solving the ray 
tracing equations 

In (5). G=G(xi.pi) denotes one of the three eigenvalues of the 
matrix r # ,  which corresponds to the considered wave. Symbol 
gi indicates the corresponding eigenvector. The eigenvalue G 
satisfies the equation 

which is sometimes called the eikonal equation. Solutions of the 
ray-tracing system (5), including its initial values. must satisfy 
the eikonal equation for any time T. 

The amplitude Ui(q) at the point 3 of a ray R specified by 
the ray parameters yl, y2 (e.g., takeoff angles at the source) can 
be found by solving equation (3) along R. It is given by 

ui (3 W ( y t  ,yz)[p(q )detY, (I;. )I-lngi (q (7) 

In (7), Y=Y(yl,yz) is a function constant along the ray R, and it 
describes the properties of the source. The symbol X, &notes 
the partial derivative 

where yl, y2 are the above mentioned ray parameters and y9. 
The matrix X, plays also an important role in the paraxial 

ray approximation of the travel time and slowness vector in a 
vicinity of the ray R (knowledge of the slowness vector in a 
vicinity of R is important for the determination of ray ampli- 
tudes in this vicinity); see Gajewski Md PJedik [1987], 

Pi (xj >=pi (q Wit ( 5  )(xk -% (10) 

In (9) and (lo), 3 denotes again a point on the ray R and Nit is 
a matrix of the second C m i a n  partial derivatives of the travel 
time field. It is given by 

where 

The elements Xi3=axil& and Yi&pi/& of the matrices X,,,,, and 
Y, can be determined directly from the ray-tracing equations 
(5). Thus it remains to &tennine those elements which 
represent derivatives with respect to yl and K. One possibility of 
evauating Xir and Yi, was suggested and used by Gajewski and 
PJedik [I987 and Shearer [1988]. In it, partial derivatives 
were substituted by finite differences and evaluated from the 
values on nearby rays. Another possibility is the evaluation of 
Xu and Yu by solving numerically the DRT equations. 

Dynamic Ray Tracing in a Smooth Inhomogeneorrr 
Anisotrqic Medium 

The DRT equations are obtained by differentiating the 
ray-tracing equations (5) with respect to the ray parameters 7, 

As we can see, to make the system of linear differential equa- 
tions useful for a numerical evaluation of Xir and YV, it is 
necessary to find expressions for the second partial derivatives 
of the eigenvalue G. This can be done in several ways. 

Cervenj [I9721 obtained the second derivativesaf G by 
differentiating the expressions for its first derivatives, 

where zi may be either xi or pi. In (14), Dij is given by 

1 
Dij=2iki&jmm ( r h - c  L Xr1m4 aU (15) 

L 

where EN is the third-order alternating tensor (Levi-Civita's ten- 
sor). By comparison with (5). it can be shown that 
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Differentiating (14) with respect to z,, we get 

The expression for a derivative of Dij with respect to z, is 
obtained by duect differentiation of (15). which yields 

Due to the equation 

which follows from the differentiation of the eikonal equation 
(6) with respect to g ,  the last term on the right-hand side of 
(18) does not contribute to the right-hand side of the DRT equa- 
tions (13); see detailed discussion by Kendull and Thomson 
119891. Solutions of the DRT equations, including their initial 
values, must satisfy (19) at any time 7. 

An alternative method of determining the second derivatives 
of the eigenvalue G of the matrix Tit is based on knowledge of 
all three eigenvalues and eigenvectors of Tit at any point of a 
considered ray. This procedure can be useful in situations where 
the eigenvalues and eigenvectors of the matrix Tit are easy to 
determine (e.g., for higher symmetries of the anisotropy f i e  
hexagonal). To distinguish between individual eigenvectors and 
eigenvalues, we mark them by right-hand superscripts in brack- 
ets. 

It is shown in the appendix that the second derivative of the 
eigenvalue Gh)  with respect to z,, where z, may be either x, or 
p,, can be written as 

where 

and z('*) denotes the summation in which the term for n=m is 
I 

not included. 
The right-hand side of (20) is singular wherever G('")=G(") 

for n u n .  This condition is equivalent to V,=V, for n u n ,  see 
the appendix. where V, and V, are the phase velocities of the 
waves corresponding to the mth and nth eigenvalue. Relation 
(20) is universal for quasicompressional waves (since we do 
not expect the phase velocity of quasi-compressional waves to 
be equal to the phase velocity of the quasi-shear waves). Rela- 
tion (20) is singular in regions or directions in which the phase 
velocities of the two quasi-shear waves are the same, i.e., where 
the wave surfaces of the two quasi-shear waves touch or inter- 
sect each other. In an isotropic medium, relation (20) is singular 
everywhere. 

Let us note that the same singularity exists in relation (17) 
since D, is zero wherever G(m)=C(n) for m m .  This follows 
from the following considerations. For D,, equation (15) 
yields 

Thii can be written in the mamx notation 

where tr and det indicate the trace and the determinant, respec- 
tively, of the corresponding matrix. The right-hand side of the 
above equation can be expressed in terms of the eigenvalues 
G(") of the matrix riL through the relations der=C(')G(Z)G(3), 
t r r = ( ~  (I)& (2)+G (3)) and &rl=[(G ('))-'+(G (")-'+(G(~))-']. In 
this way, 

For the eigenvalue G=G(")=G(") for n u n ,  this equation yields 
D,=O. 

Prior to the application of the above DRT systems to inhomo- 
geneous layered anisotropic media, two steps must be per- 
formed. In the fusf initial values for the DRT system must be 
specified at the source. In the other step, the laws governing 
the transformation of DRT across interfaces between anisotropic 
layers have to be determined. Since we consider point sources 
situated in an isotropic layer, we can refer for the former step to 
any paper dealing with DRT in isotropic media [see, e.g., 
Cervenj et al., 1974; Virieux et al., 19881. The second step is 
considered in the next section. 

Transformation of D y d c  Ray Tracing Across an Interface 

Let us consider an interface specified by 

The function f (xi) is supposed to have continuous partial 
derivatives up to the second order in a vicinity of the point of 
incidence of a ray at the interface. The unit normal to the inter- 
face at the point of incidence is 

In (23), we choose the sign so that the normal points into the 
medium in which the incident wave propagates. 

The initial values for the ray-tracing system (5) along a ray of 
a generated wave, i.e., a reflected or transmitted wave, can be 
written in the following form: 

Here symbols with carets denote the quantities corresponding to 
the generated wave. As before. y ~ ,  K=1,2, denote ray pararne- 
ters. T indicates the time at which the wnsidered ray, specified 
by YK. hits the interface. Thus 

is another form of the equation of interface (22). Equation (25) 
simply follows from the formula derived by Fedorov [1968], see 
equation (17) of Gajewski and Pfedik [1987], 

which holds for the slowness vector of any wave at the point of 
incidence. Vector bi is the vectorial component of the slowness 
vector in the plane tangential to the interface at the point of 
incidence. From the equality of travel times of the incident and 
any generated waves along the interface it follows that the vec- 
tor bi is the same for all waves at the point of incidence. The 
quantity 5 is a projection of the slowness vector on the normal 
to the interface, which can differ for different waves. Methods 
to determine 5 are described by Fedorov [1968]; for a brief dis- 
cussion, see also Gajewski a d  P3edik [1987]. 
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The sought relations between yN, f iM and XiM,YiM are 
obtained by differentiating (24) and (25) with respect to yM. Let 
us use zi to denote either xi or pi and ZiM (&) to denote quan- 
tities xiM or Y~ (fiM 1. The terms azi(yK.~(yJ))/&yM 
which result from the differentiation of (24) and (25) are partial 
derivatives along the interface. They are connected with ZiM 
(which are partial derivatives along the wave front) in the fol- 
lowing way. 

Likewise, for aii (yK .T (yJ))/&yM, we can write 

The quantities Zi3 (&) denote either axi/& (aZi/&) or 
api/& (a@il&). i.e.. the quantities which can be directly deter- 
mined from the ray tracing equations. The quantity T ~ d T / a y ~  
can be determined from (22) in which we insert xi=xi(yK ,T (yJ)) 
and differentiate with respect to 7,. Taking into account (23). 
we get 

from which 

Now, if we differentiate (24) and (25) with respect to yM and 
consider (28) and (29). we arrive at 

In (32). we must specify the partial derivatives anl/&yM and 
a5/auM. The determination of a n l / a M  is straightforward. 

an1 an1 -=- 
ay, ax, 

(XkM + x k  3TM ) 

The expression for mM can be obtained by the differentiation 
of the eikonal equation 

corresponding to the generated wave at the point of incidence, 
with respect to ynr We get 

analogous to (19). If we insert relations (31) and (32) into (35) 
and substitute a~ I&,, ac f l ~ k  by -fk3, gk3 (see (511, we can 
solve (35) for a 5 / a M .  We get 

Inserting this into (32), after some arrangements we get the final 
form of transformation equations 

where TM and ank/*M are given by (30) and (33). 
We can see from (37) that the initial conditions for dynamic 

ray tracing along a ray of a generated wave depend on several 
factors at the point of incidence. Through the quantities 
ank/&, the initial conditions depend on the curvature of the 
interface. If the interface at the point of incidence is plane, the 
third term on the right-hand side of (37b) vanishes. The quanti- 
ties Yk3 and fk3 contain first derivatives of elastic parameters, 
see (5). If the media, where incident and generated waves pro- 
pagate, are homogeneous at the point of incidence, then Yk3 and 
fk3 are zero. Note that (37b) must be applied even to uncon- 
verted transmitted waves across interfaces of the second order 
(across which elastic parameters vary continuously but their first 
derivatives; i.e, their gradients are discontinuous) since YM 
change discontinuously across such interfaces. Through the 
quantities YW. the initial conditions depend on the curvature of 
the incident wave front. For a plane incident wave front, YM 
are zero. Through the terms Xk3nk the initial conditions depend 
on the angle of incidence of the incident wave. Note that the 
transformation equations cannot be used for grazing angles of 
either incident or generated waves since the terms X k g k ,  and 
Xk3nk, respectively, which appear in denominators, become 
zero. If the variations of elastic parameters in the medium sur- 
rounding the interface are neglected (i.e., the interface is 
situated between homogeneous anisotropic media), equations 
(37) are equivalent to the formulae derived by Norris [1987]. 
Formulae (37) spec$ed for an isotropic medium are equivalent 
to those derived by Cervenj et al., [1974]. 

In this section we present examples computed by solving the 
DRT equations. The DRT results are used here for several pur- 
poses. They are applied to evaluate the geometrical spreading, 
see (7 )  and (8). and to determine the coefficients of paraxial ray 
approximations (9) and (10). Moreover. DRT results are used in 
an interval ray-tracing procedure to determine the initial angles 
of rays connecting the source with points in specified intervals 
on a profile. 

Computat io~l  Procedure 

Program package SEISAN88 derived from program package 
SEISAN87, for details, see Gajewski and P#&ik [1987, 19881, 
was used for the computations. Both packages are based on the 
ray method and allow computations of seismic body waves pro- 
pagating in gencral 3-D laterally varying layered anisotropic 
structures. 

Package SEISAN88 differs from SEISAN87 in the following 
aspects: The geometrical spreading and the coefficients of parax- 
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ial ray approximation are determined by numerical solution of 
the DRT equations (13) with (17). (18) (in SEISAN87, these 
quantities were evaluated approximately from nearby rays). A 
modified Euler method is used to integrate the DRT equations. 
The transformation of the DRT across interfaces is performed 
using (37). 

Interval ray tracing is used to find the rays terminating along 
a prescribed profile. The procedure requires the termination of 
rays on a "termination surface", on which the profile is situated 
(e.g.. for profiles on the free surface, the termination surface is 
the free surface). Rays are considered as terminating on the 
profile if their termination points are situated within a specified 
vicinity of the profile. The interval ray tracing procedure itself 
is based on formulae for two-point ray tracing of paraxial rays, 
see, e.g, Cervenj, et al. [1984. 19881. Similar formulae were 
recently used for two-point ray tracing for earthquake location 
in inhomogeneous isotropic media by Virielur et al. [1988]. In 
the interval ray tracing, an iterative loop is used, in which the 
initial slowness vector is changed at each step according to the 
above mentioned formulae, to find the ray arriving at the profile 
within an a priori specified vicinity of the termination point of 
the preceding ray. Unless the termination point is situated close 
to a caustic or a shadow zone of the considered wave, the pro- 
cedure works reliably and fast. Travel times and vectorial 
amplitudes at an arbitrary receiver on the profile are then deter- 
mined by paraxial ray approximation. The procedure is more 
effective for arrays of receivers rather than for single, scaaered 
receivers. 

In addition to the "surface profile" mode used in SEISAN87, 
the present program package allows also the calculation of syn- 
thetics along vertical profiles (the vertical seismic profiling 
(VSP) mode). In the VSP mode, the termination surface is a 
vertical cylinder with its axis passing through the source and 
with the radius equal to the offset of the source from the 
borehole. 

For the surface profile mode as well as for the VSP mode the 
same wave code describing different elementary yaves is used. 
The code corresponds to the one suggested by Cervenj, el al. 

[1977]: Each segment of a ray is described by an integer. the 
absolute value of which specifies the layer number in which the 
segment is to be situated. Positive sign of the integer indicates a 
P or quasi P wave, negative sign specifies an S or any of the 
quasi S waves along the considered segment of the ray. In this 
way, for a given code, at any point of reflection/transmission in 
an anisotropic layer both quasi-shear waves are automatically 
generated. The interpretation of the wave code in the VSP mode 
is different from the surface profile mode. The intersection of a 
ray with the termination surface is accepted as a termination 
point of the ray only if the remaining part of the wave code 
(from the intersection with the termination surface to the surface 
of the model) does not contain any reflection or conversion 
instruction. This simple rule guarantees that termination points 
corresponding to different elementary waves (specified by 
different codes) cannot correspond to the same arrivals. 

Let us add that for vertical seismic profiling the ray method 
for anisotropic media has already been applied by Leary et al. 
[I9871 and Li et al. [1987]. They used it for the computation of 
P wave travel times and polarization vectors. 

Model, Sources, Receivers, and Considered Waves 

Let us consider a Cartesian coordinate system with the x and 
y axis horizontal and the z axis vertical, positive downward. 
The positive orientation of the x axis is to the east, of the y axis 
to the south, so that the system is right-handed. The model 
itself is situated in a cube. Its northwest upper comer 
corresponds to the origin of the Cartesian coordinate system. 
The length of an edge of the cube is 5 km. The top side of the 
cube represents the free surface, the bottom side the bottom of 
the model. Vertical sides of the cube form vertical boundaries of 
the model. 

The model consists of four layers separated and/or limited by 
five interfaces. In Figure 1, a SW-NE vertical cross section of 
the model is shown. Interface 1 represents the free surface. 
Interface 2, forming the bottom of layer 1, is horizontal, situated 
at zd .5  km depth. Interface 3 has a symmetric hill-shaped form 
with its top at ~ 2 . 5  km, y=2.5 km and at a depth of zd .9  km. 

3 
0 1 2 3 

DISTRNC 
Fig. 1. SW-NE vertical cross section of the model through the symmetry axis of lateral heterogeneity. Numbered curves are 
interfaces. 
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Interface 3 intersects the vertical boundaries of the model along 
horizontal lines at a depth of 2.0 km. Interface 4 has a 
trough-shaped form with the deepest point at ~ 2 . 5 ,  y=2.5 km 
and a depth of z=2.6 km. The interface intersects the vertical 
boundaries of the model along horizontal lines at a depth of 
z=2.2 km. Interface 5 cbincides with the bottom of the model. 
With respect to the geometry of the interfaces, the model is thus 
axially symmetric with a vertical symmetry axis through ~ 2 . 5 ,  
y=2.5 km. Individual interfaces are specified by values of their 
depth at points on horizontal rectangular grids. Between these 
points, bicubic spline interpolation is used. 

There is no lateral variation of elastic parameters inside 
layers. The elastic parameters are chosen such that the max- 
imum vertical gradient of phase velocities does not exceed 0.04 
s-'. 

The first layer is homogeneous, isotropic with P and S wave 
velocities equal to 3.8 and 2.0 M s .  

The second layer is formed by aligned water-filled cracks in 
an isotropic host rock. The crack density is 0.08 and the aspect 
ratio is The strike of the cracks is 140" (measured clock- 
wise from the north) and the dip is 71°, with cracks dipping 
towards NE. The P-wave velocity of the host rock is 4.1 km/s 
at z=0.5 km, the constant vertical gradient is 0.03 s-' and the 
v,,/v, ratio is 1.783. Such a composition of layer 2 makes it 
effectively anisotropic, with hexagonal symmetry [Hudson, 
1981; Crampin, 19841. The axis of symmetry deviates from the 
horizontal plane by 19'. Resulting density-normalized elastic 
parameters were obtained from Hudson's [I9811 formulae. The 
parameters are given in the coordinate system associated with 
the crystal axes (so that only five parameters are independent 
and the symmetry axis is considered as the x axis in the crystal 
coordinate system). The dimension of the density-normalized 
elastic parameters is given in (km/s)'; compressed notation is 
used. At a depth of z=0.5 km we have All=16.80, Ae16.81, 
A,=5.29, AsS=4.42, and A'~6.23; and at a depth of 6.5 km, 
we have A11=18.48, A'~18.49, A44=5.81, Ass=4.85, and 
A'fi6.87. Between these depths the parameters are linearly 
interpolated. 

Layer 3 is also anisotropic due to aligned water-filled cracks 
with a crack density of 0.05 and an aspect ratio of lo4, with 
the same orientation of the cracks as in layer 2. The P wave 
velocity of the host rock at 2=3.5 km is 5.1 km/s. the vertical 
gradient of the P wave velocity is constant (0.03 s-') and the 
v,, 1% ratio is 1.71 2. Resulting density-normalized elastic param- 
eters at depth z=0.5 km are All=24.98, Ae25.00, AM=8.53, 
AsS=7.60. and A12=7.94; and at depth z=6.5 km they are. 
A 11=27.02 A -27.04, A ,=9.24. A &.24, and A 12=8.55 . 

Layer 4 is homogeneous and isotropic with P wave velocity 
of 6.0 km/s and S wave velocity of 3.46 M s .  

To show the effects of anisotropy, synthetics computed for 
the above described model are compared with synthetics for a 
reference isotropic model. The velocity distribution of the 
reference model was obtained by averaging the phase velocities 
of the anisotropic model. In such a way, in layer 2 the P wave 
velocity at z=0.5 km is 4.1 km/s and the vertical gradient is 
0.03 s-'. S wave velocity is 2.2 km/s, and the vertical gradient 
is 0.016 s-'. In layer 3, at e3 .5  km. these parameters in the 
same order are 5.1 krnls, 0.03 s-'. 2.9 km/s, and 0.02 s-'. 

Single force point sources of unit strength are located at the 
free surface (the effects of the free surface at the source are not 
considered). Three different orientations of the single forces 
were used: vertical force pointing downward, radial force along 
the line connecting the source and the mouth of the borehole, 

pointing away from the source. and transverse force perpendicu- 
lar to the previous two forces and orientated so that all three 
forces form a right-handed system. As a source time function, 
the Gaussian envelope signal [Cervenj et al., 19771 with a pre- 
vailing frequency of 50 Hz and is used. No phase or time 
shift is applied, so that the signal is cosine shaped and its arrival 
time corresponds to the maximum amplitude of the envelope of 
the signal. 

Three-component receivers are located in the vertical borehole 
in the depth range from 0.15 to 2.55 km with 100-m spacing. 
Let us note that an arbitrarily c w e d  borehole could be con- 
sidered without any problem. The receivers are orientated as fol- 
lows: the vertical component is positive upward, the radial com- 
ponent is orientated along the line connecting the source and the 
mouth of the borehole, positive away from the source, and the 
transverse component is orientated so that the system is 
right-handed. 

All primary reflected unconverted waves including direct 
waves are considered. We consider as converted only those 
waves which at an interface transform from compressional 
(quasi-compressional) to shear (quasi-shear) or vice versa The 
waves propagating only in isotropic layers are denoted by P or 
S, the waves propagating, at least partially, in anisotropic layers 
are denoted by qP, qS2 and qS1 (qS2 corresponds to the fastest 
quasi-shear wave, qS1 corresponds to the slowest quasi-shear 
wave). Let us recall that the wave code described above 
automatically includes both quasi-shear waves generated in each 
anisotropic layer. A subscript d indicates a direct wave. The 
integer subscript in the name of wave indicates the number of 
the interface where the wave was reflected. In this way, qS23 
denotes the fastest quasi-shear wave reflected at the interface 3. 

VSP Computations 

The geometry of the VSP experiment is schematically shown 
in Figure 2. The borehole intersects the free surface at the point 
H with coordinates -2.64 and y=2.77 km. S denotes the point 
of intersection of the vertical axis of symmetry of interfaces 
(and thus the axis of symmetry of lateral heterogeneity) with the 
free surface. Symbol f denotes the strike of aligned cracks. 
which makes 140°, and d denotes the projection of the dip vec- 
tor of the cracks into the horizontal plane; the dip is 71" meas- 
ured from the horizontal plane. 

Two locations of point sources at the free surface are con- 
sidered. Source A is situated at x=2.0 and y=2.0 km, source B at 
x=1.7 and y=2.42 km. In both cases, the offset of the source 
from the borehole is 1 km. For source A, the azimuth of the 
line connecting the source and the borehole is E50°S. This line 
is situated nearly in the plane of symmetry of lateral 
heterogeneity of the model and is perpendicular to the surface 
projection of the symmetry axis of the effectively anisotropic 
material in layers 2 and 3. Synthetics for this case will be thus 
more influenced by anisotropy than lateral heterogeneity. For 
source B, the line connecting the source and the borehole makes 
an azimuth of E20°S. Here the effect of lateral heterogeneity is 
expected to be greater. 
Ray diagrams. Figures 3 and 4 show ray diagrams. Figure 3 

corresponds to source A. Figure 4 to source B. There are two 
frames for each wave. The bottom frame shows projections of 
rays into the vertical plane containing the borehole and the 
source; interfaces are not plotted. The top frame shows projec- 
tions of rays into the horizontal plane. The horizontal axis of the 
frame coincides with the line connecting the source and the 
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shot from source B (see Figure 2). The same set of rays as in 
Figure 3 is shown in Figure 4, but for a source located at B. 
The ray diagrams for the anisotropic model and the isotropic 
~ference model differ for this example much less than for the 
)urce located at A. 
Time-distance curves. A set of tirnedistance curves of the 

considered waves from source A is shown in Figure 5a. Nearly 
parallel curves denoted by qS ld , qS &, qS 13, qS 23, qS 14, and 
qS24 are the time-distance curves of the slowest and fastest 
quasi-shear waves of the corresponding type. The tirnedistance 
&es of all other quasi-she& waves specified by the same 
wave code are situated between these cwes .  As evident from 
synthetics, some of these waves have negligible amplitudes. The 
timedistance curve of the direct quasi-shear wave splits below 

Fig. 2 Scheme of VSP experiment: H math  of the borchdc; A and 
B locatime of single-force point sources; S intersectian of the u i a  
of symmetry of lsted heterogeneity with the free surface f strike 
of the cracks (140". m d  clockwise fmm the north), d horhm- 
tnl pmjeaion of the dip vector (dip of cracks is 71 ", cracks ue dip 
ping towards NE). 

borehole (s-b line in the following). In Figures 3a, 3c. 4a. and 
4c, ray diagrams of the slowest direct quasi-shear wave (qS ld)  
and the slowest quasi-shear wave reflected at the M a c e  4 
(qS 14) of the anisotropic model are shown Figures 36. 34 4b, 
and 4d show the ray diagrams of diect shear wave (Sd) and the 
shear wave reflected from interface 4 (S4) propagating in the 
isotropic reference model. 

The slowest diect quasi-shear wave generated by source A 
(qS ld ,  see Figure 3a) is traveling in an isotropic homogeneous 
layer down to a depth of 0.5 km. The projections of its rays 
into the horizontal plane thus coincide with the s-b line. The 
projections into the vertical plane are straight lines. The rays. 
which penetrate below 0.5 km. propagate in an anisotropic 
medium, and therefore the projections of these rays into the hor- 
izontal plane deviate from the s-b line. The deviation attains 
almost 50 m. The projection of rays into the horizontal plane 
do not always terminate exactly on the borehole since accept- 
able rays can arrive in a prescribed finite vicinity of a profile. 

The effects of anisotropy can be seen by wmparison of Fig- 
ures 3a and 3b. There are no great differences in projections of 
rays into the vertical plane. The projections of rays into the hor- 
izontal plane differ. however, substantially. The lateral varia- 
tions of the isotropic reference model also produce deviations of 
rays from the s-b line, but for this configuration the deviations 
are much smaller than those of Figure 3a. 

The same conclusion follows from the wmparison of the ray 
diagrams for the qS l4 and S4 waves in Figures 3c and 3d. Note 
that here the deviations fiom the s-b line caused by anisotropy 
and lateral variations make almost 0.5 km on the horizontal dis- 
tance of 1 krn, whereas in the isotropic reference model the 
deviation caused by the lateral variations alone are about 50 m. 

The effects of lateral heterogeneity are more pronounced, and 
at the same time the effects of anisotropy are weaker for rays 

the 0.5 km level where the wave enters anisotropic medium. 
The time difference between the slowest and fastest quasi-shear 
waves increases with the depth attaining almost 100 ms at a 
depth of 2.5 km. 

In Figure 5b, a set of timedistance curves of the considered 
waves generated by source A in the reference isotropic model is 
shown.cornpared with Figure 5a, the most promin& feature is 
the absence of splitted shear waves. It is interesting to note that 
although the ray paths in the anisotropic model deviate much 
more from the s-b line than the ray paths in the reference isotro- 
pic model (see, e.g., Figure 3c and 3d), the differences between 
corresponding timediitance curves are small (see, e.g.. curve 
qS l4 in Figure 5a and S4 in Figure 5b). The same conclusion 
would follow from a similar comparison of wave fields gen- 
erated by source B. 

VSP synthetics. In Figures 6 and 7. three-component mul- 
tisource VSP synthetics are shown. Each figure contains nine 
frames organized in three columns corresponding to the radial. 
transverse, and vertical single-force point sources. The frames in 
lines. from the top to the bottom, correspond to radial, 
transvene, and vertical components of the displacement vector. 
No amplitude power scaling is used, true amplitudes are 
presented. As the most energetic phases are the direct waves 
and the reflections from interfaces 2 and 3, a time range from 
0.2 to 1.2 s was chosen (note that the timedistance curves in 
Figure 5 show times between 0 and 2 s). 

In Figure 6a, VSP synthetics for source A located in the 
anisotropic model and in Figure 66 in the reference isotropic 
model are shown. The most prominent feature of "anisotropic" 
synthetics is the distribution of energy over all frames while in 
"isotropic" synthetics some frames are practically empty. This 
phenomenon is due to the nonvertical orientation of cracks. A 
similar observation in VSP data was made by Majer et al.. 
[I9881 and was interpreted by Shearer [I9881 also as a result of 
a nonvertical dip of aligned cracks. 

The picture does not change much even for source B (Figure 
7). although the lateral heterogeneity plays a more important 
role here. 

The distribution of energy over all frames of three-component 
multisource synthetics is the best observable effect of anisotropy 
for the considered model and source locations. It is direcrly 
related to the orientation of the cracks. 

In Figures Q and 7a, shear wave splitting of the direct 
quasi-shear waves and the reflected quasi-shear waves from 
interface 3 can be also observed. A high-frequency signal (in 
our example the prevailing frequency was 50 Hz) is necessary 
to obtain splitted quasi-shear wave arrivals. For lower frequen- 
cies, the arriving quasi-shear waves would interfere which 
would complicate the detection of shear wave splitting. 


















