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Vertical Seismic Profile Synthetics by Dynamic Ray Tracing
in Laterally Varying Layered Anisotropic Structures
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Dynamic ray tracing (DRT) is important in evaluating high-frequency seismic wave fields in complicated
structures. Two formulations of the DRT equations for inhomogeneons anisotrapic media are presented. One
of them is represented by the classical DRT system, suggesied by Cerveny 15 years ago. Both systems are
specified in Cartesian coordinates. The DRT equations are supplemented with formulae for the transfonnation
of DRT across a smoothly curved interface between two inhomogeneous anisctropic media. Cerveny’s for-
mulation of the DRT is applied 1o the computation of vertical seismic profile (¥SP) synthetics. The results of
DRT are uzed for the evaluation of the grometrical spreading and of the coefficients of the paraxial ray
approximation for travel times and ray amplitudes. In addition, the DRT is alse used in the interval ray trac-
ing procedure, a procedure searching for rays starting from the source and terminating in a specified interval
onn & profile. Results of pumerical modeling of VSP measurements in & three-dimensional laterally varying
structure congisting of isctropic and anisotropic layers separated by curved imterfaces are presented. Ray
diagrams of selected elementary waves, ime-distance curves, and multisource three-component VSP synthet-
ics generated for two different source locations calaulated for the anisotropic mode] are compared with the
resuliz determined for a reference isotropic model. The latter is obtained by averaging phasc velocities of the
anisotropic model. This comparison clearly shows the effects of anisotropy and the lateral variation of the

model on seismic wave fields. The reliability of the ray synthetics is brieffy discussed.

INTRODUCTION

The evaluation of ray amplitudes, as well as the paraxial ray
approximation of travel times and ray amplitudes, requires the
knowledge of the partial derivatives of coordinates of a ray and
of the componentis of the slowness vectors along this ray with
respect 10 ray parameters. These quantities can be determined
approximately by substituting the partial derivatives by finite
differences and evaluating the differences from the values on
nearby rays. This approach was adopted by Gajewski and
Plenlik [1987, 1988} and Shearer [1988]. It is simple and does
not require knowledge of the ransformation laws for the partial
derivatives across interfaces. It may, however, yield inaccurate
resulls in seme situations.

Another procedure to evaluate the partial derivatives is based
on a solution of a system of linear differential equations, the
dynamic ray tracing (DRT) equations. This procedure is widely
used in ray computations for isotropic media. The DRT equa-
tions can be written in different coordinate systems. For exam-
ple, éervenja et al. [1974] wrote the DRT system in Cariesian
coordinates. Mostly, however, the DRT equations for isotropic
media are written in the so-called ray-centered coordinate sys-
tem in which the number of equations to be solved is consider-
ably reduced.
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Dynamic ray tracing equations for smoothly inhomogeneous
anisotropic media were proposed by (S'ervenjf [1972). They were
derived in Cartesian coordinates. Nomofilov [1981] derived a
general DRT system which could also be applied 1o inhomo-
geneous anisolropic media. Tt was written in a coordinate system
which resembled the ray-ceniered coordinates for isotropic
media. A similar approach was used by Hanyga [1982]. Norris
[1987} derived formulae for a transformation of the DRT across
curved interfaces separating homogeneous anisotropic layers.
Inside the layers, he used the *‘Cartesian’’ DRT equations of
Cerveny [1972), specified for homogeneous anisotropic media.
Norris performed the rasformation of DRT across an interface
in a special local orthogonal coordinate system so that at each
interface a transformation from general Cartesiun coordinates
into the special coordinate systemn and back was required. A
similar procedure was used by Virieux et al. [1988] for layered
isotropic media. Norris [1987] presented numerical examples of
the application of the DRT to compute pulses propagating in
anisotropic fiber-reinforced composites. Seismological applica-
tions of the “Cartesian’’ dynamic ray tracing on g waves in
smooth media without interfaces are given by Kendall and
Thomson [1989]. Besides the numerical results these authors
also present several possible forms of DRT equations.

Here we concentrate on the ‘'Cartesian’” DRT, mostly on the
classical system derived by éervenf [1972). In addition, an
alternative DRT system is also given which can be useful in
special sitvations. Then we derive formulae for the transforma-
tion of the DRT system across a smooth interface between two
generally varying anisotropic media. The transformation formu-
lae are derived in the way used by éen'eu)‘v ef al. [1974)] for a
similar problem in isotropic media. In contrast to work by
Norris [1987] and Viriewx et al. [1988], the procedure
presented here requires no transformation of coordinates at the
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interface. Numerical examples of the application of DRT w
compute vertical seismic profile (VSP)} synihetics for a
three—dimensional (3~D} anisotropic layered model show possi-
bilities of the ray code. In order to separate the effects of aniso-
tropy from the effects of structural variations, the above results
are compared with the calculations obtained for a reference iso-
tropic model. The reference model is determined by averaging
phase velocities of the anisotropic model. Finally, the reliability
of the presented results is briefly discussed.

The component notation for vectors and matrices is vsed
throughom the paper. The Einstein convention applies over
repeated right-hand suffixes. The lowercase indices take values
1, 2, and 3, the capital indices take values 1 and 2.

Basic FORMULAE FOR ANISOTROPIC MEDIA

In the following, we surnmarize the most important formulae
of the ray method for inhomogeneous anisotropic media. More
details are given by (r'ervenj 1972} or, e.g., Gajewski and
Plendik [1987].

We seck a solution to the equation of motion for inhomo-
geneous, perfectly elastic anisotropic media in the form

i (x5 YU (3 Yexp [ ottty ) (1

The amplitude vector U;(x;) and the phase function t(x;) can be
determined fom the basic system of equations of the ray
methed for inhomogeneous anisoropic mexdia,

(Ta =33 )Uy=0 )
@ p; Us 107 (paiupr Up ), =0 3
In (2), we denote
¢
TCy=ayupipr p,»=% aw:Tﬂ @)

where c;=ciy(xy) is a tensor of elastic parameters and p is
the density.

The phase function T(x;) can be found by solving the ray
tracing equations

& 16 _
dt 2 dp: —dimpre;es )
dp; 1 9G

1
F=- -2—-3-;:"—=_ E%;Pnprgjgk

In (5), G=G(x; p;) denotes one of the three eigenvalues of the
matrix Ty, which corresponds to the considered wave. Symbol
g indicates the comesponding eigenvector. The eigenvalue &
satisfies the equation

G=aupip1gigr=1 6

which is sometimes called the eikonal equation. Solutions of the
ray-tracing system (5), including its inital values, must satisfy
the eikonal equation for any time <.

The amplimde U/;(%;) at the point £; of a ray € specified by
the ray paramelers v, ¥» (e.g., lakeoff angles at the source) can
be found by solving equation (3} along €. It is given by

Ui (5; 2 O 1l p (5 et e ()20 N

In (7), W="¥(y;,72) is a function constant along the ray £1, and it
describes the properties of the source. The symbol X, denotes
the partial derivative

%
KXo = 3
P ®
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where v,, 7, are the above mentioned ray parameters and y,=t.

The matrix X,,, plays also an important role in the paraxial
ray approximation of the travel time and slowness vector in a
vicinity of the ray £2 (knowledge of the slowness vector in a
vicinity of £ is important for the determination of ray ampli-
tudes in this vicinity); see Gajewski and P¥entik [1987],

T =0T Hpe (% Mo~ Ta H’%’Na X Hx-%)x-%) ()

Pi(x; d=pi (K AN (5 Moo =50 ) (10)

In (9) and (10), X; denotes again a point on the ray £ and Ny is
a matrix of the second Cantesian partial derivatives of the travel
time field. It is given by '

a*t _aP-‘

- BPi o oyl
N“ax;ax. F =V (X (11)
where
0P
Y= 2m (12)
M

The elements X;y=dx; /01 and ¥;;=dp;/3t of the matrices X, and
Yae can be determined directly from the ray-tracing equations
(5). Thus it remains to determine those elements which
represent derivatives with respect to y; and ;. One possibility of
evauating Xy and ¥y was suggested and used by Gajewski and
Plentik [1987] and Shearer [1988). In it, panial derivatives
were substituted by finite differences and evaluated from the
values on nearby rays. Another possibility is the evaluation of
Xy and Yy by solving numerically the DRT equations.

Dynamic RaY TRACING
Dynamic Ray Tracing in a Smooth Inhomogeneous
Anisotropic Medium

The DRT equations are obtained by differentiating the
ray—tracing equations (5) with respect to the ray parameters *f

Xy 1| ¥G . %G
dv 2 |opion Y opidps -
(13)
ay_ 1| ¥ , ¥,
dt 2| axan M oxapm ¥

As we can see, 10 make the system of linear differential equa-
tions useful for a numerical evaluation of X;; and ¥, it is
necessary o find expressions for the second partial derivatives
of the eigenvalue G. This can be done in several ways.

('fervenjv [1972] obtained the second derivatives—of G by
differentiating the expressions for its first derivatives,

G _9Ty Dy

az; B aZ; Dﬂ (14)

where z; may be either x; or p;. In (14), D;; is given by

D.'F%‘Eweju (Tim—G Sm XTa=G 5) )
X

where gy is the third-order alternating tensor (Levi-Civita's ten-
sor). By comparison with (5), it can be shown that
(16)

by .
Dﬂ' "‘glg)'
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Differentiating (14) with respect to z,, we get

PG 0Ty Dy olu 3 | Da
92,02, 02;02, Do 02 9z, | D,

(17

The expression for a derivative of D;; with respect to 2, is
obtained by direct differentiation of (15), which yields

aD,'j _] 81'},.. aru R aT',-_; ) 3D.-,- aG
3, &, T dz, iyt 9z, | 3G oz, 18
Due to the equation
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which follows from the differentiation of the eikonal equation
(6) with respect to Yy, the last terrn on the right-hand side of
(18) does not contribute to the right-hand side of the DRT equa-
tions (13); see detailed discussion by Kendall and Thomson
[1989]. Solutions of the DRT equations, including their initial
values, must saiisfy (19) at any tume .

An alternative method of determining the second derivatives
of the eigenvalue & of the matrix Ty is based on knowledge of
all three eigenvalues and eigenvectors of T’y at any point of a
considered ray. This procedure can be useful in situations where
the eigenvalues and eigenvectors of the matrix T'y are easy to
determine (e.g., for higher symmetries of the anisotropy like
hexagonal). To distinguish between individual eigenvectors and
eigenvalues, we mark them by right-hand superscripts in brack-
els.

It is shown in the appendix thal the second derivative of the
eigenvalue G with respect to z,, where z, may be either x, or
2, can be wrilten as

BZG (m) a‘lr}‘ {md,, (m) > _
= g™ ) {um)(G(u]_G(u]) ]‘A,("“)A [m } (20)
92,0z, dz0z, > E *
where
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and 3**) denotes the summation in which the term for n=m is

21)

not included.

The right-hand side of (20} is singular wherever G™=G®
for n#m. This condition is equivalent to V_ =V, for n¥m, see
the appendix, where V,, and V, are the phase velocities of the
waves corresponding to the mth and nth eigenvalue. Relation
(20} is vniversal for quasi-compressional waves (since we do
not expect the phase velocity of guasi-compressional waves 10
be equal to the phase velocity of the quasi-shear waves). Rela-
tion (20} is singular in regions or directions in which the phase
velocides of the two quasi-shear waves are the same, i.e., where
the wave surfaces of the two quasi-shear waves touch or inter-
sect each other. In an isotropic medium, relation (20) is singular
everywhere.

Let vs note that the same singularity exists in relation (17)
since D, is zero wherever G™=G) for m#n. This follows
from the following considerations. For D,., equation (15}
yields

D=L (T T~ 4 T4 ~4T ;G +6G?)
‘6/2-
This can be written in the matrix notation

nD:{(detI‘ur“—?.G u+3G6Y
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where tr and det indicale the trace and the determinant, respec-
tively, of the corresponding mawrix. The right-hand side of the
above equation can be expressed in terms of the eigenvalues
G of the magix Ty through the relations detl'=G’G@G*,
td"=(G(lJ+G(2)+Gl3}) and tl.r\~1=[{G(1))—l+(G(2])—l+(G{3))~1]. In
this way,

u-]'_):_g,(c Az <3)+G(I)G NG (21_2{6 Uy (2)+G(3))G +3G2)

For the eigenvalue G=G™=G%! for n#m, this equation yields
D, .=0.

Prior to the application of the above DRT systems 1o inhomo-
geneous layered anisotropic media, two steps must be per-
formed. In the first, initial values for the DRT system must be
specified at the source. In the other step, the laws governing
the transformation of DRT across interfaces between anisotropic
layers have to be determined. Since we consider point sources
situated in an isotropic layer, we can refer for the former siep to
any paper dealing with DRT in isotropic media [see, e.g.,
C‘ervenj; et al., 1974; Virieux et al., 1988]. The second step is
considered in the next section.

Transformation of Dynamic Ray Tracing Across an Interfare
Let us consider an interface specified by
F(x)=0 22)

The function f(x;} is supposed to have continuous partial
derivatives up to the second order in a vicinity of the point of
incidence of a ray at the inferface. The unit normal to the inter-
face at the point of incidence is

_af_[_am_af_]“"

a.l‘; Bx. Bx;, (23J

m=1
In (23), we choose the sign so that the normal points into the
medium in which the incident wave propagates.
The initial values for the ray-wacing system (5) along a ray of
a generated wave, ie., a reflected or transmitied wave, can be
written in the following form:

i Oye T Oy V=i Oy T (0 )
Pi e T (4 D= (g T (4 YRemi [E-me oy (e T (4 D01

Here symbals with carets denote the quantities corresponding to
the generated wave. As before, yr, K=1.2, denote ray parame-
ters. T indicates the time at which the considered ray, specified
by 4x, hits the interface. Thus

T=T ()

is another form of the equation of interface (22). Equation (25)
simply follows from the formula derived by Fedorov [1968], see
equation (17) of Gajewski and Plenlik [1987],

pi=bi+im;

which helds for the slowness vector of any wave at the point of
incidence. Vector b; is the vectorial component of the slowness
vector in the plane tangential to the interface at the point of
incidence. From the equality of travel times of the incident and
any generated waves along the interface il follows that the vec-
tor & is the same for all waves at the point of incidence. The
quantity £ is a projection of the slowness vector on the normal
o the interface, which can differ for different waves. Methods
to determine £ are described by Fedorov [1968]; for a brief dis-
cussion, see also Gajewski and Plenik [1987].

(24)
(25)

(26)

@n
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The sought relations between X ,Yis and Xy Yur are
obtained by differentiating (24} and (25) with 1espect to 7, . Let
us use z; to denote either x; or p; and Zyy (Za¢) 10 denote quan-
tities Xy (Xiw) or Yur (Yws). The terms 0z (ye.T (¥))oVw
which result from the differentiation of (24) and (25} are partial
derivatives along the interface. They are connected with Zy
(which are partial derivatives along the wave front) in the fol-
lowing way,

0z (Ye . T (1)) _ 0y 0% JT
' T=Zar+&ial] 28
i M |or 3T Y0 artdisly  (28)
Likewise, for 84, (vr T (Y, )Moy, we can write
9% (v T (1 ) 22T 29)

Y '

The quantities Z; (Z;3) denote either ox;/0t (3%/31) or
ap;fot (dp;/97), i.e., the quantities which cen be directly deter-
mined from the ray tracing equations. The quantity Ty =T /oy,
can be determined from (22} in which we insert x;=x; (yr T (1))
and differentiate with respect to 7. Taking into account (23),
we get

nj(Xj,\rI-ngTu):O
from which
X,
T Bidm (30)
e X3

Now, if we differentiate (24) and (25) with respect to ¥y, and
consider (28) and (29), we arrive at

X=X tXi7-X:3)Tu Gn
on;
Yiu=Yar HY ;3T i) Tag bz By )
o
3
+n; “'a‘%“ - -%p:—n: Yur i ¥i3)Tua 32

In (32), we must specify the partial derivatives dm /oy, and
d&/dyy . The determination of dn; /a3y is straightforward,

om _om

—_—

aYu dx

The expression for 85/0yy can be obtained by the differentiation
of the eikonal equation

o +X3Ty) (33)

G (& pi)el

corresponding to the generated wave a1 the point of incidence,
with respect to vy, . We get

(34)

-gg—ch#;;n }'F“a"g"(fm*"?xsTMW (3%

9P
analogous o (19). If we insert relations (31) and (32} into (35)

and substitute 3G /0%, 3G /9gx by ~Tis, Xas (see (5)), we can
solve (35) for o&/oyu . We get

-é%%‘—-.:(x",,m)"*{I’;;(Xm+X.'3Tu)“fia[(f’m+yiafu)

on; 0
+ 'é_';{% (A ‘"ELP:‘H!: Yog+m ¥aT, MH} (36)

o
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Inserting this into (32), after some arrangements we get the finat
form of transformation equations

Xoag =X iy +Xi5-Xis¥ (37a)

Yo=Y H¥i5-Yi2) T

on, .|

on; s g
A, R il
n;(Xjan;) 13 HJ

+E-npy )[ e

“ﬂi{(x ;)7 [XA K ¥ +Y 3T o - Feaaae +Xa3 T )]} (378)

where Ty and om, /oy are given by (30) and (33).

We can see from (37) that the initial conditjons for dynamic
ray tracing along & ray of a generated wave depend on several
factors at the point of incidence. Through the quantities
on, /oYy, the initial conditions depend on the curvature of the
interface. If the interface at the point of incidence is plane, the
third term on the right-hand side of (37b) vanishes. The quanti-
ties Yy and ¥yy conwin first derivatives of elastic parameters,
see (5). If the media, where incident and generated waves pro-
pagate, are homogeneous at the point of incidence, then ¥3 and
i3 are zero. Note that (375) must be applied even to uncon-
verted ransmined waves across interfaces of the second order
(aczoss which elastic parameters vary continuously but their first
derivatives; ie, their gradients are discontinuous) since Yy
change discontinuously across such interfaces. Through the
quantities Y;u, the initial conditions depend on the curvature of
the incident wave front. For a plane incident wave front, ¥,y
are zero. Through the terms X,an the initial conditions depend
on the angle of incidence of the incident wave. Note that the
transformation equations cannot be used for grazing angles of
either incident or generated waves since the terms X,ym, and
Xiane. respectively, which appear in denominators, become
zero, If the variations of elastic parameters in the medium sur-
roundding the interface are neglected (ie., the interface is
situated between homogeneous anisotropic media), equations
(37) are equivalent to the formulae derived by Norris [1987].
Formulae (37) specified for an isoiropic medium are equivalent
to those derived by éerveujf ef al., [1974].

NUMERICAL EXAMPLES

In this secton we present examples computed by solving the
DRT equations. The DRT results are used here for several pur-
poses. They are applied to evaluate the geometrical spreading,
see (7) and (B), and to determine the coefficients of paraxial ray
approximations (9) and (10). Moreover, DRT results are used in
an interval ray-wracing procedure o determine the initial angles
of rays commecting the source with points in specified intervals
on a profile.

Computational Procedure

Program package SEISANSE derived from program package
SEISANS?, for details, see Gajewski and PYendik [1987, 1988],
was used for the computations. Both packages are based on the
ray method and allow computations of seismic body waves pro-
pagating in general 3.-D laterally varying layered anisotropic
structures.

Package SEISANSS differs from SEISANS7 in the following
aspects: The geometrical spreading and the coefficients of parax-
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ial Tay approximation are delermined by numerical solulion of
the DRT equations (13) with (17), (18) (in SEISANE?, 1hese
quantities were evaluated approximately [rom nearby rays). A
modified Euler method is used to integrate the DRT equations.
The transformation of the DRT across interfaces is performed
using (37). )

Interval ray tracing is used to find the rays terminating along
a prescribed profile. The procedure requires the termination of
rays on a “‘termination surface™, on which the profile is sitnated
{e.g.. for profiles on the free surface, the termination surface is
the free surface). Rays are considered as tenmninating on the
profile if their termination points are situated within a specified
vicinity of the profile. The interval ray tracing procedure itself
is based on formulae for two-point ray tracing of paraxial rays,
see, £.g, éervenj; et al. [1984, 1988]. Similar formulae were
recently used for two-point ray tracing for earthquake location
in inhomogeneous isotropic media by Viriewx et al. [1988]. In
the interval ray tracing, an iterative loop is used, in which the
initial slowness vector is changed at each step according to the
above mentioned formulae, to find the ray arriving at the profile
within an a priori specified vicinity of the termination point of
the preceding ray. Unless the termination point is simated close
to a caustic or a shadow zone of the considered wave, the pro-
cedure works reliably and fast. Travel times snd vectorial
amplitudes at an arbitrary receiver on the profile are then deter-
mined by paraxial ray approximation. The procedure is more
effective for arrays of receivers rather than for single, scattered
Teceivers.

In additon o the “*surface profile’” mode used in SEISANS?,
the present program package allows also the calculation of syn-
thetics along vertical profiles (the verncal seismic profiling
(VSP) mode). In the VSP mode, the termination surface is a
vertical cylinder with its axis passing through the source and
with the radius equal tw the offset of the source from the
borehole,

For the surface profile mode as well as for the VSP mode the
same wave code describing different elementary waves is used.
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[1977): Each segment of a ray is described by an integer, the
absolute value of which specifies the layer number in which the
segment is to be situated. Positive sign of the integer indicates a
P or quasi P wave, negative sign specifies an § or any of the
quasi § waves along the considered segment of the ray. In this
way, for a given code, at any point of reflectionftransmission in
an anisotropic layer both quasi-shear waves are automatically
generated. The interpretation of the wave code in the VSP mode
is different from the swface profile mode. The intersection of a
ray with the termination surface is accepted as a termination
point of the ray only if the remaining part of the wave code
{from the intersection with the termination surface to the surface
of the model) does not contain any reflection or conversion
instruction. This simple rule guarantees that termination points
corresponding o different elementary waves (specified by
different codes) cannot correspond to the same arrivals.

Let us add that for vertical seismic profiling the ray method
for anisotropic media has already been applied by Leary et al.
[1987] and Li &t al. [1987]. They used it for the computation of
P wave travel times and polarization vectors.

Model, Sources, Receivers, and Considered Waves

Let us consider a Cartesian coordinate system with the x and
¥y axis horizontal and the z axis vertical, positive downward.
The positive orientation of the x axis is to the east, of the y axis
to the south, so that the system is right-handed. The model
itself is situated in a cube. Its northwest upper comer
corresponds to the origin of the Cartesian coordinate system,
The length of an edge of the cube is 5 km. The top side of the
cube represents the free surface, the bottom side the bottom of

the model. Vertical sides of the cube form vertical boundaries of
the model.

The model consists of four layers separated and/or limited by
five interfaces. In Figure 1, a SW.NE vertical cross section of
the model is shown. Imterface 1 represents the free surface.
Interface 2, forming the bottom of layer 1, is horizonial, situated
at 2=0.5 km depth. Interface 3 has a symmetric hill-shaped form

The code comresponds o the one suggested by éervenjv et al.  with its wp at x=2.5 km, y=2.5 km and ai a depth of z=0.9 km.
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Fig. 1. SW-NE wvertical cross section of the model through the symmetry axis of lateral heterageneity. Numbered curves are

interfaces.



11.306

Interface 3 intersects the vertical boundanes of the model along
horizontal lines at a depth of 2.0 km. Interface 4 has a
trough-shaped form with the deepest point at x=2.5, y=2.5 km
and a depth of 2=2.6 km. The interface intersects the vertical
boundaries of the model along horizontal lines at a depth of
z=2.2 km. Interface 5 cbincides with the bottom of the model.
With respect to the geometry of the interfaces, the model is thus
axially symmetric with a vertical symmetry axis through x=2.5,
y=2.5 km. Individual interfaces are specified by values of their
depth at points on horizontal rectangular grids. Between these
points, bicubic spline interpolation is used.

There is no lateral variation of elastic parameters inside
layers. The elastic parameters are chosen such that the max-
imum vertical gradient of phase velocities does not exceed 0.04
s,

The first layer is homogencous, isotropic with P and § wave
velocities equal to 3.8 and 2.0 km/s.

The second layer is formed by aligned water-filled cracks in
an isotropic host rock. The crack density is 0.08 and the aspect
ratio is 10™*. The strike of the cracks is 140° (measured clock-
wise from the north) and the dip is 71°, with cracks dipping
towards NE. The P-wave velocity of the host rock is 4.1 km/s
at 2=0.5 km, the constant vertical gradient is 0.03 57! and the
v /v, ratie is 1.783. Such a compesition of layer 2 makes it
effectively anisotropic, with hexagonal symmetry [Hudson,
1981; Crampin, 1984]. The axis of symmetry deviates from the
horizontal plane by 19°. Resulting density-normalized elastic
parameters were obtained from Hudson's [1981] formulae. The
parameters are given in the coordinate system associated with
the crystal axes (so that only five parameters are independent
and the symmetry axis is considered as the x axis in the crystal
coordinate system). The dimension of the demsily-normalized
elastic parameters is given in (km/s)’;, compressed notation is
used. Al a depth of 2=0.5 km we have A,,=16.80, A;=1681,
Au=529, A=442, and A;3=623; and ar a depth of 6.5 km,
we have A =1B48, A,=1849, A,=5.81, A;=485 and
A,5=6.87. Between these depihs the parameters are linearly

~ interpolated.

Layer 3 is also anisotropic due 10 aligned water-filled cracks
with a crack density of 0.05 and an aspect ratio of 107, with
the same orientation of the cracks as in layer 2. The P wave
velocity of the host rock at z=3.5 km is 5.1 km/s, the vertical
gradient of the P wave velocity is constant (0.03 s7') and the
v /v, ratio is 1.712, Resulting density-normalized elastic param-
eters at depth z=0.5 ki are A,=2498, A,=25.00, A,=853,
As5=760, and A,,=7.94; and at depth z=6.5 km they are,
An=27.02, A,=27.04, A,=9.24, As=8.24, and A,,=8.55 .

Layer 4 is homogeneous and isotropic with P wave velocity
of 6.0 km/s and S wave velocity of 3.46 km/s.

To show the effects of anisotropy, synthetics computed for
the above described model are compared with synthetics for a
reference isowopic model. The velocity distribution of the
reference model was obtained by averaging the phase velocities
of the anisotropic model. In such a way, in layer 2 the P wave
velocity at z=0.5 km is 4.1 km/s and the vertical gradient is
0.03 57!, § wave velocity is 2.2 km/s, and the vertical gradient
is 0.016 s7!. In layer 3, at z=3.5 km, these parameters in the
same order are 5.1 km/s, 0.03 571, 2.9 km/s, and 0.02 571,

Single force point sources of unit strength are located at the
free surface (the effects of the free surface at the source are not
considered). Three different orientations of the single forces
were used: vertical force pointing downward, radial force along
the line connecting the source and the mouth of the borehole,
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pointing away from the source, and ransverse f{orce perpendicu-
lar to the previous two forces and orientated so that all three
forces form a right-handed system. As a source time function,
the Gaussian envelope signal [éeweﬂj et al., 1977] with a pre-
vailing frequency of 50 Hz and y=4 is used. No phase or time
shift is applied, so that the signal is cosine shaped and its arrival
time corresponds to the maximum amplitude of the envelope of
the signal.

Three-component receivers are located in the vertical borehole
in the depth range from (.15 10 2.55 km with 100-m spacing.
Let us note that an arbitrarily curved borehole could be con-
sidered without any problem. The receivers are orientated as fol-
lows: the vertical component is posilive upward, the radial com-
ponent is orientaled along the line connecting the source and the
mouth of the borehole, positive away from the source, and the
transverse component is orientaied so that the system is
right—handed.

All primary refiected unconveried waves including direct
waves are cansidered. We consider as converted only those
waves which at an interface transform from compressional
(quasi-compressional) w0 shear {quasi-shear) or vice versa. The
waves propagating only in isotropic layers are denoted by P or
S, the waves propagating, at leasi partially, in anisotropic layers
are denoted by ¢P, qS2 and ¢S1 (gS2 corresponds to the fastest
quasi-shear wave, 451 corresponds to the slowest guasi-shear
wave). Let us recall that the wave code described above
automatically includes both quasi-shear waves generated in each
anisotropic layer. A subscript d indicates a direct wave. The
integer subscript in the name of wave indicates the number of
the interface where the wave was reflected. In this way, ¢g52;
denotes the fastest quasi-shear wave reflected at the interface 3.

VSP Computations

The geometry of the VSP experiment is schematically shown
in Figure 2. The borchole intersects the free surface at the point
H with coordinates x=2.64 and y=2.77 km. § denotes the point
of intersection of the vertical axis of symmetry of interfaces
(and thus the axis of symmetry of lateral heterogeneity) with the
free surface. Symbol ¥ denotes the sirike of aligned cracks,
which makes 140°, and & denotes the projection of the dip vec-
tor of the cracks into the horizontal plane; the dip is 71° meas-
ured from the horizontal plane.

Two locations of point sources at the free surface are con-
sidered, Source A is situated at x=2.0 and y=2.0 km, spurce B at
x=1.7 and y=2.42 km._ In both cases, the offset of the source
from the borehole is 1 km. For source A, the azimuth of the
line connecting the source and the borehole is E5(°S. This line
is situated nearly in the plane of symmewy of lateral
heterogeneity of the model and is perpendicular to the surface
projection of the symmetry axis of the effectively anisotropic
maleria) in layers 2 and 3, Synthetics for this case will be thus
more influenced by anisotropy than lateral heterogeneity. For
source B, the line connecting the source and the borehole makes
an azimuth of E20°S. Here the effect of lateral heterogeneity is
expected W be greater.

Ray diagrams. Figures 3 and 4 show ray diagrams. Figure 3
corresponds to source A, Figure 4 o source B. There are two
frames for each wave. The bottom frame shows projections of
rays into the vertical plane containing the borehole and the
source; interfaces are not plotted. The top frame shows projec-
tions of rays into the horizontal plane. The horizontal axis of the
frame coincides with the line connecting the source and the
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A - of the

X model

B S
e

Fig. 2. Scheme of VSP experiment: H mouth of the borehole; A and
B locaticns of single-force point sources; S intersection of the axis
of symmetry of lateral hewerogeneity with the frec surface; 3 strike
of the cracks (140°, measurcd clockwise from the north), @ horizon-
1al projection of the dip vector (dip of cracks is 71°, cmcks are dip-
ping towards NE).

borehole (s-b line in the following). In Figures 3a, 3c, 4a, and
4r, ray diagrams of the slowest direct quasi-shear wave (g51,}
and the slowest quasi-shear wave reflected at the interface 4
{45 1,) of the anisotropic model are shown. Figures 3b, 3d, 4b,
and 44 show the ray diagrams of direct shear wave (S;) and the
shear wave reflected from interface 4 (S,) propagating in the
isotropic reference model.

The slowest direct quasi-shear wave generated by sowrce A
(g5 1, see Figure 3a) is traveling in an isotropic homogeneous
layer down to a depth of 0.5 km. The projections of its rays
into the horizontal plane thus coincide with the s-b line. The
projections into the vertical plane are straight lines. The rays,
which penetrate below 0.5 km, propagate in an anisotropic
medium, and therefore the projections of these rays into the hor-
izonial plane deviate from the s-b line. The deviation attains
almost 50 m. The projection of rays into the horizontal plane
do not always terminate exactly on the borehole since accept-
able rays can arrive in a prescribed finite vicinity of a prefile.

The effects of anisotropy can be seen by comparison of Fig-
ures 3a and 3b. There are no great differences in projections of
rays into the vertical plane, The projections of rays into the hor-
izontal plane differ, however, substantially, The lateral varia-
tions of the isotropic reference model also produce deviations of
rays from the s-b line, but for this configuration the deviations
are much smaller than those of Figure 3a.

The same conclusion follows from the comparison of the ray
diagrams for the ¢S 1, and S, waves in Figures 3c and 3d. Note
that here the deviations from the 5-b line caused by anisocoropy
and lateral variations make almost 0.5 km on the horizental dis-
tance of 1 km, whereas in the isotropic reference model the
deviation caused by the lateral variations alone are about 50 m.

The effects of lateral heterogeneity are more pronounced, and
at the same time the effects of anisotropy are weaker for rays
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shot from source B (see Figure 2. The same set of rays as in
Figure 3 is shown in Figure 4, but for a source located at B.
The ray diagrams for the anisotropic model and the isotropic
ference model differ for this example much less than for the

nirce located at A.
Time-distance curves. A set of ilime-distance curves of the

considered waves from source A is shown in Figure 5a. Nearly
parallel curves denoted by ¢S 1y, g524, ¢513, ¢52;, ¢S5 1, and
gS2, are the time-distance curves of the slowest and fastest
quasi-shear waves of the corresponding type. The time-distance
curves of all other quasi-shear waves specified by the same

wave code are situated between these curves. As evident from
synthetics, some of these waves have negligible amplitudes. The

time-distance curve of the direct quasi-shear wave splits below
the 0.5 km level, where the wave enters anisotropic medium.
The time difference between the slowest and fastest guasi-shear
waves increases with the depth attaining almost 100 ms at a
depth of 2.5 km.

In Figure 5b, a set of time-distance curves of the considered
waves generated by source A in the reference isotropic model is
shown. Compared with Figure 5a, the most prominent featre is
the absence of splitted shear waves. It is interesting to note that
although the ray paths in the anisoropic model deviate much
more from the s-b line than the ray paths in the reference isotro-
pic model (see, e.g., Figure 3¢ and 3d), the differences between
corresponding time-distance curves are small (see, eg., curve
¢S 1, in Figure 5a and §, in Figure 5b). The same conclusion
would follow from a similar comparison of wave fields gen-
erated by source B.

V5P synthetics. In Figures 6 and 7, three-component mul-
tisource VSP synthetics are shown. Each figure contains nine
frames organized in three columns comresponding 1o the radial,
transverse, and vertical single-force point sources. The frames in
lines, from the top to the bottom, comespond to radial,
transverse, and vertical components of the displacement vector.
No amplitude power scaling is used; true amplitndes are
presented.  As the most energetic phases are the direct waves
and the reflections from interfaces 2 and 3, a time range from
0.2 10 1.2 s was chosen (note that the time-distance curves in
Figure 5 show times between 0 and 2 s).

In Figure 6a, VSP synthetics for source A located in the
anisotropic model and in Figure 6b in the reference isotropic
model are shown. The most prominent feature of *‘anisotropic’”
synthetics is the distribution of energy over all frames while in
Hisotropic’' synthetics some frames are practically empty. This
phenomenon is due to the nonvertical orientation of cracks. A
similar observation in VSP data was made by Majer et al.,
[1988] and was interpreted by Shearer [1988] alsa as a result of
a nonvertical dip of aligned cracks.

The picture does not change much even for source B (Figure
1), although the lateral heterogeneity plays a more important

role here.
The distribution of energy over all frames of three-component

multisource synthetics is the best observable effect of anisotropy
for the considered model and source locatioms. It is directy
relaled to the orientation of the cracks.

In Figures 6a and 7a, shear wave splitting of the direct
quasi-shear waves and the reflected quasi-shear waves from
interface 3 can be also observed. A high-frequency signal (in
our example the prevailing frequency was 50 Hz) is necessary
to obtain splitted quasi-shear wave arrivals. For lower frequen-
cies, the amiving quasi-shear waves would interfere which
would complicate the detection of shear wave splitting.
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Fig. 3. (a) (c) Ray diagrams of quasi-shear waves in the anisotropic model and (¥) {d) of shear waves in the reference iso-
tropic model] for source location A. Ray diagrams of {a) the slowest direct quasi-shear wave, (b) the direct § wave, {c) the
slowest quasi-shear wave and (d) S wave reflected from the fournth interface. (Top) projections of rays inte a horizontal
plane; the horizontal axis commesponds to the Line connecting  source and borehole. (Botiom) projections of mys imo the

vertical plane containing the borehole and the source.

DISCUSSION

The ray method is an effective tool to compute seismic wave
fields propagating in anisotropic media. Memory requirements
of ray codes are minimumn (program package SEISANSS needs
a few hundred kilobytes of core memory) so that they can be
used even on personal computers. The ray computations are
fast, in comparison with the reflectivity method or finite
difference methods faster by a few orders (CPU time for syn-
thetics presented in the previous section using a nonvectorized
package SEISANSS on a CONVEX C1 computer was about 200

s). The ray computations can be performed for models of
sufficiently realistic structures and realistic extent. The ray com-
putations give a clear insight into the formation of the wave
field and allow an easy identification of individual phases form-
ing the wave field. It is not difficult to incorporate effects of
slight absorption into the ray computations.

When considering the ray synthetics presented in the previous
section, one must be, however, aware of the following facts. It
is well known that the ray method is only approximate and it
does not work properly or it even fails in singular regions (criti-
cal regions, caustic regions, transitions from the illuminated to
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Fig. 4. The same as in Figure 3, but for source B.

shadow regions}. In inhomogencous enisotropic media, the ray
method does not work properly for quasi-shear waves in regions
or directions, in which both these waves propagate with nearly
the same phass speed and are, therefore, coupled [Kravisov and
Orlav, 1980; Chapman and Shearer, 1989). The problems con-
nected with singular regions may be overcome by the applica-
tion of some modifications or generalizations of the ray method
such as the Gaussian beam swmmation method or Maslov
method. The problem of coupled quasi-shear waves is more
complex and will require a special treatment, For example, for
weakly anisotropic media, Kravisov and Orlov [1980] suggest a
modification called quasi-anisotropic ray approximation which is
closely related to the perturbation theory.

In this paper the standard ray method was used. Even without
any modification, its results may be of significant value if paris
of the seismic wave field distorled by singularities can be

identified. The identification of effects of singular regions which

commonly occur in isowopic media is not difficult. For the
identification of regions of quasi-shear wave coupling, we used
a rough rule, modified from Kravisov and Oriov [1980], where
it was suggested for hammonic waves. Quasi-harmonic waves
can be considered uncoupled if the following condition is
satisfied

f-lvlvvl-clavl
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Here V denotes an average of phase velocities of beth
quasi-shear waves propagating in the same direction, AV is the
difference between these phase velocities, and f is the prevailing
frequency of the waves. The above inequality follows from the
requirement that the distance on which the two quasi-shear
waves separate by a prevailing wavelength be considerably
smaller than the distance on which the phase velocities change
by an amount equal to V.

The above criterion can be easily tested in each step of the
ray uwing procedure. For practical use, it is necessary 1o
specify the meaning of *‘considerably less™. In our computa-
tions we considered the inequality satisfied if its left-hand side
was at least 10 times less than its right-hand side. For illusira-

tion, in Figure 8 we show a distribution of quasi-shear wave
phase velocities in dependence on the angle of incidence of a
downgoing wave with the angle measured from the horizontal.
The phase velocities are calculated for a depth of 2.0 km.
Different symbols correspond to different profiles. We can see
that for the profile from source A {(azimuth E50°S), the
difference of both phase velocities is not iess than 0.1 km/s. In
this case the lefi-hand side of the above inequality is 0.0013
(average phase velocity is shout 2.2 kmys, gradiemt is 0.03 577,
and prevailing frequency is 50 Hz), ie., about 75 times less
than the smallest difference in phase velocities. For the profile
from source B (azimuth E20°8), the difference in phase veloci-
ties is minimum for a horizontal path and amounts to 0.02 km/s.
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the profile through the borehole with an azmuth of NBO®E.

In this case the right-hand side is about 15 times greater than
the left-hand side. Computations for the profile with an azimuth
of NBO°E (not presented here) contsin distortions due to the
coupling of quasi-shear waves for the angles close to 0.6 rad.
Even in this case, travel times are not affected.

All the above estimates require, of course, further investiga-
tions, both by comparing the ray results with the results of more
exact methods and by dircct analysis of ray formulae describing
the behavior of quasi-shear waves in regions of coupling, see
Chapman and Shearer [1983].

Another phenomenon which may affect the compuled wave
field is the effect of the free surface a1 the source. As mentioned
above, in this study we neglected this effect. We intend 1o
incorporate it and study its influence in a forthcoming paper.
For any P wave and for § waves inside the source shear wave
window, i.e., for shear waves leaving the source under an angle
less than the angle of critical SP reflection from the free surface,
the distortion is expected to be relatively small. QOuiside the
window, the shear waves will be elliptically polarized. The pro-
bability for a receiver o be sitated within such a window
increases with increasing depth of the receiver and decreasing
offset of the source from the borehole.

Finally, let us briefly explain why we use the wave code,
which automatically includes both generated quasi-shear waves
at each point of reflection or transmission in an amisotropic
layer. In the algorithm used, the quasi-shear waves are
identified by their phase speed. As can be seen from Figure 8,
this identification may lead to a transfer from one phase sheet to
the other even within a layer (see the intersection of phase velo-
city curves marked by asterisks), At a point of reflection or
transmission, such a transfer is even more probable. In this way,
if not all possible quasi-shear wave ray paths are considered, the
resulting wave field is not complete and is distorted because all
quasi-shear waves described by one code propagate close o
each other and interfere (in Figure Sa all these waves interfere

in the belt described by the fastest and slowest quasi-shear
waves). We can close this section with the conclusion that in
smooth anisotropic media, two splitted quasi-shear waves with
different polarizations can be observed, whereas in general lay-
ered anisotropic media, quasi-shear waves are expected to form
interference groups of variable polarizations.

APPENDIX

Let us consider the slowness vector of one of the three waves
which may propagate in an anisotropic medium. The slowness
vector is specified by the direction of a unit wave normal N;
and the phase velocity V of the considered wave in the specified
direction so that p;=N;/V. Having p;, we can calculate the
matrix T'a; see equation (4). The three eigenvalues G of the
matix T and their comesponding eigenveciors gf™ can be
determined from the Christoffel equation

(T3 —G ™3 )gi™=0 (AD)
Multiplying (A1) by g/™ and taking into account that the eigen-
vector g™ is a unit vector, we get an explicit expression for
G(m}.

(A2}

From comparison of {Al) and (2), we can see that the slowness
vector p; of the considered mth wave and specifically its phase
velocity V,, cammot be chosen arbitrarily. They must be chosen
such that G™=1; ie., they must satisfy the eikonal equation
(6). In this way, the equation (6) can be interpreted as an equa-
tion of the slowness surface of the considered wave. Using
pi=N;/V.. the eikonal equation can be rewritten in an alterna-
tive form,

G D']=r_a g,s"" )gkhl-:ﬂ.’,upspf b4 j(" ]81‘")

auNiNig =V
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It follows from this equation that the three eigenvalues GY? are
given by the relation,
v, |?

U=
VM

The eigenvalue corresponding to the considered wave (j=m)
yiclds G™=1 and thus justifics the eikonal equation (6). The
other cigenvalues are gencrally different from unit. An excep-
tion is the case in which two quasi-shear wave slowmness sur-
faces touch or intersect each other. Then their phase velocities
are identical, V;=V,, for jsm, and the above equation yields
GU=G"=1. On the contrary, cquality of two eigenvalucs
implies equality of the corresponding phase velocities.

Let us now derive an expression for the second derivative of
the eigenfunctions G*, see {20), in terms of the complele sys-
tem of eigenvalues G’ and eigenvectors g&’ . Differentiating
afjuation (Al) with respect 1o z,, where z, may be either x, or
Py, We gel

— B g 02T piml gtmI TS g A3
oz, B * 32, oz, & dz, (A3)

If we muliply (A3) by gjf’") and take inlo account (Al), we
arrive at

6™ _Ap )
dz, oz, 8
which has already been used on the right-hand side of the

ray—tracing equations (5), Comparing (A4) with the derivative
of (A2), we get an identity

2™ (Ad)

dgt™
Iy 22
z,

gkbn =0

Differentiating (A4) with respect to z,, we get an expression
for the second derivatives of G,

m 2 {m}
PG™ Ty gy dl'p dgf

02,9z, 0z.0z, > dz, 0Ot (AS)

o

This formula is useful as soon as we can determine ag j('“)}'az,.
From the definition of eigenvector g™ as a unit vector it
simply follows

dp
%gﬁ-&o (A6)
It follows from {AS8} that
ag}_(ml : ()
=¥ G A7
3z, Z_,‘lc & (A7)
where
300
Cmn =81 L for nem
- (A8)

Con=0 forn=m
If we multiply (A3) by g}” with n#m, take into account (Al)
and assume G®%G™), we get for ¢,

al’;
Cm:(Gtm)_G(u))—l 5 A gf'"’g,-"" (A9)

Iy

Inserting (A9) into (A7)}, and the resulting relation into (AS), we
arrive at the final expression for the second derivative of G,

GAIEWSKI AND PEENGIK: RAY VSP SYNTHETICS FOR ANISOTROMC MEDIA

3G 9Tx
dz,0z, 02,9z,

3
g Mg ML G MGy T 4 Y A1 0)

In (A10),

ol
A= a: g;(""ggm (A11}
which implies, see (A4),
(m)

The symbol T*™ in (A10) denotes the summation in which

the term for n=m is not mncluded.
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