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SUMMARY

We present a generalization of the recently proposed approximate procedure for com-
puting coupled S waves in inhomogeneous weakly anisotropic media. The new proce-
dure can be used to compute S waves propagating in smooth inhomogeneous isotropic
or anisotropic media. In isotropic media, it reduces to standard S-wave ray tracing. In
anisotropic media, it can be used to study coupled as well as decoupled S waves. As the
previous procedure, the new one is also based on the approximately computed common S-
wave ray. First-order ray and dynamic ray tracing, originally developed for computations
of P-wave fields, is used to compute common S-wave rays and the dynamic ray tracing
along it. The principal difference between the previous and new procedure consists in
a substantial increase of accuracy of the coupling equations, which are solved along the
common ray to evaluate S-wave amplitudes. The new coupling equations provide, first of
all, more accurate traveltimes.

The new procedure has all the advantages of the previous procedure. Among the
basic advantages is that it can describe the coupling of S waves. The procedure eliminates
problems with ray tracing in the vicinity of singularities; the common S-wave ray tracing is
as stable as P-wave ray tracing. Due to the use of perturbation formulae, the ray tracing,
dynamic ray tracing and coupling equations are much simpler and more transparent than
in the exact case. There is no need to construct a reference medium as, for example, in the
quasi-isotropic approach. As a byproduct of both coupling procedures, we get formulae
for approximate evaluation of traveltimes of separate S waves. These formulae can find
applications in migration and traveltime tomography.

The accuracy of the previous and new coupling procedures is studied on several models
of varying strength of anisotropy. First, we investigate the accuracy of perturbation
formulae in homogeneous models, in which coupling does not exist. Then we study both
coupling and perturbation effects in inhomogeneous models. We compare the results
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obtained with the coupling procedures with the results of the quasi-isotropic approach
and standard ray theory.

Keywords: Body waves; Seismic anisotropy; Wave propagation.

1 INTRODUCTION

S waves propagating in inhomogeneous, weakly anisotropic media are usually coupled.
Coupling can be described, for example, by the ”connection” formulae (Thomson et al.,
1992) or by the coupling ray theory (Coates & Chapman, 1990; Bulant & Klimeš, 2002).
There are various versions of the coupling ray theory, which differ in the choice of the
trajectory - common S-wave ray - along which coupling effects are evaluated, or by various
approximations of the coupling equations. For an extensive review of such approximations,
see Klimeš & Bulant (2004).

One of the approximations of the coupling ray theory is the quasi-isotropic approach.
It was proposed by Kravtsov (1968), see also Kravtsov & Orlov (1990). Later it was
applied by Pšenč́ık (1998) to elastic media, see also Pšenč́ık & Dellinger (2001). In
the quasi-isotropic approach, the common S-wave ray is traced in a reference isotropic
medium approximating the studied anisotropic medium. This reduces the accuracy of the
corresponding computations. In order to increase their accuracy, Bakker (2002) proposed
the use of the common S-wave ray, which is traced in the studied anisotropic medium,
see also Klimeš (2006). Farra & Pšenč́ık (2008), hereinafter referred to as Paper I, used
Bakker’s (2002) approach and combined it with the first-order ray tracing (FORT) and
first-order dynamic ray tracing (FODRT) concept, which they used before for computating
P waves in inhomogeneous weakly anisotropic media (Pšenč́ık & Farra, 2005, 2007).

As in the papers on FORT and FODRT for P waves, the computation of common S-
wave rays and dynamic ray tracing along them in Paper I is also based on the perturbation
theory, in which deviations of anisotropy from isotropy are considered to be small. The
trajectory of the common S-wave ray corresponds to the Hamiltonian obtained from the
average of the first-order eigenvalues of the Christoffel matrix, corresponding to the two
S waves propagating in anisotropic media. The common S-wave ray is computed in the
studied medium and, therefore, it does not require the specification of a reference medium
as in the quasi-isotropic approach. The reference medium in Paper I is only necessary
for computating the second-order common S-wave traveltime corrections. The great ad-
vantage of such common S-wave rays is that their computation does not collapse in the
vicinity of S-wave singularities as is typical for standard S-wave ray tracing in anisotropic
media, see, e.g., Vavryčuk (2003). The use of the common S-wave ray computed in the
studied anisotropic medium is advantageous even in homogeneous media, where all com-
mon rays between the source and the receiver coincide. The quantities calculated along
the common ray (for example, the slowness vector) in the studied anisotropic medium
approximate the actual quantities better.

The approximate coupling equations are derived in Paper I under the assumption that
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the deviations of anisotropy from isotropy are, simply speaking, of the order O(ω−1), where
ω is the circular frequency. The coupling equations consist of two coupled, frequency-
dependent, linear, ordinary, differential equations for the S-wave amplitude coefficients
and are solved along common S-wave rays.

In this paper, we propose a simple generalization of the coupling equations proposed
in Paper I, which considerably increases their accuracy. The generalization consists in
substituting two mutually perpendicular unit vectors, which define the zero-order polar-
ization plane of the common S wave in Paper I, by vectors, which define the polarization
plane more accurately. The expressions for the new vectors are very simple. Their use,
however, leads not only to an improved description of polarization, but, most importantly,
to a considerable increase of the accuracy of traveltimes. No reference medium is required.

There is a considerable difference between the formulation of the coupling ray theory
studied by Klimeš & Bulant (2004) or Bulant & Klimeš (2008) and the approach presented
in this paper. In our approach, the common ray computation, dynamic ray tracing and
coupling equations along it are approximate. The traveltime corrections are incorporated
in the coupling equations. There is no need for additional numerical quadratures along the
common S-wave ray. Despite the differences in formulation, general conclusions are very
similar. The proposed scheme can describe S-wave propagation in smooth inhomogeneous
isotropic media (it reduces there to the standard ray tracing for isotropic media), and
it describes, with sufficient accuracy, the coupling of S waves in smooth inhomogeneous,
weakly anisotropic media and, as the presented synthetic tests illustrate, can even describe
properly well separated S waves.

An interesting and useful byproduct of the coupling equations are approximate for-
mulae for computing traveltimes and polarizations of separate S waves propagating in
inhomogeneous anisotropic media. The formulae are simple and transparent. We can
distinguish in them the terms responsible for S1- and S2-wave traveltime separation and
terms responsible for corrections of the traveltime along the common S-wave ray.

In Sec.2, we review the main results of Paper I, which include FORT and FODRT for
the common S-wave ray, and coupling equations. In Sec.3, we derive generalized coupling
equations. These equations represent one of the basic contributions of this paper. Sec.4
is devoted to the illustration of the performance of both types of approximate coupling
equations on several models of varying strength of anisotropy. On homogeneous models,
in which coupling does not exist, we study the accuracy of the proposed formulae. On
inhomogeneous models, we compare the results obtained with the coupling equations
presented in Paper I and here with the results of the standard ray theory or of the quasi-
isotropic approach. Advantages and limitations and future plans are briefly discussed in
Sec.5. Finally, in Appendix A, we study the behaviour of coupling equations, derived in
Paper I and herein, in special cases. We describe how equations reduce in isotropic media
or in media with stronger anisotropy or weaker inhomogeneity or for higher frequencies.
Approximate formulae for computing separate S-wave traveltimes are also given there.

The lower-case indices i, j, k, l, ... take the values of 1,2,3, the upper-case indices
I, J,K, L, ... take the values of 1,2. The Einstein summation convention over repeated
indices is used. The upper index [M] is used to denote quantities related to the S-wave
common ray.

65



2 BASIC EQUATIONS

In the frequency domain, the zero-order ray approximation of the displacement vector u of
an arbitrary wave propagating in an inhomogeneous anisotropic medium can be expressed
as:

u(xm, ω) = U(xm)exp[iωτ(xm)]. (1)

Here i is the imaginary unit, ω is the circular frequency, τ(xm) is the eikonal, which
also serves as the traveltime, and U(xm) is the zero-order vectorial amplitude coefficient.
Expression (1) is a good approximation of the displacement vector if the variations of the
model and wave parameters within a wavelength are small, in other words if characteristic
length L (the distance, on which the parameters change by an amount comparable with
their size) is large. This condition can be expressed as the requirement that parameter
ε1 ∼ c/(ωL) is small (Pšenč́ık, 1998). This requirement is often simplified to ε1 ∼ ω−1,
see, e.g., Paper I. Here we use the more general former definition of ε1, i.e., ε1 ∼ c/(ωL).

As in Paper I, we concentrate on the coupled S waves computed along a common S-
wave ray and assume that in an inhomogeneous weakly anisotropic medium the vectorial
amplitude coefficient U(xm) = U[xm(τ)] has the form:

U(τ) = A(τ)e[1](τ) + B(τ)e[2](τ). (2)

In (2), A and B are S-wave amplitude coefficients and vectors e[1] and e[2] are mutually
perpendicular unit vectors, to which the amplitude coefficients are related. Parameter τ
is the traveltime. All the mentioned quantities are computed along the S-wave common
ray, obtained by solving the first-order ray-tracing (FORT) equations:

dxi

dτ
=

1

2

∂G[M](xm, pm)

∂pi

,
dpi

dτ
= −1

2

∂G[M](xm, pm)

∂xi

. (3)

Here xi and pi are the Cartesian coordinates of the S-wave common first-order ray and
the components of the corresponding first-order slowness vectors, respectively. Parameter
τ = τ [M](xm) is the first-order traveltime. Symbol G[M] denotes the first-order S-wave
mean eigenvalue

G[M](xm, pm) = 1
2
(G[1] + G[2]) = 1

2
(B11 + B22) = 1

2
Γik(e

[1]
i e

[1]
k + e

[2]
i e

[2]
k ). (4)

In (4), G[1] and G[2] are the first-order approximations of two smaller eigenvalues of the
generalized Christoffel matrix Γ (we call it generalized because it contains components
of slowness vector p instead of the unit vector in the direction of p used in the standard
Christoffel matrix):

Γik(xm, pm) = aijkl(xm)pjpl . (5)

Symbols aijkl denote density-normalized elastic moduli,

aijkl = cijkl/ρ , (6)

cijkl being elements of the fourth-order tensor of elastic moduli and ρ the density. The
first-order S-wave eigenvalues G[1] and G[2] can also be expressed in terms of elements
B11, B12 and B22 of the symmetric matrix B(xm, pm):

Bjl(xm, pm) = Γik(xm, pm)e
[j]
i e

[l]
k . (7)
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Symbols e
[j]
i in (4) and (7) denote the components of unit vectors e[j]. Vectors e[1] and

e[2], see (2), are perpendicular to the third vector e[3] chosen so that e[3] = n. Here n is a
unit vector specifying the direction of the first-order slowness vector p. Vectors e[K] can
be chosen arbitrarily in the plane perpendicular to n. Vector e[3] can be determined from
the second set of FORT equations (3). Along the common S-wave ray, vectors e[K] can
be computed as the vectorial base of the wavefront orthonormal coordinate system, see,
e.g., Červený (2001):

de
[K]
i

dτ
= −(c[M])2(e

[K]
k

dpk

dτ
)pi. (8)

Here, c[M] = c[M](xm, nm) is the first-order S-wave common phase velocity corresponding
to G[M], (c[M])2 = G[M](xm, nm).

At each point along the ray, the first-order slowness vectors determined from equations
(3) satisfy the first-order eikonal equation:

G[M](xm, pm) = [c[M](xm, nm)]−2G[M](xm, nm) = 1. (9)

Note that an explicit expression for G[M](xm, pm) in terms of the weak-anisotropy (WA)
parameters is given in Paper I.

The point-source initial conditions for the ray-tracing equations (3) for τ = τ0 read:

xi(τ0) = x0
i , pi(τ0) = p0

i . (10)

Here, x0
i are the coordinates of source point x0, and p0

i = n0
i /c

[M]
0 are the components

of the first-order slowness vector p0 at the source. Symbol c
[M]
0 denotes the first-order

approximation of the S-wave common phase velocity in direction n0 at source point x0.

Velocity c
[M]
0 is given by the square root of G[M](x0

m, n0
m), see eq. (9). Vector n0 can be

specified by two ray parameters, γ(J), chosen as two take-off angles, φ0 and δ0, so that

n0
1 = cos φ0 cos δ0, n0

2 = sin φ0 cos δ0, n0
3 = sin δ0. (11)

It was shown in Paper I that the accuracy of traveltime computations can be enhanced
by calculating a correction along the first-order common S-wave ray. Although it is not
strictly second-order traveltime correction, we refer to it as such, for the sake of simplicity.
It reads

∆τ [M] =
1

4

∫ τ

τ0
[c[M](xm, nm)]2

B2
13(xm, pm) + B2

23(xm, pm)

V 2
P (xm)− V 2

S (xm)
dτ. (12)

Quantities B13 and B23 in eq. (12) are elements of the symmetric matrix B(xm, pm), see
(7). Let us mention that the traveltime correction (12) does not depend on the choice
of base vectors e[K]. The symbols VS and VP denote the S- and P-wave velocities of the
reference isotropic medium, closely approximating the weakly anisotropic medium along
the considered ray.

The first-order dynamic ray tracing (FODRT) system along the common ray of an S
wave reads:

dX
(I)
i

dτ
=

1

2

(∂2G[M](xm, pm)

∂pi∂xj

X
(I)
j +

∂2G[M](xm, pm)

∂pi∂pj

Y
(I)
j

)
,

dY
(I)
i

dτ
= −1

2

(∂2G[M](xm, pm)

∂xi∂xj

X
(I)
j +

∂2G[M](xm, pm)

∂xi∂pj

Y
(I)
j

)
. (13)
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Here, G[M](xm, pm) is again the S-wave first-order mean eigenvalue given in eq. (4).

Quantities X
(I)
i = X

(I)
i (τ) and Y

(I)
i = Y

(I)
i (τ) are defined as

X
(I)
i = [

∂xi

∂γ(I)
]τ=const, Y

(I)
i = [

∂pi

∂γ(I)
]τ=const. (14)

In (14), γ(I) again denote the ray parameters specifying the S-wave common ray, which

can be chosen, for example, as in eq. (11). Quantities X
(I)
i and Y

(I)
i describe the variations

along the wavefront of coordinates xi of the first-order common ray and of components pi

of the first-order slowness vector caused by the variations of parameters γ(I). The FODRT
equations can be used to calculate the first-order geometrical spreading L[M](R,S) from
source S to receiver R:

L[M](R,S) = |X(1) ×X(2)|1/2. (15)

The point-source initial conditions for the FODRT equations (13) for τ = τ0 read:

X
(I)
i (τ0) = 0, Y

(I)
i (τ0) = ZiI − p0

i v0
[M]
k ZkI , (16)

where

Z11 = − sin φ0, Z21 = cos φ0, Z31 = 0,

Z12 = − cos φ0 sin δ0, Z22 = − sin φ0 sin δ0, Z32 = cos δ0, (17)

In eqs (16), v0
[M]
i denotes the ith component of the first-order ray-velocity vector of the

common S wave, v
[M]
i = dxi/dτ , at point S, at which τ = τ0. Symbols φ0 and δ0 in

eqs (17) again denote the take-off angles introduced in eq. (11).

The vectorial amplitude coefficient U(τ) of the common S wave given in eq. (2),
calculated along the S-wave common ray, reads:

U(τ) =
A0(τ)e[1](τ) + B0(τ)e[2](τ)

[ρ(τ)c[M](τ)]1/2L[M](τ)
. (18)

Parameter τ = τ [M](xm) is again the first-order traveltime along the S-wave common
ray, obtained by solving FORT equations (3). We choose vectors e[1] and e[2] as the
base vectors of the wavefront orthogonal coordinate system (8). Frequency-dependent
amplitude coefficients A0 and B0 can then be obtained by solving the system of coupled
differential equations:

(
dA0/dτ
dB0/dτ

)
= − iω

2

(
B11 − 1 B12

B12 B22 − 1

) (
A0

B0

)
. (19)

In (19), BJL are again the elements of the symmetric matrix B(xm, pm), see (7). Matrix
B(xm, pm) can be obtained by simple rotation from matrix B̄(xm, pm), specified explicitly
in Paper I. Vectors e[K] define the zero-order polarization plane of the common S wave.
Thus the coupling equations (19) yield the vectorial amplitude coefficient U(τ), which is
situated in the zero-order polarization plane. From this reason, we call equations (19)
first-order coupling equations.
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If the wave field is generated by point force F acting at time τ = τ0, the initial
conditions for coupling equations (19) read:

A0(τ0) =
e
[1]
k (τ0)Fk

4π(ρ0c
[M]
0 )1/2

, B0(τ0) =
e
[2]
k (τ0)Fk

4π(ρ0c
[M]
0 )1/2

. (20)

Here c
[M]
0 denotes the first-order approximation of the S-wave common phase velocity at

the source, and ρ0 denotes the density at the same point.

In Paper I, the system of coupling equations (19) was derived under the assumption
that another small parameter ε2 ∼ |∆aijkl|/|aijkl| ∼ ∆c/c, characterizing weak anisotropy,
is of the same order as the earlier introduced small parameter ε1. Here, ∆aijkl are pertur-
bations of the density-normalized elastic parameters from the reference isotropic medium,
∆c is the difference of the phase velocities of the two S waves propagating in the weakly
anisotropic medium in the direction of slowness vector p.

3 SECOND-ORDER COUPLING EQUATIONS

For greater accuracy of the results, it was proposed in Paper I to substitute vectors e[K],
which define the zero-order polarization plane of the common S wave, by their first-order
counterparts f [K]:

f [K] = e[K] − (c[M])2BK3(xm, pm)

V 2
P − V 2

S

e[3]. (21)

Vectors f [K] are situated in the plane perpendicular to the first-order eigenvector f [3]

corresponding to the largest eigenvalue of the generalized Christoffel matrix (5):

f [3] = (c[M])2B13(xm, pm)

V 2
P − V 2

S

e[1] + (c[M])2B23(xm, pm)

V 2
P − V 2

S

e[2] + e[3]. (22)

Quantities B13, B23 are again elements of matrix B(xm, pm), see (7). Symbols VP and
VS denote the P- and S-wave velocities of the reference isotropic medium, also used in
eq. (12).

After substitution of vectors e[K] by f [K] in (18), the zero-order vectorial amplitude
coefficient U(τ) reads:

U(τ) =
A1(τ)f [1](τ) + B1(τ)f [2](τ)

[ρ(τ)c[M](τ)]1/2L[M](τ)
. (23)

In (23), A1 and B1 are the amplitude coefficients, which we are seeking. Indices ”1”
should distinguish them from coefficients A0 and B0 used in (18). We can now proceed
as in Paper I: insert eq. (23) into eq. (1), and the result into the elastodynamic equation,
and neglect the terms of order O(1), O(ω−1) and less. Within this approximation, the
substitution of vectors e[K] by f [K] only affects the coefficient of (iω)2 in eq. (31) of Paper
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I. The effects on the coefficient of iω in eq. (31) can be neglected. Thus, if we take into
account the definition of matrix B(xm, pm) in (7), eq. (32) of Paper I now reads:

(Γik−δik)Cf
[K]
i f

[L]
k = C[BKL−δKL−2(c[M])2 BK3BL3

V 2
P − V 2

S

+(c[M])4(B33−1)
BK3BL3

(V 2
P − V 2

S )2
]. (24)

This can be rewritten to read:

(Γik − δik)Cf
[K]
i f

[L]
k = C(MKL − δKL). (25)

The elements of the 2× 2 matrix M in (25) read

MKL(xm, pm) = BKL(xm, pm)− (c[M])2BK3(xm, pm)BL3(xm, pm)

V 2
P − V 2

S

. (26)

Matrix M was introduced in Farra (2001) and Farra and Pšenč́ık (2003) for calculating the
second-order S-wave eigenvalues of the Christoffel matrix and of the corresponding first-
order S-wave eigenvectors, which represent first-order polarization vectors. It is important
to note that in deriving eq. (25), we choose velocities VS and VP in the following specific
and unique way,

V 2
S (xm) = (c[M])2 , V 2

P (xm) = (c[M])2B33(xm, pm). (27)

Eq. (27) yields B33 − 1 = (c[M])−2(V 2
P − V 2

S ). Eq.(26) can thus be rewritten to the
alternative form

MKL(xm, pm) = BKL(xm, pm)− BK3(xm, pm)BL3(xm, pm)

B33(xm, pm)− 1
, (28)

which is independent of the reference medium. Note that the element B33 of the matrix B
represents the first-order approximation of the largest of the eigenvalues of the Christoffel
matrix (5). The coupled system of differential equations (19) then transforms into the
system: (

dA1/dτ
dB1/dτ

)
= − iω

2

(
M11 − 1 M12

M12 M22 − 1

) (
A1

B1

)
. (29)

We call equations (29) second-order coupling equations. They are obtained from the
first-order coupling equations (19) just by substituting the elements B11, B12 and B22 of
matrix B by the elements M11, M12 and M22 of matrix M . In Appendix A, we show
that the substitution of eqs (19) by (29) leads to the increase of accuracy of the computed
traveltimes τS1,S2 along the S-wave common ray. The computed traveltimes τS1,S2 contain,
for example, the second-order traveltime correction (12). We illustrate this fact also on
numerical examples.

The initial conditions have a form similar to those in (20). Only vectors e[K] are
substituted by vectors f [K]:

A1(τ0) =
f

[1]
k (τ0)Fk

4π(ρ0c
[M]
0 )1/2

, B1(τ0) =
f

[2]
k (τ0)Fk

4π(ρ0c
[M]
0 )1/2

. (30)
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4 NUMERICAL EXAMPLES

In order to illustrate the accuracy of the first-order and second-order coupling equations
we consider the VSP configuration, which we used in our previous studies of FORT and
FODRT for P waves, see Pšenč́ık & Farra (2005, 2007). The source and the borehole
are situated in a vertical plane (x, z). The borehole is parallel to the z axis, the ver-
tical single-force source is located on the surface at z = 0 km, at a distance of 1 km
from the borehole. The source-time function is a windowed symmetric Gabor wavelet,
exp[−(2πf/γ)22t2] cos(2πft), with the dominant frequency f = 50 Hz and γ = 4. There
are 29 three-component receivers in the borehole, distributed with a uniform step of 0.02
km, with receiver depths ranging from 0.01 to 0.57 km. The receivers record the vertical
(positive downwards), transverse and radial (along the line connecting the source and the
top of the borehole; positive away from the source) components of the wave field. The
recording system is right-handed. All calculated seismograms are shown with no differ-
ential scaling between components and traces, so that true relative amplitudes can be
seen.

We consider three models, QI, QI2 and QI4, used by Klimeš & Bulant (2004) and
Bulant & Klimeš (2008). Model QI coincides with the WA model of Pšenč́ık & Dellinger
(2001). The models are vertically inhomogeneous HTI media with constant vertical gra-
dients of the elastic moduli. The axis of symmetry is rotated everywhere in the hor-
izontal plane by 45o from the vertical plane (x, z). The S-wave anisotropy defined as
(cS1 − cS2)/caverage × 100% ranges, from the horizontal to vertical direction, from 1% to
4%, from 4% to 7% and from 11% to 13% for the QI, QI2 and QI4 models, respectively.
The matrices of the density-normalized elastic moduli can be found in the above refer-
ences. The variations of the S-wave phase velocities in the (x, z) plane for all three models
are shown in Fig. 1. The left-hand plots correspond to z = 0 km, the right-hand plots to
z = 1 km. Model QI is shown in the top, QI2 in the middle and QI4 in the bottom plot.
Velocities are shown as functions of the angle of incidence. They vary from 00 (horizontal
propagation) to 900 (vertical propagation). Although the coupling method based on the
FORT can accommodate arbitrary lateral variations of the elastic moduli, the models
used exhibit only vertical variations.

In addition to inhomogeneous QI, QI2 and QI4 models, we also consider their homo-
geneous counterparts specified by the elastic parameters of the above models at z = 0
km. The homogeneous models are thus represented by the plots in the left-hand column
of Fig. 1. We call these models QI HOM, QI2 HOM and QI4 HOM. Since there is no cou-
pling in homogeneous media (the two S waves are decoupled there), homogeneous models
allow us to investigate the accuracy of the traveltime and spreading approximations.

Figure 2 shows the relative traveltime and geometrical-spreading differences for the
homogeneous QI2 HOM model. The relative difference of quantity q is computed as

qFORT − qEXACT

qEXACT

× 100%. (31)

Quantity qFORT is obtained along the common S-wave ray. Quantity qEXACT is computed
along rays of S1 and S2 waves, by the ray tracer for anisotropic media – a modified program
package ANRAY (Gajewski and Pšenč́ık, 1990) which is based on the standard ray theory.
Blue corresponds to the faster S1 wave, red to the slower S2 wave. Black corresponds to

71



their average. In contrast to similar figures shown in Pšenč́ık & Farra (2005, 2007), the
plots for S1 and S2 waves in Fig.2 do not show relative errors. They only show deviations
of traveltimes and spreading computed along a common S-wave ray from these quantities
computed exactly along the rays of the S1 and S2 waves. Only the differences between
FORT quantities and averages of exact quantities can be considered as relative errors,
because the values qFORT represent approximations of averaged quantities. In the upper
plot of Fig.2, quantity qFORT is the traveltime τ [M] obtained by solving FORT equations
(3) along the common S-wave ray. In the middle plot, the traveltime τ [M] is corrected by
term ∆τ [M] from eq. (12), which we briefly call a second-order correction. In the bottom
plot of Fig.2, quantity qFORT is the first-order geometrical spreading L[M]. The VS and
VP velocities in eq. (12) are determined according to eq. (27).

We can see that the deviations of the first- and second-order traveltimes, computed
along the common S-wave ray, from the traveltimes of each of the S waves are less than
2%. The deviation of the first-order traveltimes related to the S1 wave is less than that
related to the S2 wave. The relative error of the first-order traveltime with respect to the
averaged exact traveltime is about 1%. This error is reduced to nearly zero if the second-
order traveltime correction (12) is used (black symbols in the middle plot). The deviations
of the second-order traveltimes from the S1- and S2-wave traveltimes are comparable, but
with opposite sign, in this case. As in the case of the P waves, we can see that the first-
order geometrical spreading (black) is less accurate than the traveltime. The relative error
with respect to the averaged spreading is approximately -3%. Note that the first-order
geometrical spreading L[M], computed along the common S-wave ray, is smaller than the
spreading of each of the two S waves (the relative differences, red and blue, are negative).

In Figure 3, we compare the synthetic seismograms, computed from the first-order
coupling equations (19) (red) and the standard ray theory seismograms (black) in the
QI2 HOM model. The red seismograms are plotted over the black ones in this and the
following comparisons. We can see that the faster S1 wave (observable in the vertical
component and, for deeper receivers, also on the transverse component) is relatively well
approximated by equations (19). The approximation of the S2 wave is worse. We can see
a very poor fit of the approximate seismograms in the radial and transverse components,
especially for deeper receivers. This is the consequence of the traveltime approximation
incorporated in eqs (19), see eq. (A5) in Appendix A. The discrepancies between the
approximate and standard ray theory seismograms (black) are removed, if the approximate
seismograms (red) are computed from the second-order coupling equations (29), see Fig.
4. This is the consequence of the use of a better traveltime approximation, see eq. (A12)
in Appendix A. We can see that the second-order coupling equations (29) (red) yield a
good fit with the standard ray theory seismograms (black) even for model QI4 HOM with
the S-wave anisotropy between 11%-13%, shown in Fig. 5. The S1 wave computed by
equations (29) is slightly faster and has a slightly overestimated amplitude with respect
to the S1 wave computed by the standard ray method. The larger amplitude is the
consequence of the relative difference (31) of the S1-wave spreading being about -11% in
this case. Let us emphasize that the two well separated S waves shown in red in Fig. 5
are computed along a single common S-wave ray.

Let us now consider QI models with vertical inhomogeneity, in which we can observe
coupling effects. We do not show the plots of the relative differences of the first- and
second-order traveltimes and of the geometrical spreading. For model QI2, they differ
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only a little from the plots shown in Fig. 2.

In Fig. 6, we show the comparison of the seismograms computed from the first-order
coupling equations (19) (black) and from the second-order coupling equations (29) (red).
For the faster S1 wave (mostly observable in the vertical and radial components), we have
a nearly perfect fit of both approximations. For the S2 wave (mostly observable in the
transverse component), we can observe certain differences. The S2 wave computed by
the first-order coupling equations is slightly faster than the S2 wave computed by the
second-order coupling equations.

As mentioned above, model QI is identical with model WA studied by Pšenč́ık &
Dellinger (2001). They used the quasi-isotropic approximation with a common S-wave
ray traced in a reference isotropic medium and compared the results with the results
computed by the reflectivity method. In Fig. 7, we compare the seismograms computed
by the second-order coupling equations (29) (red) with the seismograms computed by
the quasi-isotropic approach (black). No amplitude normalization (which had to be used
by Pšenč́ık & Dellinger, 2001) is used. Except for the slightly higher amplitudes of
both S waves computed by the quasi-isotropic approach, the comparison resembles the
comparison of the seismograms, computed from the first-order and second-order coupling
equations, shown in Fig. 6. The S2 wave computed by the quasi-isotropic approach is
slightly faster than the S2 wave computed by the second-order coupling equations.

Since the anisotropy of the QI model is relatively weak, the results of the quasi-isotropic
approach and the first-order and second-order coupling equations presented in this paper
are comparable. Let us now compare the seismograms computed by the second-order
coupling equations (29) (red) with the standard ray theory seismograms computed by the
package ANRAY. Fig. 8 shows this comparison. We can see the nearly perfect fit of the
S1 wave, observable again mostly in the vertical and radial components, except for the
slightly higher amplitudes computed by ANRAY at deeper receivers, but a strong misfit
of the S2 wave, mostly observable in the transverse component. The most pronounced
differences, mainly due to the phase shift, can be seen at the shallow receivers. This misfit
indicates the failure of the standard ray theory (used in the ANRAY package) to describe
properly the phenomenon of coupling.

Let us now consider the stronger anisotropy, specifically model QI2. Similarly as in
Fig. 6, we compare the results of the computations based on the first-order coupling
equations (19) (black) with those based on the second-order coupling equations (29) (red)
in Fig. 9. While in Fig. 6 both equations yielded comparable results, in the medium
with stronger anisotropy their results differ. The most dramatic difference (both in phase
shift and amplitude) can be observed for the S2 wave. The differences are so pronounced
that they can be observed in all three components, mostly in the transverse. As superior,
we consider, of course, the seismograms computed using eqs (29). In contrast to the
first-order coupling equations, eqs (29) describe, specifically for the deeper receivers in
the transverse component, the separation of the S1 and S2 waves.

The separation of the S1 and S2 waves is visible more clearly in Fig. 10, which
shows the same comparison as Fig. 8. Specifically, Fig. 10 compares the seismograms,
computed by the second-order coupling equations (29) (red), with the standard ray theory
seismograms computed by the ANRAY package. We can see that the fit is now much
better than in Fig. 8. This is because the anisotropy is now sufficiently strong so that
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the coupling effects are not as pronounced (the coupling still affects wave field at shallow
receivers). In the transverse component, we can observe very clear separation of the S1
and S2 waves.

Figure 11 shows the same as Fig.10, but for the QI4 model. We can now observe clear
separation (of about 0.06 sec; approximately three wave periods) of the two S waves in all
components. The fit is not as good as in Fig. 10. The S1 wave computed from equations
(29) is slightly faster and has a slightly overestimated amplitude with respect to the S1
wave computed by the standard ray method, see a similar observation in Fig. 5. Let us
emphasize again that, while the two well-separated S waves shown in black in Fig. 11
are calculated each along a different S-wave ray, the S waves shown in red in Fig. 11 are
computed along a single common S-wave ray.

5 DISCUSSION AND CONCLUSIONS

We have generalized approximate coupling equations for computing the coupled S waves
propagating in smooth inhomogeneous, weakly anisotropic media, proposed in Paper I.
The generalization consists in substituting two mutually perpendicular unit vectors, which
define the zero-order polarization plane of the common S wave in Paper I by vectors, which
define the polarization plane more accurately. The generalization leads to a substantial
increase in the accuracy of the computed S-wave field as illustrated by numerical examples.

The proposed procedure is applicable to the S waves propagating in inhomogeneous,
isotropic or weakly anisotropic media of arbitrary symmetry. In isotropic media, it reduces
to exact ray tracing and dynamic ray tracing. Equations (8) reduce to the equations for
the vector base of the ray-centred coordinate system, in which the vectors e[K] specify the
polarization vectors of the S wave propagating in an inhomogeneous isotropic medium. In
anisotropic media, the proposed procedure can deal with coupled as well as decoupled S
waves. The common S-wave ray tracing is regular everywhere including singular regions.

The second-order coupling equations have a simple and transparent form. They differ
from the first-order coupling equations only by the substitution of elements B11, B12

and B22 of matrix B by elements M11, M12 and M22 of matrix M. Computation of
elements of matrix M is simple and does not require much extra computational effort. The
second-order coupling equations contain the corrections of the common S-wave traveltime
implicitly. Simple, approximate formulae for traveltimes of separate S waves can be
obtained as a byproduct of the coupling procedure. These formulae may find applications
in migration and traveltime tomography based on S waves. The coupling procedure
described in this paper can be simply generalized for laterally varying, layered, weakly
anisotropic structures.

The computations of common S-wave rays and of dynamic ray tracing along them are
based on FORT and FODRT (Pšenč́ık & Farra, 2005, 2007). The coupling equations are
also approximate, based on perturbation formulae. Despite this, the proposed scheme
generates quite accurate results; compare the results presented in this paper with the
results of Bulant & Klimeš (2008). The scheme proposed in this paper also provides
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satisfactory results for decoupled S waves as shown in the comparisons with the results
of the standard ray theory for anisotropic media.

As the next step, we plan to study the behaviour of the proposed procedure in more
complicated models. We plan to concentrate specifically on S-wave computations close
to singularities. We also plan to test the accuracy of the traveltime formulae given in
Appendix A.
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APPENDIX A: SPECIAL SITUATIONS

In Paper I, the first-order S-wave coupling equations were derived under the assump-
tion that the two small parameters ε1 ∼ c/(ωL) and ε2 ∼ |∆c|/c are of the same order,
ε1 ∼ ε2. Let us consider other possible situations.

In isotropic media, i.e. for ε2 = 0, equations (19) yield A0 = const, B0 = const. If
we insert this into eq.(18), and the result into equation (1), we obtain the well-known
zero-order ray expression for the displacement vector u of an S wave propagating in an
inhomogeneous isotropic medium. The vectors e[K] computed from eq.(8) represent the
S-wave polarization vectors.

For stronger anisotropy (∆c larger), higher frequencies (ω large) or weaker inhomo-
geneity, including homogeneity (characteristic length L large or infinite), i.e. for the case
ε1 ¿ ε2, the coupling is expected to be weaker and we can thus seek solutions of the
coupled equations (19) in the following form (Pšenč́ık 1998):

A0(τ) = A′
0 exp(iω∆τ), B0(τ) = B′0 exp(iω∆τ). (A1)

Here A′
0 and B′0 are the amplitude factors, ∆τ are deviations of the traveltimes from the

first-order traveltime τ [M] calculated along the common S-wave ray. Inserting (A1) into
eq.(19) and considering ε1 ¿ ε2, we arrive at dA′

0/τ ∼ 0, dB′0/τ ∼ 0 and:

2
d∆τ

dτ

(
A′

0

B′0

)
+

(
B11 − 1 B12

B12 B22 − 1

) (
A′

0

B′0

)
= 0. (A2)

Eq.(A2) can be expressed in the form of an eigenvalue problem:

(
B11 − (1− 2d∆τ/dτ) B12

B12 B22 − (1− 2d∆τ/dτ)

) (
A′

0

B′0

)
= 0. (A3)

Eq.(A3) represents a system of two equations for two eigenvalues 1 − 2d∆τ/dτ and two
corresponding eigenvectors situated in the plane specified by vectors e[K]. The two eigen-
values and corresponding eigenvectors correspond to two independent S waves that we
call S1 and S2 in the following. From the eigenvalues of eq.(A3), we get

d∆τ

dτ
=

1

2
− 1

4
[(B11 + B22)±

√
(B11 −B22)2 + 4B2

12. (A4)

Taking into account that B11(xm, pm) + B22(xm, pm) = 2, see eqs (4) and (9), we can
use (A4) in the expression for the approximate traveltimes τS1 and τS2 of the S waves,
between points corresponding to τ0 and τ on the common S-wave ray:

τS1,S2(τ, τ0) = τ [M](τ, τ0) + ∆τS1,S2(τ, τ0) . (A5)

The term τ [M](τ, τ0) is the first-order traveltime calculated between points corresponding
to τ0 and τ on the common S-wave ray. If the common S-wave ray does not pass through
a singularity, the term ∆τS1,S2, which represents deviations of the traveltimes of S1 and
S2 waves from τ [M](τ, τ0), has the following meaning:

∆τS1 = −1

4

∫ τ

τ0

√
(B11 −B22)2 + 4B2

12 dτ,
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∆τS2 =
1

4

∫ τ

τ0

√
(B11 −B22)2 + 4B2

12 dτ. (A6)

In this way, the S1 wave is faster than the S2 wave. The zero value of the argument
of the integrals in eq.(A6) indicates either a singularity or S-wave propagation in an
isotropic medium. The approximate traveltime difference of the S1 and S2 waves is thus
1
2

∫ τ
τ0

√
(B11 −B22)2 + 4B2

12 dτ . Since the difference is related to the first-order traveltime
calculated along the common ray, we call it the first-order traveltime difference.

The eigenvectors of equation (A3) specify the directions of the zero-order polarization
vectors of the two decoupled waves. We can introduce the polarization vectors e

′[K] as
unit, mutually orthogonal vectors situated in the plane specified by vectors e[K], see eq.(8).
At any point of the common S-wave ray, the vectors e

′[K] are given by the expressions:

e
′[1] = e[1]cosΦ0 + e[2]sinΦ0, e

′[2] = −e[1]sinΦ0 + e[2]cosΦ0. (A7)

Angle Φ0 is the angle, which leads to the diagonalization of the matrix on the left-hand
side of eq.(A3). In other words, rotation through angle Φ0 changes the matrix B into
B′, in which B′

12 = 0. From this condition we get (Pšenč́ık, 1998; Farra, 2001; Farra &
Pšenč́ık, 2003):

tan 2Φ0 =
2B12

B11 −B22

. (A8)

Angle Φ0 has been chosen so that vector e
′[1] corresponds to the S1 wave. The polarization

vector e
′[2] corresponds to the S2 wave.

We can now rewrite eq.(18) in the following form:

U(τ) =
D′

0e
′[1](τ)exp(iω∆τS1) + F ′

0e
′[2](τ)exp(iω∆τS2)

[ρ(τ)c[M](τ)]1/2L[M](τ)
. (A9)

In (A9), D′
0 and F ′

0 are factors constant along the ray, which can be expressed in terms
of the factors A′

0 and B′0, given in (A1), in the following way:

D′
0 = A′

0cosΦ0(τ0) + B′0sinΦ0(τ0), F ′
0 = −A′

0sinΦ0(τ0) + B′0cosΦ0(τ0). (A10)

The factors A′
0, B′0 can be determined from the initial conditions, the angle Φ0(τ0) from

eq.(A8) applied at τ = τ0. The traveltime deviations ∆τS1, ∆τS2 are given in (A6), the
polarization vectors e

′[K] in (A7). After inserting eq.(A9) into eq.(1), eq.(1) describes two
decoupled S waves. Each of them is given in the form of the zero-order ray expression
for the displacement vector u of an S wave propagating in an inhomogeneous anisotropic
medium. Both waves share the same spreading factor, but they differ by their polarizations
and traveltimes, see eq.(A9). The wave specified by the factor D′

0 and the polarization
vector e

′[1] is the S1 wave, the other is the S2 wave. Note that for the evaluation of
(A9), it is only necessary to solve FORT and FODRT equations together with eq.(8)
for the vectorial base of the wavefront orthonormal coordinate system as in the case of
computations of separate waves. In addition, it is, however, also necessary to evaluate the
deviations ∆τS1,S2 from eqs (A6). There is no need to solve the coupling equations (19).

Similarly as in eq.(A1), we can seek the solution of the second-order coupling equations
(29) in the form:

A1(τ) = A′
1 exp(iω∆τ), B1(τ) = B′1 exp(iω∆τ). (A11)
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Inserting (A11) into eqs (29) and considering ε1 ¿ ε2, we arrive at dA′
1/τ ∼ 0, dB′1/τ ∼ 0

and:

2
d∆τ

dτ

(
A′

1

B′1

)
+

(
M11 − 1 M12

M12 M22 − 1

) (
A′

1

B′1

)
= 0. (A12)

As in case of eq.(A2), we can consider (A12) as an eigenvalue problem for eigenvalues
1−2d∆τ/dτ and the corresponding eigenvectors situated in the plane specified by vectors
f [K]. From the eigenvalues we can find

d∆τ

dτ
=

1

2
− 1

4
[(M11 + M22)±

√
(M11 −M22)2 + 4M2

12 ]. (A13)

Using eq.(26) and again taking into account that B11(xm, pm) + B22(xm, pm) = 2, we get

M11 + M22 = 2− (c[M])2B2
13 + B2

23

V 2
P − V 2

S

. (A14)

Using eq.(A14), and assuming that the common S-wave ray does not pass through a
singularity, we can use eq.(A13) in the expressions for the approximate traveltimes τS1

and τS2 of faster S1 and slower S2 waves between points corresponding to τ0 and τ on the
common S-wave ray:

τS1,S2(τ, τ0) = τ [M](τ, τ0) + ∆τS1,S2(τ, τ0) . (A15)

The term τ [M](τ, τ0) is the first-order traveltime calculated between points corresponding
to τ0 and τ on the common S-wave ray. The term ∆τS1,S2 has now the following meaning:

∆τS1 = ∆τ [M] − 1

4

∫ τ

τ0

√
(M11 −M22)2 + 4M2

12 dτ,

∆τS2 = ∆τ [M] +
1

4

∫ τ

τ0

√
(M11 −M22)2 + 4M2

12 dτ. (A16)

The term ∆τ [M] is the second-order traveltime correction given in eq.(12). We can see
that the second-order traveltime correction is automatically incorporated in the coupling
equations (29). The second terms on the right-hand sides of eqs (A16) control separa-
tion of S waves. The approximate traveltime difference of the S1 and S2 waves is now
1
2

∫ τ
τ0

√
(M11 −M22)2 + 4M2

12 dτ . Since it is related to the expressions, which contain

second-order traveltime corrections calculated along the common ray, we call (A16) the
second-order traveltime difference.

Comparing eqs (A15) and (A16) with (A5) and (A6), we can see that the increased
accuracy of (A15) is caused by two effects. First, by the second-order traveltime correction
∆τ [M] and second, by the more accurate traveltime difference, see the second term on the
right-hand sides of eqs (A16).

The eigenvectors of eq.(A12) specify the direction of the first-order polarization vectors
f
′[K] of the two decoupled waves. They are situated in the plane specified by vectors f [K],

see eq.(21); at any point of the common S-wave ray, the vectors f
′[K] can be expressed as

follows:
f
′[1] = f [1]cosΦ1 + f [2]sinΦ1, f

′[2] = −f [1]sinΦ1 + f [2]cosΦ1. (A17)
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The polarization vectors f
′[K] are not unit since vectors f [K] are also not unit. Angle Φ1

is specified so that the element M ′
12 of the rotated matrix M equals zero, M ′

12 = 0. This
condition yields (Farra, 2001; Farra & Pšenč́ık, 2003):

tan 2Φ1 =
2M12

M11 −M22

. (A18)

Angle Φ1 has been chosen so that vector f
′[1] corresponds to the S1 wave. The polarization

vector f
′[2] corresponds to the S2 wave.

We can now rewrite eq.(23) in the following form:

U(τ) =
D′

1f
′[1](τ)exp(iω∆τS1) + F ′

1f
′[2](τ)exp(iω∆τS2)

[ρ(τ)c[M](τ)]1/2L[M](τ)
. (A19)

In (A19), D′
1 and F ′

1 are factors constant along the ray, which can be expressed in terms
of the factors A′

1 and B′1 given in (A11) in the following way:

D′
1 = A′

1cosΦ1(τ0) + B′1sinΦ1(τ0), F ′
1 = −A′

1sinΦ1(τ0) + B′1cosΦ1(τ0). (A20)

The factors A′
1, B′1 can be determined from the initial conditions, the angle Φ1(τ0) from

eq.(A18) applied at τ = τ0. The terms ∆τS1, ∆τS2 are given in (A16), the polarization
vectors f

′[K] in (A17). We can see from eq.(A19) that, for ε1 ¿ ε2, also the second-
order coupling equations yield two separate S waves with the same spreading factor, but
different polarizations and traveltimes.
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Figure 1: The S-wave phase-velocity sections in the (x, z) plane for models QI (top),
QI2 (middle) and QI4 (bottom). The velocities vary from the horizontal (00) to vertical
(900) direction of the wave normal. Left-hand plots correspond to z = 0 km, right-hand
plots to z = 1 km.
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Figure 2: Model QI2 HOM. The relative first-order traveltime (top), the second-order
traveltime (middle) and the geometrical spreading differences, see eq.(31), of quantities
computed along the common S-wave ray and the exact quantities for the faster S1 (blue)
and the slower S2 (red) waves and their averaged values (black).
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Figure 3: Comparison of the seismograms computed with the first-order coupling
equations (19) (red) and the standard ray theory seismograms (black) for the vertical
single-force source in the QI2 HOM model.
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Figure 4: Comparison of the seismograms computed with the second-order coupling
equations (29) (red) and the standard ray theory seismograms (black) for the vertical
single-force source in the QI2 HOM model.

84



0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6

0 . 5

0 . 4

D I S T A N C E  I N  K M

T
R

A
V

E
L

 T
IM

E
 I

N
 S

E
C

VERTICAL

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6

0 . 5

0 . 4

D I S T A N C E  I N  K M

T
R

A
V

E
L

 T
IM

E
 I

N
 S

E
C

VERTICAL

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6

0 . 5

0 . 4

D I S T A N C E  I N  K M

T
R

A
V

E
L

 T
IM

E
 I

N
 S

E
C

TRANSVERSE

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6

0 . 5

0 . 4

D I S T A N C E  I N  K M

T
R

A
V

E
L

 T
IM

E
 I

N
 S

E
C

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6

0 . 5

0 . 4

D I S T A N C E  I N  K M

T
R

A
V

E
L

 T
IM

E
 I

N
 S

E
C

RADIAL

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6

0 . 5

0 . 4

D I S T A N C E  I N  K M

T
R

A
V

E
L

 T
IM

E
 I

N
 S

E
C

Figure 5: Comparison of the seismograms computed with the second-order coupling
equations (29) (red) and the standard ray theory seismograms (black) for the vertical
single-force source in the QI4 HOM model.
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Figure 6: Comparison of the seismograms computed with the first-order coupling
equations (19) (black) and the second-order coupling equations (29) (red) for the vertical
single-force source in the QI model.
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Figure 7: Comparison of the seismograms computed with the second-order coupling
equations (29) (red) and the quasi-isotropic approach (black) for the vertical single-force
source in the QI model.
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Figure 8: Comparison of the seismograms computed with the second-order coupling
equations (29) (red) and the standard ray theory seismograms (black) for the vertical
single-force source in the QI model.
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Figure 9: Comparison of the seismograms computed with the first-order coupling
equations (19) (black) and the second-order coupling equations (29) (red) for the vertical
single-force source in the QI2 model.
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Figure 10: Comparison of the seismograms computed with the second-order coupling
equations (29) (red) and the standard ray theory seismograms (black) for the vertical
single-force source in the QI2 model.
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Figure 11: Comparison of the seismograms computed with the second-order coupling
equations (29) (red) and the standard ray theory seismograms (black) for the vertical
single-force source in the QI4 model.
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