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Republic. E-mail: ip@ig.cas.cz

Summary

We perform an important step to extend the applicability of the first-order ray trac-
ing (FORT) and dynamic ray tracing (FODRT) procedures to laterally varying layered,
weakly anisotropic media. We present formulae for transformation of the amplitude of
an incident P or coupled S wave into the amplitudes of reflected and transmitted P and
coupled S waves.
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1 Introduction

In our previous papers, we studied the first-order ray tracing and dynamic ray trac-
ing (FORT and FODRT) of seismic body P waves and coupled S waves propagating in
smoothly varying, weakly anisotropic media without interfaces (Pšenč́ık & Farra, 2005,
2007; Farra & Pšenč́ık, 2008, 2009). For derivation of the FORT and FODRT equa-
tions, we use the perturbation theory in which deviations of anisotropy from isotropy
are considered to be first-order perturbations. In this paper, we make an important step
to generalize the above-mentioned procedures for layered media. Specifically, we concen-
trate on the transformation of ray amplitudes, computed within the FORT and FODRT
concept, at a curved interface separating two inhomogeneous, weakly anisotropic media.
As in the standard problem of reflection/transmission (R/T), the incident and generated
waves satisfy boundary conditions corresponding to the given configuration.

In the high frequency approximation, the problem of reflection/transmission of an
arbitrary body wave at a curved interface separating two anisotropic media reduces to
the problem of reflection/transmission of a plane wave at a plane interface separating two
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homogeneous halfspaces. Wavefront of the plane wave is tangent to the wavefront of the
studied wave and the plane interface is tangent to the studied interface, both at the point
of incidence of the wave at the interface. The properties of the homogeneous halfspaces
correspond to the properties of the studied medium at the point of incidence on both
sides of the interface.

Study of the problem of reflection/transmission (R/T) in anisotropic media has rather
long history. The problem of reflection/transmission of plane waves at a plane interface
between two homogeneous anisotropic halfspaces was studied, for example, by Fedorov
(1968), Musgrave (1970), Daley & Hron (1977), Chapman (2004). For more references
see Červený (2001). Gajewski & Pšenč́ık (1987) used the plane-wave R/T coefficients in
the ray-theory computations of seismic wavefields in laterally varying layered anisotropic
media. Considerable attention has been paid to various simplifications of R/T coefficients
based, for example, on the assumption of weak-contrast interface, with anisotropy of the
surrounding media of arbitrary strength (Ursin & Haugen, 1996; Klimeš, 2003) or on
the assumption of weak-contrast interface and weak anisotropy of the surrounding media
(Rueger, 1997, 2002; Vavryčuk & Pšenč́ık, 1998; Zillmer et al., 1998; Vavryčuk, 1999,
J́ılek, 2002).

In this contribution, we make no weak-contrast interface assumption. We only assume
that media on both sides of the interface are weakly, but generally anisotropic. Use of
the FORT and FODRT concepts leads to important transformation formulae applicable
to coupled shear waves. Slowness vectors of generated waves are determined separately
for P waves and for coupled S waves (like in isotropic media). The R/T coefficients are
determined by numerical solution of the system of six inhomogeneous linear algebraic
equations (like in anisotropic media). For media with anisotropy of higher symmetry,
with specific orientation of symmetry elements with respect to the interface, it might be
possible to find explicit expressions for the R/T coefficients. Here, however, we consider
the case of most general anisotropy.

In Sec.2, we present expressions for displacement vector and traction in the first-order
approximation. In Sec.3, we describe procedures of the determination of slowness vectors
of generated waves and of the determination of amplitudes of generated waves. We end
with several concluding remarks.

The lower-case indices i, j, k, l, ... take the values of 1,2,3, the upper-case indices
I, J,K, L, ... take the values of 1,2. The Einstein summation convention over repeated
indices is used. The upper index [M] is used to denote quantities related to the S-wave
common ray.

2 Basic equations

Let us consider two inhomogeneous weakly anisotropic media in a welded contact, sep-
arated by a curved interface Σ with unit normal N at an arbitrarily chosen point on
Σ, in which we wish to study the R/T process. We choose the orientation of the nor-
mal N so that it points into the medium, in which the incident wave propagates. This
medium is specified by the density ρ(1) and the density-normalized elastic parameters
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a
(1)
ijkl. The medium on the other side of the interface is specified by ρ(2) and a

(2)
ijkl. An

incident wave generates P and coupled S waves in weakly anisotropic media on both sides
of the interface. The incident and four generated waves satisfy the boundary conditions,
which involve their displacement vectors u and tractions T. We, therefore, specify these
quantities first.

2.1 Displacement vector

In the frequency domain, the displacement vector u of an incident wave at the point of
incidence of the wave at the interface Σ can be expressed as:

u(xm, ω) = Uexp[iωτ(xm)] . (1)

Here i is the imaginary unit, ω is the circular frequency, τ(xm) is the eikonal, pm = ∂τ/∂xm

being the components of the corresponding first-order slowness vector p, and U is the
vectorial amplitude coefficient. Let us emphasize again that p and U are values of the
slowness vector and the vectorial amplitude in the zero-order ray approximation at the
point of incidence of the wave at the interface Σ.

The vectorial amplitude coefficient U of a P wave can be expressed in the following
way:

U = Cf [3] =
C0f

[3]

(ρc[3])1/2L[3]
. (2)

The term C is the P-wave scalar amplitude factor, ρ is the density, c[3] = c(p[3]
m ) and L[3] =

L(p[3]
m ) are the first-order P-wave phase velocity and geometrical spreading, respectively;

see Pšenč́ık & Farra (2007). All quantities are related to the first-order slowness vector
p = p[3]. This is also true for the first-order P-wave polarization vector f [3] = f [3](p[3]

m ):

f [3](pm) = c2(pm)
B13(pm)

V 2
P − V 2

S

e[1](pm) + c2(pm)
B23(pm)

V 2
P − V 2

S

e[2](pm) + e[3](pm) . (3)

The vectorial amplitude coefficient U of a coupled S wave propagating in a weakly
anisotropic medium can be expressed in the following way (Farra & Pšenč́ık, 2009):

U = Af [1] + Bf [2] =
A0f

[1] + B0f
[2]

(ρc[M])1/2L[M]
. (4)

The terms A and B are S-wave scalar amplitude factors, c[M] = c(p[M]
m ) and L[M] =

L(p[M]
m ) are the first-order common S-wave phase velocity and geometrical spreading,

respectively; see Farra & Pšenč́ık (2008, 2009). The vectors f [K] = f [K](p[M]
m ) are two

mutually perpendicular vectors, to which the amplitude factors A and B are related.
The vectors are situated in the plane, which we call S-wave polarization plane, which is
perpendicular to the vector f [3] = f [3](p[M]

m ). All quantities are related to the first-order
slowness vector p = p[M]. The vectors f [K] are given by the following expressions:

f [K](pm) = e[K](pm)− c2(pm)
BK3(pm)

V 2
P − V 2

S

e[3](pm) . (5)
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Note that vectors f [i] are generally non-unit and are different for p[3] and p[M]. Symbols
B13 and B23 in eqs (3) and (5) are elements of the symmetric matrix B(pm):

Bjl(pm) = Γik(pm)e
[j]
i e

[l]
k . (6)

The terms Γik(pm) are elements of the generalized Christoffel matrix Γ:

Γik(pm) = aijklpjpl . (7)

Symbols pm denote again components of the first-order slowness vector p of the considered

wave, i.e., of P wave (p[3]
m ) in eq.(3) and of S wave (p[M]

m ) in eq.(5). Symbols e
[j]
i denote

components of three mutually perpendicular unit vectors e[j]. The vector e[3] is chosen so
that e[3] = n. Here n is a unit vector specifying the direction of the first-order slowness
vector p of the corresponding wave. The slowness vector p (p = p[3] for P waves, p = p[M]

for coupled S waves) must satisfy the corresponding first-order eikonal equation

G(pm) = 1 . (8)

Here G represents either the first-order approximation of the eigenvalue of the Christof-
fel matrix (7), corresponding to P wave, or an average of first-order eigenvalues of the
Christoffel matrix (7), corresponding to coupled S waves. The explicit form of the first-
order eikonal equations for P and coupled S waves can be found in Pšenč́ık & Farra (2005)
and Farra & Pšenč́ık (2008). The two mutually perpendicular unit vectors e[1] and e[2]

can be chosen arbitrarily in the plane perpendicular to the vector e[3] = n.

Symbols VP and VS in eqs (3) and (5) denote the P- and S-wave velocities corresponding
to the reference isotropic medium closely approximating the studied weakly anisotropic
medium at the point of incidence.

2.2 Traction

Traction T is given by the expression:

Ti = τijNj = ρaijklNjuk,l . (9)

See, for example Gajewski and Pšenč́ık (1987), Červený (2001). Inserting the expression
(1) for the displacement vector into eq. (9) leads to

Ti = iωρaijklNjUkpl exp[iωτ(xm)] . (10)

2.3 Boundary conditions

The incident and four generated waves satisfy the boundary conditions, which in case
of interface separating two solid media, consist in the requirements of the continuity of
displacement vectors u and tractions T across the interface. In order to distinguish quan-
tities related to reflected and transmitted waves, we use superscripts R and T, respectively.
Quantities related to the incident wave have no superscript. Sometimes, when we discuss
properties of all generated waves, we use the superscript G.
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3 Reflection/transmission

The above boundary conditions lead to two sets of equations. The first set, resulting
from the continuity of the traveltime of all involved waves across the interface, repre-
sents equations for the determination of slowness vectors of generated waves. The second
set, resulting from the boundary conditions themselves, represents equations for the de-
termination of scalar amplitude factors of generated waves. In the following, we deal
successively with both sets of equations.

3.1 Transformation of slowness vectors across an interface

The continuity of traveltime along the interface Σ implies continuity of the spatial trav-
eltime derivatives taken along the interface. This can be expressed in the following way:

pG
i − (pG

k Nk)Ni = pi − (pkNk)Ni . (11)

Here, pi and pG
i are components of the first-order slowness vectors of the incident and

generated (G) waves, Ni are components of the unit normal to the interface Σ. Eq.(11)
is an alternative expression of the Snell law for anisotropic media. From equation (11)
we can determine the components of slowness vectors of generated waves, tangential to
the interface. It remains to determine their components to the normal N to the interface.
We can write the slowness vectors of generated waves in the form

pG
i = bi + ξGNi = pi − (pkNk)Ni + ξGNi , (12)

where ξG represents the component of pG to N. The components ξG are the sought pa-
rameters. They can be found from the first-order eikonal equations satisfied by generated
waves on corresponding sides of the interface

G(bi + ξGNi) = 1 . (13)

Eikonal equation (13) can be rewritten as a polynomial equation of the fourth degree
in ξ. It has four roots, two of which are non-physical. They can be identified as two
conjugate roots, whose imaginary parts are larger than imaginary parts of remaining two
roots. From remaining two roots, we accept the one, whose first-order ray-velocity vector
vG points into the medium, in which the generated wave should propagate (in case of
real roots) or which satisfies the radiation condition (in case of complex conjugate roots).
Explicitly it means that Niv

G
i ≥ 0 for reflected and Niv

G
i ≤ 0 for transmitted waves in case

of real roots and ImξG ≥ 0 for reflected and ImξG ≤ 0 for transmitted waves in case of
complex conjugate roots. Symbols vG

i denote components of the ray-velocity vector vG.
The waves corresponding to real roots of polynomial equation are called homogeneous
while those related to complex roots are called inhomogeneous waves.

The above described procedure should be used when we use a solver of the polynomial
equation, which provides all four roots. We can, however, also use an alternative, and,
perhaps, more efficient, procedure, already used by Dehghan, Farra & Nicolétis (2007),
see also Sec.4.3 of Jech & Pšenč́ık (1989). In weakly anisotropic media, it is reasonable
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to assume that the sought root of eq. (13) is close to the root of similar equation cor-
responding to a reference isotropic medium. We can thus use the root for the isotropic
case as a guess of the sought root, and use the Newton-Raphson iterative method to find
it. The iterative formula derived from the expansion of the eigenvalue G in eq. (13) with
respect to ξG reads:

pG{j} = b + ξG{j}N , (14)

where j is the iteration number and

ξG{j} = ξG{j−1} − G(pG{j−1}
m )− 1

Nk
∂G
∂pk

(p
G{j−1}
m )

. (15)

The solution in a reference isotropic medium can be used as the initial guess ξG{0}. The
explicit expressions for ∂G

∂pk
for P waves in media of arbitrary anisotropy and for coupled

S waves in media of orthorhombic and TI symmetries can be found in Pšenč́ık & Farra
(2007) and Farra & Pšenč́ık (2008), respectively.

3.2 Transformation of amplitudes across an interface

The continuity of traveltime along the interface Σ leads to equality of exponential factors
of displacement vectors of incident and generated waves. Taking this into account, we
can write the boundary conditions in the following form:

ARf
[1]R
i + BRf

[2]R
i + CRf

[3]R
i −AT f

[1]T
i − BT f

[2]T
i − CT f

[3]T
i = −Ui ,

ARX
[1]R
i + BRX

[2]R
i + CRX

[3]R
i −AT X

[1]T
i − BT X

[2]T
i − CT X

[3]T
i = −Xi , (16)

where

Xi = ρ(1)a
(1)
ijklNjUkpl ,

X
[3]R
i = ρ(1)a

(1)
ijklNjf

[3]R
k p

[3]R
l , X

[3]T
i = ρ(2)a

(2)
ijklNjf

[3]T
k p

[3]T
l ,

X
[N ]R
i = ρ(1)a

(1)
ijklNjf

[N ]R
k p

[M]R
l , X

[N ]T
i = ρ(2)a

(2)
ijklNjf

[N ]T
k p

[M]T
l . (17)

The symbols Xi in eq. (17) correspond to the incident wave, symbols X
[3]G
i to generated

P waves and X
[N ]G
i , N = 1, 2, to generated coupled S waves. The slowness vectors of

generated waves are determined by the procedure described in the preceding section. The
vectors f [i]G are determined from eqs (3) or (5). If the incident wave is the P wave, then
the quantities Ui and Xi on the right-hand side of eq. (16) follow from (2) and from the
first equation in (17), in which Uk follows again from (2) and pl are components of the
P-wave first-order slowness vector p[3]. In case of the incident S wave, the quantities Ui

and Xi follow from eq.(4) and from the first equation in (17), in which Uk follows from
(4) and pl are components of the first-order slowness vector p[M] of the common S wave.

Eqs (16) represent a set of six inhomogeneous linear algebraic equations for six un-
knowns AR, BR, CR, AT , BT and CT , scalar wave amplitudes of four waves generated
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by incidence of the wave with vectorial amplitude U. These amplitudes together with
corresponding vectors f [m] can be used in expressions like (2) and (4) to specify vectorial
amplitudes along the rays of generated waves. These rays may be rays of reflected or
transmitted P waves or common rays of reflected or transmitted coupled S waves.

4 Concluding remarks

In this contribution, we showed how to compute the first-order amplitudes of P or coupled
S waves generated at an interface between two inhomogeneous, weakly anisotropic media
by incidence of a P wave or a coupled S wave. In order to compute first-order synthetic
seismograms of these waves in laterally varying layered media, we must supplement the
procedure by transformation relations for the FORT and FODRT across the interface. The
transformation of FORT consists in transformation of the first-order slowness vector across
the interface, which is described in Sec.3.1. The transformation of FODRT is formally
the same as in the exact case, see, e.g., Farra & Le Bégat (1995) or Červený (2001). It is
only necessary to substitute the exact quantities by their first-order counterparts in the
corresponding equations.

The main goal of this contribution was to show how to compute amplitudes of reflected
and transmitted waves in layered, weakly anisotropic media. We ignored an important
aspect of presented equations, specifically of eqs (16), which is the computation of R/T
coefficients. Let us only briefly mention that the problem of determination of R/T co-
efficients may be approached from several directions. The most natural is to seek R/T
coefficients of P and coupled S waves. As the first step in their derivation, it is necessary
to normalize the vectors f [i] of all waves to unit vectors, and to substitute individual terms
in eq. (16) by terms with normalized vectors. The normalized vectors f [I] are arbitrarily
oriented in the plane perpendicular to the normalized vector f [3]. We can always rotate
the normalized vectors f [I] so that one of them is horizontal. We can then compute R/T
coefficients in a way similar to their computation in isotropic media. The S wave vectorial
amplitude is formally split into the SH and SV components, and we can thus calculate
P-P, P-SV, SV-P, SV-SV and SH-SH R/T coefficients. Another possible specification of
R/T coefficients is such that they represent coefficients of separate S-wave modes (S1, S2)
specified by the first-order S-wave polarization vectors. We are going to concentrate on
the subject of R/T coefficients in a forthcoming publication.
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