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ABSTRACT 

 

Velocity anisotropy and attenuation in weakly anisotropic and weakly attenuating 

structures can be treated uniformly using the weak anisotropy-attenuation (WAA) 

parameters. The WAA parameters are constructed in a very analogous way to weak 

anisotropy (WA) parameters designed for weak elastic anisotropy. The WAA parameters 

generalize the WA parameters by incorporating the attenuation effects. The WAA 

parameters can be represented alternatively by one set of complex values or by two sets of 

real values. Assuming high-frequency waves and using the first-order perturbation theory, 

all basic wave quantities such as the slowness vector, polarization vector, propagation 

velocity, attenuation and quality factor are linear functions of the WAA parameters.  

Numerical modeling shows that the perturbation formulas have different accuracy 

for different wave quantities. The propagation velocity is usually calculated with high 

accuracy. However, the attenuation and quality factor may be reproduced with appreciably 

lower accuracy. This happens mostly when strength of velocity anisotropy is higher than 

10% and attenuation is moderate or weak (Q-factor > 20). In this case, the errors of the 

attenuation or quality factor can attain values comparable with strength of anisotropy or can 

be even higher. It is shown that a simple modification of the formulas by including some 

higher-order perturbations improves the accuracy three to four times.  
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INTRODUCTION 

 

Anisotropic attenuating media are frequently met in exploration seismics and 

intensively studied in theory of seismic wave propagation (Carcione, 1994, 2000, 2007). 

Since a general approach valid for modeling of waves in anisotropic attenuating media with 

any strength of anisotropy and attenuation is complicated and computationally demanding 

(Carcione, 1990; Saenger and Bohlen, 2004) it is advantageous to adopt several 

assumptions simplifying the problem. Firstly, we often assume that the studied waves are of 

high frequency, and secondly that the medium is weakly anisotropic and/or weakly 

attenuating. Both conditions are reasonable and frequently met in seismic practice. 

Imposing these conditions is worthwhile because it allows us to apply the ray theory 

designed for the propagation of high-frequency waves (Červený, 2001) and the perturbation 

theory suitable for solving wave propagation problems related to weak anisotropy and weak 

attenuation.  

So far the perturbation theory has mainly been applied to wave propagation 

problems in weakly anisotropic elastic media (Thomsen, 1986; Jech and Pšenčík, 1989; 

Vavryčuk, 1997, 2003; Farra, 2001, 2004; Song et al., 2001; Pšenčík and Vavryčuk, 2002). 

This medium is introduced as a perturbation of an isotropic elastic background, and 

anisotropic wave quantities are calculated as perturbations of isotropic wave quantities. The 

perturbation formulas depend linearly on the weak anisotropy (WA) parameters, which 

quantify elastic anisotropy of the medium (Thomsen, 1986; Mensch and Rasolofosaon, 

1997; Rasolofosaon, 2000; Pšenčík and Farra, 2005; Farra and Pšenčík, 2008). A similar 

approach can be applied to weakly attenuating media, where wave quantities in attenuating 

media are calculated as perturbations of those in non-attenuating media. Finally, both 

approaches can be combined and the effects of weak anisotropy and weak attenuation can 

be treated simultaneously and uniformly.  

In this paper, I have developed the perturbation theory applicable to propagation of 

high-frequency waves in weakly anisotropic and weakly attenuating media. All basic wave 

quantities are expressed in terms of the weak anisotropy-attenuation (WAA) parameters, 

which quantify the velocity and attenuation anisotropy and play a key role in the 

perturbation formulas. They can be defined either as complex-valued or real-valued 

quantities. The complex WAA parameters were first introduced by Rasolofosaon (2008) 

and applied to propagation of homogeneous plane waves in weakly anisotropic and weakly 

attenuating media of arbitrary symmetry. Rasolofosaon (2008) used the correspondence 

principle in his derivation and considered an anisotropic viscoelastic reference medium. 

The complete set of real-valued WAA parameters has not been published yet. The real-

valued WAA parameters have a form similar to a linearized version of Thomsen’s 
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parameters known from studies of elastic and viscoelastic transverse isotropy (Zhu and 

Tsvankin, 2006) and orthorhombic anisotropy (Zhu and Tsvankin, 2007). All the previous 

approaches are based on the assumption of propagation of homogeneous plane waves. 

Since I deal with high-frequency waves which are generally inhomogeneous, the paper is 

also a further step from homogeneous plane-wave approaches (Carcione, 2000; Chichinina 

et al., 2006; Zhu and Tsvankin, 2006, 2007; Červený and Pšenčík, 2005, 2008a,b; 

Rasolofosaon, 2008) towards more realistic wave modeling. This mainly relates to 

calculating stationary slowness vectors, polarization vectors, and other wave quantities, 

which inherently depend on wave inhomogeneity. The wave inhomogeneity can be 

uniquely calculated in the ray theory from an experimental setup (i.e., from the source and 

receiver positions, medium parameters and boundary conditions) but must be a priori 

assumed in plane-wave approaches. Finally, the paper is also an extension of previous 

works (Vavryčuk, 2008) as it assumes the reference background medium as attenuating 

instead of purely elastic. 

 

 

PERTURBATION FORMULAS 

 

A weakly anisotropic and weakly attenuating medium can be viewed as a medium 

obtained by a small perturbation of an isotropic elastic or viscoelastic reference medium, 

 

ijklijklijkl aaa ∆+= 0 ,                       (1) 

 

where 0

ijkla  defines the reference medium and ijkla∆  its perturbation. The density-

normalized viscoelastic stiffness parameters 0

ijkla  can be expressed in terms of the P- and S-

wave velocities P
c0  and S

c0  

 

( ) ( )( ) ( ) ( )
jkiljlik

S

klij

SP

ijkl ccca δδδδδδ ++−=
2

0

2

0

2

0

0 2  ,       (2) 

 

where ijδ  denotes the Kronecker delta. If the reference medium is elastic, the reference 

parameters are real but the perturbations are complex, 

 
R

ijklijkl aa =0 , I

ijkl

R

ijklijkl aiaa ∆+∆=∆  .         (3) 

 

where perturbations R

ijkla∆ , I

ijkla∆  describe weak anisotropy and weak attenuation, 

respectively. If the reference medium is viscoelastic, both the reference parameters and 
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perturbations are complex. In order to keep the approach as general as possible, the 

reference medium will be considered as viscoelastic.  

Using the first-order perturbation theory, we can simplify the formulas for the phase 

and ray wave quantities derived for homogeneous media of arbitrarily strong anisotropy 

and attenuation (see Vavryčuk, 2007). The approach is basically the same as presented in 

Vavryčuk (2008), the only difference is that we now consider a different reference medium. 

The reference medium is assumed to be anisotropic elastic in Vavryčuk (2008) but isotropic 

viscoelastic in this paper. The ray direction is fixed during perturbations. The perturbation 

of the eigenvalue of the Christoffel tensor ( )nG ,  

 

( ) 2
cggnnaG kjliijkl ==n ,                    (4) 

 

reads 

 

GGG ∆+= 0 ,             (5) 

 
2

00 cG = , 0000

kjliijkl ggnnaG ∆=∆ .         (6) 

 

The eigenvalue 0G  and the perturbation G∆  are complex valued: 

 
IR

iGGG 000 += ,  IR
GiGG ∆+∆=∆ ,         (7) 

 
0000

kjli

R

ijkl

R
ggnnaG ∆=∆  ,          (8) 

 
0000

kjli

I

ijkl

I
ggnnaG ∆=∆  ,          (9) 

 

where slowness and polarization vectors 0n  and 0g  are real valued and correspond to an 

isotropic viscoelastic reference medium. For the P-wave, the polarization vector 0g  equals 

to the slowness direction vector 0n . For the S-waves, the polarization vectors 0g  lie in the 

plane perpendicular to 0n . Their orientation in this plane must be calculated according 

perturbation formulas designed for degenerate eigenvectors (see Vavryčuk, 2003, his 

Appendix A). 

Formulas 8 and 9 are valid if both perturbations R

ijkla∆  and I

ijkla∆  are mutually 

comparable and small with respect to values of the reference medium. Since I

ijkla∆  is often 

significantly smaller than R

ijkla∆ , formula 9 can appear to be of low accuracy (see Section 5 

Numerical examples). The inaccuracy is incorporated into formula 9 by identifying 
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slowness direction n and polarization vector g in an anisotropic medium with those in the 

isotropic reference medium. Thus the effects of the velocity anisotropy are fully neglected 

in formula 9. The accuracy is improved if we adopt a modified formula for I
G∆  expressed 

as  

 
00

kj

R

l

R

i

I

ijkl

I
ggnnaG ∆=∆  .         10) 

 

Even higher accuracy is achieved for I
G∆  expressed as  

 
R

k

R

j

R

l

R

i

I

ijkl

I
ggnnaG ∆=∆  ,                  (11) 

 

where Rn  and Rg  are the real parts of the slowness and polarization vectors in a weakly 

anisotropic medium, respectively. Similarly, formula 8 for R
G∆  should be modified in an 

analogous way as formula 10 or 11 if we study details of very weakly anisotropic but 

strongly attenuating medium.  

For the perturbation of a slowness vector, see Appendix A. The Appendix shows 

that the slowness vector is homogeneous in the reference medium, but generally 

inhomogeneous in a perturbed medium. However, the inhomogeneity is small being of the 

order of the first perturbation. For the perturbation of a polarization vector, see Appendix B. 

If we calculate complex energy velocity v, as the magnitude of complex energy velocity 

vector v, 

 

iivvv = , kjlijkli ggpav =  ,                  (12) 

 

and complex phase velocity c from formula 4, we obtain that velocities v and c are equal in 

the first-order perturbation theory and read 

 

Gcv ==  .                    (13) 

 

Also other ray and phase quantities (for their definitions, see Vavryčuk, 2007) are equal in 

the first-order perturbation theory: 

 

 
rayphase

VV = , [ ] [ ] 1ray1phase −−
= QQ , rayphase AA = ,               (14) 
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hence, hereafter I will not distinguish between the ray and phase quantities simply speaking 

of velocity V, quality factor Q and attenuation A. The velocity is expressed as  

 








 ∆
+==

R

R
R

G

G
VGV

0

0
2

1
1 .                  (15) 

 

This equation follows from the following expression, R
GVV ∆+= 2

0
2 , where 0V  

corresponds to the isotropic elastic part of the reference medium, R
GV 0

2
0 = . The attenuation 

and quality factor read 

 

2

11

V

G
QQ

I

V

∆
−= −− , 

32V

G
AA

I

V

∆
−= ,                 (16) 

 

or alternatively 

 








 ∆
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G

G
QQ

0

11 1 , 
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I
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V
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G
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0

1  ,                (17) 

 

where  

 

2

00 cG = , ( )RR
cG

2

00 = , ( )II
cG

2

00 = , 
2

01

V

G
Q

I

V −=− , 
3

0

2V

G
A

I

V −=  .             (18) 

 

Equations 16 and 17 follow from equations RI
GGQ /1 −=−  and VQA 2/1−=  (see Vavryčuk, 

2008, his formulas 51 and 59). Emphasize that 1−

VQ and VA  are not quantities describing an 

isotropic viscoelastic reference medium. They reflect the effects of weak velocity 

anisotropy being thus directionally dependent. The dependence on velocity V is 

acknowledged by using subscript V.  Equations 16 hold for viscoelastic as well as for 

elastic reference media, equations 17 are restricted to the viscoelastic reference medium 

only ( I
G0  in the denominator must be non-zero).  

Note that although the phase and ray quantities are equal, the ray and slowness 

directions differ (see Pšenčík & Vavryčuk, 2002). Ray direction N is real and fixed and, 

therefore, does not change during perturbations: 0
NN = . Ray direction N is equal to 

slowness direction 0n  in the isotropic reference medium. However, slowness direction n in 

a perturbed medium deviates from 0n  and N and is generally complex. The difference 

between both directions n and N is small being of the order of the first perturbation.  
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A similar observation about the approximate equality of the phase and ray 

attenuations (equation 14) is reported by Behura and Tsvankin (2009), who show that the 

so-called normalized group attenuation coefficient estimated along seismic rays practically 

coincides with the phase attenuation coefficient computed for a zero inhomogeneity angle. 

Under strong anisotropy and attenuation, however, the equality of the ray and phase 

attenuations is not fully valid and can be broken under some conditions (see Vavryčuk, 

2007b; Behura and Tsvankin, 2009).  

 

 

 

WEAK ANISOTROPY-ATTENUATION PARAMETERS 

 

Instead of using perturbations ijkla∆  in formulas for wave quantities it is often 

convenient to rearrange the formulas by introducing dimensionless constants called the 

“weak anisotropy-attenuation (WAA) parameters”. The WAA parameters are constructed 

very similarly to “weak anisotropy (WA) parameters”, which are used in weak elastic 

anisotropy. The WAA parameters generalize the WA parameters by incorporating also the 

attenuation effects. The WAA parameters can be defined alternatively as complex 

quantities or real quantities. The complex WAA parameters were first introduced by 

Rasolofosaon (2008). The WAA parameters describe a directional variation of the complex 

energy velocity or equivalently of the complex phase velocity. Since they are complex 

valued they reflect jointly both the velocity anisotropy and attenuation. One set of complex 

WAA parameters can be split into two sets of real WAA parameters, which describe the 

directional variations of real velocity and real attenuation separately.  

 

Procedure 

In order to construct the complex and real WAA parameters, we define 

dimensionless perturbations ijklε∆ , V

ijklε∆  and Q

ijklε∆ : 

 

0G

aijkl

ijkl

∆
=∆ε , 

R

R

ijklV

ijkl
G

a

0

∆
=∆ε , 

I

I

ijklQ

ijkl
G

a

0

∆
=∆ε .               (19) 

 

Hence 

 

( )0000

0 1 kjliijkl ggnnGG ε∆+=  , 
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( )0000

0 1 kjli

V

ijkl

RR
ggnnGG ε∆+=  ,                 (20) 

 

( )0000

0 1 kjli

Q

ijkl

II
ggnnGG ε∆+=  . 

 

Using the following notation 

 
0000

kjliijkl ggnnεε ∆=∆  

 
0000

kjli

V

ijkl

V
ggnnεε ∆=∆  ,                  (21) 

 
0000

kjli

Q

ijkl

Q
ggnnεε ∆=∆  , 

 

the formulas for the eigenvalue of the Christoffel tensor, phase velocity, Q-factor and 

attenuation are modified as:  

 

( )ε∆+= 10GG , 







∆+= V

VV ε
2

1
10 , ( )Q

VQQ ε∆+= −− 111  , ( )Q

VAA ε∆+= 1  ,           (22) 

where 

 

2

00 cG = , ( )R
cV

2
00 = , 

2

01

V

G
Q

I

V −=− , 
3

0

2V

G
A

I

V −= .               (23) 

 

Quantities 0G  and 0V  describe the isotropic reference medium and are directionally 

independent. Quality factor VQ  and attenuation VA  are directionally dependent.  

 

Definition of complex WAA parameters 

To keep the notation consistent with the WA parameters defined previously by Farra and 

Pšenčík (2008, their formula A1), the dimensionless perturbations ijklε∆ , V

ijklε∆  and Q

ijklε∆  

will be expressed in the Voigt notation and slightly rearranged. Hence, the complex WAA 

parameters are finally defined as: 
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P

P
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0

05513 2 −+
=δ , 

P

P
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0

06612 2 −+
=δ , 
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S

S
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G
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0
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=γ , 

S

S

y
G
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0
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2

−
=γ , 

S

S
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0
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Pz
G
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0
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=χ ,               (24) 
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S
G

a

0

46
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S
G
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45 =ε , 

 

where ija  are complex viscoelastic parameters in the Voigt notation, and P
G0  and S

G0  are 

complex eigenvalues of the Christoffel tensor in the isotropic viscoelastic reference 

medium. They can be calculated from real P- and S-wave velocities α and β, and quality 

factors P
Q0  and S

Q0  as follows 
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P

P

Q

i
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0

2
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Definition of real WAA parameters 

 If we separate the effects of velocity anisotropy and attenuation, we obtain two sets 

of real WAA parameters: one set for the velocity anisotropy (with superscript V) and one 

set for the attenuation anisotropy (with superscript Q). Again, perturbations V

ijklε∆  and 

Q

ijklε∆  are rearranged in a similar way as in formula 24. For the velocity anisotropy 

parameters we obtain: 
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The attenuation anisotropy parameters are defined analogously as the velocity anisotropy 

parameters but in terms of I

ija , P
Q0  and S

Q0 : 
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Note that the two sets of real WAA parameters do not coincide with the real and imaginary 

parts of the one set of complex WAA parameters. This is because the complex WAA 

parameters do not separate the effects of velocity and attenuation anisotropy (see equation 

19). For example, the real parts of the complex WAA parameters are affected not only by 

the velocity anisotropy but also by the attenuation of the reference medium. On the other 

hand, the two sets of the real WAA parameters strictly separate the effects of the velocity 

and attenuation anisotropy. The velocity anisotropy parameters are not affected by 

attenuation and attenuation anisotropy parameters are independent of the elastic anisotropy 

or the elastic properties of the reference medium. Also the reader is reminded that the 

formulas for the attenuation anisotropy parameters fail for the elastic reference medium. In 

this case, only the approach with complex WAA parameters is applicable.  
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P-WAVE IN TRANSVERSELY ISOTROPIC MEDIA 

 

In this section, the derived formulas are specified for the P-wave propagating in a 

transversely isotropic medium with a vertical axis of symmetry (VTI medium). The 

medium is described by the following parameters in the Voigt notation: 11a , 1122 aa = , 33a , 

44a , 4455 aa = , 66a , 13a , 1323 aa =  and 661112 2aaa −= . All other parameters are zero. The 

parameters ija  are complex valued. The velocity anisotropy and attenuation are assumed to 

be weak. The wave quantities are studied in the x1–x3 plane. Perturbations for the SV-wave 

can be found analogously to the P-wave and the SH-wave quantities can easily be 

calculated exactly in the VTI medium.  

 

Formulas using perturbations of viscoelastic parameters 

The complex and real velocities, quality factors and attenuations for the P-waves are 

expressed by the following formulas: 
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where 

 

( ) 2

3

2

14413

4

333

4

111 22 NNaaNaNaG ∆+∆+∆+∆=∆  , 

 

( ) 2

3

2

14413

4

333

4

111 22 NNaaNaNaG
RRRRR ∆+∆+∆+∆=∆ ,               (29) 

 

( ) 2

3

2

14413

4

333

4

111 22 NNaaNaNaG
IIIII ∆+∆+∆+∆=∆ , 

 

The reference quantities in equation 28 read  
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2
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Vector N is the real ray direction, ( )Tθθ cos,0,sin=N , quantities α and P
Q0  are the real P-

wave velocity and quality factor in the isotropic viscoelastic reference medium, and angle θ 

defines the deviation of a ray from the symmetry axis.. 
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Formulas using WAA parameters 

The complex and real velocities, quality factors and attenuations for the P-waves are 

expressed in terms of the WAA parameters by the following formulas: 

   

( )ε∆+= 12
0

2
cc ,   
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1
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Perturbations ε∆ , Vε∆  and Qε∆  in 31 read 

 

( )2
3

2
1

4
3

4
12 NNNN xzx δεεε ++=∆ , 

 

( )2
3

2
1

4
3

4
12 NNNN

V
x

V
z

V
x

V δεεε ++=∆ ,                 (32) 

 

( )2
3

2
1

4
3

4
12 NNNN

Q
x

Q
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where θsin1 =N  and θcos3 =N . The reference quantities are defined in equation 30, and 

the WAA parameters in equations 24, 26 and 27. 

 

 

Formulas with improved accuracy 

As mentioned in the previous section, the accuracy of the first-order perturbations 

for attenuation A and quality factor Q can be improved by incorporating some higher-order 

perturbations. This can be done when treating the slowness vector in a more accurate way 

than in standard formulas. So far, slowness direction n was simply identified with ray 

direction N in formulas 29 and 32. This approximation works well for very weak 

anisotropy. The stronger the anisotropy, the lower the accuracy of this approximation. 

Hence, instead of using the slowness direction Nn =0  in formula 9, we can utilize the 

linearized Rn , 

 
RRR nNnnn ∆+=∆+= 0 .                  (33) 

 

The perturbation formula for Rn∆  is derived in Appendix A for anisotropy of arbitrary 

symmetry, and in Appendix C for transverse isotropy. Hence in TI media, we obtain for the 

P-wave 
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Constants RA1  and RA2  are expressed in terms of perturbations R

ijkla∆  as 

 
RRRRR

aaaaA 443313111 42 ∆+∆−∆+∆−=  ,  RRRR
aaaA 4413112 2∆−∆−∆=  ,             (35) 

 

and in terms of WAA parameters as 

 

( )V

z

V

x

V

x

R
A εεδα −−= 2

1 2
 , 

( )V

x

V

x

R
A εδα 22
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 .               (36) 

 

Since we correct just the slowness direction but not the polarization vectors in formula 10, 

the substitution of ray direction N by the corrected slowness direction n in formulas 29 and 

32 will read as follows: 

 

RR nNnnn ∆+=∆+=
2

1

2

10  .                  (37) 

 

Hence, the corrected formula 32 reads  
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and vector n is further normalized to be of unit length before inserting into formula 38.. 

 

 

NUMERICAL EXAMPLES 

 

In this section, I demonstrate the accuracy of the perturbation formulas using 

numerical examples for the P-wave in homogeneous VTI media. I adopted four viscoelastic 

models with two strengths of anisotropy and two levels of attenuation. The models are 
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denoted as models A2, A4, B2 and B4, being taken from Vavryčuk (2008). The anisotropy 

strength (i.e., the magnitude of the directional velocity variation) is 23% for models A2 and 

A4, and 10% for models B2 and B4. The average Q-factors are about 10 for models A2 and 

B2, and 40 for models A4 and B4. The Q-factor anisotropy is 45.5% for all four models 

(see Vavryčuk, 2008, his Table 3). The models with anisotropy strength of 23% cannot be 

considered as weakly anisotropic, but here they are used to illustrate how the accuracy of 

the perturbation formulas deteriorates in this case. The viscoelastic parameters of the 

models are summarized in Table 1. For detailed information on the models, see Vavryčuk 

(2008).  

 

 

Table 1. Viscoelastic parameters. The two-index Voigt notation is used for the density-

normalized elastic parameters and for quality parameters. Parameters R
a66  and 66Q  

are not listed because the P-wave is not sensitive to them. 

Elastic parameters Attenuation parameters  

Model 
Ra11  

(km
2
/s

2
) 

R
a13  

(km
2
/s

2
) 

R
a33  

(km
2
/s

2
) 

Ra44  

(km
2
/s

2
) 

11Q  13Q  33Q  
44Q  

A2 14.4 4.50 9.00 2.25 15 8 10 8 

A4 14.4 4.50 9.00 2.25 60 32 40 32 

B2 10.8 3.53 9.00 2.25 15 8 10 8 

B4 10.8 3.53 9.00 2.25 60 32 40 32 

 

 

Table 2. The values of the isotropic viscoelastic reference medium. 

Model α 

(km/s) 

β 

(km/s) 

P
Q0  

S
Q0  

A2 3.40 1.50 10.5 8.0 

A4 3.40 1.50 42.0 32.0 

B2 3.15 1.50 10.5 8.0 

B4 3.15 1.50 42.0 32.0 

 

 

Figure 1 shows the directional variations of the exact and approximate velocities, 

attenuations A and the Q-factors for models A2 (left-hand plots) and B2 (right-hand plots), 

respectively. Figure 2 shows the same quantities but for models A4 and B4. The angles 

range from 0° to 90°. The exact ray quantities (black solid line) are calculated according to 
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formulas 21, 22 and 24 of Vavryčuk (2007b). The exact stationary slowness vector is 

calculated by a procedure described in Vavryčuk (2007b). The approximate velocities, 

attenuations A and the Q-factors are calculated using equations 31 and 32 (blue dashed 

line). The reference quantities needed in the approximate formulas are listed in Table 2. In 

the approximations, I do not distinguish between the ray and phase quantities because they 

are identical in the first-order perturbation theory. The figures show that the highest 

accuracy is achieved for the velocity having errors less than 3% for models A and less than 

1% for models B. This result is satisfactory regarding that strength of the velocity 

anisotropy is 23% for models A, and 10% for models B. However, the accuracies of 

attenuation A and quality factor Q are considerably lower. Their accuracies are about 15% 

for models A2 and A4, and 10% for models B2 and B4 (see Tables 3 and 4).  

 In order to assess the effectiveness and accuracy of perturbation formulas 31 and 32, 

Figures 1 and 2 also show the approximate velocities, attenuations and Q-factors  calculated 

using the alternative formulas derived for the P-wave propagating in TI media (red dashed 

lines) and exploiting the Thomsen-style parameters (Thomsen, 1986; Tsvankin, 2005; Zhu 

and Tsvankin, 2006): 
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VA
Q = ,                   (42) 

 

where Th
0V  is the vertical velocity in the elastic reference VTI medium, ε and δ are 

Thomsen’s parameters (Thomsen, 1986, his formulas 8a and 17), Th
0A is the reference 

attenuation (Zhu and Tsvankin, 2006, their formula 22), and Qε  and  Qδ  are attenuation 

parameters (Zhu and Tsvankin, 2006, their formulas 28 and 31). Since the definition of 

attenuation A in this paper is slightly different from that in Zhu and Tsvankin (2006), 

formula 41 is not identical to the original formula 36 of Zhu and Tsvankin (2006). The 

values of the Thomsen-style parameters used in numerical modeling are summarized in 

Vavryčuk (2008, his Table 2). 

 Figures 1 and 2 show that the accuracy of formulas 41 ad 42 for attenuation and the 

Q-factor in models A2 and A4 is almost twice higher than that of the first-order 

perturbations 31 and 32. For models B2 and B4, the accuracy is roughly the same for both 

approaches. This demonstrates that formulas 41 and 42 are preferable in models with 

stronger velocity anisotropy. This is due to the fact that parameter Qδ  in formulas 41 and 
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42 depends not only on attenuation of the medium, but also on its velocity anisotropy. This 

property is lost in real-valued WAA parameters (formulas 26 and 27), where the effects of 

the velocity anisotropy and attenuation anisotropy are fully separated. Therefore, formulas 

41 and 42 can be viewed as perturbation formulas which incorporate some of higher-order 

terms.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Exact and approximate velocities, attenuations and quality factors in models A2 

(left-hand plots) and B2 (right-hand plots). Black solid lines show the exact phase 

quantities. Blue dashed lines show the approximate quantities calculated using formulas 31 

and 32. Red dashed lines show the approximate solution 41 and 42 of Zhu and Tsvankin 

(2006). The phase angle denotes the deviation of the real part of the complex slowness 

vector from the symmetry axis.  
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Figure 2. Exact and approximate velocities, attenuations and quality factors in models A4 

(left-hand plots) and B4 (right-hand plots). For details see the caption of Figure 1. 

 

Interestingly, the accuracy of approximate A and Q in Figures 1 and 2 does not 

depend on strength of attenuation, even though one would expect the perturbations to work 

better for less attenuating media (models A4 and B4). This observation is reported also by 

Zhu nad Tsvankin (2006) and it is explained by the fact that the accuracy of attenuation is 

not affected just by strength of attenuation, but also by strength of the velocity anisotropy. 

The velocity anisotropy and attenuation are both described by perturbations and their 

effects cannot be separated easily. Hence the accuracy of A and Q in the models studied is 

not primarily affected by strength of attenuation, but by strength of anisotropy. If we use 
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the modified perturbation formula 10 for I
G∆ , the accuracy of A and Q improves. This is 

indicated in Figure 3 for models A2 and B2, and summarized in Tables 3 and 4. The figure 

and the tables also show errors of equations 41 and 42 derived by Zhu and Tsvankin 

(2006). Both approaches incorporate some of the higher-order perturbations and yield 

higher accuracy than the first-order perturbations. The accuracy of formulas 41 and 42 is 

almost twice higher than that of the standard first-order perturbations. The accuracy of 

formulas 31, 38 and 39 is almost three to four times higher than that of the standard first-

order perturbations. Obviously, more complicated approximations (e.g., Zhu and Tsvankin, 

2006, their formula 19) can yield even higher accuracy. 

  

Table 3. Maximum errors of the perturbations of the attenuation. The error for a 

particular ray is calculated as exactaproxexact /100 UUUE −= , where exact
U and aprox

U  are 

the exact and approximate values of the respective quantity. The presented values are 

the maxima over all rays. ZT – perturbations of Zhu & Tsvankin (2006), V1 – 

formulas 31 and 32, V2 – formulas 31, 38 and 39. 

Error – ZT Error – V1 Error – V2  

Model phaseA  

(%) 

rayA  

(%) 

phaseA  

(%) 

rayA  

(%) 

phaseA  

(%) 

rayA  

(%) 

A2 6.3 10.7 11.6 14.7 2.9 3.1 

A4 6.6 11.0 11.8 14.9 2.7 3.3 

B2 5.0 6.3 6.8 8.0 0.4 1.6 

B4 5.3 6.6 6.9 8.3 0.5 1.8 

 
 

Table 4. Maximum errors of the perturbations of the quality factor. The error for a 

particular ray is calculated as exactaproxexact /100 UUUE −= , where exact
U and aprox

U  are 

the exact and approximate values of the respective quantity. The presented values are 

the maxima over all rays. ZT – perturbations of Zhu & Tsvankin (2006), V1 – 

formulas 31 and 32, V2 – formulas 31, 38 and 39. 

Error – ZT Error – V1 Error – V2  

Model 
phaseQ  

(%) 

rayQ  

(%) 

phaseQ  

(%) 

rayQ  

(%) 

phaseQ  

(%) 

rayQ  

(%) 

A2 7.6 8.0 15.0 14.2 5.1 4.0 

A4 7.3 7.8 14.9 14.3 5.1 4.1 

B2 6.1 6.1 8.0 8.0 2.0 2.1 

B4 5.9 6.0 8.0 8.1 2.0 2.2 
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Figure 3. Exact and approximate attenuations and quality factors in models A2 (left-hand 

plots) and B2 (right-hand plots). Black solid lines show the exact phase quantities. Blue 

dashed lines show the approximate quantities of the improved accuracy calculated using 

formulas 31, 38 and 39. Red dashed lines show the approximate solution 41 and 42 of Zhu 

and Tsvankin (2006). The phase angle denotes the deviation of the real part of the complex 

slowness vector from the symmetry axis.  

 

 

DISCUSSION 

 

Numerical modeling shows that perturbation formulas differ in accuracy for 

different wave quantities. The propagation velocity is usually calculated with high 

accuracy. However, the attenuation and quality factor may be reproduced with appreciably 

lower accuracy. This happens mostly when the anisotropy strength is higher than 10% and 

the attenuation is moderate or weak (Q > 20). In this case, the first-order perturbations may 

appear to be a too rough approximation and a modified approach would be required. To 

overcome this difficulty, it is possible to introduce the real weak attenuation parameters in a 

slightly more complicated form than defined in this paper. This was done by Zhu and 

Tsvankin (2006, 2007) for TI and orthorhombic anisotropy. These definitions automatically 
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include some effects of the velocity anisotropy (i.e., weak attenuation parameters depend on 

weak velocity parameters). Alternatively, we can incorporate some higher-order 

perturbations into formulas for attenuation and the Q-factor by considering the slowness 

direction calculated in an actual anisotropic medium, but not in an isotropic reference 

medium (see formula 10). The numerical examples prove that this approach is more 

accurate than the linearized approach by Zhu and Tsvankin (2006). Finally, it is also 

possible to use perturbations just for evaluating the slowness vector (formulas A8–A10), 

and possibly the polarization vector (formulas B7–B9). All other calculations can be 

performed exactly. Obviously, this approach yields the most accurate results (see 

Vavryčuk, 2008). A different highly accurate nonlinear approximation for the attenuation 

coefficient in TI media is given by Zhu and Tsvankin (2006, their equation 19). 

 

 

CONCLUSIONS 

 

The weak anisotropy-attenuation (WAA) parameters proved to be an effective tool 

for calculating wave quantities in weakly anisotropic attenuating media of arbitrary 

symmetry. The WAA parameters can be introduced alternatively as complex-valued or 

real-valued quantities. The use of complex-valued WAA parameters seems to be 

mathematically more elegant and less laborious when writing computer codes, but the real-

valued WAA parameters are probably more comprehensible and their physical meaning 

more understandable. For example, the velocity anisotropy parameters are very similar to 

linearized versions of Thomsen’s parameters widely used in seismic processing and 

inversion in transversely isotropic media. The only difference is that Thomsen’s parameters 

use a fixed reference medium while the velocity anisotropy parameters use a reference 

medium which can be adjusted. Since the first-order perturbation formulas of the wave 

quantities depend linearly on the WAA parameters, the WAA parameters can easily be 

calculated in inverse problems.  

The perturbation approach also has its limitations. Firstly, it is limited by strength of 

anisotropy and attenuation. Perturbations work well in anisotropic media where the phase 

and ray quantities are not very different. This is because the first-order perturbations do not 

distinguish between the phase and ray quantities. Obviously, the perturbations are not 

applicable to media with strong anisotropy or anisotropy displaying triplications. The 

standard perturbation formulas also do not work near singularities (acoustic axes), where 

the Christoffel tensor becomes nearly degenerate. In this case, the perturbation formulas 

must be modified. 
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APPENDIX A: PERTURBATION OF THE SLOWNESS VECTOR 

 

The slowness vector is calculated using the first-order perturbations and taken at a 

stationary point on the slowness surface. The stationary point is a point for which energy 

velocity vector v is homogeneous and its direction is parallel to the ray. The approach is 

basically the same as presented in Vavryčuk (2008). The only difference is that, instead of 

an anisotropic elastic medium assumed in Vavryčuk (2008), an isotropic viscoelastic 

medium is now considered. The perturbation of the P-wave stationary slowness vector for 

the anisotropic viscoelastic reference medium reads (see Vavryčuk, 2008, his equation 38) 
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and ijδ  is the Kronecker delta. The superscript (1, 2 and 3) in brackets means the type of 

wave (P, S1 and S2). Quantity )1(0

ilH  is the P-wave metric tensor of the reference medium 

(see Vavryčuk, 2003). The formulas for the S1- and S2-wave stationary slowness vectors 

are analogous. Taking into account that in isotropic media 
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we obtain 

 

0000

0

)1(0)1( 1
kjliijklPmma nnnna

c
gv ∆=∆ , )2(0000

0

)2(0)1( 2
kjliijklPmma gnnna

c
gv ∆=∆ ,  

 

)3(0000

0

)3(0)1( 2
kjliijklPmma gnnna

c
gv ∆=∆ ,  

 

)2(0)2(000

0

)1(0)2( 1
kjliijklSmma ggnna

c
gv ∆=∆ , ( )00)2(0)2(0)2(00

0

)2(0)2( 1
kikijlijklSmma nngggna

c
gv −∆=∆  ,       (A7) 

 

)3(0)2(0)2(00

0

)3(0)2( 1
lkjiijklSmma gggna

c
gv ∆=∆ ,  

)3(0)3(000

0

)1(0)3( 1
kjliijklSmma ggnna

c
gv ∆=∆ , ( )00)3(0)3(0)3(00

0

)3(0)3( 1
kikijlijklSmma nngggna

c
gv −∆=∆  , 

 

)2(0)3(0)3(00

0

)2(0)3( 1
lkjiijklSmma gggna

c
gv ∆=∆  

 

and finally 

 

( )
( )00000

3

0

)1( 34
2

1
miimkjlijkl

P
m nnnnna

c
p −∆−=∆ δ  ,                (A8) 



 213 

 

( )
( )[ ])2(00000)2(0)2(00

3

0

)2( 22
2

1
mkimiimkjlijkl

S
m gnnnnggna

c
p −−∆−=∆ δ  ,             (A9) 

 

( )
( )[ ])3(00000)3(0)3(00

3

0

)3( 22
2

1
mkimiimkjlijklSm gnnnnggna

c
p −−∆−=∆ δ  .           (A10) 

 

 

It follows from formulas A8–A10 that if perturbations ijkla∆  are real valued, the 

perturbations of the slowness vector )1(p∆ , )2(p∆  and )3(p∆  are also real valued. This 

means that a weakly anisotropic medium with isotropic attenuation or a weakly anisotropic 

elastic medium generate a homogeneous stationary slowness vector.  

 For the perturbation of the slowness direction we readily obtain 
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APPENDIX B: PERTURBATION OF THE POLARIZATION VECTOR 

 

The perturbation of the P-wave eigenvector )1(g  of the Christoffel tensor jkΓ  is 

expressed as a sum of perturbations projected into the directions of the S-wave polarization 

vectors )2(g  and )3(g , 
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Taking into account formula A8 we can write 
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Consequently, from formulas B2 and B3 we obtain, 
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and finally  
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The perturbation of the S-wave polarization vectors )2(g  and )3(g  projected into the 

direction of the P-wave polarization vectors )1(0g  can be found in an analogous way. We 

obtain, 

 

( )
( )

( ) ( )
0)2(0000

2

0

2

0

00)2(0)2(0)2(00

2

0

)2( 11
mkjliijkl

SP
kikijlijkl

S
m ngnnna

cc
nngggna

c
g













∆
−

−−∆=∆  ,          (B8) 

 



 215 

( )
( )

( ) ( )
0)3(0000

2

0

2

0

00)3(0)3(0)3(00

2

0

)3( 11
mkjliijkl

SP
kikijlijkl

S
m ngnnna

cc
nngggna

c
g













∆
−

−−∆=∆  .           (B9) 

 

Since the isotropic reference medium is degenerate for the S-waves, the perturbation of 

polarization vectors )2(g  and )3(g  projected into the )3(0)2(0 gg −  plane is calculated in a 

more complicated way (see Farra, 2001; Vavryčuk, 2003, his Appendix A) and is not 

presented here. For transversely isotropic medium, these projections of the SH- and SV-

waves are identically zero. 

 

 

APPENDIX C: PERTURBATION OF THE POLARIZATION VECTOR, 

SLOWNESS VECTOR AND SLOWNESS DIRECTION IN TI MEDIA 

 

The perturbation formulas for stationary slowness vector p∆  (Appendix A), its 

direction n∆  (Appendix A), and polarization vector g∆  (Appendix B) simplify in TI 

media. Substituting ijkla∆  for TI and taking into account that the S1- and S2-waves become 

the SH- and SV-waves in TI, we obtain for the P-wave 
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where 
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and for the SV-wave 
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where 
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Using WAA parameters, the formulas for constants 1A  and 2A  are expressed in terms of 

perturbations ijkla∆  as 
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and in terms of WAA parameters as 
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