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Summary

In this paper, the main principles of seismic ray theory for isotropic and anisotropic
inhomogeneous media with curved structural interfaces are reviewed. Some extensions
and modifications of seismic ray theory are also briefly mentioned.

Introduction

The ray theory belongs to the methods most frequently used in seismology and seismic
exploration for forward and inverse modelling of high-frequency seismic body waves. In
smoothly varying layered media, it can provide useful approximate solutions of satisfactory
accuracy. Starting from an intuitive description of the propagation of seismic waves along
special trajectories - rays, it has developed into a highly sophisticated method.

The ray method has its advantages and disadvantages. The basic advantage is its
applicability to complex, isotropic and anisotropic, laterally varying layered media and
its numerical efficiency in such computations. It provides a physical insight into the
wave propagation process by separating the wavefield into individual elementary waves
and by allowing their identification. In addition, it makes possible to track the paths
in the medium along which energy propagates, an aspect very important in tomography.
The ray method also represents an important basis for other related, more sophisticated
methods, such as the Gaussian beam summation method, the paraxial ray method, the
Maslov method, etc. The ray method also has some limitations. As mentioned above,
it is approximate. It is applicable only to smooth media, in which the characteristic
dimensions of inhomogeneities are considerably larger than the prevailing wavelength of
the considered waves. The ray method can yield distorted results and may even fail in
some special regions called singular regions.

The seismic ray method owes a lot to optics and radiophysics. Although the tech-
niques used in different branches of physics are very similar, there are some substantial
differences. The ray method in seismology is usually applied to more complicated struc-
tures than in optics or radiophysics. There are also different numbers and types of waves
considered in different branches of physics.
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The first seismological applications date back to the end of the 19th century. Then,
only kinematics, specifically travel times, were used. Probably the first attempts to use
also dynamics (amplitudes and waveforms) were made by Sir H. Jeffreys. The ray series
solutions of elastodynamic equations were first suggested by Babich (1956) and Karal and
Keller (1959) for inhomogeneous isotropic media, and by Babich (1961) for inhomogeneous
anisotropic media.

The Earth’s interior is anisotropic or weakly anisotropic in some of its parts. Seismic
anisotropy and its effects on wave propagation play an important role in contemporary
seismology and seismic exploration. Consequently, it has also been necessary to develop
the ray theory for anisotropic media. It is important to emphasize that, for S waves, the
ray theory for weakly anisotropic media does not yield the ray theory for isotropic media
in the zero anisotropy limit. For this reason, we describe systematically the ray theory
for anisotropic media and also present corresponding formulae for isotropic media, and
explain the differences between both of them.

S waves require generally a special attention. Well understood phenomenon is propa-
gation of separate shear waves in anisotropic media. Less understood and an underesti-
mated phenomenon is shear-wave coupling, which occurs in weakly anisotropic media or in
vicinities of shear-wave singularities. In such regions, standard ray theories for anisotropic
as well as isotropic media do not work properly. Therefore, we also briefly describe the
coupling ray theory for S waves, which fills the gap between ray theories for isotropic and
anisotropic media.

We give here neither a detailed derivation of ray-theoretical expressions nor a relevant
systematic bibliography. This would extend the text considerably. We refer, however,
to several textbooks, in which the ray theory is treated in a considerably greater detail
(Červený et al., 1977; Kravtsov and Orlov, 1990; Červený, 2001; Chapman, 2004). The
reader may also find useful information in several review papers devoted to seismic ray
theory and its various aspects (Červený et al., 1988; Virieux, 1996; Chapman, 2002;
Červený et al., 2007). Examples of computations based on the ray theory can be found,
for example, in Červený et al. (1977), Gjøystdal et al.(2002). Here we refer only to papers,
in which the relevant methods and procedures were first proposed, and/or which give a
useful more recent treatment of the subject.

We use the following notation. We denote Cartesian coordinates xi and time t. The
dots above letters denote partial derivatives with respect to time (üi = ∂2ui/∂t2) and the
index following the comma in the subscript indicates the partial derivative with respect
to the relevant Cartesian coordinate (ui,j = ∂ui/∂xj). We consider high-frequency time-
harmonic seismic body waves, with the exponential factor exp(−iωt), where ω is fixed,
positive, real-valued circular frequency. The lower-case Roman indices take the values 1,
2, 3, the upper-case indices 1, 2. Hats over bold symbols indicate 3 × 3 matrices, bold
symbols without hats denote 2 × 2 matrices. The Einstein summation convention over
repeating Roman indices is used, with exception of indices in parentheses.
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Basic equations of the seismic ray method

For smoothly varying elastic media, the source-free equation of motion reads

τij,j = ρüi . (1)

Here τij(xn, t), and ui(xn, t) are Cartesian components of stress tensor and displacement
vector, respectively. In anisotropic media, the stress tensor τij and the infinitesimal strain
tensor eij = 1

2
(ui,j + uj,i) are related by Hooke’s law:

τij = cijklekl = cijkl∂uk/∂xl . (2)

cijkl(xn) is a tensor of elastic moduli (stiffness tensor), satisfying symmetry relations
cijkl = cjikl = cijlk = cklij. There are, at the most, 21 independent elastic moduli.
Inserting eq.(2) into eq.(1), we get the elastodynamic equation

(cijkluk,l),j = ρüi . (3)

In the seismic ray method, high-frequency seismic body waves propagating in smoothly
varying, isotropic or anisotropic, media are studied. The formal ray series solution of the
elastodynamic equation (3) for the displacement vector u(xn, t) is sought in the form of
an asymptotic series in inverse powers of circular frequency ω,

u(xn, t) = exp[−iω(t − T (xn))]

[

U(0)(xn) +
U(1)(xn)

(−iω)
+

U(2)(xn)

(−iω)2
+ ...

]

. (4)

Here T (xn) is the real-valued travel time, U(k), k = 0, 1, 2, ... are complex-valued vectorial
amplitude coefficients. Surfaces T (xi) = const. are called wavefronts. In perfectly elastic
media, functions T (xn), and U(k)(xn) are frequency independent. This is the great advan-
tage of the ray method that it allows one to work with frequency-independent quantities.

Also other forms of the ray series have been used in the seismic ray method. For
example, Chapman (2004) developed the seismic ray method using the ray series for
particle velocity and traction. Such a formal ray series has certain advantages with respect
to (4). Here, however, we consider systematically the traditional ray series (4) for the
displacement vector.

Inserting (4) into elastodynamic equation (3), we obtain a series in inverse powers of ω,
which equals zero. Consequently, the coefficients of the individual powers of ω must also
equal zero. This yields a system of equations called the basic recurrence system of equa-
tions of the ray method. This system can be used to determine the eikonal equations for
travel times T (xn) and, successively the equations for the amplitude coefficients U(0)(xn),
U(1)(xn), U(2)(xn), ... . The equations for U(k)(xn) yield, among others, transport equa-
tions. For a detailed derivation of the basic system of equations of the ray method see
Červený (2001, Sec. 5.7).

The vectorial amplitude coefficients U(k)(xn), k = 1, 2, ..., can be expressed as a sum of
the principal component and additional component. The principal component of U(k)(xn)
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is the projection of U(k)(xn) into the unit vector parallel to the zero-order amplitude coef-
ficient U(0)(xn), the additional component of U(k)(xn) is the remaining part of U(k)(xn).
In this way, the additional component of the zero-order amplitude coefficient U(0)(xn)
is zero. The complexity of the equations for higher-order amplitude coefficients U(k) in-
creases rapidly with increasing k. Moreover, the higher-order amplitude coefficients are
inaccurate and unstable, as they are very sensitive to fine details of the medium. The
instability of the amplitude coefficients increases with increasing k. For these reasons,
only the zero-order coefficient U(0)(xn), at the most, with the additional component of
U(1)(xn), has been used in seismological applications. In the following, we shall concen-
trate on the zero-order ray approximation only.

The zero-order approximation of the ray method reads:

u(xn, t) = U(xn) exp[−iω(t − T (xn))] . (5)

In (5), we have dropped the superscript (0) of U(xn). We call U(xn) the complex-valued
vectorial amplitude. In smooth, laterally varying media, containing smooth structural
interfaces, the zero-order approximation (5) of the ray method usually offers sufficiently
accurate results, particularly for travel time T (xn). However, if the medium under con-
sideration becomes more and more complex (less smooth), vectorial amplitude U(xn)
becomes less accurate. In structures exceeding a certain degree of complexity, the ray
method may yield inaccurate results or even fail.

The first equation of the basic system of equations of the ray method reads:

(Γik − δik)Uk = 0 , i = 1, 2, 3 . (6)

Here Γ is the 3 × 3 generalized Christoffel matrix with elements given by the relation:

Γik = aijklpjpl . (7)

In (7), pi are the Cartesian components of the slowness vector p,

pi = ∂T/∂xi (8)

and aijkl = cijkl/ρ are density-normalized elastic moduli. Note that the classical Christof-
fel matrix, with elements aijklnjnl, contains components of the real-valued unit vector n

(perpendicular to the wavefront) instead of p. For this reason, we call (7) the “gener-
alized” Christoffel matrix. The relation between pi and ni is pi = ni/C, where C is the
phase velocity.

The generalized 3 × 3 Christoffel matrix in solid media is symmetric (Γik = Γki),
positive definite (Γikaiak > 0, where ai are components of any non-vanishing real-valued
vector) and homogeneous function of the second degree in pi (Γik(xn, apj) = a2Γik(xn, pj)
for any non-vanishing constant a). It has three real-valued positive eigenvalues Gm(xn, pj),
and three corresponding real-valued unit eigenvectors g(m)(xn, pj), m = 1, 2, 3. Gm and
g(m) are solutions of the eigenvalue equation

(Γik − δikGm)g
(m)
k = 0 , i = 1, 2, 3 . (9)
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Eigenvectors g(1), g(2), g(3) are mutually perpendicular. Eigenvalue Gm and the relevant
eigenvector g(m) are mutually related as follows:

Gm = Γikg
(m)
i g

(m)
k = aijklpjplg

(m)
i g

(m)
k . (10)

For transformation from anisotropic to isotropic media, it is sufficient to specify elastic
moduli cijkl(xn) in terms of Lamé’s elastic moduli λ(xn) and µ(xn), describing isotropic
media, as follows:

cijkl = λδijδkl + µ(δikδjl + δilδjk) . (11)

The element of the generalized Christoffel matrix is then given by the relation:

Γik =
λ + µ

ρ
pipk +

µ

ρ
δikpnpn . (12)

In isotropic media, the expressions for eigenvalues and eigenvectors of the generalized
Christoffel matrix can be determined analytically:

G1 = G2 = β2pkpk , G3 = α2pkpk . (13)

Here
α2 = (λ + 2µ)/ρ , β2 = µ/ρ . (14)

The eigenvector relevant to the eigenvalue G3 equals n, the unit vector perpendicular to
the wavefront. The eigenvectors relevant to coinciding eigenvalues G1 and G2 are mutu-
ally perpendicular unit vectors situated arbitrarily in the plane perpendicular to n.

Eikonal equation. Polarization vector

The comparison of the basic equation of the ray method (6) with the eigenvalue equa-
tion (9) for the 3× 3 generalized Christoffel matrix shows that equation (6) is satisfied, if
the eigenvalue Gm of the generalized Christoffel matrix satisfies the relation

Gm(xi, pj) = 1 , (15)

and if the complex-valued vectorial amplitude U of the wave under consideration is related
to eigenvector g(m) as follows:

U = Ag(m) . (16)

Equation (15) is the important eikonal equation. It is a nonlinear, first-order partial dif-
ferential equation for travel time T (xn). Equation (16) shows that displacement vector
U is parallel to the appropriate eigenvector g(m). For this reason, we call g(m) the polar-
ization vector. Symbol A(xn) denotes the complex-valued, frequency-independent, scalar
amplitude.

Taking into account that Gm is a homogeneous function of the second degree in pi,
where p = C−1n, we obtain Gm(xi, pj) = C−2Gm(xi, nj). This, (15) and (10) yield

C2(xi, nj) = Gm(xi, nj) = aijklnjnlg
(m)
i g

(m)
k . (17)

57



Phase velocity C is the velocity of the wavefront in direction n. The phase-velocity vector
C = C(xi, nj)n has the direction of n, i.e. it is perpendicular to the wavefront. It follows
from (17) that the squares of phase velocity C are eigenvalues Gm(xi, nj) of the classical
Christoffel matrix with elements aijklnjnl.

Generally, eigenvalues Gm, m = 1, 2, 3, of the generalized Christoffel matrix are mu-
tually different. They correspond to three high-frequency body waves propagating in
inhomogeneous anisotropic media. We assingn G1 and G2 to S1 and S2 waves and G3

to P wave. If the eigenvalues are different, their polarization vectors can be determined
uniquely.

If two eigenvalues coincide, we speak of the degenerate case. The corresponding eigen-
vectors can then be chosen as mutually perpendicular vectors situated arbitrarily in the
plane perpendicular to the third eigenvector. Eigenvalues Gm may coincide locally, along
certain lines or at certain points, which correspond to the so-called S-wave singular di-
rections, or may be close to one another globally in a vicinity of singular directions or
in weakly anisotropic media. The approximate but unique determination of polarization
vectors in the latter situations is possible using perturbation approach (Jech and Pšenč́ık,
1989).

In isotropic media, the S-wave eigenvalues G1 and G2 coincide globally, see (13). Con-
sequently, in isotropic media, the S waves are controlled by a single eikonal equation and
we have thus only two different eikonal equations corresponding to P and S waves. As
the equations for the eigenvalues in isotropic media can be determined analytically, we
can express the eikonal equations for P and S waves explicitly:

α2pkpk = 1 for P waves , (18)

β2pkpk = 1 for S waves . (19)

In isotropic media, the generally complex-valued amplitude vector U can be expressed
in the simple form (16) only for P waves. In this case the polarization vector g(3) = n, i.e.
it is perpendicular to the wavefront. For S waves, U must be considered in the following
form:

U = Bg(1) + Cg(2) . (20)

Here g(1) and g(2) are two mutually perpendicular unit vectors in the plane tangent to
the wavefront, i.e. perpendicular to the vector n. The computation of g(1) and g(2) along
the ray is explained later (see (37)). Symbols B(xn) and C(xn) are the corresponding,
generally complex-valued scalar amplitudes.

In the seismic ray method, it is common to express the eikonal equation (15) in Hamil-
tonian form. Hamiltonian H(xi, pj) may be introduced in various ways. We shall consider
the Hamiltonian, which is a homogeneous function of the second degree in pi. For inho-
mogeneous anisotropic media, we can introduce the Hamiltonian expressed in terms of
Gm(xi, pj), see eq.(10):

H(xi, pj) =
1

2
Gm(xi, pj) =

1

2
aijklnjnlg

(m)
i g

(m)
k . (21)
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The eikonal equation (15) then reads:

H(xi, pj) =
1

2
. (22)

It holds for anisotropic as well as isotropic media.

¿From (13) and (21), we get for isotropic inhomogeneous media:

H(xi, pj) = 1
2
V 2(xi)pkpk , (23)

where V = α for P waves and V = β for S waves.

Ray tracing and travel-time computation

The eikonal equation in Hamiltonian form (22), with pj = ∂T/∂xj , is a non-linear
partial differential equation of the first order for travel time T (xi). It can be solved by
the method of characteristics. The characteristics of eikonal equation (22) are spatial
trajectories, along which (22) is satisfied, and along which travel time T can be computed
by quadratures. The characteristics of the eikonal equation represent rays.

The characteristics of the eikonal equation expressed in general Hamiltonian form are
described by a system of generally non-linear, ordinary differential equations of the first
order:

dxi

du
=

∂H

∂pi
,

dpi

du
= −

∂H

∂xi
,

dT

du
= pk

∂H

∂pk
. (24)

Here u is a real-valued parameter along the ray. The relation between parameter u and
the travel time along the ray depends on the form of the Hamiltonian used, see the
last equation in (24). For Hamiltonians, which are homogeneous functions of the second
degree in pi, the Euler equation for homogeneous functions yields pk∂H/∂pk = 2H. If we
consider Hamiltonian (21), we get dT/du = 1 from (24). For travel time T along the ray,
denoted τ = T , eqs (24) simplify to:

dxi

dτ
=

∂H

∂pi
,

dpi

dτ
= −

∂H

∂xi
. (25)

This system of equations is usually called the ray tracing system. Solution of the ray
tracing system (25) with appropriate initial conditions yields xi(τ), the coordinates of
points along the ray trajectory, and pi(τ), the Cartesian components of the slowness
vectors along the ray. The travel time T along the ray is obtained automatically, T = τ .

Inserting (21) in (25), we obtain the ray tracing system for m-th wave in inhomoge-
neous anisotropic media:

dxi

dτ
= aijklplg

(m)
j g

(m)
k ,

dpi

dτ
= −

1

2

∂ajkln

∂xi
pkpng

(m)
j g

(m)
l . (26)

In the derivation of the first equation of (26) for ∂H/∂pi, we took into account that

Γik∂(g
(m)
i g

(m)
k )/∂pn = 0. Ray-tracing equations (26) represent an alternative version of

ray-tracing equations derived by Červený (1972).
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The initial conditions for the ray tracing system (26) are xi = x0i, pi = p0i, where x0i

and p0i satisfy the eikonal equation (22), corresponding to the wave we wish to compute
(P, S1 or S2). Components p0i of the initial slowness vector p0 can be then expressed as
p0i = n0i/C(x0i), where C is the relevant phase velocity. The eikonal equation (22) is then
satisfied along the whole ray.

In inhomogeneous isotropic media, the ray tracing system (26) reduces to

dxi

dτ
= V 2pi ,

dpi

dτ
= −

∂lnV

∂xi

. (27)

The initial conditions for the ray tracing system (27) are again xi = x0i, pi = p0i, where
p0i = n0i/V (x0i). Here V = α for P waves, and V = β for S waves.

As τ is the travel time along the ray, dxi/dτ represent the Cartesian components Ui

of the ray-velocity vector U of the m-th wave:

Ui = aijklplg
(m)
j g

(m)
k . (28)

In non-dissipative anisotropic media, the ray-velocity vector U is also called the group
velocity vector or the energy velocity vector.

In anisotropic media, the ray-velocity vector U must be strictly distinguished from
the phase velocity vector C. In inhomogeneous anisotropic media, the ray-velocity and
phase-velocity vectors U and C are generally different, both in size and direction. Vector
U is always greater than C. The two vectors are equal (in size and direction) only in
special directions, called longitudinal directions.

In inhomogeneous isotropic media, eq.(28) for the ray-velocity vector yields U = V 2p.
For the phase-velocity vector, using (17), we get C = V 2p. In both cases, V = α for
P waves, and V = β for S waves. Thus, the ray-velocity and phase-velocity vectors are
identical in isotropic media.

Ray tracing systems (26) and (27) can be simply solved if the initial values x0i and p0i

are specified at some point S of the ray. We then speak of initial-value ray tracing. The
standard numerical procedures of solving the system of ordinary differential equations
of the first order with specified initial conditions can then be used (Runge-Kutta, etc.).
A very important role in seismology is played by boundary-value ray tracing, in which
we seek the ray, satisfying some boundary conditions. The typical boundary value prob-
lem is two-point ray tracing, in which we seek the ray connecting two specified points.
Mostly, the controlled initial-value ray tracing (controlled shooting method) is used to
solve this problem (Červený et al., 2007). Boundary value ray tracing is considerably
more complicated than initial-value ray tracing.

There are four important differences between initial value ray tracing in isotropic
and anisotropic media. First: In anisotropic media, we deal with three waves, P, S1
and S2, in isotropic media with two waves, P and S, only. Second: In inhomogeneous
anisotropic media, ray-tracing system (26) is the same for all three waves. The wave under
consideration is specified by the initial conditions, which must satisfy the eikonal equation
of the considered wave. In isotropic inhomogeneous media, the ray tracing systems are
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explicit for P and S waves, see (27) with V = α and V = β, respectively. Third: In
isotropic media, the initial direction of the slowness vector specifies directly the initial
direction of the ray (as the tangent to the ray and the slowness vector have the same
directions). In anisotropic media, the direction of the ray is, generally, different from the
direction of the slowness vector. Nevertheless, we can use p0i as the initial values for the
ray tracing system. The ray-velocity vector U can be simply calculated from slowness
vector p at any point of the ray, including the initial point. Fourth: Ray tracing for P and
S waves is regular everywhere in inhomogeneous isotropic media. In anisotropic media,
problems arise with tracing S-wave rays in vicinities of singular directions, or if anisotropy
is weak.

The problem of ray tracing and travel-time computation in inhomogeneous media has
been broadly discussed in the seismological literature; particularly for inhomogeneous
isotropic media. Many ray tracing systems and many suitable numerical procedures for
performing ray tracing have been proposed. For 1-D isotropic media (vertically inho-
mogeneous, radially symmetric), the ray tracing systems may be simplified so that they
reduce to simple quadratures, well-known from classical seismological textbooks (Aki and
Richards, 1980). Standard programs for ray tracing and travel-time computations in lat-
erally varying isotropic and anisotropic structures are available, see, for example, program
packages SEIS (2D isotropic models), CRT and ANRAY (3D isotropic/anisotropic mod-
els) at http://sw3d.cz/. Programs for anisotropic media have, however, problems with
S-wave computations when anisotropy is weak and in the vicinities of shear-wave singu-
larities. In such cases, the standard ray theory should be replaced by the coupling ray
theory. Numerical procedures based on the coupling ray theory are, unfortunately, rare.

Ray tracing may also serve as a basis for the so-called wavefront construction method
(Gjøystdal et al., 2002). In this case, for a selected wave, wavefronts with travel times
T = T0 + k∆T are computed successively from the previous wavefronts with travel times
T = T0 + (k − 1)∆T . The wavefront construction method has found broad applications
in seismic exploration.

Let us consider a two-parametric system of rays, call it the ray field, and specify the
individual rays in the ray field by ray parameters γ1, γ2. Ray parameters γ1, γ2 may repre-
sent, e.g., the take-off angles at a point source, or the curvilinear Gaussian coordinates of
initial ray points along the initial surface. The family of rays with ray parameters within
the limit [γ1, γ1 +dγ1], [γ2, γ2 +dγ2], is called the ray tube. We further introduce ray coor-
dinates γ1, γ2, γ3 in such a way that γ1, γ2 are ray parameters, and γ3 is some monotonic
parameter along a ray (arclength s, travel time τ , etc.). Here we consider γ3 = τ , but our
results may be simply modified for any other monotonic parameter γ3. We further intro-
duce the 3× 3 transformation matrix Q̂ from ray to Cartesian coordinates with elements
Qij = ∂xi/∂γj. The Jacobian of transformation from ray to Cartesian coordinates, det Q̂,
can be expressed as follows:

det Q̂(τ) = (∂x(τ)/∂γ1 × ∂x(τ)/∂γ2)
T
U(τ) . (29)

The vectorial product in (29) has the direction of the normal to the wavefront, specified
by n = Cp. As p(τ) · U(τ) = 1, see (28), (10) and (15), we also obtain

det Q̂(τ) = ±C(τ)|(∂x(τ)/∂γ1 × ∂x(τ)/∂γ2)| . (30)
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Thus, Jacobian det Q̂(τ) measures the cross-sectional area of the ray tube, i.e. it mea-
sures the density of rays, and the expansion or contraction of the ray tube. For this
reason, the 3 × 3 matrix Q̂(τ) is also often called the geometrical spreading matrix and
J(τ) = (U−1(τ) det Q̂(τ))1/2 geometrical spreading. It plays an important role in the com-
putation of the ray-theory amplitudes.

Transport equation. Computation of ray-theory amplitudes

The second equation of the basic system of equations of the ray method yields the
transport equation for the scalar ray-theory amplitude A(xi). The transport equation is
a partial differential equation of the first order. It can be expressed in several forms. One
of them reads

∇ · (ρA2
U) = 0 . (31)

It is common to solve the transport equation along the ray. ∇ · U can then be expressed
as follows:

∇ · U = d[ln(det Q̂)]/dτ (32)

(Červený, 2001, eq.(3.10.24)). Inserting (32) into (31) yields the transport equation in
the form of the first-order ordinary differential equation along the ray:

d
(

ρ(τ)A2(τ) det Q̂(τ)
)

/dτ = 0 . (33)

This yields a simple form of the continuation relation for A(τ) along the ray:

A(τ) =
[

ρ(τ0) det Q̂(τ0)

ρ(τ) det Q̂(τ)

]1/2

A(τ0) . (34)

We obtain another suitable continuation relation for amplitudes along the ray by
introducing a special local Cartesian coordinate system y1, y2, y3, varying along the ray.
We call it the wavefront orthonormal coordinate system. At any point of the ray specified
by γ3 = τ , the y3 axis is parallel to slowness vector p, and the y1, y2 axes are confined to the
plane tangential to the wavefront at γ3 = τ . Axes y1 and y2 are mutually perpendicular. If
we denote the 3×3 transformation matrix from ray coordinates to wavefront orthonormal
coordinates by Q̂(y), then

det Q̂(τ) = det Q̂(y)(τ) = C(τ) detQ(y)(τ) . (35)

Here C(τ) is the phase velocity, and Q(y)(τ) is the 2 × 2 upper-left submatrix of Q̂(y)(τ).
Using (35) in (34), we obtain the continuation relation in an alternative form:

A(τ) =
[

ρ(τ0)C(τ0) detQ(y)(τ0)

ρ(τ)C(τ) det Q(y)(τ)

]1/2

A(τ0) . (36)

An important property of continuation relation (36) is that detQ(y)(τ) is uniquely deter-
mined by coordinates y1 and y2, confined to the plane tangential to the wavefront at τ .
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Thus, (36) remains valid for any coordinate systems qi (even nonorthogonal), in which the
coordinate axes q1 and q2 are confined to the plane tangential to the wavefront, but the axis
q3 is taken in a different way than y3, for example along the ray. This is, e.g., the case of
the well-known ray-centred coordinate system q1, q2, q3, in which detQ(y)(τ) = detQ(q)(τ).

Transport equations for P and S waves in isotropic media may be also transformed into
the form (31). The transformation is straightforward for P waves. Transport equations
for scalar amplitudes B and C in (20) are generally coupled. They decouple only if the
unit vectors g(1) and g(2) in (20) satisfy the following relation along the ray:

dg(M)/dτ = (g(M) · ∇β)n , M = 1, 2 . (37)

In the terminology of the Riemanian geometry, vector g(M) satisfying (37) is transported
parallelly along the ray. If g(1) and g(2) are chosen as mutually perpendicular and per-
pendicular to n at one point of the ray, equation (37) guarantees that they have these
properties at any point of the ray. Consequently, g(1) and g(2) are always perpendicular
to the ray and do not rotate around it as the S wave progresses. As g(1), g(2) and n are
always orthonormal, and n is known at any point of the ray, it is not necessary to use (37)
to compute both vectors g(M). One of them can be determined from the orthonormality
condition.

Quantity det Q̂(τ) in eq.(34) may be zero at some point τ = τC . This means that the
cross-sectional area of the ray tube shrinks to zero at τ = τC . The relevant point τ = τC

of the ray is called the caustic point. At the caustic point, the ray solution is singular and
yields an infinite amplitude there. In passing through the caustic point τC along the ray,
the argument of [det Q̂(τ)]1/2 may change by ±π/2 or ±π (Kravtsov and Orlov, 1999). It
is common to introduce the phase shift due to caustic TC(τ, τ0) using the relation

[

det Q̂(τ0)

det Q̂(τ)

]1/2

=

∣

∣

∣

∣

det Q̂(τ0)

det Q̂(τ)

∣

∣

∣

∣

1/2

exp[iTC(τ, τ0)] (38)

if caustic point τC is situated between τ0 and τ . The phase shift due to the caustic is
cumulative. If the ray passes through several caustic points along the ray between τ0 and
τ , the phase shift due to caustics is the sum of the individual phase shifts. It is often
expressed in the form TC(τ, τ0) = −1

2
πk(τ, τ0), where k(τ, τ0) is an integer, called the

KMAH index (to acknowledge the work by Keller, Maslov, Arnold and Hörmander in this
field). The continuation relation for ray-theory amplitudes (34) can then be modified to
read:

A(τ) =
(

ρ(τ0)| det Q̂(τ0)|

ρ(τ)| det Q̂(τ)|

)1/2

exp[iTC(τ, τ0)]A(τ0) . (39)

Equation (36) can be transformed to the analogous form as (39) as the zeros of detQ(y)(τ)
are situated at the same points τC on the ray as the zeros of det Q̂(τ).

The KMAH index can be calculated along the ray as a byproduct of dynamic ray
tracing. For detailed derivations and discussion see Bakker (1998) and Klimeš (2010).

There are some differences between the KMAH indices along the rays in isotropic and
anisotropic media. In isotropic media, the KMAH index always increases when the ray
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passes through a new caustic point, either by one or two. In anisotropic media, however,
it may also decrease by one or two at some caustic points. This happens only for S waves
as a consequence of the concave form of the slowness surface of the corresponding S wave.

Dynamic ray tracing. Paraxial approximations

As we can see in (34), the computation of the ray-theory amplitudes requires knowledge
of det Q̂, where Q̂(τ) characterizes the properties of the ray field in the vicinity of the
ray under consideration. Q̂(τ) can be computed by the procedure called dynamic (or
paraxial) ray tracing. In addition to Q̂(τ) with elements Qij(τ), we also have to introduce

a new 3 × 3 matrix P̂(τ) with elements Pij(τ) = ∂pi/∂γj . The equation for Pij must
be included to obtain the linear dynamic ray tracing system. Differentiating ray tracing
system (25) with respect to γj, we can easily obtain a system of linear ordinary differential
equations of the first order in Qij and Pij ,

dQij

dτ
=

∂2H

∂pi∂xk
Qkj +

∂2H

∂pi∂pk
Pkj ,

dPij

dτ
= −

∂2H

∂xi∂xk
Qkj −

∂2H

∂xi∂pk
Pkj . (40)

This system is usually called the dynamic ray tracing system, and the relevant procedure
dynamic ray tracing (Červený, 1972). It can be solved along a given ray, or together with
it.

The dynamic ray tracing system (40) may be expressed in various forms. Instead of
Cartesian coordinates xi, we can use the wavefront orthonormal coordinates yi, or the
ray-centred coordinates qi. Then, instead of the 3 × 3 matrices Q̂ and P̂, it is sufficient
to seek the 2 × 2 matrices Q(y), P(y) or Q(q), P(q). This reduces the number of DRT
equations, but complicates their right-hand sides (Červený 2001; Sec. 4.2).

As the dynamic ray tracing system (40) is of the first order and linear, we can com-
pute its fundamental matrix consisting of six linearly independent solutions. The 6 × 6
fundamental matrix of (40) specified by the 6 × 6 identity matrix at an arbitrary point
τ = τ0 of the ray is called the ray propagator matrix and denoted by Π(τ, τ0).

The 6 × 6 ray propagator matrix Π(τ, τ0) is symplectic:

ΠT (τ, τ0)JΠ(τ, τ0) = J , with J =

(

0 I

−I 0

)

. (41)

If we know the matrices Q̂(τ0), P̂(τ0), we can compute Q̂(τ), P̂(τ) at any point τ of the
ray by simple matrix multiplication

(

Q̂(τ)

P̂(τ)

)

= Π(τ, τ0)

(

Q̂(τ0)

P̂(τ0)

)

. (42)

The ray propagator matrix Π(τ, τ0) satisfies the chain rule, Π(τ, τ0) = Π(τ, τ1)Π(τ1, τ0),
where point τ1 is situated arbitrarily on the ray. It is simple to compute the inverse of
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Π(τ, τ0): Π−1(τ, τ0) = Π(τ0, τ). We can express Π(τ, τ0) in the following way:

Π(τ, τ0) =

(

Q̂1(τ, τ0) Q̂2(τ, τ0)

P̂1(τ, τ0) P̂2(τ, τ0)

)

, (43)

where Q̂1(τ, τ0), Q̂2(τ, τ0), P̂1(τ, τ0) and P̂2(τ, τ0) are 3 × 3 matrices.

Eq.(42) can be used to obtain a very important quantity - the 3 × 3 matrix M̂(τ)
of second derivatives of the travel-time field with respect to Cartesian coordinates, with
elements Mij = ∂2T/∂xi∂xj :

M̂(τ) = P̂(τ)(Q̂(τ))−1 . (44)

Matrix M̂(τ) plays an important role in the computation of travel time not only along
the ray, but also in its ”quadratic” paraxial vicinity:

T (x) = T (xΩ) + (x − xΩ)Tp(τ) +
1

2
(x − xΩ)TM̂(τ)(x − xΩ) . (45)

In (45), x denotes an arbitrary point in the paraxial vicinity of the ray, close to point
xΩ = xΩ(τ) on the ray, slowness vector p(τ) and the matrix M̂(τ) are given at xΩ.
The possibility of computing the travel time in the paraxial vicinity of the ray has many
important applications.

The properties of the 6 × 6 ray propagator matrix Π(τ, τ0) described above remain
valid even for the 4 × 4 ray propagator matrices Π(y)(τ, τ0) or Π(q)(τ, τ0) expressed in
wavefront orthonormal coordinates yi or ray-centred coordinates qi. The ray propagator
matrices Π(y)(τ, τ0) and Π(q)(τ, τ0) are identical, therefore, the 2 × 2 matrices Q1(τ, τ0),
Q2(τ, τ0), P1(τ, τ0) and P2(τ, τ0) are the same. Matrices Q1(τ, τ0), P1(τ, τ0) correspond
to the plane-wavefront initial conditions at τ0, and matrices Q2(τ, τ0), P2(τ, τ0) to the
point-source initial conditions at τ0. The 2 × 2 matrix Q2(τ, τ0) plays an important role
in computing the ray-theory Green function. The quantity

L(τ, τ0) = | detQ2(τ, τ0)|
1/2 (46)

is called the relative geometrical spreading. It corresponds to a point source.

As in (44), we can define the 2× 2 matrix of the second derivatives of the travel-time
field with respect to y1, y2 or q1, q2 as follows:

M(τ) = P(τ)(Q(τ))−1 . (47)

We will now briefly summarize several useful ray-theory quantities and applications,
which rely fully or partly on dynamic ray tracing. For derivations and more detailed expla-
nations, see Červený (2001, Chap.4), where also many other applications and references
can be found: 1) Paraxial travel times. 2) Paraxial slowness vectors. 3) Paraxial rays.
4) Curvature of the wavefront. 5) Matrix of geometrical spreading Q̂ and the relevant
matrix P̂. 6) Continuation relations for ray-theory amplitudes along the ray. 7) Relative
geometrical spreading. 8) Phase shift due to caustics. 9) Ray-theory elastodynamic Green
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function. 10) Higher-order spatial derivatives of the travel-time field. 11) Fresnel volumes
and Fresnel zones. 12) Surface-to-surface propagator matrix. 13) Boundary-value prob-
lems in four parametric system of paraxial rays, including two-point ray tracing. 14)
Factorization of the geometrical spreading.

Dynamic ray tracing is also needed in the investigation of ray chaos and in computa-
tions of Lyapunov exponents, in the ray-perturbation methods and in modifications and
extensions of the ray method such as Maslov method, Gaussian beam and Gaussian packet
summation methods, in Kirchhoff-Helmholtz method and in various diffraction methods.

Coupling ray theory for S waves

In inhomogeneous weakly anisotropic media, the standard ray theory described above,
yields distorted results since it is unable to describe the coupling of S1 and S2 waves
propagating with approximately equal phase velocities. This problem can be removed by
using the coupling ray theory. In the coupling ray theory, the amplitudes of the two S
waves can be computed along a trajectory called the common ray (Bakker, 2002; Klimeš,
2006). The closer the common ray approximates actual S-wave rays, the more accurate
results the coupling ray theory yields. The common rays can be constructed in a reference
isotropic medium or in the actual anisotropic medium. A convenient option is to compute
common rays using ray-tracing equations (25) with Hamiltonian given as

H(xi, pj) =
1

4
[G1(xi, pj) + G2(xi, pj)] . (48)

In (48), G1 and G2 are eigenvalues of the Christoffel matrix (7), corresponding to S1 and
S2 waves.

The coupling ray theory solution is sought in the form (Coates and Chapman, 1990;
Bulant and Klimeš, 2002):

u(τ, t) = A(τ)[r1(τ)g(1)(τ) exp(iωτ1) + r2(τ)g(2)(τ) exp(iωτ2)] exp(−iωt) . (49)

Here, A(τ) is the scalar amplitude (34) or (36) calculated along the common ray. The
symbols g(1) and g(2) denote the eigenvectors of the Christoffel matrix Γ calculated along
the common ray. The eigenvectors g(1) and g(2) correspond to S waves. The travel times
τ1 and τ2 are travel times corresponding to the above vectors g(1) and g(2). They can be
obtained by quadratures along the common ray:

dτ1/dτ = [Γikg
(1)
i g

(1)
k ]−1/2 , dτ2/dτ = [Γikg

(2)
i g

(2)
k ]−1/2 . (50)

The amplitude factors r1 and r2 are solutions of two coupled ordinary differential equations
(Coates and Chapman, 1990):
(

dr1/dτ
dr2/dτ

)

=
dϕ

dτ

(

0 exp(iω[τ2(τ) − τ1(τ)])
− exp(iω[τ1(τ) − τ2(τ)]) 0

)(

r1

r2

)

, (51)

where the angular velocity dϕ/dτ of the rotation of the eigenvectors g(1) and g(2) is given
by

dϕ

dτ
= g(2) dg

(1)

dτ
= −g(1) dg

(2)

dτ
. (52)
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For detailed description of the algorithm, see Bulant and Klimeš (2002).

There are many possible modifications and approximations of the coupling ray theory.
In some of them, the amplitude vector U of coupled S waves is sought along the common
ray in the form (20), in which the amplitude factors B and C can be expressed as

B(τ) = A(τ)B(τ) C(τ) = A(τ)C(τ) . (53)

In (53), A(τ) is again the scalar ray amplitude (34) or (36) calculated along the common
S-wave ray. There are many ways how to evaluate factors B and C (Kravtsov, 1968;
Pšenč́ık, 1998; Červený et al., 2007). Here we present a combination of coupling ray
theory and of the first-order ray tracing (Farra and Pšenč́ık, 2010, see also section on ray
perturbation methods). In the approximation of Farra and Pšenč́ık (2010), the common
ray is obtained as the first-order ray. The vectors g(K), appearing in (20), specify the
first-order approximation of the S-wave polarization plane. The factors B and C in (53)
are then obtained as a solution of two coupled ordinary differential equations, which result
from the corresponding transport equations:

(

dB/dτ
dC/dτ

)

= −
iω

2

(

M11 − 1 M12

M12 M22 − 1

)(

B
C

)

. (54)

Evaluation of the matrix M with elements MIJ is simple, see eqs (20) and (7) of Farra
and Pšenč́ık (2010).

The resulting equations reduce to standard ray-theory equations in inhomogeneous
isotropic media, they describe properly S-wave coupling in inhomogeneous weakly anisotro-
pic media and even yield separate S waves when anisotropy is stronger. Common S-wave
rays are regular everywhere. They do not suffer from problems well known from tracing
rays of individual S waves in anisotropic media and are suitable for investigating shear-
wave splitting.

Effects of structural interfaces

Assume that the ray is incident on a curved structural interface. If we wish to continue
the ray computations for the reflected, transmitted, monotypic or converted waves, we
have to use relevant transformation relations for the ray tracing system, dynamic ray
tracing system and for the ray theory amplitudes.

The transformation relations for ray tracing and dynamic ray tracing systems at in-
terfaces are well known (Červený, 2001). For the sake of brevity, we do not present them
here. We shall, however, discuss the transformation of amplitudes. In the zero-order
ray approximation, the transformation of ray-theory amplitudes across an interface is de-
scribed by plane-wave reflection/transmission coefficients. Consequently, amplitudes of
generated waves do not depend on the curvature of the wavefront of the incident wave
and the curvature of the interface at the point of incidence Q. Neither do they depend
on the gradients of the density and of the density-normalized elastic moduli at Q, on
both sides of the interface. They depend only on the local values of the density and
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density-normalized elastic moduli at Q (on both sides of the interface) and on the angle
of incidence.

Various types of R/T coefficients may be used. The displacement R/T coefficients
are used most frequently (Aki and Richards, 1980; Červený et al., 1977 for isotropic
media; Fedorov, 1968 for anisotropic media). Very useful are the energy R/T coefficients,
as they are reciprocal. The relation between the energy R/T coefficient R(Q) and the
displacement R/T coefficient R(Q) is as follows:

R(Q) = R(Q)

[

ρ(Q̃)Un(Q̃)

ρ(Q)Un(Q)

]1/2

(55)

(Červený 2001; Sec.5.4.3). Here Q is the point of incidence, and Q̃ the relevant initial point
of the R/T wave, both points being, of course, identical. Un is the normal component
(perpendicular to the interface) of the ray-velocity vector. We further introduce the
complete energy R/T coefficients RC along the ray using the relation

RC =
N
∏

k=1

R(Qk) . (56)

The complete energy R/T coefficient RC corresponds to the ray which interacts N -times
with interfaces (at points of incidence Q1, Q2, ...QN ) between the initial and end point of
the ray.

Generalization of the continuation relation (36) for the ray-theory amplitudes along
the ray situated in a laterally varying anisotropic medium containing curved interfaces
then reads:

A(τ) =
(

ρ(τ0)C(τ0)| detQ(y)(τ0)|

ρ(τ)C(τ)| det Q(y)(τ)|

)1/2

RC exp[iTC(τ, τ0)]A(τ0) . (57)

In seismic prospecting, in the technique called amplitude variation with offset (AVO),
it is common to work with the so-called weak-contrast R/T coefficients. They are lin-
earized versions of exact R/T displacement coefficients. Linearization is mostly made
with respect to the contrasts of the density and elastic moduli across the interface. There
is a great variety of linearized formulae depending on the type of media surrounding the
interface (isotropic, anisotropic), strength of anisotropy (weak, strong), etc. The coeffi-
cients yield reasonable approximation in the vicinity of normal incidence. For increasing
incidence angles, their accuracy decreases. The advantage of the weak-contrast coefficients
is their simplicity and the possibility of expressing them in explicit form. The effects of
the individual medium parameters on the coefficients can than be easily evaluated.

Ray-theory elastodynamic Green function

The elastodynamic Green function Gin(R, t, S, t0) represents the i-th Cartesian com-
ponent of the far-field displacement vector at location R and time t, due to a single-force
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point source situated at location S and oriented along the n-th Cartesian axis, with the
time dependence δ(t− t0). We introduce quite analogously the ray-theory elastodynamic
Green function, with only two differences. The first difference is that ray-theory Green
function is defined as a sum of elementary ray-theory Green functions computed along
rays of selected elementary waves (direct, multiply reflected/transmitted, etc.). The sec-
ond difference is that the elementary ray-theory Green functions are not exact, but only
zero-order ray approximations.

The Fourier transform Gin(R, S, ω) of the elementary ray-theory elastodynamic Green
function Gin(R, t, S, t0) with respect to t − t0 then reads

Gin(R, S, ω) =
gn(S)gi(R) exp[iTG(R, S) − iωτ(R, S)]

4π[ρ(S)ρ(R)C(S)C(R)]1/2L(R, S)
RC . (58)

Here L(R, S) is the relative geometrical spreading, given by (46), gi(R) and gn(S) are
the eigenvectors of the generalized Christoffel matrix at R and S (polarization vectors
corresponding to the considered elementary wave), τ(R, S) is the travel time along the
ray from S to R, RC the complete energy R/T coefficient resulting from interactions of
the ray under consideration with interfaces between S and R, and TG(R, S) the complete
phase shift due to caustics along the ray between S and R. The relevant KMAH index
in anisotropic media may also include a contribution at a point source S (if the slowness
surface of the considered wave is concave at S). In isotropic media, this contribution is
always zero.

The complete energy R/T coefficient RC , the relative geometrical spreading L(R, S)
and the complete phase shift due to caustics are always reciprocal. Consequently, the
elementary ray-theory elastodynamic Green function satisfies a very important property
of reciprocity:

Gin(R, S, ω) = Gni(S, R, ω) . (59)

This relation is valid for any elementary seismic body wave generated by a point source.

For elementary ray-theory Green functions in inhomogeneous weakly anisotropic me-
dia see Pšenč́ık (1998).

Chaotic rays. Lyapunov exponents

In homogeneous media, geometrical spreading increases linearly with increasing length
of the ray. In heterogeneous media, behaviour of geometrical spreading is more compli-
cated, and depends considerably on the degree of heterogeneity of the medium. In models,
in which heterogeneity exceeds certain degree, average geometrical spreading increases ex-
ponentially with increasing length of the ray. Rays in such a medium often exhibit chaotic
behaviour, which is characterized by a strong sensitivity of rays to the initial ray data (for
example, to ray parameters). The rays with only slightly differing ray data at an initial
point tend to diverge exponentially at large distances from the initial point. Consequently,
the rays intersect many times and many rays pass through the same point. With such
chaotic rays, two-point ray tracing is practically impossible, and the ray tubes are not

69



narrow enough for travel time interpolation. The chaotic behaviour of rays increases with
increasing length of rays and prevents applicability of the ray theory.

The exponential divergence of chaotic rays in the phase space (space formed by spa-
tial coordinates xi and slowness-vector components pj) can be quantified by the so-called
Lyapunov exponents. They may be introduced in several ways. It is common to express
them in terms of characteristic values of the ray propagator matrix. The relevant expres-
sions for the Lyapunov exponents and several numerical examples for 2D models without
interfaces can be found in Klimeš (2002a). See also Červený et al. (2007), where other
references can also be found.

The estimate of the Lyapunov exponent of a single finite ray depends on its position
and direction. The Lyapunov exponents associated with rays of different positions and
directions can be used to calculate average Lyapunov exponents for the model. The av-
erage Lyapunov exponents play a very important role in smoothing the models so that
they are suitable for ray tracing (Červený et al. 2007).

Ray perturbation methods

Ray perturbation methods represent an important part of the ray theory. They can
be used for approximate but fast and transparent solutions of forward problems in com-
plicated models. They also play an important role in the inverse problems.

Ray perturbation methods are useful everywhere, where we wish to compute the wave-
field or its constituents (travel times, amplitudes, polarization) in complicated models,
which deviate only little from simple, reference models, for which computations are sim-
pler. The solutions for complicated models are then sought as perturbations of simple
solutions for the reference models. Examples are computations in weakly anisotropic me-
dia, which use an isotropic medium as reference, or in weakly dissipative media, which
use a perfectly elastic medium as reference. Basic role in these approaches is played by
reference rays traced in reference media. Solutions in perturbed media can be given in the
form of a power series in the deviations of the perturbed and reference models. Mostly,
the first-order approximation, i.e. the first term of the power series, is used.

The most frequent application of ray perturbation methods is, probably, in travel-
time computations. First-order travel-time perturbation formulae for isotropic media are
known and have been used (mostly in tomography) for several decades. Well known and
broadly applied are also first-order travel-time formulae for anisotropic media (Červený
and Jech, 1982; Hanyga, 1982; Červený, 2001, Sec.3.9). Travel-time perturbations are
obtained by quadratures along reference rays. As an integration parameter, the parameter
along reference rays is used.

Recently, several procedures for computation of higher-order travel-time perturbations
were proposed. The procedure based on the so-called perturbation Hamiltonians (Klimeš,
2002b; Červený et al. 2007) allows computation of highly accurate travel times along a
fixed reference ray in a reference medium. Another procedure is based on the so-called
first-order ray tracing described briefly below. In the latter method, second-order travel-
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time perturbations can be calculated along first-order rays.

Relatively recent is the use of ray perturbation methods in first-order ray tracing and
first-order dynamic ray tracing (Pšenč́ık and Farra, 2007; Farra and Pšenč́ık, 2010). It
allows to compute, approximately, not only rays and travel times, but whole wavefields.
The idea of first-order ray tracing and dynamic ray tracing is simple. It is just sufficient
to use eqs (25) and (40) with (21), in which the exact eigenvalue Gm is replaced by
its first-order approximation. The resulting ray tracing provides first-order rays, first-
order travel times and the first-order geometrical spreading. By simple quadratures along
first-order rays, second-order travel-time corrections can be computed. This approach
is applicable to P and S waves. In case of S waves, it can include the computation of
coupling effects. First-order ray tracing and dynamic ray tracing are used in this case for
computing common rays, first-order travel times and geometrical spreading along them,
using the Hamiltonian (48). The wavefield of S waves is obtained by solving second-order
coupling equations along the common rays. The procedure describes accurately S-wave
propagation in isotropic media, and in anisotropic media when the S waves are coupled
or even decoupled.

Procedure for computing the whole wave field is the generalized Born scattering (Chap-
man and Coates, 1994; Chapman, 2004). It is based on the first-order Born approxi-
mation, in which the exact Green function in the reference medium is replaced by the
ray-theory Green function.

Ray perturbation method for weakly dissipative media

In viscoelastic media, the density-normalized stiffness tensor aijkl is complex valued:

aijkl(xn) = aR
ijkl(xn) − iaI

ijkl(xn) . (60)

If aI
ijkl is small, the viscoelastic medium can be considered as a perturbation of a perfectly

elastic medium (Červený, 2001, Sec.5.5.3). Reference ray in the reference perfectly elastic
medium and corresponding real-valued travel time τ along the reference ray between
points S and R can be obtained by standard ray tracing for perfectly elastic media. The
imaginary travel time T I (travel-time perturbation due to −iaI

ijkl) can be then obtained
by quadratures along the reference ray:

T I =
1

2

∫ R

S
Q−1(τ)dτ . (61)

The quantity Q in (61) is a direction-dependent quality factor for anisotropic media,
corresponding to the Hamiltonian (21):

Q−1 = aI
ijklpjplgigk . (62)

For general Hamiltonians, the quality factor Q is given by the relation Q−1 = −ImH(xi, pj).

The imaginary travel time T I in (61) is responsible for the amplitude decay along the
reference ray. For causal dissipation, the stiffness tensor (60) is frequency dependent. The
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above described perturbation approach is then equivalent to the perturbation scheme, in
which aI

ijkl(xn, ω) is considered to be of the order of ω−1 for ω → ∞ (Kravtsov and Orlov,
1990; Gajewski and Pšenč́ık, 1992).

In an inhomogeneous isotropic, weakly dissipative medium, the expression (62) reduces
to the well-known formula

Q−1 = −2ImV/ReV , (63)

in which V is the complex-valued velocity, V = α for P waves and V = β for S waves.
Complex-valued quantities α and β are generalizations (to the complex space) of real-
valued α and β from (14).

Concluding remarks. Modifications and extensions of the ray
method

In this review, we concentrated mainly on the forward applications of the zero-order
ray approximation, particularly on the problems of computation of seismic body waves
propagating in 3D layered, smoothly varying anisotropic or isotropic media containing
smoothly curved structural interfaces. We have not discussed the applications of the ray
method to the inverse problems (tomography, migration, etc.); our conclusions apply to
these problems only indirectly.

The ray method is not valid universally. We have briefly described three serious
limitations of the ray method: a) The ray method can be used only for high-frequency
signals. b) In models, in which heterogeneity exceeds certain degree, the ray field has
chaotic character, particularly at large distances from the source. c) The standard ray
method cannot be used for computing S waves propagating in inhomogeneous, weakly
anisotropic media. It must be replaced by the coupling ray theory. The coupling ray
theory must be used even in moderately and strongly anisotropic media, in the vicinity
of shear-wave singular directions.

The ray method fails, however, even in other singular situations. In smooth isotropic
media, the most important type of singularity are caustics. Caustics may attain various
forms. Various extensions of the ray method can be used to compute wavefields in caustic
regions. These extensions are frequency dependent. See a detailed treatment of wavefields
in caustic regions in Stamnes (1986) and also Kravtsov and Orlov (1999). In models with
smooth structural interfaces, other singularities often appear. For edge and vertex points,
see Ayzenberg et al. (2006). For critical singular regions, at which head waves separate
from reflected waves, see Červený and Ravindra (1971). For the waves, whose rays are
tangential to interfaces, see Thomson (1989).

Specific methods, designed for different types of singularities may be used for comput-
ing wavefields in singular regions. Disadvantage of these methods is that they are different
for different singularities. Morever, singular regions often overlap, and the wavefield in
the overlaping region requires again different treatment. It is desirable to have available a
more general extension of the ray method, applicable uniformly in any of the mentioned
singular regions, or, at least, in most of them. Such an extension would simplify ray
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computations considerably and could even lead to more accurate results.

Several such extensions of the ray method have been proposed. We do not describe
them here in detail. Instead, we merely present references, in which more details and
further references can be found. Let us mention the Maslov asymptotic ray theory intro-
duced to seismology by Chapman and Drummond (1982), see also Thomson and Chapman
(1985), Chapman (2004). Another extension of the ray method is based on the summation
of Gaussian beams (Popov, 1982; Červený et al., 1982). For the relation of this method
with the Maslov method see Klimeš (1984). The Gaussian beam summation method has
found applications both in the forward modelling of seismic wavefields and in migrations in
seismic exploration. It is closely related to the method of summation of Gaussian packets
(Červený et al., 2007). For waves reflected from a smooth structural interface separating
two heterogeneous, isotropic or anisotropic media, the Kirchhoff surface integral method
can be used. For details and many references see Chapman (2004, Sec.10.4). Another
useful extension of the ray method is the one-way wave equation approach (Thomson,
1999).
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Klimeš, L., 2006. Common-ray tracing and dynamic ray tracing for S waves in a smooth
elastic anisotropic medium. Stud. Geophys. Geod., 50: 449–461.
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