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Summary

Explicit approximate equations describing the physical meaning of the migrated sections
are derived. The equations are applicable to 3–D elastic migrations in 3–D isotropic
or anisotropic, heterogeneous velocity models. The imaged combination of elastic pa-
rameters (reflectivity) depends on the selection of the polarizations of the incident and
back–propagated wavefields and on the directions of propagation. The migrated sec-
tion is then approximately equal to the convolution of the unknown exact reflectivity
function with the local resolution function. The local resolution function depends on
the aperture and on the imaging function. The imaging function is determined by the
source time function and by the form of the imaging functional.
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1. Introduction

A general formulation of prestack depth migration based on imaging (mapping) incident
and scattered wavefields, extrapolated into the velocity model by arbitrary numerical
methods (Claerbout, 1971) is considered in this paper. A common–shot prestack depth
migration is assumed since it is the most natural configuration from the physics point of
view, although the same approach could simply be applied to other configurations. The
presented theory is developed for 3–D elastic migrations in 3–D isotropic or anisotropic,
heterogeneous velocity models. Neither scalar acoustic wavefields nor 2-D migrations
are investigated separately.

The purpose of this paper is to study the physical meaning and spatial resolution
of the migrated images. Our resolution study is considerably more general than the
resolution analyses performed by Wu & Toksöz (1987), Lecomte & Gelius (1998) and
Lecomte (1999) for the scalar wave equation in acoustic media.

Although the migrations are mostly performed in the isotropic velocity models, we
shall present the equations in a general form suitable for elastic waves in heterogeneous
anisotropic velocity models, because the assumption of isotropic velocity models or
of isotropic perturbations provide for no considerable simplification of the theory. The
equations expressed in terms of the general stiffness matrix cijkl are usually more concise
and clear than the analogous explicit isotropic equations.

We use both vectorial and componental notation. For example, either x or xi

may stand for three spatial coordinates x1, x2, x3. The Einstein summation over repet-
itive lower–case Roman subscripts corresponding to the 3 spatial coordinates is used
throughout the paper.
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2. Velocity model and the elastodynamic equation

The velocity model of the geological structure is described in terms of the material
parameters

̺ = ̺(x) , cijkl = cijkl(x) , (1)

where x = (x1, x2, x3) are spatial coordinates. We assume that velocity model ̺(x) and
cijkl(x) is smooth.

The geological structure is described in terms of the unknown material parameters

̺(x) + δ̺(x) , cijkl(x) + δcijkl(x) , (2)

where δ̺ (x) and δcijkl(x) represent the differences between the geological structure and
the velocity model. Differences δ̺ (x) and δcijkl(x) are assumed to be small, but their
dependence on coordinates x may be rough.

Seismic wavefield ui(x, t) in the velocity model is subject to the elastodynamic
equation

̺(x) üi(x, t) = [cijkl(x) uk,l(x, t)],j + fi(x, t) (3)

for displacement ui(x, t), where the dot ˙ stands for the derivative with respect to time
t, and subscript ,j following a comma stands for the partial derivative with respect to
Cartesian spatial coordinate xj . Term fi(x, t) represents the source of the wavefield.

First–order perturbation (variation) δ of elastodynamic equation (3) yields the elas-
todynamic equation

̺(x) δ̈ui(x, t) = [cijkl(x) δuk,l(x, t)],j − δ̺(x) üi(x, t) + [δcijkl(x) uk,l(x, t)],j (4)

for the first–order wavefield perturbation δui(x, t) due to medium perturbations δcijkl(x)
and δ̺(x). We shall refer to δui(x, t) as the scattered wavefield.

Elastodynamic Green tensor Gkm(x,x′, t), corresponding to elastodynamic equa-
tion (1) in the velocity model, is defined by equation (Červený, 2001, eq. 2.5.37)

̺(x) G̈im(x,x′, t−t′) = [cijkl(x) Gkm,l(x,x′, t−t′)],j + δim δ(x − x′) δ(t−t′) (5)

with the zero initial conditions for t−t′ ≤ 0. The spatial partial derivatives in elastody-
namic equation (5) are related to coordinates xi. Here δ(x) and δ(t) are the 3–D and
1–D Dirac distributions.

In this paper, we shall mostly work in the frequency domain with 1–D Fourier
transform

ûi(x, ω) = δ̂(ω)

∫
dt ui(x, t) exp(iωt) (6)

of the displacement, and with the analogous Fourier transform of the elastodynamic
Green tensor. Here δ̂(ω) is a constant equal to the 1–D Fourier transform of the 1–D
Dirac distribution δ(t).
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3. Migration

In our approach, prestack depth migration may be decomposed into the following steps
(Claerbout, 1971): (a) extrapolation of the wavefields from the source and receiver points
into the velocity model, (b) decomposition of the extrapolated wavefields into waves of
different properties, (c) imaging the extrapolated and decomposed wavefields.

3.1. Extrapolation

Assume that seismic wavefield ui(x
′′, t)+δui(x

′′, t) is recorded at the receivers covering
the receiver area along the Earth surface with a sufficient density to allow for the back
propagation of scattered wavefield δui(x

′′, t) into the velocity model. Scattered wavefield
δui(x

′′, t) is approximated by the solution of elastodynamic equation (4) for the first–
order wavefield perturbation.

Let us denote by Ui(x, t) the scattered wavefield δui(x
′′, t) back–propagated from

the receiver area into the velocity model. Note that we do not back–propagate the
complete scattered wavefield but only its part recorded in the receiver area. Moreover,
the recorded wavefield may also be reduced by application of the aperture weighting
factor a(x′′) dependent on the receiver positions x′′.

In the time domain, we can back–propagate the scattered wavefield by taking the
scattered wavefield at the receivers with opposite time, propagating it into the target
zone using the representation theorem, and then changing the sign of time again. The
opposite time in the time domain corresponds to the complex–conjugate wavefield in
the frequency domain. In the frequency domain, we thus take the complex–conjugate
scattered wavefield at the receivers, insert it together with the Green tensor into the
representation theorem, and complex–conjugate the result.

In the frequency domain, the forward propagation from point x′ situated in the
vicinity of point x to point x′′ situated on the surface covered by the receivers is de-
scribed by Green tensor Ĝim(x′′,x′, ω). The back propagation from point x′′ to point

x is then described by complex–conjugate Green tensor Ĝ∗

in(x,x′′, ω) = Ĝ∗

ni(x
′′,x, ω).

The scattered wavefield can be back–propagated from surface S to point x using
the frequency–domain representation theorem (Červený, 2001, eq. 2.6.4):

Ûi(x, ω) =
1

δ̂(ω)

∫

S

dS(x′′) a(x′′)
[
Ĝ∗

ni(x
′′,x, ω) nj(x

′′) cnjkl(x
′′) δ̂uk,l(x

′′, ω)

−Ĝ∗

ni,j(x
′′,x, ω) cnjkl(x

′′) δ̂uk(x′′, ω) nl(x
′′)

]
, (7)

where δ̂(ω) is a constant equal to the 1–D Fourier transform of the 1–D Dirac distribution

δ(t). Note that Červený (2001) chose δ̂(ω) = 1. Unit normal nj(x
′′) to surface S is

pointing in accord with the forward propagation of the incident wavefield. The partial
derivatives in (7) are related to variable x′′. The weighting factor of a(x′′) is inserted
to account for possible windowing of the seismic records (time sections) at receiver
points x′′. If we do not need windowing of the seismic records, we may put a(x′′) = 1.

The approximate incident wavefield ui(x, t) and the back–propagated scattered
wavefield Ui(x, t) may be calculated in velocity model ̺(x), cijkl(x) by any convenient
numerical method.
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3.2. Decomposition

To resolve more than a single linear combination of medium perturbations δ̺(x) and
δcijkl(x), it is desirable to attempt to decompose both the approximate incident wave-
field ui(x, t) and the back–propagated scattered wavefield Ui(x, t) at each point x locally
into P and S waves or, better, into P waves and two polarizations of S waves. Such a
decomposition may conveniently be accomplished by a proper choice of imaging func-
tionals.

In addition, if the waves incident from considerably different directions can locally
be distinguished in the approximate incident wavefield ui(x, t) or back–propagated scat-
tered wavefield Ui(x, t), the respective wavefield may be decomposed into the parts cor-
responding to the different propagation directions, particularly for the purposes of the
“amplitude–versus–angle” analysis.

If the decomposition into the parts corresponding to the different propagation direc-
tions is not possible, the amplitude–versus–angle analysis may be facilitated by splitting
the receiver area into two or more smaller receiver areas, e.g., by applying the aperture
weighting factor a(x′′) dependent on receiver positions x′′. This splitting, however,
deteriorates the lateral spatial resolution of the migrated sections.

If any of the above decompositions is applicable, let ui(x, t) denote hereinafter one
selected part of the decomposed approximate incident wavefield and Ui(x, t) one selected
part of the back–propagated scattered wavefield.

3.3. Imaging

We have, at each point x, time functions ui(x, t) and Ui(x, t) representing selected parts
of the incident wavefield and of the back–propagated scattered wavefield.

Assume that imaging functional (mapping procedure)

M(•, •) : ui, Ui −→ m = M(ui, Ui) , (8)

maps the pairs of functions ui = ui(t
′) and Ui = Ui(t) onto the real or complex numbers.

The migrated section is then

m(x) = M
(
ui(x, t′), Ui(x, t)

)
. (9)

We assume that the imaging functional (8) is linear with respect to the second argument
representing the back–propagated scattered wavefield.
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4. Born approximation of the back–propagated scattered wavefield

4.1. Born approximation of the scattered wavefield

The wavefield scattered by medium perturbations δcijkl(x) and δ̺(x) can be approxi-
mated by the solution δu(x′′, t) of elastodynamic equation (4). The Fourier transform

δ̂ui(x
′′, ω) of scattered wavefield δu(x′′, t) can be expressed in the form of the first–order

Born approximation (Červený, 2001, eq. 2.6.18)

δ̂ui(x
′′, ω) ≈

1

δ̂(ω)

∫
dx′

[
− Ĝim,j(x

′′,x′, ω)δcmjkl(x
′)ûk,l(x

′, ω)

− (iω)2Ĝim(x′′,x′, ω)δ̺(x′)ûm(x′, ω)
]

, (10)

where the partial derivatives are related to variable x′. Here δ̂(ω) is a constant equal
to the 1–D Fourier transform of the 1–D Dirac distribution δ(t). Note that Červený

(2001) chose δ̂(ω) = 1.

4.2. Decomposing the incident wave into arrivals and the Green tensor into

elementary waves

We assume that incident wavefield ûi(x
′, ω) in (10) is composed of several arrivals

ûArr
m (x′, ω),

ûi(x
′, ω) =

∑

Arr

ûArr
i (x′, ω) . (11)

Then also the scattered wavefield is composed of several arrivals.
The ray–theory approximation of the Green tensor is composed of the elementary

Green tensors corresponding to the individual elementary waves:

Ĝim(x′′,x, ω) =
∑

EW

ĜEW
im (x′′,x, ω) . (12)

The corresponding prestack depth migrated section is then composed of the migrated
sections corresponding to all combinations of the above mentioned arrivals and elemen-
tary waves:

m̂(x) =
∑

Arr

∑

EW

m̂ArrEW(x) . (13)

In the following, we shall consider just one of the arrivals and one of the elementary
waves, but omit superscripts Arr and EW for the sake of conciseness and simplicity.

In the following, we shall also assume that each arrival of the incident wave can be
expressed in terms of unit polarization vector Ek(x′) and local spectrum f̂(x′, ω):

ûArr
k (x′, ω) = Ek(x′) f̂(x′, ω) . (14)

4.3. Ray–theory approximation of the Green tensor

We shall now apply the ray–theory approximation of the Green tensor. We parametrize
the rays from point x to point x′′ by the initial slowness vectors at point x. The rays
corresponding to the small area dSp(x) situated on the slowness surface then create a
narrow ray tube. We denote by dS⊥(x′′) the area of the perpendicular cross–section
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of this ray tube at point x′′. The relative geometrical spreading of Červený (2001,
eq. 4.10.11) then reads

L(x′′,x) =

√
v(x′′)v(x) dS⊥(x′′)

c(x′′)c(x) dSp(x)
, (15)

where c is the phase velocity and v is the ray velocity, both corresponding to the ray
leading from point x to point x′′.

Note that the slowness surface at point x may be parametrized by coordinates
γ = (γ1, γ2) along the unit sphere composed of the normalized initial slowness vectors
p(x)/|p(x)|. Then p(x) = p(x,γ). The small area dSp(x) situated on the slowness
surface corresponding to small area dΓ situated on the unit sphere is determined by
relation

dSp(x)

dΓ
=

v(x,γ)

[c(x,γ)]3
. (16)

The ray–theory approximation of the elementary Green tensor corresponding to a
particular elementary wave reads (Červený, 2001, eq. 5.4.24):

Ĝim(x′′,x, ω) ≈ δ̂(ω)
ei(x

′′,γ)em(x,γ)T (x′′,x)

4πL(x′′,x)
√

̺(x′′)c(x′′,γ)̺(x)c(x,γ)
exp[iωτ(x′′,x)] , (17)

where eK are the polarization vectors and c is the phase velocity. Here T (x′′,x) is the
accumulated reciprocal transmission coefficient describing the amplitude losses between
points x and x′′ due to attenuation and due to reflections and scattering into directions
leading outside the vicinity of point x′′. In an ideal case, T (x′′,x) ≈ 1. Possible
phase shifts due to caustics are also included in T (x′′,x), but are annulled by the
combination of forward propagation and back propagation. For ω < 0, T (x′′,x) is
complex–conjugate, but this complex–conjugacy is compensated by the combination of
forward propagation and back propagation.

Since points x and x′ are close, quantitiesγ, ei(x
′′,γ), em(x,γ), T (x′′,x), L(x′′,x),

c(x′′,γ), c(x,γ) corresponding to the ray from x to x′′, and quantities γ
′, ei(x

′′,γ′),
em(x′,γ′), T (x′′,x′), L(x′′,x′), c(x′′,γ′), c(x′,γ′) corresponding to the ray from x′ to
x′′, are approximately equal. On the other hand, the difference between two–point
travel times τ(x′′,x) and τ(x′′,x′) is essential for our study.

We apply the high–frequency approximation of the spatial derivatives of the Green
tensor and of the incident wavefield:

∂Ĝim

∂x′′

j

(x′′,x, ω) ≈ iωpj(x
′′,γ) Ĝim(x′′,x, ω) , (18)

∂Ĝim

∂x′

j

(x′′,x′, ω) ≈ −iωpj(x
′,γ′) Ĝim(x′′,x′, ω) , (19)

ûk,l(x
′, ω) ≈ iωPl(x

′) ûk(x′, ω) . (20)

Angular coordinatesγ correspond to the ray leading from point x to point x′′, whereas
angular coordinates γ

′ correspond to the ray leading from point x′ to point x′′. Since
points x and x′ are close,γ ′ ≈γ.

We insert approximations (19) and (20) into Born approximation (10):

δ̂ui(x
′′, ω) ≈

(iω)2

δ̂(ω)

∫
dx′ Ĝim(x′′,x′, ω)

[
δcmjkl(x

′)pj(x
′,γ′)ûk(x′, ω)Pl(x

′)

−δ̺(x′)ûm(x′, ω)
]

. (21)
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4.4. Back–propagating scattered wavefield

We insert approximation (21) of the scattered wavefield into back propagation (7) and
obtain

Ûi(x, ω) ≈
(iω)2

δ̂(ω)

∫
dx′ D̂im(x,x′, ω)

[
δcmjkl(x

′)pj(x
′,γ′)ûk(x′, ω)Pl(x

′)

−δ̺(x′)ûm(x′, ω)
]

, (22)

where

D̂im(x,x′, ω) =
1

δ̂(ω)

∫

S

dS(x′′) a(x′′)
[
Ĝ∗

ni(x
′′,x, ω) nj(x

′′) cnjkl(x
′′) Ĝkm,l(x

′′,x′, ω)

−Ĝ∗

ni,j(x
′′,x, ω) cnjkl(x

′′) Ĝkm(x′′,x′, ω) nl(x
′′)

]

(23)

is the Green tensor from point x′, back–propagated from the receiver array to point x

situated close to point x′. The partial derivatives in (23) are related to variable x′′.

We insert high–frequency approximation (18) into (23) and obtain

D̂im(x,x′, ω) ≈
iω

δ̂(ω)

∫

S

dS(x′′) a(x′′) Ĝ∗

ni(x
′′,x, ω) Ĝkm(x′′,x′, ω)

×
[
nj(x

′′) cnjkl(x
′′) pl(x

′′,γ) + pj(x
′′,γ) cnjkl(x

′′) nl(x
′′)

]
. (24)

We insert ray–theory approximation (17) for both the Green tensors, apply approxima-
tion

ek(x′′,γ′) ≈ ek(x′′,γ) , (25)

and use identity

cnjkl(x
′′)en(x′′,γ)ek(x′′,γ)pl(x

′′,γ) = ̺(x′′) vj(x
′′,γ) , (26)

where vj is the ray–velocity vector. Equation (24) then reads

D̂im(x,x′, ω) ≈ iωδ̂(ω)

∫

S

dS(x′′) a(x′′)

×
2 nj(x

′′) vj(x
′′,γ) ei(x,γ)em(x′,γ′)T ∗(x′′,x)T (x′′,x′)

16π2L(x′′,x)L(x′′,x′)
√

c(x′′,γ)̺(x)c(x,γ)c(x′′,γ′)̺(x′)c(x′,γ′)

× exp{iω[τ(x′′,x′) − τ(x′′,x)]} . (27)

We now apply approximations

T (x′′,x′) ≈ T (x′′,x) ,

L(x′′,x′) ≈ L(x′′,x) ,

c(x′′,γ′) ≈ c(x′′,γ) ,

c(x′,γ′) ≈ c(x,γ) ,

ρ(x) ≈ ρ(x′) , (28)

and obtain

D̂im(x,x′, ω) ≈
iωδ̂(ω)

8π2

∫

S

dS(x′′) a(x′′)
nj(x

′′) vj(x
′′,γ) ei(x,γ)em(x′,γ′)|T (x′′,x)|2

[L(x′′,x)]2c(x′′,γ)̺(x′)c(x,γ)

× exp{iω[τ(x′′,x′) − τ(x′′,x)]} . (29)

33



We insert relation (15) and relation

nj(x
′′) vj(x

′′,γ) =
dS⊥(x′′)

dS(x′′)
v(x′′,γ) (30)

between the area dS⊥(x′′) of the perpendicular cross–section of a narrow ray tube and
the area dS(x′′) of the cross–section of the narrow ray tube with the surface S of
integration:

D̂im(x,x′, ω) ≈
iωδ̂(ω)

8π2

∫

S

dS(x′′) a(x′′)
dSp(x)

dS(x′′)

ei(x,γ)em(x′,γ′)|T (x′′,x)|2

v(x,γ)̺(x′)

× exp{iω[τ(x′′,x′) − τ(x′′,x)]} . (31)

We apply relation (16) and the first–order paraxial approximation

τ(x′′,x′) − τ(x′′,x) ≈ −pk(x,γ) (x′

k−xk) (32)

of the travel time at point x, and obtain relation

D̂im(x,x′, ω) ≈
iωδ̂(ω)

8π2

∫

S

dS(x′′) a(x′′)
dΓ

dS(x′′)

ei(x,γ)em(x′,γ′)|T (x′′,x)|2

[c(x,γ)]3̺(x′)

× exp[iω pk(x,γ) (xk−x′

k)] . (33)

The integrand is, except for the aperture weighting factor a(x′′) and the reciprocal trans-
mission coefficient T (x′′,x) between target point x and receiver point x′′, independent
of x′′.

We denote the angular domain (aperture) corresponding to all rays leading to the
receiver area by Γ. The aperture weighting function

γ ∈ Γ : A(x,γ) = a(x′′) [T (x′′,x)]2

γ 6∈ Γ : A(x,γ) = 0 (34)

accounts both for the aperture limitation to directions γ ∈ Γ, for possible windowing
a(x′′) of the seismic records (time sections) at receiver points x′′, and for the two–way
accumulated reciprocal transmission coefficient between target point x′ and receiver
point x′′.

Integration over surface S in (33) may thus be extended to the whole solid angle
(all directions):

D̂im(x,x′, ω) ≈
iωδ̂(ω)

8π2

∮
dΓ A(x,γ)

ei(x,γ)em(x′,γ′)

[c(x,γ)]3̺(x′)
exp[iω pk(x,γ) (xk−x′

k)] . (35)

The back–propagated scattered wavefield Ûi(x, ω) may be obtained from relation (22)
by means of inserting (35),

Ûi(x, ω) ≈
(iω)3

8π2

∫
dx′

∮
dΓ A(x,γ)

ei(x,γ)em(x′,γ′)

[c(x,γ)]3̺(x′)

× [δcmjkl(x
′)pj(x

′,γ′)ûk(x′, ω)Pl(x
′)−δ̺(x′)ûm(x′, ω)] exp[iω pk(x,γ) (xk−x′

k)] . (36)

We insert assumption (14) into relation (36), and obtain

Ûi(x, ω) ≈
(iω)3

8π2

∫
dx′

∮
dΓ A(x,γ)

ei(x,γ)em(x′,γ′)

[c(x,γ)]3̺(x′)
f̂(x′, ω)

× [δcmjkl(x
′)pj(x

′,γ′)Ek(x′)Pl(x
′) − δ̺(x′)Em(x′)] exp[iω pk(x,γ) (xk−x′

k)] . (37)
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We now define the angle–dependent reflectivity function

r(x′,γ′) =
δ̺(x′)Em(x′)em(x′,γ′) − δcijkl(x

′)Pi(x
′)Ej(x

′)pk(x′,γ′)el(x
′,γ′)

2 ̺(x′)
, (38)

and relation (37) reads

Ûi(x, ω) ≈
−(iω)3

4π2

∫
dx′

∮
dΓ A(x,γ)

ei(x,γ)

[c(x,γ)]3
f̂(x′, ω) r(x′,γ′) exp[iω pk(x,γ) (xk−x′

k)] .

(39)
Since γ

′ ≈γ because points x and x′ are close, we apply approximation

r(x′,γ′) ≈ r(x′,γ) . (40)

We also apply the first–order paraxial expansion

f̂(x′, ω) ≈ f̂(x, ω) exp[iω Pk(x) (x′

k−xk)] (41)

of the travel time of the incident wave from point x to point x′. Relation (39) then
reads

Ûi(x, ω) ≈
−(iω)3

4π2

∫
dx′

∮
dΓ A(x,γ)

ei(x,γ)

[c(x,γ)]3
f̂(x, ω)

× r(x′,γ) exp
{
iω [pk(x,γ)−Pk(x)] (xk−x′

k)
}

. (42)

We define the 3–D Fourier transform of the angle–dependent reflectivity function by
equation

r̂(k,γ) = δ̂(k)

∫
dx′ r(x′,γ) exp(−i kk x′

k) , (43)

where constant δ̂(k) represents the 3–D Fourier transform of the 3–D Dirac distribution
δ(x). Relation (42) then reads

Ûi(x, ω) ≈
−(iω)3f̂(x, ω)

4π2 δ̂(k)

∮
dΓ A(x,γ)

ei(x,γ)

[c(x,γ)]3

×r̂
(
ω[p(x,γ)−P(x)],γ

)
exp

{
iω [pk(x,γ)−Pk(x)] xk

}
. (44)

We transform the back–propagated scattered wavefield into the time domain using in-
verse 1–D Fourier transform

Ui(x, t) =
1

2π δ̂(ω)

∫
dω Ûi(x, ω) exp(−iωt) , (45)

and obtain relation

Ui(x, t) ≈

∫
dω

−(iω)3 exp(−iωt)f̂(x, ω)

8π3 δ̂(ω) δ̂(k)

∮
dΓ A(x,γ)

ei(x,γ)

[c(x,γ)]3

×r̂
(
ω[p(x,γ)−P(x)],γ

)
exp

{
iω [pk(x,γ)−Pk(x)] xk

}
. (46)
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5. Analysis of the migrated section

We assume that imaging functional (8) is linear with respect to the second argument
representing the back–propagated scattered wavefield. This is our only assumption
about the imaging functional.

5.1. Imaging function

The polarization of the scattered wavefield back–propagated from the direction given by
γ is approximately determined by unit vector ei(x,γ), see (46). For the time dependence
of the back–propagated scattered wavefield proportional to the local time dependence
f(x, t) of incident arrival (14), we define imaging function

Φ(x,γ, ∆t) = M
(
ui(x, t′), ei(x,γ)f(x, t + ∆t)

)
. (47)

The Fourier transform of the imaging function reads

Φ̂(x,γ, ω) = δ̂(ω)

∫
d∆t Φ(x,γ, ∆t) exp(iω∆t) . (48)

The local time dependence f(x, t) of the incident arrival is related to the local spectrum

f̂(x, ω) through the inverse Fourier transform

f(x, t + ∆t) =
1

2π δ̂(ω′)

∫
dω′ f̂(x, ω′) exp[−iω′(t + ∆t)] . (49)

We insert (47) with (49) into (48). Since we are assuming that the imaging functional
(8) is linear with respect to the second argument, we obtain

Φ̂(x,γ, ω) =
1

2π

∫
d∆t

∫
dω′ M

(
ui(x, t′), ei(x,γ) exp(−iω′t)

)
f̂(x, ω′) exp[i(ω−ω′)∆t] .

(50)
We integrate over ∆t:

Φ̂(x,γ, ω) =

∫
dω′ M

(
ui(x, t′), ei(x,γ) exp(−iω′t)

)
f̂(x, ω′) δ(ω′−ω) . (51)

We integrate over ω′:

Φ̂(x,γ, ω) = M
(
ui(x, t′), ei(x,γ) exp(−iωt)

)
f̂(x, ω) . (52)

5.2. Migrated section in terms of the angle–dependent reflectivity function

We insert the back–propagated scattered wavefield (46) into imaging functional (8),
consider relation (52), and obtain approximation

mArrEW(x) ≈

∫
dω

−(iω)3

8π3 δ̂(ω) δ̂(k)

∮
dΓ A(x,γ)

Φ̂(x,γ, ω)

[c(x,γ)]3

×r̂
(
ω[p(x,γ)−P(x)],γ

)
exp

{
iω [pk(x,γ)−Pk(x)] xk)

}
(53)

of the migrated section. In this approximation, the migrated section is determined by
the aperture weighting function (34), by the Fourier transform of imaging function (47),
and by the Fourier transform of the angle–dependent reflectivity function (38).
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5.3. Migrated section in terms of the reflectivity function

For each x, vectorial argument k of the Fourier transform r̂(k,γ) of the angle–dependent
reflectivity function in relation (53) is parametrized by three parameters γ = (γ1, γ2)
and ω:

k(x,γ, ω) = ω[p(x,γ)−P(x)] . (54)

We shall refer to wavenumber vector (54) as the scattering wavenumber vector. It is
often called briefly the “scattering wavenumber” (Hamran & Lecomte, 1993; Lecomte &
Gelius, 1998; Lecomte, 1999), and sometimes also the “combined wavenumber vector”
or the “resolution vector” (Gelius, 1995).

Mapping (54) ofγ and ω onto k is not single–valued. On the other hand, mapping
(54) is very likely single–valued for γ ∈ Γ within angular domains Γ typical for seismic
reflection surveys. Especially if the angular difference between directionγ corresponding
to the ray leading to the source and directionγ corresponding to the rays leading to the
receivers does not exceed 2

3
π radians. Hereinafter, we shall assume that mapping (54)

is single–valued for γ ∈ Γ.
In the vicinity of each point x, we define the local wavenumber–domain reflectivity

function by relation

ŝ
(
x, ω[p(x,γ)−P(x)]

)
= r̂

(
ω[p(x,γ)−P(x)],γ

)
(55)

for scattering wavenumber vectors k = k(x,γ, ω) parametrized by γ and ω. The local
wavenumber–domain reflectivity function ŝ(x,k) is defined by (55) for all k = k(x,γ, ω)
corresponding to γ ∈ Γ. For other wavenumber vectors k, it may be either defined by
(55) or put equal to zero.

In definition (55), the strong dependence of r̂(k,γ) on wavenumber vector k is
essential.

The dependence of r̂(k,γ) on γ is moderate. The angular dependence of δ̺Emem

in definition (38) corresponds to the cosine of the angle between the two vectors, and
the angular dependence of δcijklEiPjekpl in definition (38) very roughly corresponds
to the product of two cosines which should not change more rapidly than cos2. For
a sufficiently narrow aperture moderately changing over the target zone, argument γ

of r̂(k,γ) in definition (55) may even be approximated by its mean value γ within the
target zone. The local wavenumber–domain reflectivity function ŝ(x,k) ≈ r̂(k,γ) then
becomes independent of x.

Even for a wide aperture, the dependence of ŝ(x,k) defined by (55) on x is mod-
erate. For a sufficiently small target zone, position x in definition (55) may even be
approximated by its mean value over the target zone, and the local wavenumber–domain
reflectivity function ŝ(x,k) ≈ ŝ(x,k) becomes independent of x.

Note that definition (55) may also be approximated by expression

ŝ
(
x, ω[p(x,γ)−P(x)]

)
≈ δ̺̂

̺

(
ω[p(x,γ)−P(x)]

)
Em(x)em(x,γ)

−
δ̂cijkl

̺

(
ω[p(x,γ)−P(x)]

)
Pi(x)Ej(x)pk(x,γ)el(x,γ) . (56)

This expression results from approximating Pi(x
′), Ej(x

′), pk(x′,γ′), el(x
′,γ′) in def-

inition (38) by Pi(x), Ej(x), pk(x,γ′), el(x,γ′) and inserting the approximation into
definition (55).
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We are now going to switch, in approximation (53) of the migrated section, from
integration overγ and ω to integration over wavenumbers k. The Jacobian of transfor-
mation (54) from γ and ω to k(x,γ, ω) is

dk

dΓdω
=

ω2

[c(x,γ)]3
|vi(x,γ)[pi(x,γ)−Pi(x)]| . (57)

In approximation (53) of the migrated section, the local wavenumber–domain reflectivity
function (55) is filtered with the local wavenumber resolution filter defined by relation

ŵ
(
x, ω[p(x,γ)−P(x)]

)
= −

A(x,γ)

|vi(x,γ)[pi(x,γ)−Pi(x)]|

̂̇Φ(x,γ, ω)

δ̂(ω)
δ̂(k) (58)

for all scattering wavenumber vectors k = ω[p(x,γ)−P(x)] corresponding toγ ∈ Γ, and
equal to zero for other wavenumber vectors k.

The local wavenumber resolution filter (58) is specified in terms of the aperture
weighting function (34) and 1–D Fourier transform

̂̇Φ(x,γ, ω) = −iω Φ̂(x,γ, ω) (59)

of the derivative Φ̇(x,γ, ∆t) of the imaging function.
In definition (58), the dependence of ŵ(x,k) along lines k = ω[p(x,γ)−P(x)]

parametrized by ω is determined just by the dependence of ̂̇Φ(x,γ, ω) on ω. This depen-
dence together with the aperture specified by the dependence of the aperture weighting
function A(x,γ) on γ determine the essential properties of the local wavenumber reso-
lution filter (58), which was already observed by Devaney & Oristaglio (1984), Wu &
Toksöz (1987) or Dickens & Winbow (1991).

The dependence of ̂̇Φ, pk and vl onγ is moderate. For a sufficiently narrow aperture,
̂̇Φ, pk and vl on the right–hand side of definition (58) may even be approximated by
their mean values with respect toγ.

The dependence of A, ̂̇Φ, Pk, pk and vl on x is also moderate. For a sufficiently

small target zone, A, ̂̇Φ, Pk, pk and vl on the right–hand side of definition (58) may
even be approximated by their mean values with respect to x, and the local wavenumber
resolution filter ŵ(x,k) ≈ ŵ(x,k) becomes independent of position x.

Approximation (53) of the migrated section then reads

mArrEW(x) ≈

∫
dω

ω2

8π3 δ̂(k)

∮
dΓ

|vi(x,γ)[pi(x,γ)−Pi(x)]|

[c(x,γ)]3 δ̂(k)
ŵ

(
x, ω[p(x,γ)−P(x)]

)

×ŝ
(
x,ω[p(x,γ)−P(x)]

)
exp{iω [pk(x,γ)−Pk(x)] xk)} . (60)

We insert substitutions (54) and (57) into approximation (60). The migrated section
then has the form of integral operator

mArrEW(x) ≈
1

8π3 δ̂(k)

∫
dk

ŵ(x,k) ŝ(x,k)

δ̂(k)
exp(i kk xk) . (61)

The right–hand side of relation (61) locally has the character of the Fourier transform
of convolution.
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We define the inverse Fourier transform of wavenumber–domain function ŝ(x,k)
by relation

s(x,x′)
1

8π3 δ̂(k)

∫
dk ŝ(x,k) exp(i kk x′

k) . (62)

We analogously define the local resolution function w(x,x′) as the inverse Fourier trans-
form of the local wavenumber resolution filter ŵ(x,k) analogous to (62), and express
approximation (61) in the spatial domain:

mArrEW(x) ≈

∫
dx′ w(x,x−x′) s(x,x′) . (63)

The right–hand side of relation (63) locally has the character of convolution. Since the
dependence of function s(x,x′) on x is moderate, we may use approximation

s(x,x′) ≈ s(x′,x′) (64)

for all points x from the vicinity of point x′. The dependence of s(x,x′) on x becomes
evident on a global rather than local scale. For each x, the local resolution function
w(x,x−x′) is concentrated in the vicinity of point x′ = x. Because of this localization,
we may insert approximation (64) into relation (63), and obtain expression

mArrEW(x) ≈

∫
dx′ w(x,x−x′) r(x′) (65)

for the migrated section. Here

r(x′) = s(x′,x′) (66)

is the reflectivity function.
In approximation (65), the dependence of the local resolution function w(x,x−x′)

on coordinate difference x−x′ is essential, whereas its dependence on position x is
moderate and becomes evident on a global rather than local scale.

For the figures of the local resolution functions in acoustic media refer to Hamran
& Lecomte (1993), Lecomte & Gelius (1998), and Lecomte (1999).

5.4. Migrated section in terms of the reflection–transmission coefficient

We define locally, for points x′ from the vicinity of point x, the angle–dependent distri-
bution

R(x,x′,γ) =
r,k(x′,γ)

|vi(x,γ) [pi(x,γ)−Pi(x)]|

[pk(x,γ)−Pk(x)]

|p(x,γ)−P(x)|
(67)

of the weak–contrast displacement reflection–transmission coefficient. Partial deriva-
tives r,k in (67) are related to variable x′.

The Fourier transform of function (67), analogous to Fourier transform (43), reads

R̂(x,k,γ) =
r̂(k,γ)

|vi(x,γ) [pi(x,γ)−Pi(x)]|
ikk

[pk(x,γ)−Pk(x)]

|p(x,γ)−P(x)|
. (68)

Analogously to definition (55), we define for each point x the local wavenumber distri-
bution of the weak–contrast displacement reflection–transmission coefficient by relation

Ŝ
(
x, ω[p(x,γ)−P(x)]

)
= R̂

(
x, ω[p(x,γ)−P(x)],γ

)
. (69)

39



We insert (68) into (69) and obtain relation

Ŝ
(
x, ω[p(x,γ)−P(x)]

)
= r̂

(
ω[p(x,γ)−P(x)],γ

) iω |p(x,γ)−P(x)|

|vi(x,γ) [pi(x,γ)−Pi(x)]|
. (70)

The local wavenumber resolution filter analogous to filter (58), but corresponding to the
local wavenumber distribution (70) of the weak–contrast displacement reflection–trans-
mission coefficient, is defined by relation

Ŵ
(
x, ω[p(x,γ)−P(x)]

)
=

A(x,γ)

|p(x,γ)−P(x)|

Φ̂(x,γ, ω)

δ̂(ω)
δ̂(k) (71)

for scattering wavenumber vectors k = ω[p(x,γ)−P(x)] corresponding toγ ∈ Γ, and is
equal to zero for other wavenumber vectors k.

Analogously to relation (61), we approximate the migrated section by integral op-
erator

mArrEW(x) ≈
1

8π3 δ̂(k)

∫
dk

Ŵ (x,k) Ŝ(x,k)

δ̂(k)
exp(i kk xk) . (72)

The right–hand side of relation (72) has locally the character of the Fourier transform
of convolution.

We define the inverse Fourier transform of wavenumber–domain functions Ŵ (x,k)

and Ŝ(x,k) by relations analogous to (62), and express approximation (72) in the spatial
domain:

mArrEW(x) ≈

∫
dx′ W (x,x−x′) S(x,x′) . (73)

The right–hand side of relation (73) has again locally the character of convolution. Since
the dependence of function S(x,x′) on x is moderate, we may use approximation

S(x,x′) ≈ S(x′,x′) (74)

for all points x from the vicinity of point x′. The dependence of S(x,x′) on x becomes
evident on a global rather than local scale. For each x, the local resolution function
W (x,x−x′) is concentrated in the vicinity of point x′ = x. Because of this localization,
we may insert approximation (74) into relation (73), and obtain expression

mArrEW(x) ≈

∫
dx′ W (x,x−x′) R(x′) (75)

for the migrated section. Here

R(x′) = S(x′,x′) (76)

is the spatial distribution of the weak–contrast displacement reflection–transmission co-
efficient.

For example, in a case of a single planar interface x3 = x0
3 between two homo-

geneous media, the spatial distribution of the weak–contrast displacement reflection–
transmission coefficient is R(x) = R δ(x3−x0

3), where R is the plane–wave weak–contrast
displacement reflection–transmission coefficient of Klimeš (2003, eq. 71). Within the
Born approximation used throughout this paper, the plane–wave weak–contrast dis-
placement reflection–transmission coefficient R is, naturally, the approximation of the
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plane–wave displacement reflection–transmission coefficient (Červený & Ravindra, 1971)
for very small contrasts of material parameters. For P–P scattering in isotropic me-
dia, the plane–wave weak–contrast displacement reflection–transmission coefficient R is
equivalent to the reflection coefficient of Stolt & Benson (1986, eq. 1.7).

Approximation (75) has locally the character of convolution, because the depen-
dence of the local resolution function W (x,x−x′) on the coordinate difference x−x′ is
essential, whereas the dependence of W (x,x−x′) on position x is moderate and becomes
evident on a global rather than local scale.

6. Numerical examples

The effect of convolution (65) on the structure in Figure 1 is demonstrated in Figures 2
and 3. We may assume, e.g., that the velocities are constant and that Figure 1 displays
small density perturbations. Figures 2, 3 and 4 then show the images of the density
which can ideally be obtained by prestack depth migration for a given configuration and
source time function.
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Figure 1. Structure of the target zone. A homogeneous quarter circle is superposed on a randomly
generated representation of the self–affine medium in order to supplement random heterogeneities with
a sharp interface. The target zone is assumed small compared with its depth below the source and
receivers.

Stolt, R.H. & Benson, A.K. (1986): Seismic Migration. Theory and Practice. Handbook
of Geophysical Exploration, Section I: Seismic Exploration, Vol. 5, Geophysical
Press, London–Amsterdam.
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Figure 2. Common–shot prestack depth migrated section of the structure displayed in Figure 1,
simulated according to equation (65) in a homogeneous velocity model. The imaging function is the
Gabor signal with the predominant wavelength of 6% of the target zone dimension. The length of the
symmetric receiver profile, with the source above the target zone (angle 0◦), is twice the depth of the
target zone, which corresponds to the aperture from −45◦ to 45◦. Only wavenumber vectors between
−22.5◦ and 22.5◦ are thus present in the image.
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Figure 3. Common–shot prestack depth migrated section of the structure displayed in Figure 1,
simulated according to equation (65) in a homogeneous velocity model. The symmetric receiver profile
from Figure 2 has been shifted to the right, locating the leftmost receiver above the target zone.
The source is thus in the direction of 45◦ and the aperture extends from 0◦ to 63◦. Only wavenumber
vectors between 22.5◦ and 54◦ are thus present in the image.
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Figure 4. Sum of the common–shot prestack depth migrated sections of Figures 2 and 3. Let us
emphasize that Figures 2, 3 and 4 are not the result of a particular migration: they show which features
of the structure can be resolved by the ideal migration (no multiples, no noise, no transmission losses,
perfect velocity model, exact calculation of elastic wavefields).
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