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Summary

The frequency–domain zero–order ray–theory Green tensor in a heterogeneous aniso-
tropic elastic medium is derived from the zero–order ray–theory approximation using
the representation theorem applied in ray–centred coordinates.
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1. Introduction

High–frequency asymptotic approximation of the Green tensor for a homogeneous aniso-
tropic elastic medium has been derived by many authors, for details refer to Červený
(2001, sec. 2.5.5). The zero–order ray–theory Green tensor in a heterogeneous aniso-
tropic medium may be obtained by comparing a general zero–order ray–theory approx-
imation for a heterogeneous anisotropic medium with the high–frequency asymptotic
approximation of the Green tensor for a homogeneous anisotropic medium in a vicinity
of a point source. However, this matching derivation is not very comfortable.

In this paper, we derive the zero–order ray–theory Green tensor right in a hetero-
geneous anisotropic medium. The derivation is performed in the frequency domain. We
start with the zero–order ray–theory approximation of the solution of the elastodynamic
equation, and use the representation theorem in ray–centred coordinates to derive the
amplitude coefficients of the Green tensor and the phase shift of the Green tensor.

The Einstein summation over the pairs of identical Roman indices (both subscripts
and superscripts) i, j, k, ... = 1, 2, 3 or I, J, K, ... = 1, 2 is used throughout this paper.
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2. Elastodynamic equation and the Green tensor

Seismic wavefield in an anisotropic elastic medium specified in terms of elastic moduli
cijkl = cijkl(x) and density ̺ = ̺(x) is subject to the elastodynamic equation (Červený,
2001, eq. 2.1.17)

[cijkl(x) uk,l(x, t)],j − ̺(x) üi(x, t) + fi(x, t) = 0 (1)

for displacement ui(x, t), where the dot ˙ stands for the derivative with respect to time
t, and subscript ,j following a comma stands for the partial derivative with respect
to Cartesian spatial coordinate xj . Force density fi(x, t) represents the source of the
wavefield.

Elastodynamic Green tensor Gkm(x,x′, t), corresponding to elastodynamic equa-
tion (1), is defined by equation (Červený, 2001, eq. 2.5.37)

[cijkl(x) Gkm,l(x,x′, t)],j − ̺(x) G̈im(x,x′, t) + δim δ(x−x′) δ(t) = 0 (2)

with the zero initial conditions for t ≤ 0. The spatial partial derivatives in elastodynamic
equation (2) are related to coordinates xi. Here δ(x) and δ(t) are the 3–D and 1–D
Dirac distributions.

The elastic moduli obey symmetry relations

cijkl(x) = cjikl(x) = cijlk(x) . (3)

We assume that the elastic moduli also obey symmetry relation

cijkl(x) = cklij(x) . (4)

In this paper, we shall mostly work in the frequency domain with 1–D Fourier transform

Gim(x,x′, ω) = δ̂(ω)

∫
dt Gim(x,x′, t) exp(iωt) (5)

of the elastodynamic Green tensor, and with the analogous Fourier transform of the
displacement. Here δ̂(ω) is a constant equal to the 1–D Fourier transform of the 1–D
Dirac distribution δ(t).

We shall use equal symbols for a function of time and for its Fourier transform,
and distinguish them by arguments t for time and ω for circular frequency. The only
exception is constant δ̂(ω), because δ(ω) could be misleading.

Note that the phase shifts derived in this paper correspond to factor exp(iωt) in (5),
and would be opposite for factor exp(−iωt).

Anisotropic elastodynamic equation (1) for the displacement in the frequency do-
main then reads (Červený, 2001, eq. 2.1.27)

[
cijkl(x) uk,l(x, ω)

]
,j

+ ω2̺(x) ui(x, ω) + fi(x, ω) = 0 , (6)

and the frequency–domain Green tensor for an elastic medium is the solution of equation
(Červený, 2001, eq. 2.5.38)

[
cijkl(x) Gkm,l(x,x′, ω)

]
,j

+ ω2̺(x) Gim(x,x′, ω) + δim δ(x−x′) δ̂(ω) = 0 , (7)

analytical with respect to the inverse Fourier transform.
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3. Representation theorem

Here we consider volume V which need not contain the support of force density fi(x, ω).
We multiply equation (7) by ui(x), subtract the product of equation (6) with Green
tensor Gim(x,x′, ω), and integrate over V ,

um(x′, ω) =
1

δ̂(ω)

∫

V

d3x
{

fi(x, ω) Gim(x,x′, ω) −
[
cijkl(x, ω) Gkm,l(x,x′, ω)

]
,j
ui(x, ω)

+
[
cijkl(x) uk,l(x, ω)

]
,j
Gim(x,x′, ω)

}
. (8)

We apply symmetry relation (4) and obtain

um(x′, ω) =
1

δ̂(ω)

∫

V

d3x
{

Gim(x,x′, ω) fi(x, ω) −
[
Gim,j(x,x′, ω) cijkl(x)

]
,l
uk(x, ω)

+ Gim(x,x′, ω)
[
cijkl(x) uk,l(x, ω)

]
,j

}
, (9)

which reads

um(x′, ω) =
1

δ̂(ω)

∫

V

d3x
{
Gim(x,x′, ω) fi(x, ω) −

[
Gim,j(x,x′, ω) cijkl(x) uk(x, ω)

]
,l

+
[
Gim(x,x′, ω) cijkl(x) uk,l(x, ω)

]
,j

}
. (10)

We apply the divergence theorem to (10) and arrive at the representation theorem
(Červený, 2001, eq. 2.6.4)

um(x′, ω) =
1

δ̂(ω)

∫

V

d3x Gim(x,x′, ω) fi(x, ω)

+
1

δ̂(ω)

∮

∂V

dS(x)
[
Gim(x,x′, ω) nj(x) cijkl(x) uk,l(x, ω)

− Gim,j(x,x′, ω) cijkl(x) uk(x, ω) nl(x)
]

, (11)

where ni(x) is the unit normal to the surface ∂V of volume V pointing outside V .
The integral over volume V represents the wavefield corresponding to the sources

situated inside V . The integral over the surface ∂V of V represents the wavefield
corresponding to the sources situated outside V , and is zero if all sources are situated
inside V .

For fi(x, ω) = δin δ(x− x′′) δ̂(ω), the above representation theorem (11) yields
um(x′, ω) = Gmn(x′,x′′, ω). Integrating over the whole space, the surface integral in
(11) vanishes and we obtain the reciprocity relation (Červený, 2001, eq. 2.6.5)

Gmn(x′,x′′, ω) = Gnm(x′′,x′, ω) . (12)

4. Zero–order ray–theory approximation

Zero–order ray–theory approximation of a solution of the elastodynamic equation (6)
may be composed of individual arrivals. Hereinafter, we shall consider just one of
these arrivals. The zero–order ray–theory approximation of one arrival in a smooth
heterogeneous anisotropic medium without structural interfaces reads

ui(x, ω) ≃
gi(x)√

̺(x) v(x)L(x)
C exp[iϕ(x)] exp[iω τ(x)] , (13)
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where C is a constant, ̺(x) is the density, τ(x) is the travel time, v(x) is the correspond-
ing phase velocity, ϕ(x) is the phase shift due to caustics, and L(x) is the geometrical
spreading measured along wavefronts.

Hereinafter, notation ≃ means that we have neglected the terms which can asymp-
totically be neglected for ω → +∞.

Geometrical spreading L(x) may be expressed in various forms. At each point x

of the ray, we choose two linearly independent vectors h1(x) and h2(x) situated in the
wavefront tangent plane. We may then parametrize points x′′′ of the wavefront tangent
plane by parameters q1(x) and q2(x) called ray–centred coordinates:

x′′′ = h1(x) q1(x) + h2(x) q2(x) . (14)

For more detailed description of ray–centred coordinates refer to Klimeš (2006).
For the geometrical spreading measured along wavefronts, we use expression (Čer-

vený, 2001, eq. 4.14.39.3)

L(x) =
√

|h1(x)×h2(x)| | det[Q(x)]| , (15)

where |h1×h2| is the norm of the cross product of the contravariant basis vectors h1

and h2 of the ray–centred coordinate system, and Q is the 2×2 matrix of geometrical
spreading in ray–centred coordinates,

QAB(x) =
∂qA(x)

∂γB

, (16)

where γB are the ray parameters.
Note that constant C in (13) depends on the initial conditions and on the choice

of ray parameters γB. Term |h1×h2| is required if the contravariant basis vectors h1

and h2 of the ray–centred coordinate system are not orthonormal. We may choose
vectors h1 and h2 orthonormal and remove |h1×h2| from all equations without a loss
of generality.

Green tensor Gim(x,x′, ω) is the solution of the elastodynamic equation corre-
sponding to a point source at point x′. The rays from a point source can be parametrized

by two components p
(q)
K = ∂τ/∂qK of the slowness vector in ray–centred coordinates.

The special case of matrix (16) of geometrical spreading for γB = p
(q)
B (x′) reads

QAB
2 (x,x′) =

∂qA(x)

∂p
(q)
B (x′)

. (17)

The zero–order ray–theory approximation (13) specified to the Green tensor reads

Gim(x,x′, ω) ≃
gi(x)√

̺(x) v(x)L(x,x′)
Cm(x,x′) exp[iϕ(x,x′)] exp[iω τ(x,x′)] , (18)

where
L(x,x′) =

√
|h1(x)×h2(x)| | det[Q2(x,x′)]| |h1(x′)×h2(x′)| (19)

is the relative geometrical spreading. We have included constant
√
|h1(x′)×h2(x′)| in

definition (19) in order to make the relative geometrical spreading independent of the
choice of ray–centred coordinates and equivalent to the definition of Červený (2001,
eq. 4.14.45).

Quantities ̺(x), v(x), gi(x), τ(x,x′) and L(x,x′) correspond to the ray from point
x′ to point x and are already defined. We just need to determine constants Cm(x,x′)
and phase shift ϕ(x,x′) corresponding to the ray from x′ to x.
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5. Application of the reciprocity relation

We know that the two–point travel time is reciprocal:

τ(x,x′) = τ(x′,x) . (20)

We insert the zero–order ray–theory approximation (18) of Green tensor into the reci-
procity relation (13), and obtain equations

gi(x) Cm(x,x′)√
̺(x) v(x)L(x,x′)

=
gm(x′) Ci(x

′,x)√
̺(x′) v(x′) L(x′,x)

, (21)

and
ϕ(x,x′) = ϕ(x′,x) (mod 2π) . (22)

The decomposition of vector Cm(x,x′) into its norm and a unit vector then must read

Cm(x,x′) = C(x,x′) gm(x′) . (23)

We now need to determine constant C(x,x′) and phase shift ϕ(x,x′) corresponding
to the ray from x′ to x. These quantities can be determined using the representation
theorem.

6. Application of the representation theorem

We assume that point x is situated inside volume V and point x′ outside volume V .
Than the representation theorem (11) applied to the Green tensor reads

Gmn(x,x′, ω) =
1

δ̂(ω)

∮

∂V

dS(x′′′)
[
Gim(x′′′,x, ω) nj(x

′′′) cijkl(x
′′′) Gkn,l(x

′′′,x′, ω)

− Gim,j(x
′′′,x, ω) cijkl(x

′′′) Gkn(x′′′,x′, ω) nl(x
′′′)

]
. (24)

We apply the high–frequency approximations

Gkn,l(x
′′′,x′, ω) ≃ iω Gkn(x′′′,x′, ω) pl(x

′′′,x′) (25)

and
Gkn,l(x

′′′,x, ω) ≃ iω Gkn(x′′′,x, ω) pl(x
′′′,x) (26)

of the spatial derivatives of the Green tensors to (24), and arrive at approximation

Gmn(x,x′, ω) ≃
iω

δ̂(ω)

∮

∂V

dS(x′′′)Gim(x′′′,x, ω) cijkl(x
′′′) Gkn(x′′′,x′, ω)

×
[
nj(x

′′′) pl(x
′′′,x′) − pj(x

′′′,x) nl(x
′′′)

]
. (27)

We separate points x and x′ by a surface coinciding with the wavefront tangent plane
in the vicinity of the ray in which the contributions to integral (27) are not negligible.
We parametrize the wavefront tangent plane by ray–centred coordinates q1 and q2, see
(14). Then

dS(x′′′) = |h1(x
′′)×h2(x

′′)| dq1 dq2 (28)

and
ni(x

′′′) = −v(x′′) pi(x
′′,x′) . (29)

We simultaneously apply approximations

pi(x
′′′,x′) ≃ pi(x

′′,x′) , (30)
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pi(x
′′′,x) ≃ pi(x

′′,x) = −pi(x
′′,x′) , (31)

and
cijkl(x

′′′) ≃ cijkl(x
′′) (32)

to (27), which then reads

Gmn(x,x′, ω) ≃
−2iω

δ̂(ω)

∫∫
dq1dq2 Gim(x′′′,x, ω) cijkl(x

′′) Gkn(x′′′,x′, ω)

×pj(x
′′,x′) pl(x

′′,x′) v(x′′) |h1(x
′′)×h2(x

′′)| , (33)

where x′′′ = x′′′(q1, q2). We insert the paraxial approximation

Gim(x′′′,x′, ω) ≃
gi(x

′′) gm(x′) C(x′′,x′)√
̺(x′′) v(x′′)L(x′′,x′)

exp[iϕ(x′′,x′)] exp[iω τ(x′′′,x′)] (34)

with
τ(x′′′,x′) ≃ τ(x′′,x′) + 1

2qKMKL(x′′,x′)qL (35)

of the Green tensor (18) with (23) into the integrand of (33). In paraxial expansion
(35), we have denoted

MKL =
∂τ(x′′,x′)

∂qA∂qB
. (36)

Considering identity

cijkl(x
′′)gi(x

′′)pj(x
′′,x′)gk(x′′)pl(x

′′,x′) = ̺(x′′) , (37)

relation (33) reads

Gmn(x,x′, ω) ≃
gm(x) gn(x′) C(x′′,x′) C(x′′,x)

δ̂(ω) L(x′′,x) L(x′′,x′)
|h1(x

′′)×h2(x
′′)| I(x,x′′,x′)

× exp{i [ϕ(x′′,x) + ϕ(x′′,x′)]} exp{iω [τ(x′′,x) + τ(x′′,x′)]} , (38)

where

I(x,x′′,x′) = −2iω

∫∫
dq1dq2 exp

{
iω 1

2
qK [MKL(x′′,x) + MKL(x′′,x′)]qL

}
. (39)

We replace Green tensor Gmn(x,x′, ω) in (38) by (18) with (23) and obtain equation

C(x,x′) exp[iϕ(x,x′)]√
̺(x) v(x)L(x,x′)

=
C(x′′,x′) C(x′′,x)

δ̂(ω) L(x′′,x) L(x′′,x′)
|h1(x

′′)×h2(x
′′)| I(x,x′′,x′)

× exp{i [ϕ(x′′,x) + ϕ(x′′,x′)]} . (40)

We calculate integral (39),

I(x,x′′,x′) = −2i
2π exp

{
iπ
4 sgn[MKL(x′′,x) + MKL(x′′,x′)]

}
√

| det[MKL(x′′,x) + MKL(x′′,x′)]|
, (41)

and insert it into relation (40). The complex modulus of the resulting relation reads

C(x,x′)√
̺(x) v(x)L(x,x′)

=
4π

δ̂(ω)

|h1(x
′′)×h2(x

′′)| C(x′′,x′) C(x′′,x)

L(x′′,x) L(x′′,x′)
√
| det[MKL(x′′,x) + MKL(x′′,x′)]|

,

(42)
and the complex argument reads

ϕ(x,x′) = ϕ(x′′,x) + ϕ(x′′,x′) + π
4

{
sgn[MKL(x′′,x) + MKL(x′′,x′)] − 2

}

(mod 2π) . (43)
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7. Propagator matrix of geodesic deviation in ray–centred coordinates

We assume that the basis vectors hK(x′′) of the ray–centred coordinate system along
the ray from x to x′ and along the ray from x′ to x are equal.

We decompose the 4×4 propagator matrix of geodesic deviation in the ray–centred
coordinates into four 2×2 submatrices:

Π(x,x′) =

(
Q1(x,x′) Q2(x,x′)
P1(x,x′) P2(x,x′)

)
. (44)

The definitions of individual 2×2 submatrices read

QAB
1 (x,x′) =

∂qA(x)

∂qB(x′)
, QAB

2 (x,x′) =
∂qA(x)

∂p
(q)
B (x′)

,

PAB
1 (x,x′) =

∂p
(q)
A (x)

∂qB(x′)
, PAB

2 (x,x′) =
∂p

(q)
A (x)

∂p
(q)
B (x′)

. (45)

Note that submatrix Q2(x,x′) has already been defined by (17). We analogously de-
compose and define propagator matrices Π(x′′,x′) and Π(x,x′′).

Because the propagator matrices are symplectic, the inverse matrix to Π(x,x′′)
reads

[Π(x,x′′)]−1 =

(
PT

2 (x,x′′) −QT
2 (x,x′′)

−PT
1 (x,x′′) QT

1 (x,x′′)

)
. (46)

Propagator matrix Π(x′′,x) differs from matrix (46) just by the direction of propagation
along the same ray segment, and can be expressed in form

Π(x′′,x) =

(
PT

2 (x,x′′) QT
2 (x,x′′)

PT
1 (x,x′′) QT

1 (x,x′′)

)
. (47)

The 2×2 matrices (36) of the second–order derivatives of travel time in the ray–centred
coordinates read

M(x′′,x′) = P2(x
′′,x′) [Q2(x

′′,x′)]−1 (48)

and
M(x′′,x) = QT

1 (x,x′′) [QT
2 (x,x′′)]−1 = [Q2(x,x′′)]−1Q1(x,x′′) . (49)

Then

M(x′′,x) + M(x′′,x′)

= [Q2(x,x′′)]−1[Q1(x,x′′)Q2(x
′′,x′) + Q2(x,x′′)P2(x

′′,x′)] [Q2(x
′′,x′)]−1 . (50)

Chain rule
Π(x,x′) = Π(x,x′′)Π(x′′,x′) (51)

for propagator matrices (44) implies relation

Q2(x,x′) = Q1(x,x′′)Q2(x
′′,x′) + Q2(x,x′′)P2(x

′′,x′) . (52)

Relation (50) with (52) reads

M(x′′,x) + M(x′′,x′) = [Q2(x,x′′)]−1Q2(x,x′) [Q2(x
′′,x′)]−1 , (53)

and we see that
∣∣ det[M(x′′,x) + M(x′′,x′)]| =

∣∣ det[Q2(x,x′′)]
∣∣−1∣∣ det[Q2(x,x′)]

∣∣ ∣∣ det[Q2(x
′′,x′)]

∣∣−1
.

(54)
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8. Completing the derivation

We now apply the results of previous Sections 5, 6 and 7 to determining constants
Cm(x,x′) and phase shift ϕ(x,x′) in approximation (18).

8.1. Amplitude coefficient of the Green tensor

We insert relations (19) and (54) into equation (42) and arrive at relation

C(x,x′)√
̺(x) v(x)

=
4π

δ̂(ω)
C(x′′,x′) C(x′′,x) . (55)

We put x′′ = x in (55) and obtain

C(x,x) =
δ̂(ω)

4π

1√
̺(x) v(x)

. (56)

Since C(x′,x) = C(x,x) and C(x,x′) = C(x′,x′), we analogously obtain

C(x,x′) =
δ̂(ω)

4π

1√
̺(x′) v(x′)

. (57)

8.2. Phase shift due to caustics

It is obvious from relation (53) that, for fixed x and x′, sgn[MKL(x′′,x)+MKL(x′′,x′)]
is constant outside caustics indicated by matrix Q2(x,x′′) = QT

2 (x′′,x) or by ma-
trix Q2(x

′′,x′). We know that phase shift ϕ(x′′,x′) changes at caustic indicated by
matrix Q2(x

′′,x′), where matrix MKL(x′′,x′) changes its signature through infinity,
and that phase shift ϕ(x′′,x) changes at caustic indicated by matrix QT

2 (x′′,x), where
matrix MKL(x′′,x) changes its signature through infinity. If one eigenvalue of ma-
trix MKL(x′′,x′) changes its sign from negative to positive through infinity, we define
∆sgn[MKL(x′′,x′)] = +2, and analogously for other changes of its signature due to
the caustics indicated by matrix Q2(x

′′,x′). Phase shift ϕ(x′′,x′) changes at the caus-
tics indicated by matrix Q2(x

′′,x′), where sgn[MKL(x′′,x) + MKL(x′′,x′)] changes by
∆sgn[MKL(x′′,x′)], and analogously for phase shift ϕ(x′′,x). The increment of phase
shift ϕ(x′′,x′) at caustic x′′ is thus

∆ϕ(x′′,x′) = −π
4 ∆sgn[MKL(x′′,x′)] . (58)

This phase–shift rule is identical to the phase–shift rule of Lewis (1965, eq. F.19), and
is equivalent to the phase–shift rules of Bakker (1998) and Klimeš (2010).

8.3. Initial phase shift

We assume that point x is not situated at a caustic corresponding to a point source
at x′. If point x′′ is approaching point x′ against the direction of propagation, matrix
MKL(x′′,x′) is increasing to infinity, and we may neglect finite matrix MKL(x′′,x).
The limit of relation (43) for x′′ → x′ thus yields

ϕ(x,x′) = ϕ(x′,x) + ϕ(x′,x′) + π
4

{
lim

x
′′
→x

′

sgn[MKL(x′′,x′)] − 2
}

(mod 2π) . (59)

Because of the reciprocity (22) of the phase shift, equation (59) yields

ϕ(x′,x′) = π
4

{
2 − lim

x
′′
→x

′

sgn[MKL(x′′,x′)]
}

(mod 2π) . (60)

Note that point x′′ is approaching initial point x′ along the ray against the direction of
propagation.
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9. Conclusions

We insert relation (23) with (57) into approximation (18). The zero–order ray–theory
approximation of the Green tensor in heterogeneous anisotropic elastic media then reads

Gim(x,x′, ω) ≃
δ̂(ω)

4π

gi(x) gm(x′)√
̺(x) v(x) ̺(x′) v(x′)L(x,x′)

exp[iϕ(x,x′)] exp[iω τ(x,x′)] .

(61)
The initial phase shift ϕ(x′,x′) is given by relation (60), and its increment due to
caustics by relation (58). The sign of the phase shift as well as constant δ̂(ω) correspond
to Fourier transform (5).

The generalization of the Green tensor to velocity models with structural interfaces
is straightforward (Červený, 2001, eq. 5.4.17).
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