
Moveout approximation for P waves
in a homogeneous VTI medium
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(ip@ig.cas.cz)

SUMMARY

We propose an alternative expression for the P-wave moveout approximation in a
VTI medium based on the weak-anisotropy approximation. The proposed formulae are
relatively simple, they yield highly accurate results for zero and far offsets. First-order
formulae depend on four parameters, two-way zero-offset traveltime T0 related to the
vertical velocity α, the depthH of the reflector and two weak-anisotropy (WA) parameters
ϵ and δ. Very accurate second-order formula is slightly more complicated and, in addition
to the mentioned parameters, depends on an additional parameter, r, the ratio of the S-
and P-wave velocities. Since the dependence of the moveout on r is very weak, r can be
specified as a typical S- to P-wave velocity ratio and the number of parameters necessary
for the specification of moveout is four too.
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1 INTRODUCTION

Reflection traveltime (moveout) approximations find applications in several branches of
processing of reflection data. There is quite an extensive literature devoted to these ap-
proximations in anisotropic media (Aleixo and Schleicher, 2010; Stovas, 2010; Tsvankin,
2001). In most cases, they are based on the Taylor expansion of the square of reflection
traveltime T in terms of the square of the source-receiver offset x. If only the first and
second terms of the expansion are kept, we speak about normal (hyperbolic) moveout,
broadly used in reflection data processing in isotropic media. If the medium is anisotropic,
the approximation based on the two terms becomes very inaccurate, especially for increas-
ing offset. In fact, the moveout is generally non-hyperbolic in anisotropic media. In order
to accommodate anisotropy, many researchers consider the next term in the Taylor ex-
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pansion (Tsvankin, 2001) or use various multiparametric approximations based partially
on physics and partially on intuition. Lists of many such approximations with illustrations
of their accuracy can be found, for example, in Fowler (2003) or Aleixo and Schleicher
(2010). Quite accurate, but also quite complicated, formula for a homogeneous VTI
medium was proposed recently by Stovas (2010).

In this paper, we propose alternative reflection traveltime formulae for homogeneous
transversely isotropic media with vertical axis of symmetry (VTI media) based on weak-
anisotropy approximation. They differ from approximations known from literature by not
representing a Taylor expansion in offset. The formulae are specified by four parameters:
two-way zero-offset traveltime T0, related to the vertical velocity α, the depth H of the re-
flector and two weak anisotropy (WA) parameters, linearized versions of Thomsen’s (1986)
parameters. If we do not take into account the depth H of the reflector, the proposed
formulae require the same number of parameters as the shifted hyperbola approximation,
by one parameter less than the rational approximation and by two parameters less than
generalized moveout formula, see Stovas (2010). The proposed formulae are relatively
simple, for example, they do not contain square roots. Their complexity increases with
their higher accuracy. In most cases, the number of considered parameters remains four
(including H). Only in case of the second-order formula, an additional parameter r, the
ratio of S- and P-wave velocities, must be considered. However, because of the weak de-
pendence of the moveout formula on r, r can be specified as a typical S- to P-wave velocity
ratio and the number of parameters specifying the moveout formula remains four. The
formulae work well close to the zero-offset and for wide angle reflections. They are less
accurate for intermediate offsets (see the numerical examples), especially for offsets, for
which vectors of ray-velocity and phase-velocity deviate significantly. For zero-offset and
for great offsets the formulae work well because in these directions ray-velocity and phase
velocity vectors tend to be equal because vertical and horizontal propagation in a VTI
medium represents propagation in a longitudinal direction (Pšenč́ık and Gajewski 1998,
Farra and Pšenč́ık 2003), in which both velocities coincide.

The lower-case indices i, j, k, l, ... take the values of 1,2,3, the upper-case indices
I, J,K, L, ... take the values of 1,2. The Einstein summation convention over repeated
indices is used.

2 TRAVELTIME APPROXIMATION

Exact expression for the square of the traveltime of an unconverted reflected wave prop-
agating from the source S to the receiver R, both situated at the same horizontal level in
a homogeneous VTI medium, has the form:

T 2(x) =
4H2 + x2

v2(n)
. (1)

Here x is the offset (distance between S and R) and H is the depth to the reflector.
T = T (x) denotes the traveltime of the considered reflected wave. It is function of the
offset. The symbol v = v(n) denotes the ray velocity, which is a function of the direction
n of the slowness vector p.

42



We can rewrite eq. (1) using the notation common in moveout analysis:

x̄ =
x

2H
, T0 =

2H

α
. (2)

Here α is the vertical velocity and T0 is the two-way zero-offset traveltime. Eq. (1) then
reads:

T 2(x̄) = α2T 2
0

1 + x̄2

v2(n)
. (3)

Equation (3) can be used for unconverted reflected P or S waves. In the following, we are
going to deal with P waves only.

In order to evaluate T 2 from eq.(3), it is necessary to know the direction n of the
slowness vector. It may differ considerably from the direction N of the ray velocity, which
specifies the ray along which (1) was evaluated. The vector N can be determined from
the geometry, which leads to eq.(1). Because we consider a homogeneous VTI medium, it
is not important if N specifies the direction of the downgoing or upgoing part of the ray
of a reflected wave. Let us consider the downgoing part, for which N1 and N3 components
of the vector N are positive. We assume that the axis of symmetry, which is parallel to
the x3-axis, and the vector N are situated in the coordinate plane (x1, x3). They can then
be expressed in terms of the normalized offset x̄ as:

N1 =
x̄√

1 + x̄2
, N3 =

1√
1 + x̄2

. (4)

It is relatively simple to determine the ray-velocity direction N for a given n. It
is, however, quite complicated to determine n for N given. In fact, this problem is
commonly solved in the two-point ray tracing in anisotropic media: in order to construct
a ray between two specified points, one needs to find the slowness vector at one of the
points corresponding to the ray connecting them. The problem simplifies if anisotropy of
the studied medium is weak. Backus (1965) showed that in such a medium, for a given n,
the ray velocity v(n) is equal to the phase velocity c(n) in the first-order approximation
with respect to deviations of anisotropy from isotropy. In other words, the difference of
v(n) and c(n) is of the second order. Pšenč́ık and Vavryčuk (2002) and Farra (2004)
confirmed Backus’ (1965) observation and, in addition, they showed that the difference
between directions of ray-velocity and phase-velocity vectors, N and n, is of the first order.
Neglecting this difference may thus have more important consequences than neglecting
the difference of v(n) and c(n). With respect to this, we consider the following two ways
of evaluation of equation (3):

1) We neglect the difference between vectors n and N;

2) We take the difference between vectors n and N into account.

Before we start to treat the mentioned two cases, let us introduce some relations,
which will be useful in the following considerations. First, let us introduce the equation
for the square of the first-order phase velocity in a general weakly anisotropic medium
(see, e.g., Pšenč́ık and Gajewski, 1998):

c2(n) = B33(n) = aijklnjnlnink . (5)
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The symbol B33 denotes an element of the first-order symmetric matrix B(n), given by
the formula

Bmn(n) = aijklnjnlemienk . (6)

Here aijkl are density-normalized elastic moduli and ni is the i-th component of the
vector n. The symbol eij denotes j-th component of the vector ei. The vectors ei form an
orthonormal triplet, in which e3 = n. Vectors eK can be chosen arbitrarily in the plane
perpendicular to n. In the VTI medium, eq.(5) reduces to (see, e.g., Pšenč́ık and Farra,
2005):

c2(n) = α2[1 + 2(δ − ϵ)n2
1n

2
3 + 2ϵn2

1] . (7)

The parameters ϵ = (A11−α2)/2α2 and δ = (A13+2A55−α2)/α2 are the weak anisotropy
(WA) parameters, which represent linearized Thomsen (1986) parameters. In accord with
(3), we use α2 = A33. The symbols Aβγ with β, γ = 1, 2, ..., 6 denote density-normalized
elastic moduli in the Voigt notation. We can see from eq.(7) that the square of the first-
order P-wave phase velocity c depends on three parameters of the medium α (α2 = A33),
ϵ and δ, and on the direction of the slowness vector n.

In the following, we shall need an estimate of the difference between the vectors n
and N, and an estimate of the change of the square of the phase velocity due to the
replacement of c2(n) by c2(N). These problems were studied by Pšenč́ık and Vavryčuk
(2002) and Farra (2004). They found that the unit vector N in the direction of the ray
velocity can be expressed in terms of n as follows

N(n) = n+∆N , (8)

where
∆N(n) = 2c−2(n)BI3(n)eI(n) . (9)

The fact that BI3 in eq.(9) is the first-order quantity implies that the difference between
vectors n and N is also of the first order. The components of the two vectors can be
therefore interchanged within the first-order approximation everywhere, where they are
multiplied by some first-order quantity. Thus, within the first-order approximation, we
have B(n) = B(N).

All quantities appearing on the right-hand side of eq.(9) have been defined above. Eqs
(8) and (9) simply follow from eq.(22) of Farra (2004) if we take into account that, to
the first order, v(n) = c(n). With (8) and (9) we can seek the relation between c2(n)
and c2(N). As shown in (7), we have available simple expression for c2(n), but we do not
know n. From the configuration leading to eq.(1) we know N, but not n. From (5) and
(8), we simply get

c2(n) = c2(N)−∆c2(N) , (10)

where
∆c2(N) = 4aijkl∆NjNlNiNk . (11)

Inserting ∆N from (9) to (11), we get

∆c2(N) = 8c−2(N)BI3(N)aijkleIjNlNiNk = 8c−2(N)[B2
13(N) +B2

23(N)] . (12)

We can thus write, see (10)

c2(n) = c2(N)− 8c−2(N)[B2
13(N) + B2

23(N)] . (13)
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We end this section by specifying the elements BI3 of the first-order matrix B for the
VTI medium. As Pšenč́ık and Gajewski (1998), we consider the vectors e1 and e2 chosen
so that e2 is perpendicular to the axis of symmetry (vertical) and the vectors ei form a
right-handed orthonormal triplet. Then

B13(n) = α2n1n3[δ − 2(δ − ϵ)n2
1] , B23 = 0 . (14)

Let us note that, as shown by Farra and Pšenč́ık (2003), the term B2
13(N) + B2

23(N)
appearing in (13) does not depend on the choice of the vectors eI .

2.1 Case 1

If we neglect the difference between the vectors n and N, we have, in the first-order
approximation, v2(n) = c2(N), and equation (3) can be rewritten as follows:

T 2(x̄) = α2T 2
0

1 + x̄2

c2(N)
. (15)

From (15), (7) and (4), we get, after some algebra, the first-order expression for T 2:

T 2(x̄) = T 2
0

(1 + x̄2)3

P (x̄)
, (16)

where
P (x̄) = (1 + x̄2)2 + 2δx̄2 + 2ϵx̄4 (17)

is the polynomial containing terms of zero and first order in WA parameters. Separating
the terms emphasizing small and large offsets, this can be rewritten in the following form:

T 2(x̄) = T 2
0 [1 + (1− 2δ)x̄2 + 2x̄4 δ − ϵ+ 2δ2 + (δ − ϵ+ 2δϵ)x̄2

P (x̄)
] . (18)

We can see that eq.(18) contains also some second-order WA terms. Linearization of
eq.(18) leads to a simplified expression, which is, however, very inaccurate at large offsets.

2.2 Case 2

We take now into account the difference between the vectors n and N. We use again
the first-order equation (22) of Farra (2004) relating the ray-velocity and phase-velocity
vectors for a given n:

v(n) = c(n)n+ 2c−1(n)[B13(n)e[1] +B23(n)e[2]] . (19)

From (19) we simply obtain the expression for the square of the first-order ray velocity:

v2(n) = c2(n) + 4c−2(n)[B2
13(n) +B2

23(n)] . (20)

Substitution of c2(n) from (13) to (20) and taking into account (14) yields

v2(n) = c2(N)− 4c−2(N)B2
13(N) . (21)
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Inserting (21) to (3) and taking into account (7) and (4), we get, after some algebra, more
accurate first-order expression for T 2:

T 2(x̄) = T 2
0

(1 + x̄2)3

P (x̄)− 4Q(x̄)P−1(x̄)
. (22)

In (22), the polynomial P (x̄) (containing terms of zero and first order in WA parameters)
is given in (17) and Q(x̄), which is of the second order in WA parameters, is given by:

Q(x̄) = x̄2[2ϵx̄2 + δ(1− x̄2)]2 . (23)

Although (22) is the first-order expression as (16), it is more accurate because it takes
into account different directions of n and N. Let us note that eq.(16) can be obtained
from (22) by neglecting the second-order term Q(x̄).

The accuracy of (22) can be further enhanced by replacing the first-order expression for
the phase velocity squared in (21) by its second-order expression (Farra, 2001). Equation
(21) then reads:

v2(n) = c2(N) + c−2(N)B2
13(N)[(1− r2)−1 − 4] . (24)

In (24), r = β/α, α2 = A33 and β2 = A55. Inserting (24) to (3) and taking into account
(7) and (4), we get, after some algebra, the second-order expression for T 2:

T 2(x̄) = T 2
0

(1 + x̄2)3

P (x̄) + aQ(x̄)P−1(x̄)
. (25)

Here a = (4r2 − 3)/(1− r2).

The approximation (22) depends on four parameters: two-way zero-offset traveltime
T0, related to α, the depth H of the reflector and two WA parameters ϵ and δ. In addition
to these parameters, the approximation (25) depends on an additional parameter r, the
ratio of S- and P-wave velocities.

For estimation of accuracy of the above formulae for T 2, we compare their results with
results obtained from the long-spread moveout equation (Tsvankin, 2001). When we use
the notation (2), the equation reads

T 2(x̄) = T 2
0 [1 +Rx̄2 − 2(ϵT − δT )R

3x̄4

1 + Sx̄2
] . (26)

Here

R = (1 + 2δT )
−1 , S =

2R2(ϵT − δT )

1− V 2
nmoV

−2
hor

, (27)

where ϵT and δT are Thomsen’s (1986) parameters (nonlinearized), Vnmo is the normal
moveout velocity [V 2

nmo = α2(1 + 2δT )] and Vhor is the horizontal velocity [V 2
hor = α2(1 +

2ϵT )].
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3 TESTS OF ACCURACY

Here we test the above formulae, specifically (16), (22), (25) and, for comparison, (26) by
determining their relative errors (T − Tex)/Tex× 100%. By Tex we denote the traveltime
calculated using the package ANRAY (Gajewski and Pšenč́ık, 1990), which we consider
as an exact reference. We test the above formulae on two models used also by Stovas
(2010). One is the weakly anisotropic (anisotropy ∼ 8%) Limestone model (Figs 1-4), the
other is the strongly anisotropic (anisotropy ∼ 26%) Greenhorn shale model (Figs 5-8).

The Limestone model is specified by P- and S-wave velocities α = 3km/s, β =
1.707km/s, ϵ = 0.076 and δ = 0.133. The parameters necessary for the evaluation of
eq.(26) are Vnmo = 3.41 km/s, Vhor = 3.22 km/s, ϵT = 0.076 and δT = 0.146.

The Greenhorn shale model is specified by α = 3.094 km/s, β = 1.51 km/s, ϵ = 0.256
and δ = −0.0523. The parameters necessary for the evaluation of eq.(26) are Vnmo = 2.934
km/s, Vhor = 3.805km/s, ϵT = 0.256 and δT = −0.0505.

In Figure 1, we show the exact (black) and first-order (grey) phase velocity in the
Limestone model as a function of the increasing normalized offset x̄. We can see that
the difference between both velocities is negligible, both curves effectively coincide. By a
close inspection, we could see that the first-order phase velocity is always less than the
exact one. This confirms observation made on the basis of exact and first-order formulae
by, for example, Farra and Pšenč́ık (2003).

The curves of exact ray and phase velocities in Figure 2 behave in a similar way,
the small difference between them being observable. The phase velocity is less than the
ray velocity. Both velocities are equal for the zero offset. This direction represents the
longitudinal direction. Similarly, both curves converge to each other with increasing offset
because horizontal direction represents another longitudinal direction, in which values and
directions of both velocities coincide.

In Figure 3, we can see the variation of the absolute value of the angle between the
ray-velocity and phase-velocity vectors, i.e., between vectors N and n as a function of an
increasing normalized offset x̄. The black curve shows the angle between exact vectors,
the grey curve between first-order approximations of the vectors. We can again see that
the vectors N and n coincide for the zero offset and approach each other for increasing
offset. Most important feature of this figure is the magnitude of the difference between the
two angles for the intermediate offsets. Although anisotropy is weak, the difference makes
nearly 50. This difference is responsible for the worse performance of all approximate
moveout formulae. If neglected, as it is the case of eq.(16), it can lead to further decrease
of accuracy of approximate formulae for the corresponding offsets. This can be seen in
Figure 4.

Figure 4 shows relative traveltime errors of the first-order formula (16) shown by open
circles. In (16), the difference between the directions of ray- and phase-velocity vectors
N and n was neglected. The interval of offsets with increased errors closely correlates
with the interval of offsets with increased deviations of vectors N and n. We can see
that relative errors of the formula (16) are generally small, less than, approximately,
0.28%. They reach these values only in a narrow region of small non-zero offsets. Their
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maximum is approximately comparable with errors of the long-spread moveout formula
(26) shown by black curve. However, for normalized offsets x̄ larger than 1.5, eq.(16)
yields much better results than (26). Relative traveltime errors of the first-order formula
(22), which takes into account different directions of vectors N and n is shown by grey
curve. Maximum errors are now considerably reduced, they are less than 0.15%. These
errors are effectively removed if the second-order equation (25), shown by light grey, is
used. In this case, maximum errors are less than 0.03%.

Let us now test the approximate formulae on the Greenhorn shale model whose
anisotropy cannot be considered weak.

In Figure 5, we can again see the comparison of the exact (black) and first-order (grey)
phase velocities as a function of the normalized offset x̄. We can observe features similar to
Fig.1, but differences of both velocities at intermediate offsets are now clearly visible. In
Figure 6, we can observe substantially larger differences between ray and phase velocities.
Otherwise, the main features of the curves are again preserved. Figure 7 shows that for
anisotropy of approximately 26%, the deviation of vectors N and n may reach about
150. For small offsets, we can observe an interesting effect: change of mutual positions
of vectors N and n at about x̄ = 0.3. The absolute value of the angle between N and n
is zero there. The deviations of the two vectors have again a strong effect on traveltime
errors, especially for small non-zero offsets. We can see it in Figure 8. We can see that
eq.(16), in which we neglected the deviation of N and n, gives errors, whose maximum
values reach 2.5% (open circles). For x̄ > 1, eq. (16) yields worse results than the long-
spread formula (26) shown by black curve. When deviations of N and n are taken into
account, see the grey curve obtained from eq.(22), the maximum errors reduce under 2%.
They further reduce, under about 0.5%, when we use the second-order formula, eq.(25).
This is shown by light grey curve in Fig.8. Note that stronger anisotropy not only leads
to greater maximum errors, but also to the extension of offsets with increased errors.
Nevertheless, the maximum error of 0.5% for anisotropy of about 26% seems to be very
good result.

4 CONCLUSIONS

We propose alternative approximate reflection moveout formulae for a P wave in a ho-
mogeneous VTI medium based on the weak-anisotropy approximation. For large offsets,
the formulae automatically converge to correct values. Generally, they depend on four
parameters of the medium, the vertical P-wave velocity α, the depth H to the reflector
and WA parameters ϵ and δ. Highly accurate second-order formula (25) depends also on
the ratio r of the S- and P-wave velocities, but this dependence is very weak so that r can
be estimated as a typical S- to P-wave velocity ratio, e.g., the Poisson ratio, β2/α2 = 1/3.

As shown by numerical examples, the second-order formula yields highly accurate re-
sults even for strong anisotropy (26% in our case). Stovas’ (2010) generalized moveout
approximation formula yields even better results, but it is rather complicated when com-
pared with the formula (25). The generalized moveout approximation depends on five
parameters while even the second-order formula (25) depends effectively on four param-
eters only.
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Accuracy of the proposed formulae strongly depends on the difference of directions N
and n of the ray- and phase-velocity vectors. For offsets, for which the above two vectors
are significantly different, the formulae may be less accurate.

Generalization for SV waves in homogeneous VTI media is straightforward. Not so
straightforward is the generalization of the presented formulae for TTI media or media
with anisotropy of lower symmetry, and for converted waves. Nevertheless, such general-
izations are possible. We must only expect results of lower accuracy.
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Figure 1: Variations of exact (black) and first-order (grey) P-wave phase-velocities in
the Limestone model (anisotropy ∼ 8%) as a function of the normalized offset x̄ = x/2H.
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Figure 2: Variations of exact ray (black) and phase (grey) P-wave velocities in the
Limestone model (anisotropy ∼ 8%) as a function of the normalized offset x̄ = x/2H.
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Figure 3: Angular difference of exact (black) and first-order (grey) P-wave ray- and
phase-velocity directionsN and n in the Limestone model (anisotropy ∼ 8%) as a function
of the normalized offset x̄ = x/2H.
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Figure 4: Relative traveltime errors in the Limestone model. Traveltime calculated
from the first-order equation (16) ignoring different directions of ray- and phase-velocity
vectors N and n - open circles; the first-order equation (22) taking into account different
directions of N and n - grey; the second-order equation (25) - light grey; the long-spread
moveout equation (26) - black.
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Figure 5: Variations of exact (black) and first-order (grey) P-wave phase-velocities
in the Greenhorn shale model (anisotropy ∼ 26%) as a function of the normalized offset
x̄ = x/2H.
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Figure 6: Variations of exact ray (black) and phase (grey) P-wave velocities in the
Greenhorn shale model (anisotropy ∼ 26%) as a function of the normalized offset x̄ =
x/2H.
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Figure 7: Angular difference of exact (black) and first-order (grey) P-wave ray- and
phase-velocity directions N and n in the Greenhorn shale model (anisotropy ∼ 26%) as
a function of the normalized offset x̄ = x/2H.
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Figure 8: Relative traveltime errors for the Greenhorn shale model. Traveltime cal-
culated from the first-order equation (16) ignoring different directions of ray- and phase-
velocity vectors N and n - open circles; the first-order equation (22) taking into account
different directions of N and n - grey; the second-order equation (25) - light grey; the
long-spread moveout equation (26) - black.
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