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Summary
3D P-wave synthetic seismograms in several 2D isotropic heterogeneous models have been
computed using the first-order ray-based Born approximation and the ray theory. The
Born approximation is computed in a 2D grid, and the background model is a 2D smooth
heterogeneous isotropic velocity model. The seismograms have been computed for the to-
tal number of 37 receivers. The strange wavegroups are observed in the Born seismograms.
The explanation is that these problems are caused by caustics on the direct wave. Three
solutions are proposed. Seismograms corrected using one of these solutions are shown.
Furthermore, particular wavegroups present in the Born seismograms and missing in the
ray-theory seismograms are discussed.
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1 Introduction

According to Červený (2001), the most common approaches to the investigation of seismic
wavefields in complex structures are:
• methods based on direct numerical solutions of the elastodynamic equation, such as

the finite-difference and finite-element methods, and
• approximate high-frequency asymptotic methods.

Let us focus on the ray theory, the representative of the second group. The ray theory has
several important advantages compared, e.g., with finite differences: Large models and
high frequencies do not represent any problem: the wavefield is divided into individual
types of waves and so on. On the other hand, there are also disadvantages: the models
must be smooth (must not change rapidly with respect to the Fresnel zone), the wavefield
does not contain several types of waves (e.g., diffracted waves) and fails in the singular
regions (shadow zones, caustics, etc.) (Brokešová, 2006).

It is desirable to benefit from the advantages of the ray theory and try to fix the
disadvantages mentioned above. One possibility is to use a perturbation method. Per-
turbation methods are described by Červený et al. (2007): We assume that a model, in
which we wish to study wave propagation, differs only little from another model called
the background or reference model. The solution in the perturbed model can then be
sought in the form of a power series in the deviations of the perturbed and background
models. If only the first term of the series is considered, which is often the case, we speak
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of the first-order perturbation expansion.
We use the first-order ray-based Born approximation. We use the ray theory to com-

pute and discretize the appropriate quantities in the computational grid in the background
model. The Born approximation uses these quantities to compute the seismograms.
A large advantage of the ray-based Born approximation is computational efficiency (Jin
et al., 1992). The method is applicable to the larger class of models rather than the ray
theory because it requires the background model, not the original (perturbed) model to
be smooth. Furthermore, the method models diffracted waves, which can carry valuable
information for seismic imaging, see Moser (2012) or Šachl (2011). It is not possible to
compute reflected waves without the diffracted waves by the Born approximation. On the
other hand, it is possible to model the P-P (the incident P wave, the scattered P wave),
P-S, S-P and S-S scattering separately.

In this paper we show that the first-order ray-based Born approximation can also
have problems in some situations, which are connected with caustics. We also provide
a solution of how to get rid of these problems. The motivation to study the effects of
caustics on the ray-based Born approximation could be the papers by Moser (1997) and
Thierry (1999). Moser (1997) studied the performance of the ray-Born inversion. He
concluded that the presence of caustics connected to multipathing degrades the image.
It was suggested to use the first arrival or the most energetic arrival inversion, but the
author’s experience is that the image is improved only to a slight degree. Thierry (1999)
tested the 2D ray-Born migration/inversion algorithm. He experienced similar difficulties
and claimed that in the presence of caustics the full recovery of the amplitude of velocity
perturbation is not possible.

The paper is organized as follows: the theory of the ray-based Born approximation
is given in Section 2. The models where we compute the seismograms are presented in
Section 3. The computational setup is discussed in Section 4. The effects of caustic on
the direct and reflected wave are discussed in Section 5 and Section 6; these two sections
are the key parts of the paper.

2 The ray-based Born approximation in an isotropic medium,
with point-source and high-frequency approximation

Consider an isotropic medium. We insert the expression

cijkl = λδijδkl + µ(δikδjl + δilδjk) (1)

for the components of the elastic tensor in the isotropic solid into the first-order Born
approximation (Červený, 2001, eq. 2.6.18)

∆un(x, ω) =

∫
Ω

[
ω2ui(x

′, ω)∆ρ(x′)Gni(x,x
′, ω)

− uk,l(x′, ω)∆cijkl(x
′)Gni,j(x,x

′, ω)
]
d3x′, (2)

where ω is the circular frequency, ∆cijkl(x
′) and ∆ρ(x′) are the perturbations of elastic

moduli and density, Ω is the domain where these perturbations are non-zero, ui(x
′, ω) is

the solution of the elastodynamic equation for the background medium, Gij(x,x
′, ω) is
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the Green function in the background medium and Gij,k(x,x′, ω) is the spatial deriva-
tive of the Green function with respect to x′k. The Einstein summation convention is
used. Moser (2012) points out that no special requirements regarding the smoothness of
∆ρ(x′) and ∆cijkl(x

′) are necessary. We further use the reciprocity of the Green function
Gij(x,x

′, ω) = Gji(x
′,x, ω) to obtain

∆ui(x, ω) =

∫
Ω

[
ω2∆ρ(x′)Gji(x

′,x, ω)uj(x
′, ω)

−∆λ(x′)Gji,j(x
′,x, ω)uk,k(x′, ω)

−∆µ(x′)Gki,j(x
′,x, ω)(uk,j(x

′, ω) + uj,k(x′, ω))
]
d3x′, (3)

where Gij,k(x′,x, ω) is the spatial derivative of the Green function with respect to x′k.
Note that the reciprocity is applied for numerical reasons only. We assume that a point
source is located at point xs. The wavefield and the Green function in the background
model are computed using the ray theory. Let us decompose the wavefield and the Green
function into amplitudes ai, Aij and phase terms exp(iωτ(x′)), exp(iωT (x′)). We arrive
at the ray-theory approximation

ui(x
′, ω) = ai(x

′) exp(iωτ(x′)), (4)

Gij(x
′,x, ω) = Aij(x

′,x) exp(iωT (x′)), (5)

where τ(x′) is the travel time from xs to x′, i.e. from the point source to an integration
point, and T (x′) is the travel time from x to x′, i.e. from the receiver to an integra-
tion point. We compute the travel time solving the eikonal equation; the amplitude is
determined using dynamic ray tracing, see Červený (2001).

We now apply the high-frequency approximation of the spatial derivatives,

ui,j(x
′, ω) ≈ iωai(x

′)pj(x
′) exp(iωτ(x′)), (6)

Gij,k(x′,x, ω) ≈ iωAij(x
′,x)Pk(x′) exp(iωT (x′)), (7)

where pi(x
′) is the spatial derivative of travel time τ(x′) with respect to x′i and Pi(x

′) is
the spatial derivative of travel time T (x′) with respect to x′i. Gij,k(x′,x, ω) is the spatial
derivative of the Green function with respect to x′k.

Using equations (4), (5), (6) and (7), equation (3) becomes

∆ui(x, ω) = ω2

∫
Ω

exp[iω(τ(x′) + T (x′))]

[∆ρ(x′)Aji(x
′,x)aj(x

′)

+ ∆λ(x′)Aji(x
′,x)Pj(x

′)ak(x′)pk(x′)

+ ∆µ(x′)Aki(x
′,x)Pj(x

′)(ak(x′)pj(x
′) + aj(x

′)pk(x′))]d3x′. (8)

If the source and receiver are situated in symmetry plane S of a 2D model, we can
compute the Born approximation numerically in a 2D slice and perform the remaining one-
dimensional integration analytically in the direction perpendicular to the slice, applying
the method of stationary phase. Let us introduce a Cartesian coordinate system in which
x1 is the horizontal coordinate, x3 is the vertical coordinate and x2 = 0 for all points in
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the slice. The equation in the acoustic medium is derived in Červený and Coppoli (1992).
The case of the elastic medium is treated in Foss et al. (2005) and Bansal and Sen (2010);
the resulting equation has the form

∆ui(x, ω) = ω2

∫
S

√
π

ω(τ,22(x′) + T,22(x′))
(1 + i) exp[iω(τ(x′) + T (x′))]

[∆ρ(x′)Aji(x
′,x)aj(x

′)

+ ∆λ(x′)Aji(x
′,x)Pj(x

′)ak(x′)pk(x′)

+ ∆µ(x′)Aki(x
′,x)Pj(x

′)(ak(x′)pj(x
′) + aj(x

′)pk(x′))]d3x′, (9)

where τ,22(x′) and T,22(x′) are the second spatial derivatives of travel time τ(x′) and travel
time T (x′) in the direction of the x2 axis at point x′, respectively. Thus, we can compute
the Born approximation in the same way as in a 3D model, the only modification being
the multiplication of the integrand in the Born integral by term

Icor =

√
π

ω(τ,22(x′) + T,22(x′))
(1 + i). (10)

The validity of the ray-based Born approximation relies upon the validity of the Born
approximation and the ray theory. The Born approximation requires the first-order scat-
tered wave to be much smaller than the background wave. This condition can be satisfied
using a low frequency or a small scatterer. On the other hand, if we construct a realistic
background in order to obtain a small scatterer, the ray theory may be invalid (Moser,
1997). The ray theory requires the wavelength to be much smaller than the characteristic
length of the background model. Additionally, the ray theory is not valid in caustics or
in their vicinity (Červený, 2001).

3 Perturbed models and the background model

The models where we would like to obtain seismograms (perturbed models) are referred
to as P1-j-10%, j ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15}. The models are constructed from model
P1I and smooth model P1. The background model is a smooth model P1. Model P1I
and smooth model P1 were both created by Bulant and Martakis (2011). All mo-
dels in this paper are 2D isotropic heterogeneous velocity models situated in rectangle
(0 km, 47.3 km)× (0 km, 6 km).

P-wave velocity vp in smooth model P1 is depicted in Figure 1. S-wave velocity
vs = vp/

√
3. Density ρ = 1000 kg/m3 everywhere. Figure 1 of the P-wave velocities is

created using a grid which contains 4730× 600 grid points. The lowest and largest values
of the discretized P-wave velocities are (vp)min ≈ 4.64 km/s and (vp)max ≈ 5.93 km/s
respectively.

Model P1I is quite complicated because it is composed of 16 blocks separated by
smooth interfaces. The largest absolute value of the difference between P-wave velocity
in model P1I and P-wave velocity in smooth model P1 is |∆vp|max ≈ 0.21 km/s.

The density in the perturbed models is the same as in the background model and equal
to ρ = 1000 kg/m3 everywhere. S-wave velocity vs = vp√

3
. The P-wave velocity in each

model is the same as in the background model except for one domain. The P-wave velocity
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Figure 1: P-wave velocity in smooth model P1. The P-wave velocity ranges from 4.64 km/s to 5.93 km/s.
The colour changes from blue to green and red as the P-wave velocity grows.

in each of these domains is equal to the P-wave velocity in the background model plus 10%
of the perturbation between the background model and model P1I. The perturbation is
reduced to 10% in order to satisfy the sufficiently small differences between the perturbed
and the background model. This is the requirement of the Born approximation. The P-
wave velocity perturbation between model P1-j-10% and the background model is depicted
for each model P1-j-10%, j ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15}, in Figures 2 to 12.

Figure 2: P-wave velocity perturbation between model P1-1-10% and the background model. Positive
perturbations are red, negative perturbations are green. Zero perturbations are yellow .

Figure 3: P-wave velocity perturbation between model P1-2-10% and the background model. Positive
perturbations are red, negative perturbations are green. Zero perturbations are yellow .

Figure 4: P-wave velocity perturbation between model P1-3-10% and the background model. Positive
perturbations are red, negative perturbations are green. Zero perturbations are yellow .

Figure 5: P-wave velocity perturbation between model P1-4-10% and the background model. Positive
perturbations are red, negative perturbations are green. Zero perturbations are yellow .
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Figure 6: P-wave velocity perturbation between model P1-5-10% and the background model. Positive
perturbations are red, negative perturbations are green. Zero perturbations are yellow .

Figure 7: P-wave velocity perturbation between model P1-6-10% and the background model. Positive
perturbations are red, negative perturbations are green. Zero perturbations are yellow .

Figure 8: P-wave velocity perturbation between model P1-7-10% and the background model. Positive
perturbations are red, negative perturbations are green. Zero perturbations are yellow .

Figure 9: P-wave velocity perturbation between model P1-8-10% and the background model. Positive
perturbations are red, negative perturbations are green. Zero perturbations are yellow .

Figure 10: P-wave velocity perturbation between model P1-9-10% and the background model. Positive
perturbations are red, negative perturbations are green and blue. Zero perturbations are yellow .

Figure 11: P-wave velocity perturbation between model P1-10-10% and the background model. Positive
perturbations are red, negative perturbations are green and blue. Zero perturbations are yellow .

Figure 12: P-wave velocity perturbation between model P1-15-10% and the background model. Positive
perturbations are red, negative perturbations are green. Zero perturbations are yellow .
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4 Computation of the seismograms

We use the following Cartesian coordinate system: x1 is the horizontal coordinate, in-
creasing from the left to the right; x3 is the vertical coordinate, increasing downwards.
The origin of the coordinate system is in the upper left corner of the model.

Motivated by Bulant and Martakis (2011), we chose 37 receivers placed at the upper
model boundary. The first receiver has the horizontal coordinate x1 = 16 km. The spacing
between the receivers is 0.5 km, therefore, the last receiver has the horizontal coordinate
x1 = 34 km.

The explosive source is also placed at the upper model boundary, x1 = 25 km, x3 =
0 km. Its position is the same as the position of the 19th receiver. The source time
function is a Gabor signal with a prevailing frequency of 10 Hz, filtered by a frequency
filter which is non-zero only for frequencies f , 1 Hz < f < 20 Hz. There is a cosine
tapering for 1 Hz < f < 2 Hz and 19 Hz < f < 20 Hz while for 2 Hz < f < 19 Hz the
filter is equal to one. Only P waves are considered.

The rays are shot into the whole lower half-plane. We use the basic system of rays
containing 121 rays, which covers the straight angle into which the rays are shot.

The Born seismograms are computed using these settings and compared with the ray-
theory seismograms. The detailed analysis of the seismograms is not presented in this
paper, but can be found in Šachl (2012). Here we focus just on the effects caused by the
caustics.

5 Caustics on the direct wave

We start with the seismograms computed in models P1-5-10% and P1-6-10%. The seis-
mograms are depicted in Figure 20 and Figure 22, respectively. Some strange wavegroups
can be observed in the computed seismograms. They are marked in ghost green in Figu-
res 20 and 22. Let us have several close receivers. If the strange wavegroups are present
in the seismograms computed for these receivers, they usually differ significantly among
themselves, see Figure 20. The amplitude is different, the phase can change, sometimes
the signals are not at all similar. On the other hand, the wavegroups present in several
close receivers have similar travel times. Our explanation is that these wavegroups are
caused by the caustics on the direct wave.

The study of the strange wavegroups in seismograms computed in model P1-6-10%
seems to be promising, because there are just two strange wavegroups with similar travel
times in the seismograms. These strange wavegroups appear for the receivers with hori-
zontal coordinates x1 = 33.0 k m and x1 = 33.5 km. The Born approximation is computed
using the grid, in which the required quantities are discretized. The computation of the
quantities at the gridpoints of the computational grid is the following: the model volume
is decomposed into ray cells on the direct wave using controlled initial-value ray tracing,
and the interpolation within these ray cells follows. The algorithm is described by Bu-
lant (1999). Thus, it is desirable to check the rays and the ray coverage of Block 6. The
Born approximation uses both the Green function from the source and from the receiver.
The Green function from the source is the same for all receivers, therefore, if there are any
problems, they should be caused by the Green function from the receiver. The Figures
13, 14, 15, 16 depict the ray coverage of Block 6 in shooting rays from the receivers at
x1 = 32.5 km, x1 = 33.0 km, x1 = 33.5 km, x1 = 34.0 km.
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Figure 13: Coverage of the background model with the rays in shooting from the position of the
receiver at x1 = 32.5 km (the 4th receiver from the right). The receivers are placed at the upper model
boundary and their positions are marked by abscissae. The points containing non-zero P-wave velocity
perturbations between model P1-6-10% and smooth background model P1 are plotted in blue.

Figure 14: Coverage of the background model with the rays in shooting from the position of the receiver
at x1 = 33.0 km (the 3rd receiver from the right).

Figure 15: Coverage of the background model with the rays in shooting from the position of the receiver
at x1 = 33.5 km (the 2nd receiver from the right).

Figure 16: Coverage of the background model with the rays in shooting from the position of the receiver
at x1 = 34.0 km (the 1st receiver from the right).

The intersection of rays can be seen in Figure 14 and Figure 15. These figures cor-
respond to the receivers with the strange wavegroups in the seismograms. The places
where two neighbouring rays intersect are called caustics. Caustics often cause difficulties
in modelling wavefields. They produce infinite ray amplitudes, phase shifts of signals
and triplications of the wavefront. Caustics usually appear in wavefields propagating in
heterogeneous media or media with curved interfaces (Vavryčuk, 2003).

We mostly worry about the infinite ray amplitudes. This problem is typical for the
ray theory and is caused by the vanishing ray Jacobian (and its square root called the
geometrical spreading), see Červený (2001, sec. 3.10.5). We perform the following exper-
iment:

First, we find the “largest values” of the discretized amplitudes of the Green function.
We analyze component G11 of Green function Gij. The Green function is discretized in
the grid with grid intervals of 0.005 km. The “largest values” of the amplitudes are one
order larger than the typical values of the amplitude. The gridpoints with the “largest
values” are marked in Figures 17 and 18 by red crosses. Note that only the gridpoints
which lie in Block 6 are shown.
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Figure 17: Positions of the “largest values” of the amplitudes of component G11 of the Green function
marked by red crosses. The rays are shot in the background model from the position of the receiver at
x1 = 33.0 km (the 3rd receiver from the right). The receivers are placed at the upper model boundary and
their positions are marked by abscissae. The points containing non-zero P-wave velocity perturbations
between model P1-6-10% and smooth background model P1 are plotted in blue.

Figure 18: Positions of the “largest values” of the amplitudes of component G11 of the Green function
marked by red crosses. The rays are shot in the background model from the position of the receiver at
x1 = 33.5 km (the 2nd receiver from the right).

The red crosses in Figures 17 and 18 correspond to the position of the caustic. Do not
be mislead by the positions of the intersections of thicker lines created by several near
rays. They have a slightly different meaning. The caustic is located closer to the source.

Second, we compute the Born seismograms for the receivers at x1 = 33.0 km and
x1 = 33.5 km using 2 small grids. The first small grid is the grid for the receiver at
x1 = 33.0 km; it contains the gridpoints marked by the red crosses in Figure 17. The
second small grid is the grid for the receiver at x1 = 33.5 km; it contains the gridpoints
marked by the red crosses in Figure 18. The original grid is a regular rectangular grid
which covers Block 6 (not the whole model). The second small grid is composed of only
approximately 2 % of the original gridpoints. The first small grid is even smaller; it
contains about 0.3 % of the original gridpoints. The newly computed Born seismograms
are compared with the original seismograms in Figure 19. The seismograms are ten times
enlarged to see the details better.

Figure 19 shows that the Born seismograms computed using the small grids do not
contain the waves diffracted from the edges of Block 6. This is not surprising, as neither
of the two small grids covers these edges. However, the strange wavegroups do not differ
too much. There are some differences, but they can be caused by the diffractions at the
boundaries of the small grid.

5.1 Proposed solutions of the problem

We have at least 3 possibilities how to solve the observed problem:
1. Use a smoother background model, where caustics are not present.
2. Dampen the “largest amplitudes” choosing an appropriate cut-off.
3. Use Gaussian wave packets, which do not suffer from infinite amplitudes in the caustics.
The first possibility could work in some models. However, excessively violent smoothing
is not desirable, because the Born approximation requires the background model to be
close to the perturbed model.
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Figure 19: The Born seismograms computed in model P1-6-10% using the grid which covers the whole
of Block 6 (black) and using the small grids which contain the gridpoints with the “largest values” of
the amplitude of component G11 of the Green function (red). The seismograms are computed for the
receivers at x1 = 33.5 km and at x1 = 34.0 km.

The second possibility is easy to accomplish, but the value of the cut-off depends on
the user.

The third possibility sounds interesting and it is probably the only correct solution.
Unfortunately, it requires new approach to the computation of the Born approximation,
new programs, etc..

5.2 Corrected seismograms

We tested the second possibility. The seismograms computed in models P1-5-10% and
P1-6-10% using appropriate cut-offs are depicted in Figures 21 and 23, respectively. The
strange wavegroups in the seismograms computed in model P1-5-10% are still visible,
but their amplitudes are much smaller now. Even better results are obtained for the
corrected seismograms computed in model P1-6-10%. The strange wavegroups virtually
disappeared from the seismograms computed in model P1-6-10%.

The discussed problem is observed also in the seismograms computed in models P1-1-
10%, P1-2-10%, P1-3-10%, P1-4-10%, P1-10-10%, P1-15-10%. The coresponding seismo-
grams computed using no amplitude cut-off and using the amplitude cut-offs are depicted
in Figures 24 and 25, Figures 26 and 27, Figures 28 and 29, Figures 30 and 31, Figu-
res 32 and 33, Figures 34 and 35, respectively.

The problem of this method is that the choice of the value of the cut-off is not unique.
We choose the value in order to preserve the genuine waves and dampen the strange
waves. The genuine waves are the waves reflected from the interfaces of the block and the
diffracted waves, see also Šachl (2012).
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Figure 20: Born (red) and ray-theory (black) seismograms computed in model P1-5-10% using no

amplitude cut-off. The strange wavegroups in the Born seismograms marked in ghost green are caused
by the caustics on the direct wave.
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Figure 21: Born (red) and ray-theory (black) seismograms computed in model P1-5-10% using the

amplitude cut-offs. The strange wavegroups in the Born seismograms marked in ghost green are damped.
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Figure 22: Born (red) and ray-theory (black) seismograms computed in model P1-6-10% using no

amplitude cut-off. The strange wavegroups in the Born seismograms marked in ghost green are caused
by the caustics on the direct wave.
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Figure 23: Born (red) and ray-theory (black) seismograms computed in model P1-6-10% using the

amplitude cut-offs. The strange wavegroups in the Born seismograms marked in ghost green virtually
disappeared.
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Figure 24: Born (red) and ray-theory (black) seismograms computed in model P1-1-10% using no
amplitude cut-off.
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Figure 25: Born (red) and ray-theory (black) seismograms computed in model P1-1-10% using the
amplitude cut-offs.
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Figure 26: Born (red) and ray-theory (black) seismograms computed in model P1-2-10% using no
amplitude cut-off.
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Figure 27: Born (red) and ray-theory (black) seismograms computed in model P1-2-10% using the
amplitude cut-offs.
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Figure 28: Born (red) and ray-theory (black) seismograms computed in model P1-3-10% using no
amplitude cut-off.
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Figure 29: Born (red) and ray-theory (black) seismograms computed in model P1-3-10% using the
amplitude cut-offs.
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Figure 30: Born (red) and ray-theory (black) seismograms computed in model P1-4-10% using no
amplitude cut-off.
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Figure 31: Born (red) and ray-theory (black) seismograms computed in model P1-4-10% using the
amplitude cut-offs.
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Figure 32: Born (red) and ray-theory (black) seismograms computed in model P1-10-10% using no
amplitude cut-off.
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Figure 33: Born (red) and ray-theory (black) seismograms computed in model P1-10-10% using the
amplitude cut-offs.
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Figure 34: Born (red) and ray-theory (black) seismograms computed in model P1-15-10% using no
amplitude cut-off.
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Figure 35: Born (red) and ray-theory (black) seismograms computed in model P1-15-10% using the
amplitude cut-offs.
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6 Caustics on the reflected wave

So far, we have discussed the problems caused by caustics on the direct wave. However,
another effect caused by caustics is still contained in the computed seismograms. The
caustics can be present on the reflected wave. The ray-theory seismograms could have
significant problems if the receiver is situated at the caustic, or in its close vicinity. The
seismogram could be greatly magnified. On the other hand, the Born approximation may
not suffer from this problem, because it is computed in the background model where no
caustics on the direct wave are present. Moreover, the ray-theory seismograms are zero
for the receivers located in the shadow zone. The Born seismograms are non-zero. We
observe the diffractions from the caustic.

We present seven examples and comment three of them.
The first example contains the seismograms computed in model P1-5-10%, see Fi-

gure 38. We have already seen these seismograms in Figure 21, but now we focus on
the strong wavegroup, highlighted in light yellow in the seismograms in Figure 38 for the
receiver at x1 = 23 km. The ray diagram of the rays reflected at the interface reached first
is depicted in Figure 36. The ray diagram of the rays transmitted through the interface
reached first and reflected at the interface reached second is depicted in Figure 37. There
are two arrivals for the receivers beween x1 = 16 km and x1 = 23 km in Figure 36. This is
the consequence of the caustic. We would probably observe a triplication if the interface
did not end suddenly. The ray-theory seismograms depicted in Figure 38 are zero for
the receivers between x1 = 23.5 km and x1 = 28.5 km. The Born seismograms smoothly
continue to the shadow zone, and the amplitudes of the wavegroups gradually decrease.

The second example contains seismograms computed in model P1-6-10%, see Fi-
gure 41. These seismograms have also been already presented, see Figure 23. But now,
we are interested in the strong wavegroup, highlighted in light yellow in the seismograms
in Figure 41 for the receiver at x1 = 28.5 km. The ray diagrams, which are depicted in Fi-
gure 39 and Figure 40, are not very complex. We do not see a triplication for the receiver
at x1 = 28.5 km, but it is probably just the consequence of too short an interface. Notice
two things. Firstly, the ray-theory seismogram is zero for the receiver at x1 = 28 km,
but the Born seismogram is non-zero. Secondly, the Born seismogram is smaller than the
ray theory seismogram for the receiver at x1 = 28.5 km, but it matches the ray-theory
seismogram for the receiver at x1 = 29 km. It seems that the ray theory has problems
due to caustics for the receiver at x1 = 28.5 km, but the Born approximation works well.

In the third example, we present the seismograms computed in model P1-8-10%, see
Figure 44. Figures 42 and 43 depict the ray diagrams. In this case, both ray diagrams show
triplications of rays. The triplication in Figure 42 is visible between the 18th and 28th
receiver, i.e. for the receivers between x1 = 24.5 km and x1 = 29.5 km. The triplication
in Figure 43 is visible between the 17th and 23rd receiver, i.e. for the receivers between
x1 = 24 km and x1 = 27 km. The first and last receiver, where we observe the triplication
in Figure 42 and Figure 43, are highlighted in the seismograms in light blue-green and
light yellow, respectively. A continuation of the Born seismograms to the shadow zone is
again clearly visible.
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Figure 36: P-wave rays shot from the point source, reflected at the interface reached first and arriving
at the profile of receivers in model P1-5-10%.

Figure 37: P-wave rays shot from the point source, transmitted through the interface reached first,
reflected at the interface reached second and arriving at the profile of receivers in model P1-5-10%.
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Figure 38: Born (red) and ray-theory (black) seismograms computed in model P1-5-10% using amplitude
cut-offs. It seems that the amplitude of the wavegroup in the ray-theory seismograms, highlighted in
light yellow , is magnified due to the presence of caustics. The amplitude of the same wavegroup in the

Born seismograms should be correct, and we observe a continuation to the shadow zone with the waves
diffracted from the caustic.
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Figure 39: P-wave rays shot from the point source, reflected at the interface reached first and arriving
at the profile of receivers in model P1-6-10%.

Figure 40: P-wave rays shot from the point source, transmitted through the interface reached first,
reflected at the interface reached second and arriving at the profile of receivers in model P1-6-10%.
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Figure 41: Born (red) and ray-theory (black) seismograms computed in model P1-6-10% using amplitude
cut-offs. It seems that the amplitude of the wavegroups in the ray-theory seismograms, highlighted in
light yellow , is magnified due to the presence of caustics. The amplitude of the same wavegroup in the

Born seismograms should be correct and we observe a continuation to the shadow zone with the waves
diffracted from the caustic.
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Figure 42: P-wave rays shot from the point source, reflected at the interface reached first and arriving
at the profile of receivers in model P1-8-10%.

Figure 43: P-wave rays shot from the point source, transmitted through the interface reached first,
reflected at the interface reached second and arriving at the profile of receivers in model P1-8-10%.
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Figure 44: Born (red) and ray-theory (black) seismograms computed in model P1-8-10% using amplitude

cut-offs. The wavegroups in the Born seismograms, highlighted in light yellow and light blue-green ,
continue to the shadow zones with the waves diffracted from the caustics.
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Figure 45: P-wave rays shot from the point source, reflected at the interface reached first and arriving
at the profile of receivers in model P1-2-10%.
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Figure 46: Born (red) and ray-theory (black) seismograms computed in model P1-2-10% using amplitude

cut-offs. The wavegroups in the Born seismograms, highlighted in light yellow , continue to the shadow
zone with the waves diffracted from the caustic.
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Figure 47: P-wave rays shot from the point source, reflected at the interface reached first and arriving
at the profile of receivers in model P1-7-10%.

Figure 48: P-wave rays shot from the point source, transmitted through the interface reached first,
reflected at the interface reached second and arriving at the profile of receivers in model P1-7-10%.
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Figure 49: Born (red) and ray-theory (black) seismograms computed in model P1-7-10% using amplitude

cut-offs. The wavegroups in the Born seismograms, highlighted in light yellow and light blue-green ,
continue to the shadow zones with the waves diffracted from the caustics.
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Figure 50: P-wave rays shot from the point source, reflected at the interface reached first and arriving
at the profile of receivers in model P1-9-10%.

Figure 51: P-wave rays shot from the point source, transmitted through the interface reached first,
reflected at the interface reached second and arriving at the profile of receivers in model P1-9-10%.
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Figure 52: Born (red) and ray-theory (black) seismograms computed in model P1-9-10% using amplitude

cut-offs. The wavegroups in the Born seismograms, highlighted in light yellow and light blue-green ,
continue to the shadow zones with the waves diffracted from the caustics.
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Figure 53: P-wave rays shot from the point source, reflected at the interface reached first and arriving
at the profile of receivers in model P1-10-10%.

Figure 54: P-wave rays shot from the point source, transmitted through the interface reached first,
reflected at the interface reached second and arriving at the profile of receivers in model P1-10-10%.
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Figure 55: Born (red) and ray-theory (black) seismograms computed in model P1-10-10% using am-

plitude cut-offs. The wavegroups in the Born seismograms, highlighted in light yellow , continue to the
shadow zone with the waves diffracted from the caustic.
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7 Concluding remarks

The ray-based Born approximation overcomes some difficulties of the ray theory such
as the required smoothness of the model. Unfortunately, also this method has certain
problems. One such problem is the generation of strange waves, if caustics are present in
the background model. We propose and test a solution of the problem, which consists in
cutting the largest amplitudes of the Green function discretized in the computational grid.
However, the solution is not fully satisfactory and other possibilities should be sought in
the future.

The caustics can also be present on the reflected wave in the perturbed model. The
Born approximation is computed in the background model, but the diffractions from the
caustics can be observed in the Born seismograms. These diffracted wavegroups are visible
also for the receivers in the shadow zone, where the ray-theory seismogram is zero.
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Brokešová, J. (2006): Asymptotic ray method in seismology: A tutorial. Matfyzpress,
Prague.

Bulant, P. (1999): Two-point ray-tracing and controlled initial-value ray-tracing in 3-D
heterogeneous block structures. J. Seism. Explor., 8, 57-75.

Bulant, P., Martakis, N. (2011): Constructing model P1I for reflection studies. In:
Seismic Waves in Complex 3–D Structures, Report 21, Dep. Geophys., Charles Univ.,
Prague, pp. 17-26, online at “http://sw3d.cz”.
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Šachl, L. (2011): 2D computations of 3D synthetic seismograms using the ray-based Born
approximation in heterogeneous background model P1. In: Seismic Waves in Complex
3–D Structures, Report 21, Dep. Geophys., Charles Univ., Prague, pp. 99-114, online
at “http://sw3d.cz”.
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