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SUMMARY

We propose alternative expressions for the P- and SV-wave moveout formulae in VTI
media based on the weak-anisotropy approximation. Our moveout formulae represent
expansions with respect to small parameters, which are related to deviations of anisotropy
from isotropy. First-order P-wave formulae depend on four parameters, two-way zero-
offset traveltime T0 related to the vertical velocity α0, the depth H of the single horizontal
reflector and two weak-anisotropy (WA) parameters ϵW and δW . The first-order SV-wave
formulae depend on three parameters, again on T0 now related to the SV-wave vertical
velocity β0, depth H and the WA version of parameter σ. The second-order formulae
are slightly more complicated. Both P- and SV-wave formulae depend on an additional
parameter r, the ratio of the SV- and P-wave velocities. The SV-wave formula depends,
in addition, on the WA parameter ϵW . Since the dependence of the moveout formulae on
r is very weak, r can be specified as a typical SV- to P-wave velocity ratio and the number
of parameters necessary to specify the second-order formulae is four for both waves. The
formulae are relatively simple, highly accurate around zero offset and yield exact long-
offset asymptote. Their accuracy at intermediate offsets depends on deviations of ray-
and phase-velocity directions. The proposed formulae are also applicable in cases when
the reflected ray is situated in a plane of symmetry of an orthorhombic medium, whose
another symmetry plane is horizontal. This also includes any HTI medium with axis of
symmetry in the plane containing the reflected ray.

1 INTRODUCTION

Reflection traveltime (moveout) approximations find applications in several branches of
processing of reflection data. There is quite an extensive literature devoted to these
approximations in anisotropic media. For recent examples devoted to VTI (transverse
isotropy with vertical axis of symmetry) media, see, e.g., Aleixo and Schleicher (2010),
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Stovas (2010), or most recently Golikov and Stovas (2012). Many additional references can
be found in these publications. For further references see Tsvankin (2001) or, e.g., Fomel
and Stovas (2010). In most cases, the approximations are based on the Taylor expansion
of the square of reflection traveltime T in terms of the square of the source-receiver offset
x. If only the first and second terms of the expansion are kept, we speak about normal
(hyperbolic) moveout, broadly used in reflection data processing in isotropic media. If
the medium is anisotropic, the approximation based on the two terms becomes very inac-
curate, especially for increasing offset. In fact, the moveout is generally non-hyperbolic in
anisotropic media (if we do not consider elliptical anisotropy). In order to accommodate
anisotropy, many researchers consider the next term in the Taylor expansion (Tsvankin,
2001) or use various multiparametric approximations based partially on physics and par-
tially on intuition. A list of many such approximations for VTI media with illustrations
of their accuracy can be found, for example, in Fowler (2003) or Aleixo and Schleicher
(2010), see also Golikov and Stovas (2012). Quite accurate, but also quite complicated,
formulae for homogeneous VTI media were proposed recently by Stovas (2010).

In this paper, we propose alternative reflection traveltime formulae for homogeneous
VTI media, based on the weak-anisotropy (WA) approximation. Rather than expanding
T 2 into a Taylor series in terms of x2, we expand T 2 in terms of the WA parameters,
which characterize the deviation of anisotropy from isotropy. Our first-order formulae are
specified by four parameters for P-waves: the two-way zero-offset traveltime T0, related
to the vertical velocity α0, the depth H of the single horizontal reflector and two weak
anisotropy (WA) parameters, linearized versions of Thomsen’s (1986) parameters. In case
of SV-waves, the first-order formulae are specified by three parameters: the two-way zero-
offset traveltime T0, related to the vertical velocity β0, the depth H of the reflector and
one WA parameter. In case of the second-order formulae, the WA parameter ϵW must
additionally be considered in case of the SV-wave and an additional parameter r, the ratio
of SV- to P-wave vertical velocity, must be considered for both waves. Because of the weak
dependence of the moveout formulae on r, r can be specified as a typical SV- to P-wave
velocity ratio and the number of parameters specifying the second-order P-wave moveout
formula remains the same as in the first-order case and increases by one in the SV-wave
case. If we do not take into account the depth H of the reflector, the proposed formulae
for a P wave and the second-order formula for an SV-wave require the same number of
parameters as the shifted hyperbola approximation (Malovichko, 1978, and his followers),
by one parameter less than the rational approximation and by two parameters less than the
generalized moveout formula, see Stovas (2010). The first-order SV-wave formulae require
one parameter less. Note that some of the parameters are directly the WA parameters
characterizing the structure or parameters related to them. The proposed formulae are
relatively simple, for example, they do not contain square roots. Their complexity slightly
increases with their order. An important property of the proposed formulae is that they
work well close to the zero-offset and that they have exact long-offset asymptote. They
may be less accurate for intermediate offsets (see the numerical examples), especially for
offsets, for which ray- and phase-velocity vectors deviate significantly. In this way, the
formulae behave like the generalized approximation of Fomel and Stovas (2010), see their
tests in Golikov and Stovas (2012). Besides VTI media, the proposed formulae are also
applicable to transversely isotropic media with horizontal axis of symmetry (HTI) or to
orthorhombic media, in which the reflector coincides with one symmetry plane and the
reflected ray is situated in another one.
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In the following, the lower-case indices i, j, k, l, ... take the values of 1,2,3, the upper-
case indices I, J,K, L, ... take the values of 1,2. The Einstein summation convention over
repeated indices is used.

2 TRAVELTIME FORMULA

Let us consider the Cartesian coordinate system xi, whose x3-axis is vertical and axes x1

and x2 are horizontal. We consider a homogeneous transversely isotropic medium with
vertical axis of symmetry (VTI medium). The exact expression for the square of the
traveltime of an unconverted reflected wave propagating in such a medium from source S
to the reflector and then to receiver R, with both points S and R being situated at the
same horizontal level, has then the form:

T 2(x) =
4H2 + x2

v2(n)
. (1)

Here x is the offset (distance between S and R; along the x1-axis) and H is the depth of
the horizontal reflector. T = T (x) denotes the traveltime of the considered unconverted
reflected wave; it is the function of the offset. Symbol v = v(n) denotes the ray (sometimes
called group) velocity, which is a function of the direction n of slowness vector p (or phase-
velocity vector c(n)). In the considered configuration v(n) is the same along the down-
and up-going part of the reflected ray.

We can express equation 1 using the notation common in moveout analysis:

x̄ =
x

2H
, T0 =

2H

V
. (2)

Here x̄ is the normalized offset, V is the vertical phase velocity, V = α0 in case of P-waves
and V = β0 in case of SV-waves. It is equal to ray velocity in the vertical direction since
it is the symmetry-axis direction. Symbol T0 denotes the two-way zero-offset traveltime.
Using 2, equation 1 can be expressed as:

T 2(x̄) = V 2T 2
0

1 + x̄2

v2(n)
. (3)

In order to evaluate T 2 from equation 3, it is necessary to know the direction n of the
slowness vector. It may differ considerably from the direction N of the ray velocity, which
specifies the direction of the ray. We assume vector N to be situated in the coordinate
plane (x1, x3) and to have positive N1 component. Vector N can be easily determined
from the geometry, which leads to equation 1. Because we consider a homogeneous VTI
medium, it is not important if N specifies the direction of the downgoing or upgoing part
of the ray of a reflected wave. Let us consider the downgoing part, for which the N1 and
N3 components of vector N are positive. They can then be expressed in terms of the
normalized offset x̄ as:

N1 =
x̄√

1 + x̄2
, N3 =

1√
1 + x̄2

. (4)
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It is relatively simple to determine the ray-velocity direction N corresponding to a
given slowness-vector direction n. It is, however, quite complicated to determine n
for given N. In fact, this problem is commonly addressed in two-point ray tracing in
anisotropic media: in order to construct a ray between two specified points, one needs
to find, at one of the points, the slowness vector corresponding to the ray connecting
them. The problem simplifies if the anisotropy of the studied medium can be considered
weak. Backus (1965) showed that in such a medium, for a given n, the ray velocity v(n)
is equal to the phase velocity c(n) in the first-order approximation with respect to the
deviations of anisotropy from isotropy. In other words, the difference of v(n) and c(n)
is of the second order. Remember that the direction N of ray velocity generally differs
from the direction n of the phase velocity. Pšenč́ık and Vavryčuk (2002) and Farra (2004)
confirmed Backus’ (1965) observation and, in addition, they presented formulae relating
N and n and showed that the difference between the directions of the ray-velocity and
phase-velocity vectors, N and n, is of the first order. Neglecting this difference may thus
have more important consequences than neglecting the difference of v(n) and c(n). To
illustrate this, we perform two different tests to evaluate equation 3:

1) We ignore the difference between vectors n and N;

2) We take the difference between vectors n and N into account.

All the above equations and discussions hold for both P and SV unconverted reflected
waves. We concentrate now on P-waves. SV-waves will be treated later.

3 P-WAVE MOVEOUT

Let us start with introducing some relations, which are useful in the following considera-
tions. First, let us introduce the equation for the square of the first-order P-wave phase
velocity in a general weakly anisotropic medium (see, e.g., Pšenč́ık and Gajewski, 1998):

c2(n) = B33(n) = aijklnjnlnink . (5)

Here aijkl are density-normalized elastic moduli. Symbol B33 denotes an element of the
symmetric matrix B(n), whose diagonal elements contain zero- and first-order terms
and off-diagonal elements contain only first-order terms with respect to the deviations of
anisotropy from isotropy. The elements of matrix B(n) are given by the formula (Farra
and Pšenč́ık, 2003):

Bmn(n) = aijklnjnlemienk . (6)

The symbol ni denotes the i-th component of the vector n specifying the direction of the
slowness vector. Symbol eij denotes the j-th component of vector ei. Vectors ei form an
orthonormal triplet, in which e3 = n. Vector e3 represents the zero-order approximation
of the P-wave polarization vector. Vectors eK can be chosen arbitrarily in the plane
perpendicular to n. In the VTI medium, specifically in the (x1, x3) plane, equation 5
reduces to (see, e.g., Pšenč́ık and Farra, 2005):

c2(n) = α2
0[1 + 2(δW − ϵW )n2

1n
2
3 + 2ϵWn2

1] . (7)
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Parameters ϵW = (A11−α2
0)/2α

2
0 and δW = (A13+2A55−α2

0)/α
2
0 are the weak anisotropy

(WA) parameters, which represent linearized Thomsen’s (1986) parameters. For the defi-
nition of the WA parameters, see Farra and Pšenč́ık (2003). For α2

0 = A33 used in 7, ϵW is
identical to Thomsen’s ϵ and δW is linearized Thomsen’s δ. Symbols Aβγ (β, γ = 1, 2, ..., 6)
denote density-normalized elastic moduli in the Voigt notation. We can see from equation
7 that the square of the first-order P-wave phase velocity c depends on three parameters
of the medium: α0, ϵW and δW , and on the direction of slowness vector n.

In the following, we shall need an estimate of the difference between vectors n and N,
and an estimate of the change of the square of the phase velocity due to the replacement
of c2(n) by c2(N). These problems were studied by Pšenč́ık and Vavryčuk (2002) and
Farra (2004). In the following, we prefer to use the formulae of Farra (2004) because they
are more accurate than those of Pšenč́ık and Vavryčuk (2002). For P-waves in a weakly
anisotropic medium of arbitrary symmetry, the difference ∆N between the vectors N and
n,

∆N(n) = N(n)− n (8)

is
∆N(n) = 2c−2(n)BI3(n)eI(n) . (9)

The fact that the right-hand side of equation 9 is of the first order implies that the
difference between vectors n and N is also of the first order. The components of the two
vectors can, therefore, be interchanged within the first-order approximation everywhere,
where they are multiplied by some first-order quantity. Thus, within the first-order ap-
proximation, we have, for example, B(n) = B(N). We use this property broadly in the
following analysis. Note that taking into account 5, it implies, for example, c2(n) = c2(N).

All quantities appearing on the right-hand side of equation 9 have been defined above.
Equations 8 and 9 simply follow from equation (22) of Farra (2004) if we take into account
that, to the first order, v(n) = c(n). With 8 and 9 we can seek the relation between c2(n)
and c2(N). As shown in 7, a simple expression for c2(n) is available, but n is unknown.
From the configuration leading to equation 1 we know N, but not n. From 5 and 8, we
simply get

c2(n) = c2(N)−∆c2(N) , (10)

where
∆c2(N) = 4aijkl∆NjNlNiNk (11)

is of second order. Inserting ∆N given in 9 to 11 and using 6, we get

∆c2(N) = 8c−2(N)BI3(N)aijkleIjNlNiNk = 8c−2(N)[B2
13(N) +B2

23(N)] . (12)

Hence, see 10,
c2(n) = c2(N)− 8c−2(N)[B2

13(N) + B2
23(N)] . (13)

It remains to determine the expression for the square of the ray velocity v2(n) appear-
ing in 3 in terms of c2(n). We use the first-order equation (22) of Farra (2004) relating
the ray-velocity v(n) and phase-velocity c(n) = c(n)n vectors for a given n:

v(n) = c(n)n+ 2c−1(n)[B13(n)e1(n) +B23(n)e2(n)] . (14)
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From 14 we simply obtain the expression for the square of the first-order ray velocity:

v2(n) = c2(n) + 4c−2(n)[B2
13(n) +B2

23(n)] . (15)

We can now insert c2(n) from 13 into 15 to obtain the final expression for the square of
the first-order ray velocity:

v2(n) = c2(N)− 4c−2(N)[B2
13(N) +B2

23(N)] . (16)

The accuracy of the moveout formulae can be further enhanced by replacing the first-
order expression for the phase velocity squared in 16 by its second-order expression (Farra,
2001). Generalized equation 16 then yields the expression for the square of the second-
order ray velocity:

v2(n) = c2(N) + c−2(N)[B2
13(N) +B2

23(N)][(1− r2)−1 − 4] . (17)

In 17, r = β0/α0, α
2
0 = A33 and β2

0 = A55.

Let us emphasize that all the above formulae, except 7, hold for weak anisotropy of
arbitrary symmetry.

Finally, let us specify the elements BI3 of the matrix B, which appear in 16 or 17,
for the VTI medium. As Pšenč́ık and Gajewski (1998), we consider vectors e1 and e2
chosen so that e2 is perpendicular to plane (x1, x3) and vectors ei form a right-handed
orthonormal triplet. In the studied plane (x1, x3):

B13(N) = α2
0N1N3[δW − 2(δW − ϵW )N2

1 ] , B23 = 0 . (18)

Note that, as shown by Farra and Pšenč́ık (2003), the term B2
13(N)+B2

23(N) appearing in
13, 15, 16 and 17 does not depend on the choice of vectors eI . Also note that equation 16
can serve as an alternative three-parametric expression of the ray velocity (Fomel, 2003).

3.1 Case 1

If we specify V = α0 and ignore the difference between vectors n and N, then in the
first-order approximation, v2(n) = c2(N), and equation 3 can be expressed as follows:

T 2(x̄) = α2
0T

2
0

1 + x̄2

c2(N)
. (19)

Inserting 7 and 4 into 19, after some algebra yields, the first-order expression for T 2:

T 2(x̄) = T 2
0

(1 + x̄2)3

P (x̄)
. (20)

Here
P (x̄) = (1 + x̄2)2 + 2δW x̄2 + 2ϵW x̄4 (21)

is polynomial containing terms of zero and first order in the WA parameters. For zero
offset, equation 20 yields correctly the square of the two-way zero-offset traveltime T0.
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For long offsets, limx→∞ T 2(x)/x2 yields the correct value c−2
H , where c2H = α2

0(1+ 2ϵW ) is
the phase velocity in the horizontal direction, see 7.

Separating the terms emphasizing short and long offsets, 20 can be expressed in the
following form:

T 2(x̄) = T 2
0 [1 + (1− 2δW )x̄2 + 2x̄4 δW − ϵW + 2δ2W + (δW − ϵW + 2δW ϵW )x̄2

P (x̄)
] . (22)

We can see that equation 22 contains also some second-order terms. Neglecting them
leads to a simplified expression:

T 2(x̄) = T 2
0 [1 + (1− 2δW )x̄2 + 2x̄4 (δW − ϵW )

1 + x̄2
] . (23)

This expression is identical (if we neglect differences between δW and δ) with the weak-
anisotropy approximation of the nonhyperbolic moveout (4.20) of Tsvankin (2001). It is
obvious that the omission of the second-order terms in equation 22 reduces the accuracy
of the already inaccurate formula (the difference between vectors n and N was neglected)
for intermediate and long offsets. Indeed, the limx→∞ T 2(x)/x2 for 23 yields α−2

0 (1−2ϵW ),
which represents the first-order approximation of the inverse square of the exact horizontal
phase velocity. It differs from the exact value, indicating incorrect asymptotical behaviour
of the formula 23 for long offsets, especially when ϵW is larger.

3.2 Case 2

We now take into account the difference between vectors n and N, specifically we take
into account equation 16. Inserting 16 into 3 and considering 7 and 4, after some algebra
yields a more accurate first-order expression for T 2 than 20:

T 2(x̄) = T 2
0

(1 + x̄2)3P (x̄)

P 2(x̄)−Q2(x̄)
. (24)

In 24, polynomial P (x̄) is given in 21 and Q(x̄) reads:

Q(x̄) = 2x̄[2ϵW x̄2 + δW (1− x̄2)] . (25)

Polynomial P (x̄) contains terms of zero and first order in the WA parameters while
polynomial Q(x̄) contains only terms of the first order. Thus if we wish to ignore the
second-order terms in 24, Q2(x̄) must be neglected with respect to P 2(x̄), and 24 reduces
to 20. Although 24 is a first-order expression like 20, it is more accurate because it takes
into account the different directions of n and N, see 9, and the difference between the ray
and phase velocities squared, see 15.

The accuracy of 24 can be further increased by using the second-order expression for
the phase velocity 17, inserting it into 3 and taking into account 7 and 4. Then, after
some algebra, we obtain the second-order expression for T 2:

T 2(x̄) = T 2
0

(1 + x̄2)3P (x̄)

P 2(x̄) + aQ2(x̄)
. (26)
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Here a = (r2 − 3/4)/(1− r2).

Approximation 24 depends on four parameters: two-way zero-offset traveltime T0,
related to α0, the depth H of the reflector and two WA parameters ϵW and δW . In
addition to these parameters, approximation 26 depends on an additional parameter r,
the ratio of the S- and P-wave velocities. For realistic values of r, the value of a varies only
little (for r between 0.1 and 0.5, the value of a varies between -0.75 and -0.65). Numerical
tests with 26 confirm that the dependence of 26 on r is very weak and thus r need not be
considered as a free parameter. Both equations 24 and 26 display correct asymptotical
behaviour for long offsets.

It is important to emphasize that the above moveout formulae yield the NMO velocity
vWNMO whose accuracy depends on the accuracy of the corresponding formula. For exam-
ple, equation 26 yields (vWNMO)

2 = α2
0(1− 2δW − 4aδ2W )−1, where a = (r2 − 3/4)/(1− r2)

again. It is easy to show that it represents the second-order approximation of the square
of the exact NMO velocity v2NMO = α2

0(1 + 2δ), where δ is the non-linearized Thomsen’s
parameter. In a similar way we can obtain first-order approximations of NMO velocity
from formulae 20 and 24. Coefficients of x4 in the Taylor expansion of T 2(x) in x2 ob-
tained from equations 20 and 24 are the first-order and from equation 26 the second-order
approximations of the exact coefficient.

The formulae derived in this section hold also for the case of the reflected ray situated in
a vertical symmetry plane of an HTI medium or in one symmetry plane of an orthorhombic
medium and the reflector in another. Only the appropriate parameters ϵW and δW must
be considered. It is worth mentioning that the formulae could also be generalized to the
case of a reflection from an interface underlying an HTI medium with arbitrarily oriented
axis of symmetry, or from an interface coinciding with a symmetry plane of a medium of
orthorhombic (applicability is more general than with the presented formulae; in this case
rays of the reflected wave do not need to be situated in one of the remaining symmetry
planes) or even monoclinic symmetry.

4 SV-WAVE MOVEOUT

Without loss of generality, we consider only one of the two S-waves and denote it S1. The
equation for the square of its first-order phase velocity in a weakly anisotropic medium of
arbitrary symmetry reads (see, e.g., Farra, 2004):

c2(n) = B11(n) = aijklnjnle1ie1k . (27)

Here, B11(n) is an element of matrix B, see 6. Symbols e1i denote the components of
unit vector e1 from the orthonormal triplet e1, e2 and n. Vectors e1 and e2 are chosen
so that the element B12(n) of the matrix B is zero, i.e., B12(n) = 0. Vector e1 then also
represents the zero-order approximation of the S1-wave polarization vector.

The difference ∆N between the vectorsN and n of the S1 wave in a weakly anisotropic
medium of arbitrary symmetry reads:

∆N(n) = c−2(n)[
(
aijklnle1ie1ke1j −B13(n)

)
e1(n) + (aijklnle1ie1ke2j)e2(n)] . (28)
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This simply follows from the results derived by Farra (2004).

In the VTI medium, for vector e1(n) situated in the (x1, x3) plane, e1(n) = (n3, 0,−n1),
the expression for the square of the first-order S1-wave phase velocity 27 reduces to the
equation for the square of the SV-wave phase velocity:

c2(n) = β2
0(1 + 2σWn2

1n
2
3) , (29)

see, e.g., Farra (2001). Symbol σW is analogous to Tsvankin’s (2001) parameter σ, here,
however, specified by the WA parameters:

σW = r−2(ϵW − δW ) . (30)

As before r = β0/α0, α
2
0 = A33, β

2
0 = A55 and ϵW and δW are linearized Thomsen’s (1986)

parameters. Equation 28 can be expressed as:

∆N(n) = 2c−2(n)EI(n)eI(n) . (31)

For the VTI medium, the first-order terms EI(n) in 31 read:

E1(n) = β2
0σWn1n3(n

2
3 − n2

1) , E2(n) = 0 . (32)

Expression 31 is needed for the estimate of the effect on c2(n) of the replacement of n
by N. By inserting n = N −∆N into 29, we get c2(n) = c2(N) −∆c2(N), see equation
10. From 29 we then get

∆c2(N) = 4β2
0σWN1N3(N3∆N1 +N1∆N3) , (33)

which is the second-order quantity. If we insert ∆N from 31 into 33, and the result to
equation 10, we arrive at:

c2(n) = c2(N)− 8c−2(N)[E2
1(N) + E2

2(N)] . (34)

This is an equation for the square of the SV-wave phase velocity in VTI media, analogous
to equation 13 for P-waves in weakly anisotropic media of arbitrary symmetry.

It remains to express the square of the SV-wave ray-velocity vector v(n) appearing in 3
in terms of c2(n). We can use equation 24 of Farra (2004), relating ray- and phase-velocity
vectors for a given n, and specify it for a VTI medium:

v(n) = c(n)n+ 2c−1(n)[E1(n)e1(n) + E2(n)e2(n)] . (35)

Squaring the vector v(n) given in 35, we obtain

v2(n) = c2(n) + 4c−2(n)[E2
1(n) + E2

2(n)] . (36)

Substitution of c2(n) from 34 to 36 yields the final result:

v2(n) = c2(N)− 4c−2(N)[E2
1(N) + E2

2(N)] . (37)

Note that 37 with EI(N) given in 32 represents a two-parametric expression for the ray
velocity.
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The accuracy of the SV-wave moveout formulae can further be enhanced by replacing
the first-order expression for the SV-wave phase velocity squared in 37 by its second-order
expression (Farra, 2001). Considering E2(n) = 0 as given in the second equation of 32,
generalized equation 37 becomes:

v2(n) = c2(N)− c−2(N)[
r2

1− r2
F 2(N) + 4E2

1(N)] . (38)

Here
F (N) = α2

0N1N3[ϵW − r2σW (N2
3 −N2

1 )] . (39)

4.1 Case 1

If we specify V = β0 and ignore the difference between vectors n and N, then in the
first-order approximation, v2(n) = c2(N), and equation 3 can be expressed as:

T 2(x̄) = β2
0T

2
0

(1 + x̄2)3

c2(N)
. (40)

Inserting 29 and 4 into 40 yields, after some simple algebra:

T 2(x̄) = T 2
0

(1 + x̄2)3

P (x̄)
. (41)

Here
P (x̄) = (1 + x̄2)2 + 2σW x̄2 (42)

is polynomial, which contains terms of zero and first order in the WA parameters. Equa-
tion 41 yields correctly T 2

0 for the zero offset. For long offsets, it has the correct asymptote
related to phase velocity cH = β0 in the horizontal direction.

Separating the terms emphasizing short and long offsets, we can modify 41 to the
following form:

T 2(x̄) = T 2
0 [1 + (1− 2σW )x̄2 + 2σW x̄41 + 2σW + x̄2

P (x̄)
] . (43)

Neglecting second-order terms in 43 leads to a simplified expression

T 2(x̄) = T 2
0 [1 + (1− 2σW )x̄2 +

2σW x̄4

1 + x̄2
] (44)

with reduced accuracy, especially for intermediate offsets. For large offsets, its accuracy,
however, improves since the formula yields exact value β−2 of the inverse square of the
phase velocity in the horizontal direction indicating a correct infinite-offset asymptote.
Note that this was not the case with a similar equation for the P-wave moveout, 23.
In case of P-waves, 23 yields only approximate value of the inverse square of the exact
horizontal phase velocity.
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4.2 Case 2

We now take into account the difference between vectors n and N, specifically we take
into account equation 37. Inserting 37 into 3 and considering 29 and 4, after some algebra
yields a more accurate first-order expression for SV-wave T 2 than 41:

T 2(x̄) = T 2
0

(1 + x̄2)3P (x̄)

P 2(x̄)−Q2(x̄)
. (45)

In 45, polynomial P (x̄) is given in 42 and Q(x̄) is given by:

Q(x̄) = 2σW x̄(1− x̄2) . (46)

Polynomial P (x̄) contains zero- and first-order terms with respect to the WA parameters,
while Q(x̄) contains, as in the case of P-waves, only a first-order term. If we wish to
ignore the second-order terms in 45, Q2(x̄) must be neglected with respect to P 2(x̄),
and 45 reduces to 41. Although 45 is a first-order expression like 41, it is more accurate
because it takes into account the different directions of n and N, see 31, and the difference
between the ray and phase velocities squared, see 36.

The accuracy of 45 can be increased by using the second-order expression for the
square of the phase velocity 38. Inserting it into 3 and taking into account 29 and 4, after
some algebra yields the second-order expression for T 2:

T 2(x̄) = T 2
0

(1 + x̄2)3P (x̄)

P 2(x̄)−Q2(x̄)− (1− r2)−1R2(x̄)
. (47)

Here R(x̄) reads:
R(x̄) = r−1x̄[2ϵW x̄2 + δW (1− x̄2)] . (48)

We can see that R(x̄) contains only first-order terms with respect to the WA parameters.
Thus if we wish to neglect the second-order terms in 47, equation 47 reduces to 41 again.
It remains to note that both equations 45 and 47 have correct infinite-offset asymptotes.

As in the case of P-waves, the formulae derived in this section hold also for the case
of the reflected ray situated in the vertical symmetry plane of an HTI medium or in
one symmetry plane of an orthorhombic medium and the reflector in another, if the
appropriate σW parameter is considered.

Let us also emphasize that the SV-wave moveout formulae presented in this paper yield
approximate NMO velocities. Their accuracy depends on the accuracy of the formula,
from which is the given NMO velocity derived. For example, equation 47 yields (vWNMO)

2 =
β2
0 [1 − 2σW + 4σ2

W + δ2W r−2(1 − r2)−1]−1. As in the P-wave case, it is easy to show that
this is the second-order approximation of the square of the exact NMO velocity v2NMO =
β2
0(1+2σ), where σ is specified by non-linearized Thomsen’s parameters. NMO velocities

derived from formulae 41 and 45 represent first-order approximations of the exact NMO
velocity. Coefficients of x4 in the Taylor expansion of T 2(x) in x2 obtained from equations
41 and 45 are the first-order and from equation 47 the second-order approximations of
the exact coefficient.
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5 REFERENCE MOVEOUT FORMULAE

To estimate the accuracy of the above formulae for T 2, we compare their results with the
results of commonly used formulae. In case of P-waves, we use the long-spread moveout
equation (Tsvankin, 2001, equation 4.23, see also Alkhalifah and Tsvankin, 1995) derived
in the quasi-acoustic approximation, i.e., assuming β0 = 0. With the notation 2, the
long-spread moveout equation for P-waves reads

T 2(x̄) = T 2
0

(
1 +Rδx̄

2 − 2ηR2
δ x̄

4

1 + SRδx̄2

)
. (49)

Here

Rδ = (1 + 2δ)−1 , S = Rδ(1 + 2ϵ) , (50)

where ϵ and δ are Thomsen’s (1986) parameters (non-linearized), η = Rδ(ϵ − δ), see
Tsvankin (2001).

In case of SV-waves, we use the rational approximation of Alkhalifah and Tsvankin
(1995), see Stovas (2010, equation 4). The rational approximation for SV-waves with the
notation 2 has the form:

T 2(x̄) = T 2
0

(
1 +Rσx̄

2 +
AR2

σx̄
4

1 +BRσx̄2

)
. (51)

The coefficients A, B and Rσ in 51 read:

A = 2σB , B = R2
σ

1− r2 + 2δ

1− r2
, Rσ = (1 + 2σ)−1 , (52)

where σ = r−2(ϵ− δ) and r2 = β2
0/α

2
0. The meaning of all other variables is the same as

in 49.

6 TESTS OF ACCURACY

Here we test the proposed formulae, specifically 20, 24, 26, and the reference formula 49
for P-waves and 41, 45, 47 and the reference formula 51 for SV-waves. We check the
relative errors (T − Tex)/Tex× 100%, where Tex denotes the traveltime calculated using
the package ANRAY (Gajewski and Pšenč́ık, 1990), which we consider exact. We test the
above formulae on models with varying anisotropy strength, used by Stovas (2010) and
Tsvankin (2001). The anisotropy strength is defined as 2(Vmax − Vmin)/(Vmax + Vmin)×
100%. The models considered are the Limestone model, whose P-wave and SV-wave
anisotropy are ∼ 8% and ∼ 5%, respectively, the Greenhorn shale model with a P-wave
anisotropy of ∼ 26%, the Mesaverde mudshale and the Hard shale models, both with an
SV-wave anisotropy of ∼ 12%. The parameters of all four models are given in Table 1.

In Figure 1, we show the P-wave results for the weakly anisotropic Limestone model.
We start with the comparison of the exact (black) and first-order (red) P-wave phase
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Model α0(km/s) β0(km/s) ǫW δW ǫ δ

Limestone 3.0 1.707 0.076 0.133 0.076 0.146
Greenhorn shale 3.094 1.51 0.256 -0.0523 0.256 -0.0505

Mesaverde mudshale 4.53 2.703 0.034 0.184 0.034 0.211
Hard shale 3.0 1.914 0.252 0.034 0.252 0.035

Table 1: Parameters of the models used. α0 and β0 - P- and S-wave velocities, ϵW and
δW - WA parameters, ϵ and δ - Thomsen’s parameters.

velocities as functions of the normalized offset x̄ in Figure 1a. We can see that the first-
order phase-velocity formula works very well, the difference between both velocities is
negligible, and both curves effectively coincide. On close inspection, we can see that the
first-order phase velocity is always less than the exact one. This confirms the theoretical
observation made, for example, by Farra and Pšenč́ık (2003). Note that the first-order
and exact velocities are equal for the zero offset, which in the VTI medium corresponds
to the longitudinal direction, in which P-wave is purely longitudinal and S-wave purely
transverse (Helbig, 1993). Similarly, both velocities converge to each other with increasing
offset because the horizontal direction represents another longitudinal direction, in which
they coincide. The curves of the exact (black) P-wave ray and phase (red) velocities in
Figure 1b behave in a similar way. Here, however, a small difference between them is
observable. The phase velocity is less than the ray velocity. In Figure 1c, we can see the
variation of the angle between the ray- and phase-velocity vectors, i.e. between vectors N
and n, as a function of the normalized offset x̄. The black curve shows the angle between
the exact vectors, the red curve between their first-order approximations. Both curves
are effectively identical. We can see that vectors N and n coincide for the zero offset and
approach each other for offsets increasing to infinity, which is the consequence of the fact
that B13 in 18 is zero for N1 = 0 or N3 = 0, and thus ∆N(n) in 9 is zero too. The most
important feature of this figure is the magnitude of the angle between the two vectors for
small offsets. Although the anisotropy is weak, the maximum difference between N and
n is nearly 5◦. This difference is responsible for the worse performance of the first-order
moveout formulae for short offsets. If neglected, as in the case of equation 20, it can lead
to a further decrease of the accuracy of the approximate formulae for the corresponding
offsets. This can be seen in Figure 1d.

Figure 1d shows the relative P-wave traveltime errors. The noisy character of the
curves is caused by the two-point ray tracing procedure used for the reference traveltime
computations in the package ANRAY. The approximate traveltime curves are smooth.
The red curve represents the relative P-wave traveltime errors of the first-order formula
20. In 20, the difference between the directions of the ray- and phase-velocity vectors N
and n was ignored. The interval of offsets with increased errors closely correlates with
the interval of offsets with increased deviations of vectors N and n in Figure 1c. Outside
the interval, we can see that the relative errors of formula 20 are negligible. They reach
their maximum of approximately 0.28% in a very narrow region of small non-zero offsets.
Their maximum is approximately comparable with the errors of the long-spread moveout
formula 49 shown as the black curve. However, for normalized offsets x̄ > 1.5, equation
20 yields much better results than 49. The relative traveltime errors of the first-order
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Figure 1: P-wave moveout in Limestone model, anisotropy ∼ 8%. Variation with the
normalized offset x̄ = x/2H of: a) Exact (black) and first-order (red) phase-velocities.
b) Exact ray (black) and phase (red) velocities. c) Angular difference of exact (black)
and first-order (red) ray- and phase-velocity directions N and n. d) Relative traveltime
errors with traveltime calculated from the first-order equation 20 ignoring difference in
directions of vectors N and n - red; from the first-order equation 24 taking into account
different directions ofN and n - green; the second-order equation 26 - blue; the long-spread
moveout equation 49 - black.
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formula 24, which takes into account the different directions of vectors N and n, are
shown as the green curve. The maximum error is now considerably reduced, being less
than 0.15%. The errors are effectively removed if the second-order equation 26, shown as
the blue curve, is used. In this case, the maximum error is less than 0.03%.

Let us now test the approximate formulae on the Greenhorn shale model whose
anisotropy is of about 26%, which cannot be considered weak.

In Figure 2a, we can see the comparison of the exact (black) and first-order (red)
phase velocities as functions of the normalized offset x̄. We can observe features similar
to Figure 1a, but the differences of both velocities for intermediate offsets are now clearly
visible. This means that due to strong anisotropy, the formula for the first-order phase
velocity does not perform as well as it did in the previous case. In Figure 2b, we can
observe substantially larger differences between the ray (black) and phase (red) velocities.
Otherwise, the main features of the curves (coincidence for zero offset and mutual conver-
gence for increasing offsets) are again preserved. Figure 2c shows that for an anisotropy of
approximately 26%, the deviation of vectors N and n may reach 16◦. We can also see that
the interval of larger deviations of N and n extends to longer offsets. For small offsets,
we can observe an interesting effect: change of mutual positions of vectors N and n at
about x̄ = 0.3. It is consequence of the differences in angular variation of phase and ray
velocities. Remember that vectorsN and n are perpendicular to slowness and ray-velocity
surfaces, respectively. The angle between N and n is zero at x̄ ∼ 0.3; it corresponds to
one of the longitudinal directions. For this offset, the term δW −2(δW − ϵW )N2

1 appearing
in B13 in equation 18 is zero. We can see that the value of this specific offset depends on
the values of ϵW and δW . Consequently, ∆N(n) = 0, see 9 and also v2(n) = c2(n), see 15.
The deviations of the two vectors have again strong effect on traveltime errors, especially
for intermediate offsets. We can see this in Figure 2d. We can see that equation 20, in
which we neglected the deviation of N and n, yields errors, which can reach 2.5% (red).
For x̄ > 1, equation 20 yields worse results than the long-spread formula 49 shown as the
black curve. When the deviations of N and n are taken into account, see the green curve
obtained from equation 24, the maximum error reduces below 2%. It further reduces,
below about 0.5%, when we use the second-order equation 26. It is shown by blue curve
in Figure 2d. Note that stronger anisotropy not only leads to greater maximum errors,
but also to the extension of offsets with increased errors. This is caused by considerable
deviations of vectors N and n, which extend to longer offsets (compare Figures 2c and 1c).
The deviations of vectors N and n are caused by the large value of term 2ϵW − δW , which
plays a dominant role for long offsets, see equations 9 and 18. In the case of the Limestone
model, this term is almost zero while for the Greenhorn shale model it is rather large,
see Table 1. In any case, the maximum error of 0.5% in equation 26 for an anisotropy of
about 26% seems to be a very good result.

In Figure 3, we again show the results for the Limestone model, but this time for
the SV-wave. Although the anisotropy is weak (∼ 5%), we can observe in Figure 3a, in
contrast to Figure 1a, that for normalized offsets x̄ ∼ 1, the exact (black) and first-order
(red) SV-wave phase velocity curves differ slightly indicating that the first-order SV-wave
phase-velocity formula yields slightly inaccurate results in this region. We can see that, in
contrast to the P-wave case, the first-order phase velocity is always larger than the exact
one. This agrees with the theoretical observation of Farra and Pšenč́ık (2003). Due to
the existence of the longitudinal directions, the velocity curves in Figure 3a coincide for

95



3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4.0
0 1 2 3 4 5 6 7 8

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4.0
0 1 2 3 4 5 6 7 8

first order 

exact a)

x/(2H)
ph

as
e 

ve
lo

ci
ty

 (
km

/s
)

−2

0

2

4

6

8

10

12

14

16

18

20
0 1 2 3 4 5 6 7 8

−2

0

2

4

6

8

10

12

14

16

18

20
0 1 2 3 4 5 6 7 8

exact
first order

x/(2H)

c)

ra
y 

−
 p

ha
se

 a
ng

le
 (

de
g)

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4.0
0 1 2 3 4 5 6 7 8

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4.0
0 1 2 3 4 5 6 7 8

phase velocity 

ray velocity b)

x/(2H)

ve
lo

ci
ty

 (
km

/s
)

−3

−2

−1

0

1

2

3
0 1 2 3 4 5 6 7 8

−3

−2

−1

0

1

2

3
0 1 2 3 4 5 6 7 8

−3

−2

−1

0

1

2

3
0 1 2 3 4 5 6 7 8

−3

−2

−1

0

1

2

3
0 1 2 3 4 5 6 7 8

x/(2H)

d)

T
ra

ve
lti

m
e 

er
ro

r 
in

 %
 

Figure 2: P-wave moveout in Greenhorn shale model, anisotropy ∼ 26%. Variation with
the normalized offset x̄ = x/2H of: a) Exact (black) and first-order (red) phase-velocities.
b) Exact ray (black) and phase (red) velocities. c) Angular difference of exact (black)
and first-order (red) ray- and phase-velocity directions N and n. d) Relative traveltime
errors with traveltime calculated from the first-order equation 20 ignoring difference in
directions of vectors N and n - red; from the first-order equation 24 taking into account
different directions ofN and n - green; the second-order equation 26 - blue; the long-spread
moveout equation 49 - black.

the zero offset and converge to each other for increasing offsets. The exact SV-wave ray
(black) and phase (red) velocities in Figure 3b differ for offsets x̄ > 1. As in the P-wave
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Figure 3: SV-wave moveout in Limestone model, anisotropy ∼ 5%. Variation with the
normalized offset x̄ = x/2H of: a) Exact (black) and first-order (red) phase-velocities.
b) Exact ray (black) and phase (red) velocities. c) Angular difference of exact (black)
and first-order (red) ray- and phase-velocity directions N and n. d) Relative traveltime
errors with traveltime calculated from the first-order equation 41 ignoring difference in
directions of vectors N and n - red; from the first-order equation 45 taking into account
different directions of N and n - green; the second-order equation 47 - blue; the rational
approximation 51 - black.

case, the ray velocity is, of course, always greater than or equal to the phase velocity. Al-
though the SV-wave anisotropy is weaker than P-wave anisotropy, the deviations of vectors
N and n, shown in Figure 3c, reach larger values than in the P-wave case: nearly 6◦. Note
that the first-order (red) curve approximates the exact (black) one very well. Due to the
zero values of E1(n) in 32 for n1 = 0 or n3 = 0, which correspond to the vertical and
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horizontal directions, the deviations are zero for the zero offset and converge to zero when
the offsets increase to infinity. For x̄ = 1 we can observe the exchange of mutual positions
of vectors N and n. The effect is more pronounced here than in Figure 2c. The offset
x̄ = 1 corresponds to n2

3 − n2
1 = 0 in equation 32, which leads to ∆N(n) = 0 in 31. For

x̄ = 1, we thus have N ∥ n. In contrast to the P-wave case in the Limestone model, the
large deviations extend to larger offsets, decreasing only slowly. This indicates that the
SV-wave relative traveltime errors may extend to larger offsets than in the P-wave case.
This is confirmed by comparing Figures 3d and 1d.

In Figure 3d, where we compare the efficiency of various SV-wave moveout formulae,
we can see that in the rational approximation 51 (black), the relative traveltime errors
reach nearly 3% for x̄ ∼ 1. All approximations based on the perturbation theory, proposed
in this paper, however, have relative traveltime errors of less than 1%. As expected,
the ”worst” results are obtained from equation 41 (red), which ignores the difference in
directions ofN and n. It has a maximum error of nearly 0.9% and smaller errors extend to
longer offsets. Equation 45 (green) has a maximum error of ∼ 0.4%, and the second-order
formula in equation 47 (blue) an even smaller error, only ∼ 0.2%. Both approximations
exhibit some errors only around x̄ ∼ 1. For longer offsets, their errors are negligible.

In Figure 4, we show the results for the SV-wave in the Mesaverde mudshale whose
anisotropy is about 12%. From the comparison of exact (black) and first-order (red) phase
velocities in Figure 4a, we can see that they are nearly identical in this case. Despite
stronger anisotropy, the first-order phase velocity formula performs well. The exact phase
(red) and ray (black) velocities shown in Figure 4b, however, differ significantly for offsets
x̄ > 1 (the consequence of strong anisotropy). Although the SV-wave anisotropy of the
Mesaverde mudshale is less than half of the P-wave anisotropy of the Greenhorn shale
model, the deviations of vectors N and n reach nearly the same values, specifically, 14◦.
Large deviations extend from small to large offsets except for the region around x̄ = 1,
where the two vectors exchange their positions. This has effects on the traveltime errors
shown in Figure 4d. Note that, as in Figure 3d, the angles between the exact vectors N
and n and between their first-order approximation nearly coincide.

All curves shown in Figure 4d display larger errors than in Figure 3d. For x̄ ∼ 1,
the rational approximation 51 (black) has the maximum relative traveltime error of 11%!
The errors slowly decay with increasing offset. The maximum errors of all approximations
introduced in this paper are considerably smaller, less than 3%. Formula 41 (red) yields
this error for very small offsets. For x̄ ∼ 1 (where vectors N and n are parallel), it is
around zero and it then again increases to nearly 2% and only slightly decreases with
increasing offset. Formulae 45 (green) and 47 (blue) yield nearly identical results in this
case, with maximum errors less than 2%.

In Figure 5, we show the results for the SV-wave in the Hard shale model. Its
anisotropy is again about 12%. In contrast to the Limestone and Mesaverde mudshale
models, the Hard shale model has a large ϵW , see Table 1, and thus σW , see 30, is pos-
itive (it was negative for the two former models). We can see that due to the positive
σW , the phase-velocity variation with offset in Figure 5a has a different character than in
Figures 3a and 4a. Nevertheless, the first-order phase-velocity formula 29 (red) performs
relatively well. The variations of the phase (red) and ray (black) velocities are also very
similar, see Figure 5b. Figure 5c shows an interesting difference between the first-order
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Figure 4: SV-wave moveout in Mesaverde mudshale model, anisotropy ∼ 12%. Variation
with the normalized offset x̄ = x/2H of: a) Exact (black) and first-order (red) phase-
velocities. b) Exact ray (black) and phase (red) velocities. c) Angular difference of exact
(black) and first-order (red) ray- and phase-velocity directions N and n. d) Relative
traveltime errors with traveltime calculated from the first-order equation 41 ignoring dif-
ference in directions of vectors N and n - red; from the first-order equation 45 taking into
account different directions of N and n - green; the second-order equation 47 - blue; the
rational approximation 51 - black.

approximation and the exact deviation of vectors N and n. The deviation reaches, as
in Figure 4c, nearly 14◦ between x̄ = 0 and x̄ = 1. Both the first-order approximation
(red) and exact (black) deviations are nearly identical in this interval. For offsets x̄ > 1,
however, the first-order approximation yields much higher values of the deviation, up to
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Figure 5: SV-wave moveout in Hard shale model, anisotropy ∼ 12%. Variation with the
normalized offset x̄ = x/2H of: a) Exact (black) and first-order (red) phase-velocities.
b) Exact ray (black) and phase (red) velocities. c) Angular difference of exact (black)
and first-order (red) ray- and phase-velocity directions N and n. d) Relative traveltime
errors with traveltime calculated from the first-order equation 41 ignoring difference in
directions of vectors N and n - red; from the first-order equation 45 taking into account
different directions of N and n - green; the second-order equation 47 - blue; the rational
approximation 51 - black.

14◦ again, while the maximum exact deviation is less than 10◦. This difference is respon-
sible for the large traveltime errors for x̄ > 1, see Figure 5d.

The comparison of the moveout approximations in Figure 5d shows that rational
approximation 51 (black) again has the largest maximum relative traveltime error. For
offsets x̄ ∼ 2, it reaches nearly 12%! The maximum errors of the formulae proposed in
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this paper are less than 5%. Formula 45 (green) has a maximum error of about 4%, which
rapidly decreases for longer offsets. Formula 47 (blue) has a maximum error of about
3%, but it decreases for longer offsets slower than 45. Note, however, that the errors of
formula 41 (red) are comparable, and the errors of formulae 45 and 47 are smaller than
the errors of the generalized approximation of Stovas (2010), see his Figure 2a.

7 CONCLUSIONS

We propose alternative approximate reflection moveout formulae for P- and SV-waves in
homogeneous VTI media. The formulae are based on the weak-anisotropy approximation.
They represent expansions with respect to weak-anisotropy parameters. We propose first-
and second-order formulae. All depend, at the most, on four parameters: the depth of the
single horizontal reflector, vertical velocity and the WA parameters. Some of the formulae
depend on an additional parameter, the ratio of the vertical S- and P-wave velocities. This
dependence is, however, weak so that a reasonable choice of the ratio affects the accuracy
of the moveout formula negligibly.

While the P-wave formulae depend significantly on the separate WA parameters ϵW
and δW , the S-wave formulae depend, most of all, on their difference, ϵW − δW . The
accuracy of the proposed formulae strongly depends on the difference of directions N and
n of the ray- and phase-velocity vectors. For offsets, for which the above two vectors are
significantly different, the formulae may be less accurate. They become very inaccurate
if they ignore this difference as the first-order formula 20 for P-waves and 41 for SV-
waves. A great advantage of the proposed formulae is that they all have correct long-offset
asymptotes. They, of course, also yield correct values for the zero offset.

As shown by numerical examples, the second-order P-wave formula yields highly accu-
rate results even for strong anisotropy (26%). Stovas’ (2010) generalized moveout approx-
imation formula yields even better results, but it is rather complicated when compared
with formula 26. The generalized moveout approximation depends on five parameters,
while even the second-order formula 26 depends effectively on four parameters only. In
case of the SV-wave, the formulae proposed here yield results of comparable or better
accuracy than the generalized moveout approximation of Stovas (2010).

The presented formulae are directly applicable to HTI media or media of orthorhom-
bic symmetry. The condition of direct applicability is that the reflector and the ray of
the reflected wave are situated in the symmetry planes of the corresponding medium.
Generalization of the presented formulae for media, for which the above condition of ap-
plicability is not satisfied, for TTI media or media with anisotropy of lower symmetry,
and for converted waves is possible. We must only expect more complicated formulae
yielding results of lower accuracy. We have already made first attempts to generalize the
above moveout formulae for DTI media and for TTI media overlaying a horizontal flat
reflector. Under DTI we understand TI media with axes of symmetry perpendicular to
dipping plane reflectors (Alkhalifah and Sava, 2010).

Finally, let us mention that, in addition to the moveout formulae, the paper also con-
tains useful formulae relating approximately the ray- and phase-velocity vector directions
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in weakly anisotropic media of arbitrary symmetry. Approximate formulae 16, 17 or 37,
38 for the ray velocity squared as a function of the ray incidence angle i may also find
useful applications. The normalized offset x̄ can be expressed in terms of the angle i as
x̄ = 2H sin i. It is thus easy to rewrite all the moveout formulae in terms of the ray
incidence angle i instead of x̄.
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