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Summary

In the conventional ray theory with real–valued travel time, the initial amplitude
profile is represented by the initial conditions for amplitude. Since the accuracy of
the ray theory suffers from the amplitude changes along wavefronts, this approach is
considerably inaccurate for beams, because it does not provide the spreading of the
beams caused by diffraction.

The representation of the initial Gaussian amplitude profile in terms of the
imaginary part of the initial complex–valued travel time with the constant initial
conditions for amplitude yields satisfactorily accurate paraxial Gaussian beams.

In this paper, we demonstrate that the representation of the initial Super–Gaussian
amplitude profile in terms of the imaginary part of the initial complex–valued travel time
with the constant initial conditions for amplitude yields the Super–Gaussian beams
whose lowest–order paraxial approximation is identical to the conventional ray theory
solution with real–valued travel time, without the diffracted wavefield which could result
from the representation theorem.
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1. Introduction

In the conventional ray theory with real–valued travel time, the initial amplitude
profile is represented by the initial conditions for amplitude. Since the accuracy of
the ray theory suffers from the amplitude changes along the wavefronts, this approach
is considerably inaccurate for beams, because it does not provide the spreading of the
beams caused by diffraction. For example, if the initial travel time is constant along
the initial plane and the initial conditions for amplitude are Gaussian, the conventional
ray theory with real–valued travel time yields the incorrect beam with the constant
envelope without any spreading (Kravtsov & Berczynski, 2006, eq. 15).

The representation of the initial amplitude profile in terms of the imaginary part of
the initial complex–valued travel time with the constant initial conditions for amplitude
yields considerably more accurate beams in many cases. Since we calculate wavefields
in real–valued space, we need to avoid tracing complex–valued rays. We thus usually
approximate the complex–valued travel time of beams by the paraxial expansion along
the real–valued reference ray. For example, if the Gaussian initial amplitude profile
exp(−ax2) is represented by the quadratic imaginary part of the initial complex–valued
travel time and the initial conditions for amplitude are constant, we obtain the Gaussian
beam which is often very accurate even within the second–order paraxial approximation
of the complex–valued travel time, and has no problems with caustics.
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Unfortunately, it is obvious that the initial amplitude cannot always be represented
in terms of the imaginary part of the initial complex–valued travel time, especially if
the initial amplitude changes its sign. In this paper we demonstrate that this approach
fails even for well localized beams corresponding to the initial amplitude profiles of
forms exp(−ax4), exp(−ax6), exp(−ax8), ..., see Figure 1, which are called “supergauss
functions” (Oldham, Myland & Spanier, 2009, eq. 27:12:1).

In the high–frequency approximation, the amplitude cross–section of a beam
is predominantly determined by the lowest–order non–vanishing derivative of the
imaginary part of its travel time at the reference ray. Since we wish to study the
beams concentrated at the reference ray, this lowest–order imaginary derivative should
be of an even order. If this lowest–order imaginary derivative is of the second order, we
obtain the famous Gaussian beams whose amplitude cross–section is approximately a
Gaussian function of form exp(−ax2).

In this paper, we are curious to know the properties of the beams with the lowest–
order imaginary derivative of the fourth, sixth, eighth, ... order. The amplitude cross–
section of these beams are approximately functions of forms exp(−ax4), exp(−ax6),
exp(−ax8), ..., which are called “supergauss functions” (Oldham, Myland & Spanier,
2009, eq. 27:12:1). That is why we refer to these beams as the Super–Gaussian
beams. Since we restrict the Taylor expansion of the complex–valued travel time of a
Super–Gaussian beam to the order of the lowest–order non–vanishing derivative of the
imaginary part of the travel time, we refer to our approximation of the Super–Gaussian
beams as the paraxial Super–Gaussian beams.

Following Babich, Buldyrev & Molotkov (1985), Klimeš (2002) derived explicit
equations for calculating the third–order and higher–order spatial derivatives of travel
time. In this paper, we apply these equations for the travel–time derivatives to the
paraxial Super–Gaussian beams.
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2. Paraxial Super–Gaussian beams

For the calculation of travel time, we consider Hamiltonian function H(xi, yj), which is
a real–valued function of coordinates xi and of covariant vector yj from the cotangent
space at point xi, and is sufficiently smooth within its definition domain.

We denote the spatial derivatives of travel time τ(xk) with respect to coordinates
xi by τ,ij...n. We introduce the covariant derivatives (Klimeš, 2002, eq. 16)

Tab...f = τ,ij...n QiaQjb · · ·Qnf (1)

of travel time with respect to ray coordinates γa. Ray coordinates γa are composed
of the ray parameters, which parametrize the rays and are constant along each ray,
and of the independent parameter γ along rays which is determined by the form of the
Hamiltonian function. The transformation matrix

Qia =
∂xi

∂γa

(2)

from ray coordinates γa to coordinates xi is often referred to as the matrix of geometrical
spreading.

The third–order and higher–order spatial derivatives of travel time with respect to
coordinates xi may be expressed in terms of covariant derivatives (1) as (Klimeš, 2002,
eq. 20)

τ,ij...n = Tab...f Q−1
ai Q−1

bj · · ·Q−1
fn , (3)

where we have used Q−1
ai to denote the components of the matrix inverse to matrix Qia.

Matrix Q−1
ai exists and is finite off caustics.

The covariant derivatives of travel time with respect to the ray parameters may be
expressed in the form of the integral along the ray (Klimeš, 2002, eq. 19),

Tab...f (γ) = Tab...f (γ0) +

∫ γ

γ0

dγ Kij...n QiaQjb · · ·Qnf , (4)

with initial conditions Tab...fα...ν(γ0) defined by equation (1).
Integration kernels Kij...n, corresponding to the third–order and higher–order

derivatives of travel time, are composed of the lower–order derivatives of travel time
(with respect to the calculated derivatives), and of the phase–space derivatives of
the Hamiltonian function (Klimeš, 2002, eq. 21). We assume that the phase–space
derivatives of the Hamiltonian function are real–valued along the real–valued reference
ray.

We consider a Super–Gaussian beam which has real–valued derivatives of travel
time up to order N−1 and non–vanishing N th–order derivatives of the imaginary part
of the travel time (N = 4, 6, 8, ...). Then the real–valued derivatives of travel time up to
order 2N−3 are independent of the N th–order derivatives of the imaginary part of the
travel time. The lowest–order derivative of the real part of the travel time influenced
by the imaginary part of the travel time is the derivative of order 2N−2.

Since the integration kernels Kij...n corresponding to the N th–order derivatives
of travel time are composed of the derivatives of travel time up to order N −1, the
integration kernels are real–valued, and equation (4) yields relation

Im[Tab...f (γ)] = Im[Tab...f (γ0)] (5)

for the derivatives of travel time of order N .
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From definition (1) with relation (5), we see that the lowest–order (N th–order)
paraxial approximation of the imaginary part of the travel time is constant along all
paraxial rays. The corresponding paraxial approximation of the real part of the travel
time is the same as it were for the real–valued travel time.

The Super–Gaussian beams are thus equivalent to the zero–order ray–theory wave-
field with the real–valued travel time and with the initial Super–Gaussian amplitude
profile, without the diffracted wavefield which could result from the representation
theorem.

The diffraction of a beam is thus satisfactorily included in the case of paraxial
Gaussian beams, but not in the case of paraxial Super–Gaussian beams.

3. Conclusions

The representation of the initial Gaussian amplitude profile in terms of the imaginary
part of the initial complex–valued travel time with the constant initial conditions for
amplitude yields satisfactorily accurate paraxial Gaussian beams. Unfortunately, this
does not apply to the initial Super–Gaussian amplitude profiles of forms exp(−axN )
with N = 4, 6, 8, ....

We have demonstrated that the representation of the initial Super–Gaussian
amplitude profile exp(−axN ) in terms of the imaginary part of the initial complex–
valued travel time with the constant initial conditions for amplitude yields the Super–
Gaussian beam whose lowest–order (i.e. N th–order) paraxial approximation is identical
to the zero–order ray theory solution with the real–valued travel time and the Super–
Gaussian initial conditions for amplitude, without the diffracted wavefield which could
result from the representation theorem.
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