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Summary

Amplitudes of PP spherical waves reflected at a plane interface between two homoge-
neous viscoelastic media are studied. Mostly, the plane-wave reflection coefficients have
been used in such studies in the past. For viscoelastic media, however, the meaning of
plane-wave reflection coefficients meets some fundamental difficulties. For this reason, the
spherical-wave reflection coefficients, corresponding to a point source, are used here. The
spherical-wave reflection coefficients were introduced for perfectly elastic media and were
evaluated by approximate asymptotic high-frequency methods. They can be, however,
also calculated by highly accurate reflectivity method, even for viscoelastic media. The
typical feature of the amplitude of the spherical-wave reflection coefficient is its behaviour
in the critical region, which differs signifficantly from the behaviour of the amplitude of
the plane-wave reflection coefficient. Its maximum is shifted behind the critical point,
and it is followed by the amplitude oscillations in the interference region with the head
wave. The position of the maximum, its magnitude and the oscillations are frequency-
dependent. The purpose of this study is to show that the position of the maximum of the
spherical-wave reflection coefficient depends only very weakly on the quality factors Q of
media above and below the interface, and can thus hardly be used to determine Q from
measurements. Another purpose is to find some other simple measurable quantities which
depend on Q more strongly and would be thus more convenient for the solution of inverse
problem for Q. It is shown that one of such quantities could be the difference between
the maximum and following minimum of the amplitude of the spherical-wave reflection
coefficient in the oscillatory zone behind the critical point.
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1 Introduction

In seismic exploration for oil, the amplitudes of reflected elastic waves have been broadly
used to determine the velocities under the structural interfaces, at which the measured
reflected waves are generated. The AVO (amplitudes-versus-offset) method has been
broadly used for this purpose. For small offsets, i.e., for small angles of incidence i (the
angle i is an acute angle, which slowness vector of the incident wave makes with the
normal to the interface), it is usually sufficient to exploit plane-wave reflection coefficients
to obtain acceptably accurate results. For larger offsets, however, the application of
plane-wave reflection coefficients becomes very inaccurate, particularly if the velocity V1

above the interface is smaller than the velocity V2 beneath the interface and the difference
between V1 and V2 is significant (strong contrast interface), see, e.g., Skopintseva et al.
(2011). In this case, a very important role is played by the critical angle i∗, given by the
relation

sin i∗ = V1/V2 . (1)

1.1 Acoustic case

To simplify the explanations, we shall first consider acoustic waves in non-dissipative fluid
media only. Only later, we shall discuss also the elastic and dissipative media. For acoustic
pressure plane waves in fluid media, the plane-wave reflection coefficient is very simple.
For normal incidence it equals (z2 − z1)/(z2 + z1), where z is the wave impedance and
equals z = ρV , where ρ is the mass density. With increasing angle of incidence i, but still
at subcritical region, the plane-wave reflection coefficient is real-valued. It first increases
weakly with the angle of incidence. Close to the critical angle, however, it starts to
increase rapidly and for the critical angle it reaches unity. The derivative of the plane-wave
reflection coefficient with respect to the angle of incidence at the critical angle from the
side of i < i∗ is infinite. For overcritical angles i > i∗, the plane-wave reflection coefficient
is complex-valued, and equals eiφ, where φ is the phase. Consequently, the amplitude
of the pressure plane-wave reflections coefficient in the overcritical region is constant
and equals unity. The phase of the plane-wave reflection coefficient in the overcritical
region decreases from 00 at the critical angle to −π for the angle of grazing incidence.
Although the plane-wave reflection coefficient is complex-valued in the overcritical region,
it is frequency independent.

For an incident spherical wave, generated by a point source situated in the medium
of lower velocity, the situation is considerably different, particularly in the vicinity of the
critical point. Formally, we can introduce the spherical-wave reflection coefficients. In
contrast to the plane-wave reflection coefficients, they are frequency dependent and com-
plex valued for all angles of incidence. In subcritical region, the frequency dependence
is very weak, particularly for nearly normal incidence, but it is very strong in the crit-
ical region, where it completely changes the behaviour of the reflection coefficient when
compared with the plane-wave reflection coefficient.

The spherical-wave reflection coefficient at a plane interface between two homogeneous
non-dissipative fluid media (acoustic case) was first introduced and numerically studied
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using the asymptotic high-frequency methods by Červený and Hron (1961). The asymp-
totic high-frequency procedures proposed by Brekhovskikh (1957) were used in that study.
We do not present here the appropriate theory, we only emphasize that it is necessary to
take into account the head wave, which is generated for overcritical angles of incidence.
As mentioned, the spherical-wave reflection coefficients are frequency dependent. For
f → ∞, the plane-wave reflection coefficients are obtained. For finite frequencies, the
differences between the spherical- and plane-wave reflection coefficients are very small in
subcritical region. They become, however, significant in the critical region. The ampli-
tudes of the spherical-wave reflection coefficients do not have singularity at the critical
angle. They have their maximum behind the critical point. The distance between the
maximum of the spherical-wave reflection coefficient and the critical point is frequency
dependent. It increases with decreasing frequency. Behind the maximum, the amplitude
of the reflection coefficient of a spherical wave oscillates. This oscillation of the coefficient
with the distance is caused by the interference of the reflected and head waves. For this
reason, we also speak of interference reflected-head wave.

In Figure 1, all the above properties of reflection coefficients of acoustic spherical
harmonic waves are well demonstrated. The figure, which was calculated by asymptotic
high-frequency methods, is taken from Červený and Hron (1961). The figure shows ampli-
tudes (left column) and phases (right column) of the spherical-wave reflection coefficients.
The spherical-wave reflection coefficients are displayed in bold. For comparison, also the
reflection coefficients of plane waves are displayed, by thin dashed lines. The refractive
index n = V1/V2 = 0.4 and the density ratio ρ1/ρ2 = 1 are considered. Individual plots in
each column are specified by the dimensionless factor k(z + z0) related to the frequency
f . Here k is the wave number, z is the distance of the receiver from the interface and z0 is
the distance of the source from the interface. Consequently, k(z + z0) = 2π(z + z0)V

−1
1 f .

The frequency thus decreases from the upper plots to the bottom plots. The whole range
of angles of incidence i, from i = 00 to i = 900, is considered.

From Figure 1, we can clearly see that the plane-wave coefficients (with amplitudes A∗
0

and phases φ∗
0) are frequency independent, but the spherical-wave reflection coefficients

(with amplitudes A∗ and phases φ∗) vary with frequency through the factor k(z + z0).
Whereas the plane-wave reflection coefficients have discontinuous derivatives at the critical
point, the spherical wave reflection coefficients are quite smooth there. The maximum
of the amplitude-distance curve of A∗ is always situated behind the critical point, at a
distance, which is higher for lower frequency and decreases with increasing frequency.
Behind this maximum, an interference zone of reflected and head waves is formed and has
an oscillatory character.

Other figures in Červený and Hron (1961) show the dependence of plane-wave and
spherical-wave reflection coefficients on ratios V1/V2 and ρ1/ρ2. Figures for varying ρ1/ρ2
show that the largest variations of spherical-wave reflection coefficients can be observed
in the critical region. Thus, the critical region is the most favorable region for the deter-
mination of densities from the amplitudes of acoustic reflected waves.
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Figure 1: Amplitudes A∗ and phases φ∗ of spherical-wave reflection coefficients (bold, con-
tinuous), and amplitudes A∗

0 and phases φ∗
0 of plane-wave reflection coefficients (dashed),

as a function of the angle of incidence i, for different values of k(z+ z0). Fluid halfspaces
with parameters V1/V2 = 0.4 and ρ1/ρ2 = 1 are considered. Taken from Červený and
Hron (1961). Courtesy Studia geoph. et geod. 5 (1961).
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1.2 Elastic case

It is not difficult to generalize the theory and perform the computations also for non-
dissipative elastic media. This was done in a number of papers published by V. Červený
in 1962-1966. Let us refer here at least to Červený (1965), the most comprehensive of
them, giving the detailed derivation, conclusions and results of relevant computations.
See also Alulaiw and Gurewich (2013).

Whereas the computations of reflection coefficients for spherical acoustic waves using
the high-frequency asymptotic methods are highly accurate for any choice of medium
parameters, angle of incidence and frequency, the accuracy may decrease for some cases
in elastic media, particularly for high-contrast interfaces. Let us consider two elastic
media separated by a plane interface, and let us denote their P-wave velocities by α1

and α2, S-wave velocities by β1 and β2, and the mass densities by ρ1 and ρ2. Highest
attention was devoted to the practical case of α1/β1 ∼ α2/β2 =

√
3 and ρ1/ρ2 ∼ 1. In

such a case, the reflection coefficients of spherical compressional waves depend primarily
on the angle of incidence i, frequency f , and the P-wave velocity contrast α1/α2. For
a weak P-wave velocity contrast, i.e. for α1/α2 approximately in the interval 0.6 <
α1/α2 < 0.95, the asymptotic high-frequency methods give results of a good accuracy.
The properties of spherical-wave reflection coefficients of compressional waves are in this
case very similar to the properties of acoustic waves, as demonstrated in many figures in
Červený (1965). See also a brief discussion in Červený and Ravindra (1971) and Červený,
Molotkov and Pšenč́ık (1977). The accuracy of the spherical-wave reflection coefficients
of compressional waves, however, decreases for the interfaces with a high velocity contrast
(small α1/α2). In this case, it is necessary to compute numerically certain integrals in a
complex plane because their analytic computation by asymptotic high-frequency methods
is not sufficiently accurate (Červený, 1965).

A big step forward was the invention of the reflectivity method (Fuchs, 1968; Fuchs
and Müller, 1971). In the reflectivity method, the reflected waves in a broader sense
(including the interference reflected-head wave), reflected at a plane interface between
two homogeneous elastic halfspaces, are numerically evaluated by the integration along
real-valued axis. The incident wave is generated by a point source situated arbitrarily
in one of these halfspaces. The reflected waves are computed in the time domain. The
method is highly accurate for any medium parameters and angles of incidence. Using the
reflectivity method, we can simply determine reflection coefficients of spherical waves, for
incident P as well as S waves. The recent versions of the reflectivity methods can also
consider the dissipative media. The dissipative properties of the medium are specified by
the P- and S-wave quality factors QP and QS.

The reflectivity method is preferable and more accurate for the computation of reflec-
tion coefficients of spherical waves than the asymptotic high-frequency methods, mainly in
the critical and post-critical region. On the other hand, the advantage of the asymptotic
method is that it enables to derive certain simple useful analytical relations, which cannot
be obtained from the reflectivity method. Let us mention, for example, the approximate
relation for the distance between the position of the maximum of the reflection coefficient
of a spherical wave and the critical point, and its dependence on frequency f .

In this paper, which has merely a preliminary character, we wish to show how the
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reflection coefficients of spherical waves are influenced by the dissipation specified by the
quality factor Q. We use the reflectivity method, and the relevant computer program
written by Wang (1999).

2 Computation of spherical-wave reflection coefficients

for elastic waves by the reflectivity method

We consider two homogeneous elastic non-dissipative halfspaces, which are in a welded
contact along a planar interface. We call one of these halfspaces the first halfspace, and
the next the second halfspace. The point source of a compressional wave is situated in the
first halfspace, at the distance ZS from the interface. The receiver is also situated in the
first halfspace, at a distance ZR from the interface. The parameters of the first halfspace
are denoted by α1 (velocity of compressional waves), β1 (velocity of shear waves), ρ1 (mass
density). The parameters of the second halfspace, α2, β2, and ρ2 have analogical meaning.

Although in this case we could use the asymptotic high-frequency method with a good
accuracy, we use the reflectivity method. The reason is that later we intend to consider
the dissipative media, for which the reflectivity method is simply applicable. Using the
reflectivity method, we obtain the synthetic seismograms of reflected waves. We obtain the
frequency-domain spherical-wave reflection coefficients from the reflectivity time-domain
results by applying the Fourier transform. Since we concentrate mostly on study of
amplitudes of reflection coefficients, we often use the term “reflection coefficient” to mean
its amplitude.

The medium parameters in all computation are as follows:

α1 = 2.0 km/s , β1 = 1.156 km/s , ρ1 = 1.0 km/m3 ,

α2 = 2.5 km/s , β2 = 1.445 km/s , ρ2 = 1.1 km/m3 ,

(2)

The distances of the point source and the receiver from the interface are the same, ZS =
ZR = 3km. Consequently, refraction index n = α1/α2 = 0.8, the critical angle equals
53.130, and the critical distance is r∗ = (ZS + ZR)

√
1− n2/n = 8 km. The horizontal

axes in all following figures represent the offset. In all plots of synthetic seismograms, the
vertical axes show the reduced travel time in the form

tred = t− offset/2.5 (second) . (3)

The reduction of travel time decreases considerably the vertical size of plots of theoretical
seismograms and makes the shape of individual signals more clear. Unfortunately, the
reduction removes the typical hyperbolic form of the complete picture.

In Figure 2, a typical seismogram section of reflected waves (in a generalized meaning,
including head waves) generated by the reflectivity program (Wang, 1999) is shown. The
critical distance is 8 km. The source-time signal is one period of sinus function, of the
duration ∆T = 0.1 s. The medium parameters correspond to equation (2). As we can
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Figure 2: Synthetic seismograms of PP reflected waves generated by a point source. The
plane interface between two isotropic perfectly elastic halfspaces, specified by medium
parameters (2). The travel time in the vertical axis is reduced. Critical point is situated
at 8 km.
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see, the behaviour of synthetic seismogram is quite different in the subcritical and over-
critical region. In the subcritical region the shape of the signal remains effectively the
same as the shape of the source-time signal; only the amplitude of the signal slowly de-
creases with increasing offset. It has a minimum at the offset of about 5 km, and after
it the amplitude signal increases again. Through the critical point, at 8 km, the signal
varies smoothly. It has a maximum at about 11 km, and the form of the signal continu-
ously changes. At approximately 13 km, the faster head wave starts to separate from the
slower reflected wave. At the offset of separation, the head wave is already very weak,
considerably weaker than the reflected wave. Moreover, the amplitude of the head wave
decreases very fast with increasing offset, and is hardly visible for largest offsets of 18
km and 19 km. The reflected wave, after the separation from the head wave, is strongly
phase shifted. At the last trace, the the shape of the reflected wave corresponds nearly
to negative source-time function, as the phase shift is nearly π, for which e−iπ ∼ −1.

In Fig. 3, two pictures are presented. The upper picture shows again a synthetic
seismogram section of the reflected wave, but for a four time denser system of offsets
than in Figure 2. The model parameters and the configuration remain the same as in
Figure 2. Also the source-time signal is the same. The bottom plot shows the spherical-
wave reflection coefficients, for three frequencies: f = 10Hz (green), 20Hz (red) and
30Hz (black). These curves of spherical-wave reflection coefficients are computed from
the synthetic seismograms shown in the upper plot using the Fourier transform. The
spherical-wave reflection coefficients have the same form as the acoustic waves described
in the previous section. They are smooth, even in the region around the critical point at 8
km. Behind the critical point, they increase with offset and have a maximum at the offset
rM . The value of rM is frequency dependent, and increases with decreasing frequency f .
Behind the offset rM , the spherical-wave reflection coefficients oscillate. The oscillations
are caused by the interference of reflected and head wave.

The main properties of the coefficients are: 1) The amplitude maxima situated behind
the critical point; 2) The oscillatory character of amplitudes in the overcritical region
behind the maximum, 3) The position of the maximum behind the critical point frequency
dependent. For smaller frequency, the maximum situated at greater distances behind the
critical point.

Similar pictures are well known from literature, see, e.g., Červený (1965), Červený and
Ravindra (1971), Červený, Molotkov and Pšenč́ık (1977). In the mentioned references,
they were computed mostly by the asymptotic high-frequency method, which yields ap-
proximate, but highly accurate, results for the model parameters similar to those given in
equation (2). The curves, however, are sometimes presented in different forms. Often, the
angle of incidence i is used instead of the offset, similarly as in Figure 1. In some other
cases, the amplitudes of vertical or horizontal components of the displacement vector of
reflected waves are displayed instead of the amplitudes of the spherical-wave reflection
coefficients.

The spherical-wave reflection coefficients in the overcritical region correspond to the
superposition of the reflected and head waves. In the synthetic seismograms, the reflected
and head waves are fully separated at greater offset behind the critical point, see Figure
2 and the upper plot of of Figure 3. The length of the interference zone of reflected and
head waves depends on the form of the source-time signal. Certain important conclusions
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Figure 3: Top: Synthetic seismograms of PP reflected waves generated by a point source,
from a plane interface between two isotropic perfectly elastic halfspaces, specified by
medium parameters (2). Bottom: Corresponding amplitudes of spherical-wave reflection
coefficients for three frequencies: f = 10Hz (green), f = 20Hz (red), f = 30Hz (black).
Critical point situated at 8 km.
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can be. however, deduced from asymptotic high-frequency investigation, see Červený
(1965). They are valid for weak interfaces, with the refraction indices α1/α2 not smaller
then approximately 0.5:

a) The maximum of the spherical-wave reflection coefficient PP is always situated in
the interference zone of the reflected and head waves, behind the critical point.

b) At the place where the head wave separates from the reflected waves, the amplitude
of the head wave is always considerably smaller than the amplitude of reflected wave.

c) The oscillatory character of the spherical-wave reflection coefficient in the overcrit-
ical region is obtained only if both reflected and head waves are considered in Fourier
transform, even if they are separated and do not interfere. If, in the region, in which they
are separated only the reflected wave is considered, the oscillations vanish.

d) Directly at the critical point the reflected and head waves are singular and their
separation has no physical meaning. In the region of the amplitude maximum, however, we
can already use well-known asymptotic high-frequency expressions for reflected and head
waves, and treat both waves separately. Thus, the spherical-wave reflection coefficient
can be calculated by asymptotic high-frequency method already in the vicinity of the
maximum of the curve, but both reflected and head waves must be considered.

e) Using the asymptotic high-frequency expressions for reflected and head waves, we
can approximately determine the distance between the critical point r∗ and the maximum
offset rM of the amplitude of the spherical-wave reflection PP coefficient. It was shown
by Červený (1965) that the relation between rM and r∗ is given approximately by the
formula

r∗ = rM − q(λrM)1/2 , (4)

where q is some constant, λ is the wavelength in the first halfspace (λ = α1/f).

3 Computation of spherical-wave reflection coefficient

of viscoelastic waves by the reflectivity method

Many papers have been devoted to the evaluation of plane-wave reflection coefficients in
viscoelastic media. The problem, however, meets difficulties, which are not yet uniquelly
resolved. We do not discuss these difficulties here; they are well described elsewhere, see,
e.g., Krebes and Daley (2007), Sidler, Carcione and Holliger (2008), Daley, Krebes and
Lines (2011). Here we devote our attention to the spherical-wave reflection coefficients
in viscoelastic media, and use the reflectivity method for their computations. For the
use of spherical waves in AVO studies of elastic and anelastic media, see also Haase and
Ursenbach (2008).

The older versions of the reflectivity program were written for perfectly elastic media
only. Recent versions, however, often consider also dissipative media, specified mostly by
the quality factors QP and QS for P and S waves, respectively. Reflectivity computations
in such media do not cause any difficulty, and can be performed for any quality factors.
Thus the computation of synthetic seismograms of PP reflected waves, generated by point
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sources of compressional waves is straightforward. To get the spherical-wave reflection
coefficients from these synthetic seismograms, it is just sufficient to apply the Fourier
transform.

In this section, we present several figures, which have the same form as Figure 3.
The only difference is that dissipative media are considered. The upper plots show
synthetic seismograms computed by the version of the reflectivity method, which allows
consideration of dissipation (Wang, 1999). The bottom plots show amplitudes of the
spherical-wave reflection coefficients for f = 10, 20 and 30 Hz, derived from the above
seismograms. The parameters αi, βi and ρi and the configuration remain the same as for
Figure 3. The quality factors QP1 and QP2 of P waves in Figures 4-7 are:

Fig.4 : QP1 = 10000 , QP2 = 100 ,

Fig.5 : QP1 = 10000 , QP2 = 50 ,

Fig.6 : QP1 = 100 , QP2 = 10000 ,

Fig.7 : QP1 = 100 , QP2 = 100 .

(5)

The values of quality factors of S waves, QS1 and QS2, are computed from QP1 and QP2

using the approximate formula QSi = 2.25QPi, see Müller and Zürn (1984, p. 67).

In a perfectly elastic medium, the quality factor QP is infinite. We approximate here
the perfectly elastic medium by QP = 10000. Consequently, we consider the first halfspace
in Figures 4 and 5 and the second halfspace in Figure 6 perfectly elastic. In Figure 7,
both halfspaces are dissipative.

In synthetic seismograms of reflected waves in Figures 4, 5 and 7, we can see that the
head waves are weaker than in Figure 3. This is the effect of dissipation in the second
halfspace. The head waves are particularly weak in Figure 5, in which the dissipation is
greatest (QP2 = 50).

All plots of spherical-wave reflection coefficients are similar to those for a non-dissipative
medium shown in Figure 3. In subcritical region, with the exception of a close vicinity of
the critical point situated at r∗ = 8km, the spherical-wave reflection coefficients for weakly
dissipative media are practically idependent of frequency. Moreover, they practically do
not differ from spherical-wave reflection coefficients for perfectly elastic media.

Directly at the critical point, at 8 km, the spherical-wave reflection coefficients depend
on frequency, but only weakly. They also depend on QP1 and QP2, but again only weakly.
It is practically impossible to determine the position of the critical point directly from
the measurements of reflected wave seismograms. Even if we determine the position of
the critical point indirectly (analyticaly or using equation (4) from the maximum of the
reflection coefficient of spherical waves for a given frequency), it seems improbable that it
would be possible to exploit directly the critical point in the solution of inverse problem
for quality factors.

At the postcritical offsets, the dominant feature of the spherical-wave reflection coef-
ficient is its maximum at some distance behind the critical point. In practical measure-
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Figure 4: Dtto as in Fig. 3, but for dissipative isotropic media, with QP1 = 10000,
QP2 = 100. Other parameters are the same as in Fig. 3.
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Figure 5: Dtto as in Fig. 3, but for dissipative isotropic media, with QP1 = 10000,
QP2 = 50. Other parameters are the same as in Fig. 3.
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Figure 6: Dtto as in Fig. 3, but for dissipative isotropic media, with QP1 = 100, QP2 =
10000. Other parameters are the same as in Fig. 3.
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Figure 7: Dtto in Fig. 3, but for dissipative isotropic media, with QP1 = 100, QP2 = 100.
Other parameters are the same as in Fig. 3.
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ments, the position of the maximum can be determined simply and with a good accuracy.

The offset rM(f), at which the maximum of the spherical-wave reflection coefficient is
situated for a given frequency f is quite stable. It depends rather strongly on frequency f ,
but only very weakly on the quality factors QP1 and QP2. In our case, for frequency
f = 30Hz, rM(f) ∼ 11.5 km, for f = 20Hz, rM(f) ∼ 12.7 km, and for f = 30Hz,
rM(f) ∼ 15.3 km in all figures, i.e., for perfectly elastic as well dissipative media of
varying dissipation. Consequently, the values of QP1 and QP2 do not practically influence
the position of the maximum. For weakly dissipative media, this is probably a general
property. From the found position of the maximum, we can determine approximately the
critical distance r∗, see (4). However, the found position of the maximum cannot be used
to determine QP1 and QP2.

The quantity which really depends on QP1 and QP2 is not the position of the maxi-
mum for a given frequency, but the value of the amplitude of the spherical-wave reflection
coefficient for a given frequency. We must, however, relate this value to some other mea-
surable quantity. If it is possible to determine the maximum and the following minimum
of the amplitude of the coefficient, then the differential offset D(f) between the maximum
and the following minimum is the sought quantity, which depends on QP1 and QP2 for a
given frequency. Figures 3-7 confirm this clearly.

In this study, we concentrated on the amplitudes of the spherical-wave reflection co-
efficients and we did not study the phases of the spherical-wave reflection coefficients for
dissipative media although they are obtained automatically, if the Fourier transform of
reflected wave seismograms is performed. The advantage of the phase-distance curves is
that they are smoother and the oscillations are milder than of the amplitude-distance
curves, see Figure 1 for acoustic waves in non-dissipative media. For perfectly elastic me-
dia, the phase curves have been used for inversion of data by Zhu and McMechan (2013),
where the advantages of phase versus offset (PVO) are also explained. We believe that it
would be possible to use them in a similar way for weakly dissipative media.
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