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Summary

We present an approximate, but efficient and sufficiently accurate P-wave ray tracing
and dynamic ray tracing procedure for 3D inhomogeneous, weakly orthorhombic media
with varying orientation of symmetry planes. In contrast to commonly used approaches,
the orthorhombic symmetry is preserved at any point of the model. The model is described
by six weak-anisotropy parameters and three Euler angles, which may vary arbitrarily,
but smoothly, throughout the model. We use the procedure for the calculation of rays and
corresponding two-point traveltimes in a VSP experiment in a part of the BP benchmark
model generalized to orthorhombic symmetry.
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Introduction

In recent years, seismic modeling and imaging in orthorhombic models with varying symmetry planes
have drawn increased attention. Ray tracing in such media has many potential applications, among
them prestack depth migration, traveltime tomography and even full waveform inversion. We present an
approximate, but efficient and sufficiently accurate ray tracing procedure for orthorhombic media whose
symmetry planes may vary throughout the medium, and test it on the BP model (Shah, 2007).

We start from a ray tracing procedure specified in a curvilinear orthogonal coordinate system valid for
anisotropy of arbitrary symmetry (Iversen and Pšenčík, 2008). The coordinate system is constructed so
that the coordinate lines are perpendicular to the symmetry planes of an orthorhombic medium. Advan-
tages of this approach are the conservation of orthorhombic symmetry throughout the model and reduc-
tion of the number of parameters specifying the model. We combine this procedure with first-order ray
kinematic and dynamic ray tracing equations for P waves propagating in smooth, inhomogenous, weakly
anisotropic media (Pšenčík and Farra, 2005, 2007). The first-order ray tracing and dynamic ray tracing
equations are derived from the exact ones by replacing the exact P-wave eigenvalue of the Christof-
fel matrix by its first-order approximation. In orthorhombic media, such equations are controlled by 6
weak anisotropy (WA) parameters, which represent a linearized generalization of the Thomsen (1986)
parameters.

The accuracy of such a procedure was tested on simple models, for which exact results were available.
Observed relative traveltime differences were less than 0.2% in models of the sizes comparable with
the size of the model used in this study. In the following, we apply the proposed procedure to the
computation of two-point P-wave rays and corresponding traveltimes in a generalization of the BP model
(Shah, 2007). The generalized BP model is weakly orthorhombic, with one of the symmetry planes
tangent to the structural elements of the model.

We use Einstein summation convention for repeated subscripts.

Curvilinear coordinate system and transformation matrix

Let us introduce an orthogonal curvilinear coordinate system, (ξ1,ξ2,ξ3) with its origin (ξ1,ξ2,ξ3) =
(0,0,0) fixed relative to the origin of the Cartesian coordinate system (x1,x2,x3). We define the co-
ordinate lines of the curvilinear system so that they are perpendicular to the symmetry planes of an
orthorhombic medium at any point of the medium. The transformation matrix H from curvilinear to
Cartesian coordinates in terms of Euler angles φ , θ and ν reads:

H =

 cosφcosθcosν− sinφsinν cosφcosθsinν + sinφcosν cosφsinθ

−sinφcosθcosν− cosφsinν −sinφcosθsinν + cosφcosν −sinφsinθ

−sinθcosν −sinθsinν cosθ

 . (1)

Angle φ controls the rotation around x3 axis of the Cartesian coordinates. It transforms axes x1 and x2
to x

′
1 and x

′
2, and is positive if the rotation is anticlockwise. Angle θ controls the rotation around x

′
2

axis. It transforms axis x
′
1 to x

′′
1 and axis x3 to x

′
3, and is positive if the rotation is anticlockwise. Angle

ν controls the rotation around the x
′
3 axis.

Ray tracing equations

The ray tracing system is governed by a system of differential equations for position vector x and slow-
ness vector p in Cartesian coordinates:

d
dt

(
x
p

)
=

(
H 0
−K I

)(
υξ

ηξ

)
. (2)
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In equation (2), H is the transformation matrix (1), I is a 3 × 3 identity matrix and K is a 3 × 3 matrix
with elements:

Kmk =
∂Hik

∂xm
pi. (3)

The vectors υξ and ηξ have components:

υ
ξ

i =
1
2

∂Gξ

∂ pξ

i

, η
ξ

i =−1
2

∂Gξ

∂xi
. (4)

Symbol Gξ denotes the first-order P-wave eigenvalue of the Christoffel matrix, expressed in curvilinear
coordinates ξ . For the orthorhombic case, Gξ reads

Gξ = α2
(

pξ

k pξ

k +2[εx(pξ

1 )
2 + εy(pξ

2 )
2)+ εz(pξ

3 )
2]

+2(pξ

k pξ

k )
−1[ηx(pξ

2 )
2(pξ

3 )
2 +ηy(pξ

1 )
2(pξ

3 )
2 +ηz(pξ

1 )
2(pξ

2 )
2]
)
, (5)

where
ηx = δy− εy− εz, ηy = δx− εx− εz, ηz = δz− εx− εy. (6)

For further details and definitions of weak-anisotropy (WA) parameters εx, εy, εz, δx, δy and δz see
(Pšenčík and Farra, 2005, 2007). The quantity α in equation (5) is a constant reference velocity used in
the definition of WA parameters. Equation (5) and the ray tracing equations are independent of α . Thus
α can be chosen arbitrarily. We use α that makes the WA parameters as small as possible.

Second order traveltime correction

Ray tracing (2) provides first-order traveltime t. To increase the accuracy of the traveltime computation,
we compute a second-order traveltime correction ∆t along the ray Ω (Pšenčík and Farra, 2005):

∆t =−1
2

∫
Ω

c−2 B2
13 +B2

23

V 2
P −V 2

S
dt. (7)

Here c is the phase velocity, VP and VS are P- and S-wave velocities in the reference isotropic medium
closely approximating the studied weakly anisotropic medium. Symbols B13 and B23 denote elements
of the Christoffel matrix projected into a local coordinate system connected with the ray. For details, see
Pšenčík and Farra (2005).

Dynamic ray tracing equations

For planned computation of ray amplitudes, for two-point ray tracing and for many other useful appli-
cations, we need dynamic ray tracing. The dynamic ray tracing system for the above specification reads
(Iversen and Pšenčík, 2008):

d
dt

(
Q
P

)
=

(
H 0
−K I

)(
S> T
−R −S

)(
I 0
K> H>

)(
Q
P

)
+

(
V> 0
−U> −V

)(
Q
P

)
. (8)

Here Q and P are 3 × 1 matrices with elements:

Qi =
∂xi

∂γ
, Pi =

∂ pi

∂γ
. (9)

The quantities Qi and Pi describe variations along the wave front of the coordinates xi and of the compo-
nents pi of the slowness vector due to the variation of the ray coordinte γ . We use two ray coordinates,
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γ1 and γ2, which represent two shooting angles at the source. The matrices R, S, T, U and V in equation
(8) are 3 × 3 matrices with elements:

Ri j =
1
2

∂ 2Gξ

∂xi∂x j
, Si j =

1
2

∂ 2Gξ

∂xi∂ pξ

j

, Ti j =
1
2

∂ 2Gξ

∂ pξ

i ∂ pξ

j

,

Ui j =
1
2

∂Gξ

∂ pξ

k

∂ 2 pξ

k
∂xi∂x j

, Vi j =
1
2

∂Gξ

∂ pξ

k

∂ 2 pξ

k

∂xi∂ pξ

j

. (10)

Symbol Gξ denotes again the first-order P-wave eigenvalue of the Christoffel matrix, see (5).

Two point ray tracing

Since we deal with a single wave in a smooth medium, we use a simple two-point ray tracing procedure,
in which, using the results of dynamic ray tracing, we convert deviations of a ray from the prescribed
receiver position into the corrections of shooting angles at the source.

Numerical example

We apply the above-described procedure for ray tracing and traveltime computations in a 3D model of
an orthorhombic medium. The model is a generalization of a part of the 2D BP transversely isotropic
model with varying axis of symmetry (Shah, 2007). We extended this model to a 3D orthorhombic one
by assuming that the structural features of the 2D model do not vary in the direction perpendicular to
the plane of the 2D model, and by the appropriate choices of additional WA parameters. The parameters
of the BP model are VP0 , ε , δ (Thomsen, 1986) and a tilt angle θ specified in a regular grid with 0.05
km spacing in the vertical and the horizontal direction. In each grid point, we used the values of VP0 , ε

and δ and converted them into WA parameters εx, εy, εz, δx, δy and δz. The values and derivatives of
WA parameters at an arbitrary point of the model were determined using the tricubic spline interpolation
with smoothing. The velocity α was chosen, α = 3.5 km/s. As to angles φ , θ and ν , we let only angle
θ to vary as in the BP model and we kept angles φ and ν constant. We show results for three values of
φ , specifically 15o, 30o and 45o and we keep ν = 0o.

The distribution of parameters εz and δz in the plane (x1,x3) is shown in Figures 1a and 1b. The variation
of remaining WA parameters has a similar character. Variation of the angle φ in the same plane is shown
in Figure 1c. We can see in Figures 1a and 1b that model parameters decrease at the top of the salt dome
which leads to a shadow zone effect. We can also notice in Figure 1c that θ varries from −45o to +45o.

We use a vertical seismic profiling (VSP) configuration, in which the source and the borehole are situated
in a vertical plane (x1,x3). The borehole is parallel with the x3-axis and the source is located on the
surface (x3 = 0km) at a 9 km distance from the intersection of the borehole with the surface. The
spacing of receivers in the borehole is 0.2km. Figure 2a shows rays projected into the vertical plane
containing the source and the borehole, while the projection of rays into the horizontal plane is shown
in Figure 2b. Both Figures 2a and 2b correspond to the case φ = 15o. We can see that rays deviate
from the vertical plane (x1,x3) due to the deviations of planes of symmetry from vertical and horizontal
planes. Figure 1c illustrates effect of varying angle φ on the traveltimes. In this figure, one can see that
traveltime decreases as the angle φ increases.

Conclusions

We presented a simple approach for ray tracing and dynamic ray tracing in inhomogeneous, weakly
orthorhombic media with varying planes of symmetry. The approach guarantees the conservation of
considered anisotropy symmetry (orthorhombic in our case) throughout the model and reduces the num-
ber of parameters necessary for the specification of the model. In the case of P-wave propagation in an
orthorhombic medium, only six WA parameters and three Euler angles are necessary to be specified.
The relative traveltime differences in models, which allowed comparison with exact computations, did
not exceed 0.2%.
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Figure 1: Distribution of WA parameters εz and δz and of the angle θ in the plane (x1,x3).
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Figure 2: Results of ray tracing in the orthorhombic BP model with varying planes of symmetry. (a) Projection
of rays into the vertical plane containing the source and the borehole for the case φ = 15o with the distribution of
VP0 in the background. (b) Projection of rays into the horizontal plane for the case φ = 15o. (c) Traveltime curves
for three values of angle φ .

Presented procedure can also be used, without any problem, for ray tracing and dynamic ray tracing in
smooth TTI media. It is sufficient to take into account that εx = εy = δz/2 and δx = δy. The number
of independent WA parameters thus reduces to three: εx, εz and δx. Only two Euler angles, φ and θ

are necessary to specify the orientation of the axis of symmetry. In smooth media, such a procedure is
equivalent to the procedure proposed by Dehghan et al. (2007).
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Pšenčík, I. and Farra, V. [2007] First-order P-wave ray synthetic seismograms in inhomogeneous weakly
anisotropic media. Geophys. J. Int., 170(3), 1243–1252.

Shah, H. [2007] The 2007 BP anisotropic velocity-analysis benchmark. 70th Anual EAGE meeting, workshop.
Thomsen, L. [1986] Weak elastic anisotropy. Geophysics, 51(10), 1954–1966.

s16
Text Box
163




