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Summary

We show the behaviour of the anisotropic–ray–theory S–wave rays in a velocity model
with a split intersection singularity. The rays crossing the split intersection singularity
are smoothly but very sharply bent. We demonstrate the abrupt changes of geometrical
spreading and wavefront curvature of the faster anisotropic–ray–theory S wave. We
also demonstrate the formation of caustics and wavefront triplication of the slower
anisotropic–ray–theory S wave.
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1. Introduction

In a generally anisotropic medium, the S–wave slowness sheets of the slowness surface
are usually mostly separated and intersect in at up to 32 point S–wave singularities
(Vavryčuk, 2005a; 2005b). In this case, outside the point singularities, the anisotropic–
ray–theory rays stay at the faster or slower S–wave slowness sheet, respectively. When
approaching the point singularities, the limiting case again corresponds to staying at the
faster or slower S–wave slowness sheet, respectively. In a generally anisotropic medium,
we thus have to separate the slowness surface into the P–wave slowness sheet, the faster
S–wave slowness sheet and the slower S–wave slowness sheet.

However, in a transversely isotropic medium, the S–wave slowness sheets may
intersect along intersection singularities (Vavryčuk, 2003). In this special case, we can
separate the slowness surface into the P–wave slowness sheet, the SH–wave slowness
sheet and the SV–wave slowness sheet, and trace the SH and SV rays. We must
know a priori whether the medium is transversely isotropic. We cannot determine it
numerically because any rounding error can perturb a transversely isotropic medium to
a generally anisotropic medium and split the unstable intersection singularity (Crampin,
1981).

If a medium is close to transversely isotropic but is not transversely isotropic, the
intersection singularity is split, the slower S–wave slowness sheet separates from the
faster S–wave slowness sheet, forming smooth but very sharp edges on both sheets.

When the slowness vector of a ray smoothly passes through a split intersection
singularity or close to the vicinity of a conical or wedge singularity, the ray–velocity
vector rapidly changes its direction and creates a sharp bend of the ray. This sharp
bend is connected with a rapid rotation of the eigenvectors of the Christoffel matrix.
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The sharply bent rays thus cannot describe the correct wave propagation and indicate
a failure of the anisotropic ray theory.

While physically reasonable anisotropic–ray–theory rays represent better reference
rays for calculating the corresponding arrivals of the prevailing frequency approximation
of the coupling ray theory (Klimeš & Bulant, 2012) than the common anisotropic S–
wave rays, the sharply bent rays are worse reference rays than the common anisotropic
S–wave rays.

The sharply bent rays can safely be traced by solving Hamilton’s equations of rays,
but we cannot solve the equations of geodesic deviation (paraxial ray equations, dynamic
ray tracing equations) numerically along these rays.

In this paper, we shall show the examples of the sharply bent anisotropic–ray–
theory rays in velocity model SC1 II which contains a split intersection singularity.

Pšenč́ık, Farra & Tessmer (2012) used velocity model SC1 II to compare synthetic
seismograms calculated by different ray theories with the seismograms calculated by
Fourier pseudospectral method. They obtained considerable differences between the
seismograms for shallow receivers and concluded that the coupling ray theory along
common anisotropic S–wave rays failed because the slowness vectors corresponding to
the two anisotropic–ray–theory rays have too different orientation and it is impossible
to approximate them by the slowness vector of the common anisotropic S–wave ray.
Bulant, Pšenč́ık, Farra & Tessmer (2011) and Klimeš & Bulant (2012) calculated the
same coupling–ray–theory synthetic seismograms using the package CRT and obtained
similar errors in the seismograms in the shallow receivers.

In order to check the above mentioned hypothesis, we tried to trace the anisotropic-
ray-theory rays in the model SC1 II. Because the phase-velocity section shown by
Pšenč́ık, Farra & Tessmer (2011, fig 11) indicated possible existence of the intersection
singularity above the original surface of the model, we decided to extend the model in
the vertical direction, and we added 13 new receivers above the original vertical receiver
profile.

2. Velocity model SC1 II

At the depth of 0 km, velocity model SC1 II is transversely isotropic with the tilted axis
of symmetry. At this depth, the slowness surface contains an intersection singularity.
At the depth of 1.5 km, velocity model SC1 II is very close to isotropic, but is slightly
cubic and its symmetry axes coincide with the coordinate axes. This means that, at all
depths except 0 km, velocity model SC1 II is very close to transversely isotropic, but is
slightly tetragonal. Whereas the transversely isotropic medium contains the intersection
singularity through which the rays pass without rotation of the eigenvectors of the
Christoffel matrix (Vavryčuk, 2001, sec. 4.3), in the slightly tetragonal medium, the
S–wave slowness surface is split at this unstable singularity (Crampin, 1981) and the
eigenvectors of the Christoffel matrix rapidly rotate by 90◦ there.
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3. Initial–value tracing of anisotropic–ray–theory S–wave rays

Previous versions of the SW3D software package CRT were designed to trace the
anisotropic–ray–theory P–wave rays and the common anisotropic S–wave rays using the
average S–wave Hamiltonian function according to Klimeš (2006). We did not consider
anisotropic–ray–theory S–wave rays for obvious problems with S–wave slowness surface
singularities. Now we have added an optional possibility to calculate anisotropic–ray–
theory S–wave rays to the package CRT version 7.10 (Bucha & Bulant, 2014) for testing
purposes.

Optional tracing of anisotropic–ray–theory S–wave rays is designed for general
anisotropy with point S–wave singularities only. We thus a priori choose the faster
S wave or the slower S wave. In each step of anisotropic–ray–theory S–wave ray tracing,
the Christoffel matrix is calculated together with its eigenvalues and corresponding
eigenvectors. We then select the a priori chosen anisotropic–ray–theory S wave (the
slower one or the faster one) for the calculation of the ray.

The rays of the selected anisotropic–ray–theory S wave can safely be traced by
solving Hamilton’s equations of rays. Unfortunately, the equations of geodesic de-
viation (paraxial ray equations, dynamic ray tracing equations) contain the second–
order derivatives of the Hamiltonian function with respect to the slowness vector.
Expressions for these derivatives contain the difference of the S–wave eigenvalues of
the Christoffel matrix in the denominator. If the difference of the S–wave eigenvalues of
the Christoffel matrix is smaller than the rounding error, the second–order derivatives
of the Hamiltonian function with respect to the slowness vector become random and,
in consequence, the matrix of geometrical spreading becomes random, too. If we wish
the rays with a reasonably defined matrix of geometrical spreading and a reasonably
defined phase shift due to caustics, we have to terminate tracing of a ray if the relative
difference between the S-wave eigenvalues of the Christoffel matrix is smaller then the
prescribed limit which we named DSWAVE. The maximum angular numerical error of the
eigenvectors of the Christoffel matrix in radians is then roughly equal to the ratio of
the relative rounding error to parameter DSWAVE.

4. Rays in velocity model SC1 II

We calculated rays approximately leading to the receivers located in a vertical well at a
distance of 1 km from the source. The receivers extend from the depth of 1.32 km below
the source to the elevation of 0.48 km above the source with spacing of 0.04 km. Klimeš
& Bulant (2012) considered the 33 receivers below the source only. In this paper, we
added the receiver at the source level and the 12 receivers above the source in order to
demonstrate the sharp bends of rays and wavefront triplication.

In order to overcome the problems with tracing the S–wave anisotropic–ray–theory
rays described by Bulant & Klimeš (2014), we chose DSWAVE=0.000 000 000 01 and
removed the KMAH index from ray histories. We then traced the faster S–wave
anisotropic–ray–theory rays, the slower S–wave anisotropic–ray–theory rays, and com-
mon anisotropic S–wave rays.

The faster S–wave anisotropic–ray–theory rays are displayed in Figures 1 and 2.
Due to the constant vertical gradient of elastic moduli, the slowness vectors slowly rotate
during ray tracing. The slowness vectors of the rays leading to the receivers from the
second receiver below the source to the ninth receiver above the source cross the split
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intersection singularity. Crossing the split intersection singularity results in smooth but
very sharp bends of rays. These sharp bends are connected with a rapid rotation of
the eigenvectors of the Christoffel matrix. The sharply bent rays thus cannot describe
the correct wave propagation and indicate a failure of the anisotropic ray theory. The
related abrupt change of the anisotropic–ray–theory amplitude between the second and
third receivers below the source (and also between the ninth and tenth receivers above
the source) also suggests that the anisotropic ray theory is not applicable there.

The slower S–wave anisotropic–ray–theory rays are displayed in Figures 3 and 4.
The sharply bent slower S–wave anisotropic–ray–theory rays lead to the receivers from
the first receiver above the source to the third receiver above the source. These rays are
bent in the opposite direction than the faster S–wave anisotropic–ray–theory rays, and
form the wavefront triplication. The caustics limiting the triplication are positioned
between the zeroth and first receivers above the source, and between the third and
fourth receivers above the source, respectively.

The common anisotropic S–wave rays, traced using the average S–wave Hamiltonian
function according to Klimeš (2006) are displayed in Figure 5. The corresponding
geometrical spreading and the corresponding amplitude are very smooth.

The anisotropic–ray–theory rays of the faster S wave, the anisotropic–ray–theory
rays of the slower S wave, and the common anisotropic S–wave rays are compared in
Figure 6. Although the domain of ray parameters parametrizing the initial slowness
vectors of rays is the same for all three kinds of rays, the uppermost anisotropic–
ray–theory ray of the slower S wave leads to the seventh receiver above the source,
the uppermost common anisotropic S–wave ray leads to the ninth receiver above the
source, whereas the anisotropic–ray–theory rays of the faster S wave lead to all receivers
including the topmost twelfth receiver above the source.

In Figure 6, we can see that for the receivers located deeper in the model, the
common anisotropic S–wave ray is always between the two anisotropic rays and the
differences between the rays are not so large. For the shallower receivers starting from
the third receiver below the surface of the model, the slower S wave interacts with
the singularity and the rays are sharply bent at the singularity. As the result of this
bending, the common anisotropic rays are no more situated between the two anisotropic
rays. Starting from the first receiver above the source, also the faster S wave is bent by
the singularity, which results in even higher difference between the trajectories of the
common anisotropic S–wave ray and of the anisotropic–ray–theory S–wave rays. At the
faster S wave, the singularity generates a triplication.
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5. Ray parameters of traced rays

The two–point rays leading to the receivers have been searched for using the algorithm
by Bulant (1996; 1999), with the KMAH index removed from ray histories.

Ray parameters of the anisotropic–ray–theory rays of the faster S wave are displayed
in Figures 7 and 8. The ray parameters of the two–point rays approximately leading
to the receivers (large red crosses) can be divided into three segments. The left–
hand segment corresponds to three smooth rays leading to the twelfth, eleventh and
tenth receivers above the source in Figure 1. The middle segment corresponds to 12
sharply bent rays leading to the receivers from the ninth receiver above the source to
the second receiver below the source in Figure 1. The paraxial approximation used in
the algorithm by Bulant (1996; 1999) to find the two–point rays inevitably failed in this
middle segment, which is obvious from the distribution of auxiliary rays shot towards
the receivers. The right–hand segment corresponds to 31 smooth rays leading to the
receivers from the third receiver below the source to the 33rd receiver below the source
in Figure 1.

Ray parameters of the anisotropic–ray–theory rays of the slower S wave are dis-
played in Figures 9 and 10. The ray parameters of the two–point rays approximately
leading to the receivers (large red crosses) can be divided into three segments. The
left–hand segment corresponds to seven smooth rays leading to the receivers from the
seventh receiver above the source to the first receiver above the source in Figure 3. The
middle segment corresponds to 3 sharply bent rays leading to the first, second and third
receivers above the source in Figure 3. Since the KMAH index has been disabled, the
caustics do not affect the ray history of these rays. The paraxial approximation used in
the algorithm by Bulant (1996; 1999) to find the two–point rays inevitably failed in this
middle segment, which is obvious from the distribution of auxiliary rays shot towards
the receivers. The right–hand segment corresponds to 37 smooth rays leading to the
receivers from the third receiver above the source to the 33rd receiver below the source
in Figure 3.

There is no problem with two–point tracing the common anisotropic S–wave rays,
see Figure 11.

6. Conclusions

In velocity models with split intersection singularity at the slowness surface, the S–wave
anisotropic–ray–theory rays do not describe the actual paths of wave propagation and
do not represent reasonable reference rays for the coupling ray theory. In this case, the
common anisotropic S–wave rays represent much better reference rays for the coupling
ray theory.

If the common anisotropic S–wave rays are not sufficiently close to the actual
paths of wave propagation or the corresponding common S–wave amplitudes are not
sufficiently accurate for both S–wave arrivals, we may consider approximate SH and SV
reference rays. To trace the approximate SH and SV reference rays, we approximate the
correct velocity model by a transversely isotropic velocity model and trace these rays.
We then apply the prevailing–frequency approximation of the coupling ray theory along
the SH and SV reference rays (Klimeš & Bulant, 2014) to the correct velocity model.
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Figure 1: Front view and top view of the anisotropic–ray–theory rays of the faster S wave. It is
obvious how the geometrical spreading increases behind the sharp bends of rays.
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Figure 2: Detail of the anisotropic–ray–theory rays of the faster S wave together with a wavefront. We
can clearly observe considerable decrease of the wavefront curvature behind the sharp bends of rays.
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Figure 3: Front view and top view of the anisotropic–ray–theory rays of the slower S wave. We
can clearly observe the caustics caused by the sharply bent rays and the formation of the wavefront
triplication at the first, second and third receivers above the source.
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Figure 4: Detail of the anisotropic–ray–theory rays of the slower S wave together with a wavefront
containing the triplication.
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Figure 5: Front view and top view of the common anisotropic S–wave rays. The corresponding
geometrical spreading and the corresponding amplitude are very smooth.
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Figure 6: Common front view of the anisotropic–ray–theory rays of the faster S wave (green),
anisotropic–ray–theory rays of the slower S wave (red), and anisotropic common S–wave rays (blue).
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Figure 7: Ray parameters of all traced anisotropic–ray–theory rays of the faster S wave, including the
triangulation of the ray–parameter domain. The large red crosses correspond to the rays approximately
leading to the receivers. It is obvious from the distribution of auxiliary rays shot towards the receivers
that the paraxial approximation inevitably failed in the belt of sharply bent rays. The left bottom
isolated cluster of auxiliary rays corresponds to the ray which could not be traced, refer to the blue
diamond in Figure 8.
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Figure 8: Ray parameters of the basic system of the anisotropic–ray–theory rays of the faster S wave,
together with the rays approximately leading to the receivers. The black plus crosses correspond to the
rays incident at the receiver side of the velocity model. The large red plus crosses correspond to the
rays approximately leading to the receivers. The green times crosses correspond to the rays incident
at the bottom of the velocity model. The blue diamond corresponds to the ray whose tracing was
terminated, which may be caused by a too close point S–wave singularity somewhere along the ray.
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Figure 9: Ray parameters of all traced anisotropic–ray–theory rays of the slower S wave, including the
triangulation of the ray–parameter domain. The large red crosses correspond to the rays approximately
leading to the receivers. It is obvious from the distribution of auxiliary rays shot towards the receivers
that the paraxial approximation inevitably failed in the belt of sharply bent rays. The isolated cluster
of auxiliary rays corresponds to the ray which could not be traced, refer to the green times cross in
Figure 10.
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Figure 10: Ray parameters of the basic system of the anisotropic–ray–theory rays of the slower S wave,
together with the rays approximately leading to the receivers. The black plus crosses correspond to the
rays incident at the receiver side of the velocity model. Since the KMAH index has been disabled, the
caustics do not affect the ray history. The large red plus crosses correspond to the rays approximately
leading to the receivers. The green times cross corresponds to the ray whose tracing was terminated,
which may be caused by a too close point S–wave singularity somewhere along the ray.
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Figure 11: Ray parameters of all traced common anisotropic S–wave rays, including the triangulation
of the ray–parameter domain. The black plus crosses correspond to the rays incident at the receiver
side of the velocity model. The large red plus crosses correspond to the two–point rays leading to the
receivers. The green times crosses correspond to the rays incident at the bottom of the velocity model.
The paraxial approximation efficiently determined the two–point rays leading to the receivers, without
superfluous auxiliary rays.
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