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Summary

Based on the integral superposition of Gaussian packets, we derive the equations for the
integral superposition of Gaussian beams and for the integral superposition of column
Gaussian packets in smoothly heterogeneous media. Whereas Gaussian beams extend
along their central rays, column Gaussian packets extend along an arbitrary system of
lines.

The equations are applicable to both the anisotropic ray theory and the coupling
ray theory in anisotropic media, or to the isotropic ray theory in isotropic media.
The superpositions corresponding to the coupling ray theory can be applied to various
kinds of reference rays. The equations can be used in both Cartesian and curvilinear
coordinates.
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1. Introduction

The equations for the integral superposition of Gaussian packets in heterogeneous
isotropic media were derived using the Maslov asymptotic theory applied to a general
3–D subspace of the 6–D complex phase space by Klimeš (1984), and demonstrated in
the computation of seismic wave fields by Klimeš (1989). These equations were rederived
for heterogeneous anisotropic media by Klimeš (2014).

In this paper, we start with the three–parametric superposition of Gaussian packets
in a smoothly heterogeneous generally anisotropic medium by Klimeš (2014). We
consider the endpoints of rays along a reference surface, and a system of reference
lines intersecting the reference surface. We then asymptotically calculate the one–
parametric superpositions along the reference lines and in this way convert the three–
parametric superposition of Gaussian packets into a two–parametric superposition of
column Gaussian packets, which infinitely extend along the reference lines. The two–
parametric superposition of column Gaussian packets is performed along the reference
surface, and represents a generalization of the two–parametric superposition of paraxial
Gaussian beams.

We then demonstrate that the column Gaussian packets are not singular at caustics
only if the reference lines are tangent to the reference rays at the reference surface. If
we choose the reference lines along the reference rays, the two–parametric superposition
of column Gaussian packets reduces to the two–parametric superposition of paraxial
Gaussian beams along the reference surface.
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The presented integral superpositions of column Gaussian packets and paraxial
Gaussian beams may correspond to the anisotropic ray theory, to the frequency–de-
pendent coupling ray theory for S waves or to the prevailing–frequency approximation
of the coupling ray theory (Klimeš & Bulant, 2012) in anisotropic media, or to the
isotropic ray theory in isotropic media. The equations can be used in both Cartesian
and curvilinear coordinates.

The lower–case indices i, j, ... take the values of 1, 2, 3. The upper–case indices
I, J, ... take the values of 1, 2. The Einstein summation convention over repeated indices
is used.

2. Integral superposition of Gaussian packets

We consider Cartesian or curvilinear coordinates xi in 3–D space. We consider an
orthonomic system xi = x̃i(γa) of rays parametrized by ray coordinates γa, where γ1 and
γ2 are the ray parameters, and γ3 is the parameter along rays determined by the form of
the Hamiltonian function. In the case of the coupling ray theory, the orthonomic system
of rays is represented by the system of reference rays along which the coupling equations
are solved. The reference rays are calculated using the reference Hamiltonian function,
and correspond to the reference travel time and the reference slowness vector. The
time–harmonic integral superposition of Gaussian packets, Gaussian beams or column
Gaussian packets will be considered with respect to the reference rays.

Along the reference rays, we calculate the ray–theory travel time and the corre-
sponding ray–theory amplitude using an arbitrary ray method. The ray–theory travel
time may differ from the reference travel time, but will be assumed to represent just a
perturbation of the reference travel time. In this way, we shall substitute the first–order
and second–order spatial derivatives of the reference travel time for the corresponding
spatial derivatives of the ray–theory travel time.

The integral superposition of paraxial Gaussian packets in heterogeneous isotropic
media was derived using the Maslov asymptotic theory applied to a general 3–D subspace
of the 6–D complex phase space by Klimeš (1984, eq. 51). In a heterogeneous anisotropic
medium, the time–harmonic integral superposition of paraxial Gaussian packets reads
(Klimeš, 2014, eq. 11)
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where function
√

det
(

Mab

)

is the product of the square roots of the eigenvalues of
matrix Mab. The individual square roots are taken with positive real parts. Here ω is
the circular frequency, τ(x̃n) is the travel time at point x̃i, pk(x̃n) is the slowness vector
corresponding to the orthonomic system of rays at point x̃i, fkl(x̃

n) is the complex–
valued matrix with positive imaginary part describing the shape of the paraxial Gaussian
packet centred at point x̃i, Nkl(x̃

m) is the matrix of the second–order partial derivatives
of the reference travel time at point x̃i, and Ai[j](x̃

m, ω) is the complex–valued vectorial
or tensorial ray–theory amplitude.

The amplitudes of Gaussian packets corresponding to a particular source are vec-
torial without optional subscript [j]. The amplitudes of Gaussian packets designed to
compose the Green tensor (Klimeš, 2012) are tensorial with optional subscript [j].
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In anisotropic media, vectorial or tensorial amplitude Ai[j](x̃
m, ω) may represent

either the anisotropic–ray–theory vectorial or tensorial amplitude, or the frequency–
dependent coupling–ray–theory vectorial or tensorial amplitude calculated using the
scalar reference amplitude corresponding to the orthonomic system of reference rays,
or the vectorial or tensorial amplitude of the prevailing–frequency approximation of
the coupling ray theory (Klimeš & Bulant, 2012). In isotropic media, vectorial or
tensorial amplitude Ai[j](x̃

m, ω) represents the isotropic–ray–theory vectorial or tensorial
amplitude.

Matrix fkl(x̃
n) may be chosen arbitrarily, but must be smoothly varying with

coordinates x̃n. Matrix fkl(x̃
n) need not satisfy the equations for Gaussian packets

propagating along the rays, because Gaussian packets arriving to different points of
the same ray may correspond to different initial conditions for the shape of Gaussian
packets. Matrix fkl(x̃

n) may also depend on frequency ω.

3. General integral superposition of column Gaussian packets

We consider the points of intersection of rays determined by ray parameters γ1 and
γ2 with the reference surface. In the integral superposition, we introduce curvilinear
coordinates ξi,

x̃i = x̃i(ξM , ξ3) , (2)

with ξ3 = 0 along the reference surface which becomes the coordinate surface. We choose
ξI = γI along the reference surface. The reference lines for one–parametric analytical
asymptotic integration in superposition (1) are represented by the ξ3 coordinate lines.

We change the coordinates in integral superposition (1),
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where

θ = τ + (xk−x̃k) pk + 1
2 (xk−x̃k) fkl (x

l−x̃l) . (4)

For fixed ξI , we consider the dependence of quantities in the integral superposition on
ξ3. The quadratic Taylor expansion of coordinates with respect to ξ3 reads

x̃i(ξ3) ≃ x̃i(0) + Zi
3(0) ξ3 + 1

2 Zi
33(0) (ξ3)2 , (5)

where

Zi
3 =

∂xi

∂ξ3
(6)

and

Zi
33 =

∂2xi

∂ξ3∂ξ3
. (7)

Note that contravariant vector Zi
3 is tangent to the reference lines.

The quadratic Taylor expansion of the reference travel time with respect to ξ3 reads

τ(ξ3) ≃ τ(0) + pi(0) Zi
3(0) ξ3 + 1

2 pi(0)Zi
33(0) (ξ3)2 + 1

2 Zi
3(0) Nij(0) Z

j
3(0) (ξ3)2 . (8)

Since we assume that travel time τ(x̃n) in superposition (1) is a perturbation of the
reference travel time, we apply expansion (8) approximately also to the travel time in
superposition (1). The perturbation is contained in term τ(0).
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The linear Taylor expansion of the reference slowness vector with respect to ξ3

reads
pi(ξ

3) ≃ pi(0) + Nij(0) Z
j
3(0) ξ3 . (9)

The mixed quadratic Taylor expansion of
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]}
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We perform the summations in (11) and obtain expansion
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(13)
which does not contain Zi

33(0) and is thus independent of the curvature of the reference
lines xi = x̃i(ξ3). Expansion (13) may be expressed as

θ(ξ3) ≃ θ(0) +
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We now integrate superposition (3) with respect to ξ3 and obtain two–parametric
integral superposition
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where ξ1 = γ1 and ξ2 = γ2 along the reference surface of integration. Complex–valued
travel time

θ̃ = θ(0) − 1

2
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3(0)}2

Zr
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3(0)
(16)

can be expressed as

θ̃ = τ + (xk−x̃k) pk + 1
2
(xk−x̃k) f̃kl (x

l−x̃l) (17)

with

f̃ij = fij −
(fik−Nik)Zk

3 Zl
3(flj−Nlj)

Zr
3(frs−Nrs)Z

s
3

, (18)

where all quantities are taken at the reference surface. Note that

(f̃ik−Nik) Zk
3 = 0 . (19)
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We define the derivatives

Zi
M =

∂xi

∂ξM
(20)

of coordinates xi along the reference surface with respect to ray parameters ξM = γM .
Contravariant vectors Zi

1 and Zi
2 are tangent to the reference surface.

We introduce 2×2 matrix

F̃MN = Zi
MfijZ

j
N − Zi

M (fik−Nik)Zk
3 Zl

3(flj−Nlj)Z
j
N

Zr
3(frs−Nrs)Z

s
3

. (21)

We define transformation matrix

Zmi =
∂ξm

∂xi
(22)

which represents the inverse matrix to matrix Zi
m given by definitions (5) and (20),

Zmi Zi
n = δmn . (23)

Covariant vectors Z1i and Z2i are perpendicular to the reference ξ3 lines. Covariant
vector Z3i is perpendicular to the reference surface.

We may consider decomposition f̃ij = (f̃ij − Nij) + Nij , apply identity (19) and

definition (21) to term (f̃ij − Nij), and express matrix (18) as

f̃ij = ZMi(F̃MN − Zk
MNklZ

l
N )ZNj + Nij . (24)

Considering identity
Zmi Zj

m = δ
j
i (25)

following from definition (23), we express matrix (24) as

f̃ij = ZMiF̃MNZNj − (δk
i − Z3iZ

k
3 )Nkl(δ

l
j − Zl

3Z3j) + Nij , (26)

which reads

f̃ij = ZMiF̃MNZNj + Z3iZ
k
3 Nkj + NilZ

l
3Z3j − Z3iZ

k
3 NklZ

l
3Z3j , (27)

where all quantities are taken at the reference surface.
We covariantly transform matrices Nij and fij from general coordinates xi to

reference coordinates ξm using the transformation matrix given by definitions (5) and
(20),

Mmn = Zi
mNijZ

j
n , (28)

Fmn = Zi
mfijZ

j
n . (29)

Two–parametric integral superposition (15) then reads

ui[j](x
m) =

ω

2π
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dξ1dξ2 Ai[j]

√
det[i(Mab − Fab)]
√

i(M33 − F33)
exp
(

iωθ̃
)

, (30)

and matrix (21) reads

F̃MN = FMN − (FM3−MM3)(F3N−M3N )

F33−M33
. (31)

We calculate the determinant of 2×2 matrix F̃MN −MMN using expression (31) and
obtain

det(F̃MN − MMN ) =
det(Fab − Mab)

F33 − M33
. (32)
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We insert relation (32) into integral superposition (30) and obtain two–parametric
integral superposition

ui[j](x
m) =

ω

2π

∫∫

dξ1dξ2 Ai[j]

√
det[i(MAB − F̃AB)] exp

(

iωθ̃
)

. (33)

4. Integral superpositions of Gaussian beams

Since
f̃ik Zk

3 = Nik Zk
3 , (34)

matrix f̃ik is always finite only if Nik Zk
3 is always finite. To keep Nik Zk

3 finite at caus-
tics, we must choose contravariant vector Zk

3 tangent to the reference ray. Curvilinear
coordinate ξ3 then represents a local parameter along the ray. Covariant vectors Z1i and
Z2i are perpendicular to the reference rays, and covariant vector Z3i is perpendicular
to the reference surface.

Hamilton’s equations of rays (ray tracing equations) yield

H ,k = dxk

dγ3 . (35)

For the reference lines coinciding with rays, we may thus express

Zk
3 = H ,k dγ3

dξ3 . (36)

Considering identity
NikH ,k = −H,i , (37)

we express matrix (27) for the superposition of Gaussian beams as

f̃ij = ZMiF̃MNZNj − Z3iH,j
dγ3

dξ3 − H,iZ3j
dγ3

dξ3 + Z3iZ
k
3 H,kZ3j

dγ3

dξ3 . (38)

For a special case of the reference surface coinciding with a wavefront, relation (38)
is analogous to the transformation of the second–order derivatives of travel time from
ray–centred coordinates to general coordinates (Červený & Klimeš, 2010, eq. 36).
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