
Determination of the reference symmetry axis
of a generally anisotropic medium
which is approximately transversely isotropic
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Summary

For a given stiffness tensor (tensor of elastic moduli) of a generally anisotropic medium,
we estimate to which extent is the medium transversely isotropic and determine the
direction of its reference symmetry axis in terms of the reference symmetry vector.
If the medium is exactly transversely isotropic, we obtain its symmetry axis. We
can also calculate the first–order and second–order spatial derivatives of the reference
symmetry vector. The proposed method is illustrated in various transversely isotropic
and approximately transversely isotropic velocity models.
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1. Introduction

The coupling ray theory (Chapman & Shearer, 1989; Bulant & Klimeš, 2002; Klimeš
& Bulant, 2012) is usually applied to common anisotropic rays (Bakker, 2002; Klimeš
& Bulant, 2004; 2006; Klimeš, 2006; Bulant & Klimeš, 2008). On the other hand, the
coupling ray theory is more accurate if it is applied to reference rays which are closer
to the actual S–wave paths (Klimeš & Bulant, 2014a).

If we a priori know that a given medium is transversely isotropic, we can separate
the slowness surface into the P–wave slowness sheet, the SH–wave slowness sheet and the
SV–wave slowness sheet. We may then trace the SH rays and SV rays (Klimeš & Bulant,
2014a), and use them as the reference rays for the prevailing–frequency approximation
of the coupling ray theory. In this case, the SH rays and SV rays are better reference
rays than the common anisotropic reference rays.

Even if a given medium is not transversely isotropic but is approximately trans-
versely isotropic, the SH and SV reference rays (Klimeš & Bulant, 2015) may represent
better reference rays than the common anisotropic reference rays. Note that, in this
case, the anisotropic–ray–theory rays often cannot be used as the reference rays (Bulant
& Klimeš, 2014; Klimeš & Bulant, 2014b).

For a given stiffness tensor (tensor of elastic moduli) of a generally anisotropic
medium, it is thus very useful to be able to estimate to which extent is the medium
transversely isotropic and to determine the direction of its reference symmetry axis.

The stiffness tensor of a transversely isotropic medium is independent of the rota-
tion around the symmetry axis.
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For a given stiffness tensor of a generally anisotropic medium and a given rotation
axis, we calculate the derivative of the stiffness tensor with respect to the angle of
rotation in Section 2.1. The norm of the derivative of the stiffness tensor with respect
to the angle of rotation divided by the norm of the stiffness tensor characterizes the
extent of the dependence of the stiffness tensor on the rotation.

In Section 2.2, we determine the rotation axis corresponding to the smallest norm
of the angular derivative of the stiffness tensor and refer to it as the reference symmetry
axis. The direction of the reference symmetry axis is specified in terms of the reference
symmetry vector.

In Sections 2.3 and 2.4, we also calculate the first–order and second–order spatial
derivatives of the reference symmetry vector, which may be useful for tracing the SH
and SV reference rays (Klimeš & Bulant, 2015) in heterogeneous velocity models with
spatially varying reference symmetry vector, and for solving the corresponding equations
of geodesic deviation.

The proposed method is illustrated in various transversely isotropic and approxi-
mately transversely isotropic velocity models in Section 3.

The lower–case Roman indices take values 1, 2 and 3. The upper–case Roman
indices take values 1 and 2. Indices in parentheses are used to index the eigenvalues
and corresponding eigenvectors. The Einstein summation over repetitive lower–case
Roman indices (without parentheses) corresponding to the 3 spatial coordinates, is
used throughout the paper.

2. Reference symmetry axis

2.1. Derivative of the stiffness tensor with respect to the angle of rotation

Transformation matrix Rin(ϕ) corresponding to the rotation of vectors about given unit
vector ti by angle ϕ is an orthogonal matrix, with Rin(0) = δin, where Kronecker delta
δin represents the elements of the identity matrix. The derivative ωin = R′

in = dRin/dϕ
of the transformation matrix at ϕ = 0 reads

ωin = −tmεmin , (1)

where εijk is the Levi–Civita symbol.
For unit rotation vector ti, the derivative of stiffness tensor aijkl with respect to

the angle ϕ of rotation is

a′

ijkl = ωinanjkl + ωjnainkl + ωknaijnl + ωlnaijnr . (2)

We insert matrix (1) into angular derivative (2) and obtain

a′

ijkl = −tm (εminanjkl + εmjnainkl + εmknaijnl + εmlnaijkn) . (3)

We define tensor

dijklm = εminanjkl + εmjnainkl + εmknaijnl + εmlnaijkn (4)

and express angular derivative (3) as

a′

ijkl = −dijklm tm . (5)
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2.2. Reference symmetry vector

We choose the square

y = a′

ijkl a
′

ijkl (6)

of the norm of the derivative of the stiffness tensor with respect to the angle of rotation
as the objective function. We insert relation (5) into objective function (6) and obtain

y = tmBmntn , (7)

where

Bmn = dijklm dijkln . (8)

For unit rotation vector ti, objective function (7) has its minimum y = B(3) for rotation
vector ti given by the eigenvector ti(3) of matrix Bmn corresponding to the smallest
eigenvalue B(3). We shall refer to this eigenvector ti(3) as the reference symmetry vector
and to the corresponding direction as the reference symmetry axis.

The ratio

ρ =

√

a′

ijkl a
′

ijkl

aijkl aijkl

(9)

of the norm
√

a′

ijkla
′

ijkl of the derivative of the stiffness tensor with respect to the angle

of rotation and the norm
√

aijklaijkl of the stiffness tensor characterizes the extent of
the dependence of the stiffness tensor on the rotation. For the reference symmetry
vector ti = ti(3), ratio (9) reads

ρ(3) =

√

B(3)

aijkl aijkl

. (10)

This ratio characterizes the extent to which the medium is not transversely isotropic.
We shall thus refer to it as the non–TI ratio.

Note that the reference symmetry vector ti(3) is stable and has a good physical
meaning only if the minimum eigenvalue B(3) of matrix Bmn is considerably smaller
than other two eigenvalues B(1) and B(2), i.e., if ρ(3) is considerably smaller than ratios

ρ(A) =

√

B(A)

aijkl aijkl

. (11)

If non–TI ratio (10) is zero within rounding errors, the medium is exactly transversely
isotropic and reference symmetry vector ti(3) specifies its symmetry axis.
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2.3. First–order spatial derivatives of the symmetry vector

Since the symmetry vector is a unit eigenvector of matrix (8), we can calculate its
first–order and second–order partial derivatives with respect to spatial coordinates
analogously as the derivatives of the eigenvectors of the Christoffel matrix.

In addition to reference symmetry vector ti(3) corresponding to the minimum eigen-
value B(3) of matrix (8), we introduce also other two unit eigenvectors ti(A) corresponding
to eigenvalues B(A).

The first–order partial derivatives of tensor (4) with respect to spatial coordinates
read

dijklm,p = εminanjkl,p + εmjnainkl,p + εmknaijnl,p + εmlnaijkn,p . (12)

The first–order partial derivatives of matrix (8) with respect to spatial coordinates then
read

Bmn,p = dijklm,p dijkln + dijklm dijkln,p . (13)

We transform the first–order partial derivatives of matrix (8) into eigenvectors ti(a),

B(ab),p = tm(a)Bmn,ptn(b) . (14)

The first–order partial derivatives of eigenvector ti = ti(3) with respect to spatial coor-
dinates then read (Klimeš, 2006, eq. 17)

ti,p =
∑

A

ti(A)

B(A3),p

B(3)−B(A)
. (15)

2.4. Second–order spatial derivatives of the symmetry vector

The second–order partial derivatives of tensor (4) with respect to spatial coordinates
read

dijklm,pq = εminanjkl,pq + εmjnainkl,pq + εmknaijnl,pq + εmlnaijkn,pq . (16)

The second–order partial derivatives of matrix (8) with respect to spatial coordinates
then read

Bmn,pq = dijklm,pq dijkln + dijklm dijkln,pq + dijklm,p dijkln,q + dijklm,q dijkln,p . (17)

We transform the second–order partial derivatives of matrix (8) into eigenvectors ti(A),

B(ab),pq = tm(a) Bmn,pq tn(b) . (18)

The second–order partial derivatives of eigenvector ti = ti(3) with respect to spatial
coordinates then read (Klimeš & Bulant, 2015, eqs. 39, 40)

ti,pq =
∑

A

ti(A)

(

B(A3),pq

B(3)−B(A)
+

∑

B

B(AB),pB(B3),q+B(AB),qB(B3),p

(B(3)−B(A)) (B(3)−B(B))

−

B(A3),pB(33),q+B(A3),qB(33),p

(B(3)−B(A))2

)

− ti(3)
∑

B

B(B3),pB(B3),q

(B(3)−B(B))2
. (19)
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3. Numerical examples

Unit reference symmetry vector ti(3) and non–TI ratio (10) for a given stiffness tensor
aijkl is determined according to Sections 2.1 and 2.2 of this paper by new program
tiaxis.for of software package FORMS (Bucha & Bulant, 2015).

3.1. Velocity model WA

The density reduced stiffness tensor in vertically heterogeneous 1–D anisotropic velocity
model WA by Pšenč́ık & Dellinger (2001) at the surface (zero depth) reads

















11 22 33 23 13 12

11 13.39 4.46 4.46 0.00 0.00 0.00

22 15.71 5.04 0.00 0.00 0.00

33 15.71 0.00 0.00 0.00

23 5.33 0.00 0.00

13 4.98 0.00

12 4.98

















. (20)

Non–TI ratio (10) determined for this medium is

ρ(3) = 0.000847 , (21)

and the corresponding unit reference symmetry vector is

ti(3) = (1.000000 0.000000 0.000000) . (22)

We see that the medium is not exactly transversely isotropic but is approximately
transversely isotropic.

We now slightly change density reduced stiffness tensor (20) to density reduced
stiffness tensor

















11 22 33 23 13 12

11 13.39 4.46 4.46 0.00 0.00 0.00

22 15.70 5.04 0.00 0.00 0.00

33 15.70 0.00 0.00 0.00

23 5.33 0.00 0.00

13 4.98 0.00

12 4.98

















(23)

of a transversely isotropic medium. Non–TI ratio (10) determined for this medium is

ρ(3) = 0.000000 , (24)

and the corresponding unit reference symmetry vector is

ti(3) = (1.000000 0.000000 0.000000) . (25)
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3.2. Velocity model QI

Velocity model WA was rotated by 45◦ about the positive x3 half–axis in order to
create vertically heterogeneous 1–D anisotropic velocity model QI. The density reduced
stiffness tensor in km2s−2 in velocity model QI at the surface (zero depth) reads (Bulant
& Klimeš, 2002, eq. 38; Klimeš & Bulant, 2004, eq. 57; Pšenč́ık, Farra & Tessmer, 2012,
eq. 16)

















11 22 33 23 13 12

11 14.485 4.525 4.750 0.000 0.000 −0.580

22 14.485 4.750 0.000 0.000 −0.580

33 15.710 0.000 0.000 −0.290

23 5.155 −0.175 0.000

13 5.155 0.000

12 5.045

















. (26)

Non–TI ratio (10) determined for this medium is

ρ(3) = 0.000847 , (27)

and the corresponding unit reference symmetry vector is

ti(3) = (0.707107 0.707107 0.000000) . (28)

We see that the medium is not exactly transversely isotropic but is approximately
transversely isotropic, analogously to velocity model WA.

3.3. Velocity model KISS

Velocity model WA was rotated by 1◦ about the positive x3 half–axis in order to create
vertically heterogeneous 1–D anisotropic velocity model KISS. The density reduced
stiffness tensor in km2s−2 in velocity model KISS at the surface (zero depth) reads
(Pšenč́ık, Farra & Tessmer, 2012, eq. 20)

















11 22 33 23 13 12

11 13.39063 4.46008 4.46018 0.00000 0.00000 −.01797

22 15.70921 5.03982 0.00000 0.00000 −.02251

33 15.71000 0.00000 0.00000 −.01012

23 5.32989 −.00611 0.00000

13 4.98011 0.00000

12 4.98008

















. (29)

Non–TI ratio (10) determined for this medium is

ρ(3) = 0.000848 , (30)

and the corresponding unit reference symmetry vector is

ti(3) = (0.999848 0.017452 0.000000) . (31)

We see that the medium is not exactly transversely isotropic but is approximately
transversely isotropic, analogously to velocity model WA.
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3.4. Velocity model SC1 II

The density reduced stiffness tensor in homogeneous anisotropic velocity model 1 by
Shearer & Chapman (1989) reads

















11 22 33 23 13 12

11 20.04 7.41 7.41 0.00 0.00 0.00

22 20.22 7.46 0.00 0.00 0.00

33 20.22 0.00 0.00 0.00

23 6.38 0.00 0.00

13 5.10 0.00

12 5.10

















. (32)

Non–TI ratio (10) determined for this medium is

ρ(3) = 0.000000 , (33)

and the corresponding unit reference symmetry vector is

ti(3) = (1.000000 0.000000 0.000000) . (34)

We see that the medium is transversely isotropic within the rounding errors. If we
inspect manually stiffness tensor (32), we see that the medium is exactly transversely
isotropic.

Velocity model 1 by Shearer & Chapman (1989) was first rotated by 45◦ about the
positive x2 half–axis and then rotated by 30◦ about the positive x3 half–axis in order
to create the stiffness tensor of vertically heterogeneous 1–D anisotropic velocity model
SC1 II at the surface (zero depth). After these rotations, the symmetry vector should
read

ti(3) =
(
√

3/8
√

1/8
√

1/2
)

. (35)

The density reduced stiffness tensor in km2s−2 in velocity model SC1 II at the surface
(zero depth) reads (Pšenč́ık, Farra & Tessmer, 2012, eq. 19)

















11 22 33 23 13 12

11 18.97125 7.67125 8.36125 0.46000 −0.31177 −0.15589

22 19.64625 7.74375 −0.49500 0.25115 −0.42868

33 18.87000 −0.02250 −0.03897 0.53477

23 5.89500 0.26847 −0.28146

13 6.20500 0.15250

12 5.97625

















. (36)

Non–TI ratio (10) determined for this medium is

ρ(3) = 0.000054 , (37)

and the corresponding unit reference symmetry vector is

ti(3) = (0.612372 0.353554 0.707107) . (38)

We see that the medium is not exactly transversely isotropic but is close to transversely
isotropic at the surface (zero depth). Numerically determined unit reference symmetry
vector (38) is equal to its theoretical estimate (35).

At the depth of 1.5 km, velocity model SC1 II is very close to isotropic, but is
slightly cubic and its symmetry axes coincide with the coordinate axes. The density
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reduced stiffness tensor in km2s−2 in velocity model SC1 II at the at the depth of 1.5 km
reads (Pšenč́ık, Farra & Tessmer, 2012, eq. 19)

















11 22 33 23 13 12

11 30.25 10.08 10.08 0.00 0.00 0.00

22 30.25 10.08 0.00 0.00 0.00

33 30.25 0.00 0.00 0.00

23 10.08 0.00 0.00

13 10.08 0.00

12 10.08

















. (39)

The elements of the stiffness tensor (elastic moduli) are linear functions of depth. This
means that, at depths between 0 km and 1.5 km, velocity model SC1 II is close to
transversely isotropic, but is slightly tetragonal. For example, at the depth of 1.4 km,
non–TI ratio (10) is

ρ(3) = 0.000397 , (40)

and the corresponding unit reference symmetry vector is

ti(3) = (0.611611 0.348810 0.710115) . (41)

We see that the medium is less transversely isotropic at the depth of 1.4 km than at the
surface.

4. Applications

Possibility to determine whether a given stiffness tensor corresponds to a transversely
isotropic medium may be very useful in selecting the method for calculating the wave
field. If the medium is transversely isotropic or approximately transversely isotropic, we
may use its symmetry vector or reference symmetry vector for tracing the SH and SV
rays or the SH and SV reference rays (Klimeš & Bulant, 2015). The non–TI ratio, which
identifies how much the given medium is transversely isotropic, and the unit reference
symmetry vector can be determined according to Sections 2.1 and 2.2 of this paper.

If the reference symmetry vector is spatially varying, we need also its first–order
spatial derivatives for ray tracing, and its second–order spatial derivatives for solving
the corresponding equations of geodesic deviation. The first–order spatial derivatives
of the reference symmetry vector can be determined according to Section 2.3 of this
paper. The second–order spatial derivatives of the reference symmetry vector can be
determined according to Section 2.4 of this paper.
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Pšenč́ık, I. & Dellinger, J. (2001): Quasi–shear waves in inhomogeneous weakly aniso-
tropic media by the quasi–isotropic approach: A model study. Geophysics, 66,
308–319.
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