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Summary

We consider the robust nonlinear approach to hypocentre determination proposed by
Tarantola & Valette, consisting in direct evaluation of the nonnormalized 3–D marginal
a posteriori density function which describes the relative probability of the seismic
hypocentre. The nonnormalized 3–D marginal a posteriori density function is discretized
at the gridpoints of a sufficiently dense 3–D spatial grid of points. This approach takes
into account the inaccuracy of the velocity model and the corresponding influence on
the hypocentre determination, estimates the uncertainty of the hypocentre position,
and allows for testing the model covariance function describing the uncertainty of the
velocity model. The model covariance function is projected onto the uncertainty of
the hypocentral position through the geometrical covariances of theoretical travel times
calculated in the velocity model.

For the sake of simplicity and rapid numerical implementation, we consider just the
diagonal elements of the geometrical travel–time covariance matrix in this paper. We
discuss the distortion of the nonnormalized 3–D marginal a posteriori density function
caused by this simplification, and present a numerical example.
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1. Introduction

Determination of the position of the seismic hypocentre from measured arrival times
of P and S waves is a frequently appearing task in seismology. To determine the
probable position of the seismic hypocentre, we need a velocity model in addition to the
measured arrival times. Unfortunately, this information is insufficient for determining
the uncertainty of the hypocentral position, which may sometimes extent to infinity.

In order to estimate the uncertainty of the hypocentral position, we also need to
know the uncertainty of the measured arrival times and the uncertainty of the velocity
model. The uncertainty of the measured arrival times is expressed in terms of the
data covariance matrix of the measured arrival times, which is usually diagonal and
composed of the squares of the standard deviations of the measured arrival times. The
uncertainty of the velocity model is expressed in terms of the model covariance function
(Franklin, 1970; Tarantola & Valette, 1982; Tarantola & Nercessian, 1984; Tarantola,
1987; Klimeš, 2002a) which is projected onto the uncertainty of the hypocentral position
through the geometrical covariances of theoretical travel times calculated in the velocity
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model (Klimeš, 2002c, 2008). In order to estimate the uncertainty of the hypocentral
position, we thus need the standard deviations of the measured arrival times, and the
geometrical covariances of theoretical travel times calculated using the model covariance
function.

In this paper, we follow Tarantola & Valette (1982) and concentrate on directly cal-
culating the nonnormalized 3–D marginal a posteriori density function which describes
the relative probability of the seismic hypocentre, discretized at the gridpoints of a
sufficiently dense 3–D spatial grid of points. This nonlinear approach to the hypocentre
determination is very promising, because the theoretical travel times from the receivers
to the gridpoints of a 3–D spatial grid of points can efficiently be calculated in the
velocity model using the controlled initial–value ray tracing (Bulant, 1999) followed
by the interpolation of travel times within ray cells (Bulant & Klimeš, 1999). The
algorithm of nonlinear hypocentre determination is proposed in Section 2. The result
of the algorithm is the nonnormalized 3–D marginal a posteriori density function which
describes the relative probability of the seismic hypocentre.

The maximum value of the nonnormalized 3–D marginal a posteriori density
function resulting from the hypocentre determination algorithm yields the information
on the “norm” of the minimum arrival–time residuals referred to as the “arrival–time
misfit” in this paper, see Section 3.

The minimum arrival–time residuals carry information pertinent to the accuracy
of the velocity model (Klimeš, 1996). This information can be used to check the
consistency of the velocity model and measured arrival times with the given model
covariance function and the given standard deviations of the measured arrival times.
The mean value of the arrival–time misfit is estimated in Section 4. The mean value of
the arrival–time misfits from various hypocentre determinations can then be compared
with the mean value of the estimation derived in Section 4. This comparison is described
in Section 5.

Unfortunately, we have not been able to sufficiently rapidly implement the nu-
merical calculation of the whole geometrical travel–time covariance matrix at the
gridpoints of a 3–D spatial grid, but we still wish to perform numerical tests of the
proposed algorithm. We thus consider only the diagonal elements of the geometrical
travel–time covariance matrix. This simplification leads to a considerable distortion of
the nonnormalized 3–D marginal a posteriori density function describing the relative
probability of the seismic hypocentre. Section 6 is devoted to this simplification and to
the estimation of the distortion.

In Section 7, we then present the numerical example obtained using the incomplete
geometrical travel–time covariance matrix.
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2. Nonlinear hypocentre determination in a spatial grid of points

The parameter space of the kinematic hypocentre determination consists of three hypo-
central coordinates xi and hypocentral time x4. The data space consists of N measured
arrival times corresponding to P waves or S waves. We denote the vector of N measured
arrival times by d.

The probability of measured arrival times is proportional to the nonnormalized
data density function ̺D(d). We assume that the data density function is Gaussian,

̺D(d) = exp[−1

2
(d−t)TT−1(d−t)] , (1)

where t is the vector of N mean measured arrival times and T is the N ×N data
covariance matrix corresponding to the measured arrival times.

The relation between the data and parameters is described by the nonnormalized
theoretical density function ϑ(d, xi, x4). The theoretical density function describes the
relation between the measured arrival times and the inaccurate theoretical travel times
calculated in the inaccurate velocity model.

We assume that each arrival time corresponds to just one theoretical travel time
from a possible hypocentral point xi. In case of multiple theoretical travel times, we
may consider each travel time separately and combine the resulting marginal a posteriori
density functions. In case of no theoretical travel time from a possible hypocentral point
xi, the resulting marginal a posteriori density function is zero at xi. We assume that
the theoretical density function is Gaussian,

ϑ(d, xi, x4) = exp[−1

2
(d−τ̃ )TΘ−1(d−τ̃ )] , (2)

where Θ is the N×N matrix of geometrical covariances of theoretical travel times, and

τ̃ (xi, x4) = τ (xi) + Ex4 . (3)

Here τ (xi) is the vector of N theoretical travel times from the receivers to point xi,
x4 is a possible hypocentral time, and E is the vector composed of N unities.

A posteriori density function is (Tarantola & Valette, 1982, eq. 6-1)

σ(d, xi, x4) = ̺D(d) ̺P(xi, x4) ϑ(d, xi, x4)/µ(d, xi, x4) . (4)

In Cartesian coordinates, null information density function µ(d, xi, x4) is unit,

µ(d, xi, x4) = 1 , (5)

and parameter a priori density function ̺P(xi, x4) is unit,

̺P(xi, x4) = 1 . (6)

The resulting marginal a posteriori density function of hypocentral coordinates and
hypocentral time is (Tarantola & Valette, 1982, eq. 6-4)

σ̃P(xi, x4) =

∫

dNd σ(d, xi, x4) . (7)

We insert relation (4) with (1), (2), (5) and (6) into definition (7) and obtain

σ̃P(xi, x4) =

∫

dNd exp
{

− 1

2
[(d−t)TT−1(d−t) + (d−τ̃ )TΘ−1(d−τ̃ )]

}

. (8)
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For integration, we assemble the terms with d in the exponent in relation (8),

σ̃P(xi, x4) =

∫

dNd exp
{

− 1

2
[(d−ΘS−1t−TS−1τ̃ )T(T−1+Θ−1)(d−ΘS−1t−TS−1τ̃ )

+(t−τ̃ )TS−1(t−τ̃ )]
}

, (9)

where
S = T + Θ (10)

is the complete arrival–time covariance matrix, compare to Klimeš (2002a, eq. 34). After
integration, we obtain

σ̃P(xi, x4) = σP(xi, x4)
(2π)

N

2

√

det(T−1+Θ−1)
, (11)

where
σP(xi, x4) = exp[−1

2
(t−τ̃ )TS−1(t−τ̃ )] (12)

is the nonnormalized marginal a posteriori density function of hypocentral coordinates
and hypocentral time.

We insert definition (3) and obtain

σP(xi, x4) = σP3(xi) exp[−1

2
S−1(x4−h)2] , (13)

where
h = S ETS−1(t−τ ) (14)

is the mean value 〈x4〉 of hypocentral time x4(xi) at point xi. Here quantity S defined
as

S−1 = ETS−1E (15)

determines the standard deviation
√

〈(x4 − h)2〉 =
√

S (16)

of hypocentral time x4(xi) at point xi. The nonnormalized 3–D marginal a posteriori
density function in relation (13) reads

σP3(xi) = exp
{

− 1

2

[

(t−τ )TS−1(t−τ ) − S−1h2
]}

. (17)

The nonnormalized 3–D marginal a posteriori density function represents the maximum
of nonnormalized marginal density function σP(xi, x4) over hypocentral time x4 at point
xi.

Inserting (14) and (15) into (17), we can express the nonnormalized 3–D marginal
a posteriori density function (17) of hypocentral coordinates as

σP3(xi) = exp[−1

2
(t−τ )TC−1(t−τ )] , (18)

where

C−1 = S−1 − S−1E(ETS−1E)−1ETS−1 (19)

is an N×N matrix of rank N−1 with null space generated by vector E.
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3. Maximum of the nonnormalized marginal a posteriori density function of

hypocentral coordinates

To obtain the maximum of the nonnormalized marginal a posteriori density function
σP3(xi) of hypocentral coordinates, we differentiate σP3(xi) with respect to hypocentral
coordinates xi. We neglect the derivatives of matrix C−1, and obtain equation

PTC−1[t−τ (xi)] = 0 (20)

for the coordinates xi of the maximum. Here P is the N×3 matrix of slowness vectors
leading from the receivers, with elements

PJi =
∂τJ

∂xi

. (21)

We expect that the maximum is located near the unknown exact hypocentre. We thus
apply the linear expansion

τ = τ 0 + P(x− x0) (22)

of travel times in the vicinity of unknown exact hypocentre x0
i . Vector x represents the

coordinates xi of the maximum, vector x0 represents the coordinates x0
i of the exact

hypocentre, and τ 0 is the vector of inaccurate theoretical travel times from the receivers
to the exact hypocentre.

We insert linear expansion (22) into equation (20),

PTC−1[t − τ 0 − P(x−x0)] = 0 , (23)

and calculate the mislocation of the maximum with respect to the unknown exact
hypocentre,

x−x0 = (PTC−1P)−1PTC−1(t−τ 0) . (24)

The arrival–time residuals at the maximum follow from linear expansion (22) with (24),
and read

t−τ = [1− P(PTC−1P)−1PTC−1](t−τ 0) . (25)

Since N×N projection matrix 1−P(PTC−1P)−1PTC−1 has rank N−3 with null space
generated by the three columns of matrix P, the minimum arrival–time residuals do not
depend on the exact position of the hypocentre (Klimeš, 1996).

The maximum value of the nonnormalized marginal a posteriori density function
σP(xi, x4) of hypocentral coordinates and hypocentral time is equal to the maximum
value of the nonnormalized marginal a posteriori density function σP3(xi) of hypocentral
coordinates, and reads, see (18),

σmax
P3 = exp

(

− 1

2
y
)

, (26)

where quantity
y = (t−τ )TC−1(t−τ ) , (27)

with t−τ given by (25), represents the square of the “norm” of the minimum arrival–time
residuals t−τ . We shall refer to y as the “arrival–time misfit”.

The arrival–time residuals (25) are primarily the consequence of the inaccurate
velocity model (Klimeš, 1996). The arrival–time misfit then contains information on
the extent of the inaccuracy of the velocity model.

We insert (25) into (27) and obtain expression

y = (t−τ 0)T[C−1 −C−1P(PTC−1P)−1PTC−1](t−τ 0) . (28)
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for the arrival–time misfit.
The value of the arrival–time misfit can be obtained from the maximum σmax

P3 of the
nonnormalized marginal a posteriori density function σP3(xi) of hypocentral coordinates
as

y = −2 ln(σmax
P3 ) , (29)

see (26).
We are now interested in the mean value of the stochastic distribution of arrival–

time misfit y.

4. Mean value of the stochastic distribution of the arrival–time misfit

Arrival–time residuals t− τ̃ 0 corresponding to exact hypocentral coordinates x0
i and

exact hypocentral time x0
4 are caused by inaccurate picking of arrival times and by

inaccurate theoretical travel times calculated in the inaccurate velocity model.
The density function of the arrival–time residuals is

σt(t−τ̃ 0) = exp[−1

2
(t−τ̃ 0)TS−1(t−τ̃ 0)] , (30)

where

τ̃ 0 = τ 0 + Ex0
4 . (31)

Complete arrival–time covariance matrix S is given by definition (10). Since N ×N
matrix C−1 − C−1P(PTC−1P)−1PTC−1 has rank N−4 with null space generated by
the three colums of matrix P and by vector E, arrival–time misfit (28) does not depend
on the hypocentral time,

y = (t−τ̃ 0)T[C−1 −C−1P(PTC−1P)−1PTC−1](t−τ̃ 0) . (32)

We introduce new arrival–time coordinates

ξ = S−
1

2 (t−τ̃ 0) , (33)

and the density function (28) of the arrival–time residuals simplifies to

σξ(ξ) = exp(−1

2
ξTξ) . (34)

Arrival–time misfit (32) then becomes

y = ξTA ξ , (35)

where

A = S
1

2 [C−1 − C−1P(PTC−1P)−1PTC−1]S
1

2 . (36)

The square of matrix A is

AA = S
1

2 [1−C−1P(PTC−1P)−1PT]C−1SC−1[1− P(PTC−1P)−1PTC−1]S
1

2 .
(37)

Since

C−1SC−1 = C−1 , (38)

see (19), the square of matrix A reads

AA = S
1

2 [1−C−1P(PTC−1P)−1PT]C−1[1−P(PTC−1P)−1PTC−1]S
1

2 , (39)
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and we see that A is an N×N projection matrix,

AA = A . (40)

Projection matrix A is an N×N matrix of rank N−4 with null space generated by the
three colums of matrix S−

1

2 P and by vector S−
1

2 E.
The mean value of any function y(ξ) of the arrival–time residuals is

〈y〉 =

∫

y(ξ) σξ(ξ) dNξ

[
∫

σξ(ξ) dNξ

]

−1

, (41)

which reads

〈y〉 =

∫

y(ξ) exp(−1

2
ξTξ) dNξ

[
∫

exp(−1

2
ξTξ) dNξ

]

−1

. (42)

We select ξJ , J = N−3, ..., N in the kernel of A. Then

y(ξ) =

N−4
∑

J=1

(ξJ)2 (43)

is independent of ξJ , J = N −3, ..., N . We thus integrate with respect to ξJ , J =
N−3, ..., N and reduce the fraction.

In the subspace ξJ , J = 1, ..., N−4, we introduce spherical coordinates with

r =

√

√

√

√

N−4
∑

J=1

(ξJ)2 . (44)

Then
y(ξ) = r2 , (45)

and mean value (42) reads

〈y〉 =

∫

r2rN−5 exp(−1

2
r2) dr

[
∫

rN−5 exp(−1

2
r2) dr

]

−1

. (46)

We introduce integration variable ρ = 1

2
r2,

〈y〉 =

∫

2 ρ
N−4

2 exp(−ρ) dρ

[
∫

ρ
N−6

2 exp(−ρ) dρ

]

−1

, (47)

and calculate the integrals. The mean value of the arrival–time misfit is

〈y〉 = N−4 . (48)

We can analogously calculate

〈y2〉 =

∫

r4rN−5 exp(−1

2
r2) dr

[
∫

rN−5 exp(−1

2
r2) dr

]

−1

, (49)

which reads

〈y2〉 =

∫

4 ρ
N−2

2 exp(−ρ) dρ

[
∫

ρ
N−6

2 exp(−ρ) dρ

]

−1

= (N−2) (N−4) , (50)

and calculate the integrals. The standard deviation of the arrival–time misfit is then
√

〈(y−〈y〉)2〉 =
√

〈y2〉−〈y〉2 =
√

2 (N−4) . (51)
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5. Model covariance function

The proposed nonlinear hypocentre determination yields nonnormalized marginal a pos-
teriori density function (18), which describes the relative probability of the seismic
hypocentre. In addition, the proposed nonlinear hypocentre determination also yields
arrival–time misfit (29). This arrival–time misfit can be used to check the model
covariance function used to calculate matrix Θ of geometrical covariances of theoretical
travel times, appearing in theoretical density function (2).

The mean value of the arrival–time misfit should correspond to estimation (48). We
thus calculate the average y of arrival–time misfit (29) for many determined hypocentres,
and the average N−4 of the right–hand sides of estimation (48).

If y is significantly greater than N−4, the model covariance function is underesti-
mated, i.e., the velocity model is less accurate than suggested by the model covariance
function.

If y is significantly smaller than N−4, the model covariance function is overesti-
mated, i.e., the velocity model is more accurate than suggested by the model covariance
function.

As a rule, we are using both P–wave and S–wave velocity models in isotropic
media. If the number of recorded arrivals is sufficient, we may apply the proposed
nonlinear hypocentre determination to P–wave arrivals only, and check the model
covariance function of the P–wave velocity model using the above described procedure.
Analogously, we may apply the proposed nonlinear hypocentre determination to S–wave
arrivals only, and check the model covariance function of the S–wave velocity model
using the above described procedure. Finally, we may apply the proposed nonlinear
hypocentre determination to all arrivals, and check the model covariance functions of
both the P–wave and S–wave velocity models simultaneously.

6. Inaccurate simplified numerical implementation of the algorithm

For the hypocentre determination, we need mean values t of the measured arrival times
at the receivers, and data covariance matrix T describing their inaccuracy. The data
covariance matrix is usually diagonal, composed of the squares of the standard deviations
of the measured arrival times. Note that a receiver recording both P and S waves is
formally doubled into the P–wave receiver and the S–wave receiver. Analogously for
other waves like reflected or converted.

Theoretical travel times τ(xi) from the nodes xi of a spatial grid of points to the
receivers can simply be calculated by interpolation within ray cells (Bulant, 1996; 1997;
1999; Bulant & Klimeš, 1999; Bulant, 2012). For each receiver, we obtain a spatial grid
of discretized travel times.

The calculation and storage of the matrix Θ of geometrical covariances of theoret-
ical travel times (Klimeš, 2008) is more difficult, because we have a spatial grid of the
discretized element of matrix Θ for each couple of receivers.
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6.1. Approximation of geometrical covariances of theoretical travel times

For the sake of simplicity, we assume the model covariance function of the slowness in
the form

C(x1
m, x2

n) = ρ2 u(x1
m) u(x2

n)

(

(x1
i −x2

i )(x
1
i −x2

i )

θ2

)H(

u(x1
k)+u(x2

k)

2

)2H

, (52)

where u(xi) is the slowness at point xi and constant θ is the reference travel time.
Model covariance function (52) is determined by the Hurst exponent H and by the
relative slowness variation ρ at the distance corresponding to the reference travel time.

The diagonal elements of the matrix Θ of geometrical covariances of theoretical
travel times then approximately read (Klimeš, 2002c, eq. 30)

ΘKK =
2 ρ2 θ2

(2H+1)(2H+2)

(

τK

θ

)2+2H

. (53)

We introduce the standard deviation

σ = ρ θ

√

2

(2H+1)(2H+2)
(54)

of theoretical travel times corresponding to reference travel time θ. Diagonal elements
(53) then read

ΘKK = σ2

(

τK

θ

)2+2H

. (55)

These geometrical variances of theoretical travel times are simple functions of travel
times discretized at the nodes of a spatial grid of points used for the hypocentre
determination.

On the other hand, the calculation and storage of the off–diagonal elements of
matrix Θ of geometrical covariances of theoretical travel times is difficult. In order to
speed up the development of a numerical algorithm and to start with the numerical
tests, we put all off–diagonal elements of matrix Θ equal to zeros, which is obviously
incorrect. We thus perform the hypocentre determination described in previous sections
with incorrect matrix (10) and consequently with incorrect matrix (19).

6.2. Numerical algorithm of nonlinear hypocentre determination

Hypocentral time (14), its standard deviation (16) and the nonnormalized 3–D marginal
a posteriori density function (17) are composed of quantities a = ETS−1E, b =
ETS−1(t−τ ) and d = (t−τ )TS−1(t−τ ) or c = d − b2/a, which can be accumulated
gradually for individual arrival times. The corresponding numerical algorithm has been
proposed by Bucha & Klimeš (2015, sec. 2.2) under the assumption of the diagonal
matrix of geometrical covariances of theoretical travel times.
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6.3. Error of the inaccurate numerical algorithm

In Section 4, we assumed that matrix S given by definition (10) is correct. If matrix S

is incorrect, Section 4 is no longer applicable.
In such a case, the density function (30) of the arrival–time residuals reads

σt(t−τ̃ 0) = exp[−1

2
(t−τ̃ 0)TS̃−1(t−τ̃ 0)] , (56)

where S̃ is the correct matrix (10), whereas matrix C in arrival–time misfit (32) is
calculated using the incorrect matrix S.

The mean value of the function (32) of t then reads

〈y〉 = tr
{

S̃
[

C−1 − C−1P(PTC−1P)−1PTC−1
]}

, (57)

which can be expressed in terms of matrix (36) as

〈y〉 = tr
(

S̃S−
1

2 AS−
1

2

)

. (58)

We define N×4 matrix P̃ composed of the three columns of matrix P and of vector E.
Since matrix (36) is a projection matrix of rank N−4 with null space generated by the

colums of matrix S−
1

2 P̃, we may express it in form

A = 1− S−
1

2 P̃(P̃TS−1P̃)−1P̃TS−
1

2 . (59)

Mean arrival–time misfit (58) resulting from the inaccurate numerical algorithm can
then be expressed as

〈y〉 = N − 4 − tr
[

(S̃− S)S−1P̃(P̃TS−1P̃)−1P̃TS−1
]

. (60)

Here matrix S̃− S is composed of all neglected off–diagonal elements of matrix Θ. All
these elements are positive. Mean arrival–time misfit 〈y〉 resulting from the inaccurate
numerical algorithm is thus considerably smaller than the correct arrival–time misfit
(48).

Due to the inaccurate numerical algorithm, the velocity model seems to be more
accurate than it actually is, and the model covariance function seems overestimated
even if it were underestimated.

7. Numerical example

We use the numerical algorithm proposed by Bucha & Klimeš (2015, sec. 2.2) under the
assumption of the diagonal matrix of geometrical covariances of theoretical travel times.
The algorithm of nonlinear hypocentre determination consists in calculations at the
nodes of a 3–D grid of points, and has been coded in the form of command files loc0.cal,
loc1.cal and loc2.cal for program grdcal.for which performs calculations at the
nodes of a grid of points. Command files loc0.cal, loc1.cal and loc2.cal are located
in package FORMS (Bucha, Bulant & Klimeš, 2000). For the nonlinear hypocentre
determination, we use software packages FORMS, MODEL and CRT (Bucha & Bulant,
2015).

We test the hypocentre determination algorithm on the data from microseismic
monitoring of natural microearthquakes appearing during a period of one year in an
unknown locality. The monitoring array consisted of 15 surface receivers irregularly
distributed in the area. Not all receivers worked continuously, none of the events was
strong enough to be registered at all receivers.
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Figure 1: The P–wave velocity (red) and S–wave velocity (green) in the laterally homogeneous one–
dimensional velocity model.

The velocity model available for the locality is one–dimensional, and is displayed
in Figure 1. It consists of three homogeneous layers and a homogeneous halfspace.
The depths of the layer boundaries are 200 m, 700 m and 1200 m, the values of P–wave
velocity in the layers are 1800 m/s, 2100 m/s, 4500 m/s and 4900 m/s from the top to the
bottom), the values of S–wave velocity are 600 m/s, 1000 m/s, 2250 m/s and 2882 m/s.

Unfortunately, we do not know the P–wave and S–wave model covariance functions
describing the uncertainty of the velocity model.

In order to try to determine the hypocentres in this unfortunate situation, we
have to fabricate very rough estimates of the P–wave and S–wave model covariance
functions. We assume the power–law covariance functions (52) of a self–affine random
medium (Klimeš, 2002b; 2002c). Since we have no possibility to determine the Hurst
exponent, we use the value

H = −0.12 (61)

determined by Klimeš (2002c) as acceptable for the Western Bohemia region, although
we know that our locality is placed in a different part of the world. We use

θ = 1 s (62)

as the reference travel time in the variances (55) of the theoretical travel times.
We then attempt to determine factors σP and σS in variances (55) for P waves and

S waves using the mean arrival–time misfits resulting from the hypocentre determina-
tion, although we know from Section 6.2 that we shall obtain smaller values of σP and
σS than the actual ones, because we neglect all off–diagonal elements of matrix Θ of
the geometrical covariances of theoretical travel times.

We use the location grid of dimensions 48.300 km×49.950 km×9.000 km, composed
of 323×334×31 gridpoints with grid intervals 0.150 km×0.150 km×0.300 km. The top
of the location grid is situated at the depth of 0.800 km.

We have the arrival time of 33 seismic events. For the determination of the P–wave
and S–wave model covariance functions, we selected 30 events for which at least six
P–wave arrival times and at least six S–wave arrival times have been measured, see
Table 1. The assumed standard deviations of picking is 0.004 s for all arrival times.

We determined the nonnormalized 3–D marginal a posteriori density function (55)
just from the P–wave arrival times for the 30 selected events using various values of
factor σP in variances (55). We then chose the value of

σP = 0.039 s (63)
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Event NP NS yP yS yP+S

01 8 7 2.693 1.471 6.656
02 9 7 4.631 2.776 11.189
03 8 7 3.172 1.823 7.673
04 8 7 3.527 2.082 8.486
05 8 6 2.452 1.590 5.636
06 8 7 2.955 1.662 7.038
07 8 7 3.767 2.167 9.060
08 8 7 3.186 1.809 7.601
09 9 7 4.360 1.580 9.181
10 5 5
11 8 7 3.000 2.969 8.833
12 4 4
13 8 7 7.124 3.752 21.344
14 9 8 6.625 4.533 25.573
15 9 9 5.674 8.439 16.794
16 9 9 5.062 6.335 13.235
17 9 7 10.407 1.342 17.272
18 9 9 4.211 5.522 12.666
19 9 8 3.830 3.445 8.691
20 9 8 2.756 2.846 6.656
21 9 7 3.893 1.741 6.970
22 9 8 3.154 2.140 6.200
23 9 9 3.869 3.084 8.964
24 9 8 6.564 6.355 15.421
25 9 9 10.732 12.631 25.050
26 8 8 5.837 8.220 18.836
27 9 9 5.518 8.105 14.547
28 9 8 3.916 1.932 7.890
29 5 3
30 8 8 3.675 4.818 12.946
31 8 7 3.591 3.988 11.129
32 8 6 5.314 1.011 7.535
33 7 7 1.869 3.084 7.751

Average 8.5 7.6 4.579 3.775 11.561

Table 1: Arrival–time misfits (29) for the 30 selected hypocentres. The first column contains just the
names of the events, NP is the number of measured P–wave arrival times, NS is the number of measured
S–wave arrival times, yP is arrival–time misfit (29) determined just from the P–wave arrival times, yS is
arrival–time misfit (29) determined just from the S–wave arrival times, yP+S is arrival–time misfit (29)
determined from both the P–wave and S–wave arrival times. We have excluded events 10, 12 and 29
when determining factors σP and σS of the P–wave and S–wave geometrical travel–time variances (55).
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for which we obtained a good agreement between the average

yP = 4.579 (64)

of arrival–time misfit (29) for the 30 selected hypocentres determined from the P–wave
arrivals, and the average

NP−4 = 4.500 (65)

of the right–hand sides of estimation (48). The agreement is considered with respect to
the standard deviation of yP, which is

√

〈(yP−〈yP〉)2〉/30 =

√

2 (NP−4)/30 = 0.548 , (66)

see (51). We then determined the nonnormalized 3–D marginal a posteriori density
function (55) just from the S–wave arrival times for the 30 selected events using various
values of factor σS in variances (55). We chose the value of

σS = 0.035 s (67)

for which we obtained a good agreement between the average

yS = 3.775 (68)

of arrival–time misfit (29) for the 30 selected hypocentres determined from the S–wave
arrivals, and the average

NS−4 = 3.600 (69)

of the right–hand sides of estimation (48). The agreement is considered with respect to
the standard deviation of yS, which is

√

〈(yS−〈yS〉)2〉/30 =

√

2 (NS−4)/30 = 0.490 , (70)

see (51). We finally determined the nonnormalized 3–D marginal a posteriori density
function (55) from both the P–wave arrival times and S–wave arrival times for the 30
selected events using factors (63) and (67). We then can compare the average

yP+S = 11.561 (71)

of arrival–time misfit (29) for the 30 selected hypocentres, determined from both the
P–wave and S–wave arrivals, with the average

NP+NS−4 = 12.100 (72)

of the right–hand sides of estimation (48). Considering the standard deviation of yP+S,
which is

√

〈(yP+S−〈yP+S〉)2〉/30 =

√

2 (NP+NS−4)/30 = 0.898 , (73)

we see that the above average values are in a good agreement.
Although we used the incorrect P–wave and S–wave geometrical travel–time co-

variance matrices ΘP and ΘS restricted just to the diagonal elements, the behaviour
of the nonlinear hypocentre determination is reasonable to the effect that the average
arrival–time misfit determined from both the P–wave and S–wave arrivals behaves in the
same way it should behave for the correct geometrical travel–time covariance matrices.

Using geometrical travel–time covariance matrices (55) with factors (63) and (67)
determined from the 30 selected events, we calculated nonnormalized 3–D marginal
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Figure 2: The locations of the maximum values of the 33 nonnormalized 3–D marginal a posteriori
density functions describing the relative probability of the seismic hypocentres corresponding to the 33
considered events (small red spheres), together with their projections onto the sides of the grid used
for the nonlinear hypocentre determination. The nonnormalized 3–D marginal a posteriori density
functions have been determined using both the P–wave and S–wave arrivals. The displayed dimensions
of the grid used for the nonlinear hypocentre determination are 48.300 km×49.950 km×9.000 km.

a posteriori density functions (18) of the hypocentres of all 33 events using just the
P–wave arrival times, using just the S–wave arrival times, and using both the P–wave
and S–wave arrival times.

When we inspected the nonnormalized 3–D marginal a posteriori density functions
(18) determined using just the P–wave arrival times or using just the S–wave arrival
times, we realized that the depth of the hypocenters is uncertain for approximately 75%
of events in these cases. This ratio is independent of the number of measured P–wave
arrival times or S–wave arrival times in the sense that the hypocentral depth is uncertain
in these cases for approximately 75% of events even for 9 measured P–wave arrival times
or 9 measured S–wave arrival times.

The locations of the maximum values of 33 nonnormalized 3–D marginal a posteriori
density functions (18) describing the relative probability of the seismic hypocentres,
determined using both the P–wave and S–wave arrivals, are displayed in Figure 2.

Six examples of the nonnormalized marginal a posteriori density functions (18)
describing the relative probability of the seismic hypocentres, determined using both
the P–wave and S–wave arrivals, are displayed in Figures 3 and 4. The details of
these nonnormalized marginal a posteriori density functions are displayed in Figures 5
and 6. We can observe that the uncertainty of the hypocentral position increases with
increasing depth and decreasing number of measured arrival times.
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8. Conclusions

In this paper, we considered the robust nonlinear approach to hypocentre determina-
tion proposed by Tarantola & Valette (1982), consisting in direct evaluation of the
nonnormalized 3–D marginal a posteriori density function which describes the relative
probability of the seismic hypocentre, and together with Bucha & Klimeš (2015)
proposed the corresponding numerical algorithm. The nonnormalized 3–D marginal
a posteriori density function is discretized at the gridpoints of a sufficiently dense 3–
D spatial grid of points and yields complete information on the uncertainty of the
hypocentre position.

The maximum value of the nonnormalized 3–D marginal a posteriori density
function allows for testing the model covariance function describing the uncertainty
of the velocity model, and for testing the consistency of measured arrival times. If
the number of measured arrival times corresponding to a reasonably numerous subset
of events is sufficiently large, we can also very roughly estimate the P–wave and S–
wave model covariance functions describing the uncertainty of the velocity model. The
P–wave and S–wave model covariance functions are projected onto the uncertainty of
the hypocentral position through the geometrical covariances of theoretical travel times
calculated in the velocity model. In a case of an error in measured arrival times, we
may be able to identify the erroneous data.

For the sake of simplicity and rapid numerical implementation, we considered just
the diagonal elements of the geometrical travel–time covariance matrix in this paper.
This incorrect simplification leads to the distortion of the nonnormalized 3–D marginal
a posteriori density function, and especially to the incorrect increment of its maximum
value. If the number of measured arrival times corresponding to a reasonably numerous
subset of events is sufficiently large, we can reduce this distortion of the nonnormalized
3–D marginal a posteriori density function by artificially decreasing the multiplicative
factors of the P–wave and S–wave model covariance functions.

In the numerical example, we estimated the multiplicative factors of the P–wave
model covariance function using just the P–wave arrivals, and the multiplicative factors
of the S–wave model covariance function using just the S–wave arrivals. Although
we used the incorrect P–wave and S–wave geometrical travel–time covariance matrices
restricted just to the diagonal elements, the behaviour of the nonlinear hypocentre
determination in the numerical example was reasonable to the effect that the average
arrival–time misfit determined using both the P–wave and S–wave arrivals behaved
in the same way it should behave for the correct geometrical travel–time covariance
matrices.

We are going to propose the numerical algorithm of calculating the whole geomet-
rical travel–time covariance matrix at the gridpoints of a 3–D spatial grid in the near
future.
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Figure 3: Nonnormalized 3–D marginal a posteriori density functions (18) determined using both the
P–wave and S–wave arrivals with maxima located in different depths. The zero values are displayed
in yellow. The nonzero values range through green, cyan, blue and magenta to the maximum value
displayed in red. The undefined values are displayed in gray, and denote the gridpoints at which at
least one theoretical travel time is missing. The small cubes centred at the maxima have the sides of
2 km. Top: event 23 (9+9 arrival times), middle: event 25 (9+9 arrival times), bottom: event 09
(9+7 arrival times).
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Figure 4: Nonnormalized 3–D marginal a posteriori density functions (18) determined using both the
P–wave and S–wave arrivals for the events located in similar depths as in Figure 3, but with smaller
numbers of measured P–wave and S–wave arrivals. The zero values are displayed in yellow. The
nonzero values range through green, cyan, blue and magenta to the maximum value displayed in red.
The undefined values are displayed in gray, and denote the gridpoints at which at least one theoretical
travel time is missing. The small cubes centred at the maxima have the sides of 2 km. Top: event 32
(8+6 arrival times), middle: event 13 (8+7 arrival times), bottom: event 12 (4+4 arrival times).
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Figure 5: The details of the interpolated discretized nonnormalized 3–D marginal a posteriori density
functions (18) of Figure 3 displaying the hypocentral regions. The cubes centred at the maxima have
the sides of 2 km. Top: event 23 (9+9 arrival times), middle: event 25 (9+9 arrival times), bottom:

event 09 (9+7 arrival times).
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Figure 6: The details of the interpolated discretized nonnormalized 3–D marginal a posteriori density
functions (18) of Figure 4 displaying the hypocentral regions. Compared to Figure 5, we can observe
larger hypocentre uncertainty due to smaller number of measured arrival times. The cubes centred at
the maxima have the sides of 2 km. Top: event 32 (8+6 arrival times), middle: event 13 (8+7 arrival
times), bottom: event 12 (4+4 arrival times).
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