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Summary

In an elastic medium, it was proved that the stiffness tensor is symmetric with respect
to the exchange of the first pair of indices and the second pair of indices, but the proof
does not apply to a viscoelastic medium. In this paper, we thus propose the frequency–
domain ray series for viscoelastic waves with a non–symmetric stiffness tensor.
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1. Introduction

The 3×3×3×3 frequency–domain stiffness tensor (elastic tensor, tensor of elastic moduli)
cijkl = cijkl(xm, ω) is symmetric with respect to the first pair of indices

cijkl = cjikl (1)

and with respect to the second pair of indices

cijkl = cijlk . (2)

It is thus frequently expressed in the form of the 6×6 stiffness matrix which lines
correspond to the first pair of indices and columns to the second pair of indices.

In an elastic medium, it was proved that the stiffness tensor is symmetric with
respect to the exchange of the first pair of indices and the second pair of indices,

cijkl = cklij . (3)

The 6×6 stiffness matrix is thus symmetric in an elastic medium.
However, the above mentioned proof does not apply to a viscoelastic medium. In

this paper, we thus propose the frequency–domain ray series for viscoelastic waves with
a non–symmetric stiffness matrix,

cijkl 6= cklij . (4)

The lower–case Roman indices take values 1, 2 and 3. The Einstein summation over
repetitive lower–case Roman indices is used throughout the paper.
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2. Standard ray series

In the frequency domain, the viscoelastodynamic equation for complex–valued displace-
ment ui = ui(x

m, ω) reads

(cijklul,k),j − (iω)2̺ ui = 0 , (5)

where lower–case Roman subscript ,k following a comma denotes the partial derivative
with respect to corresponding spatial coordinate xk. Here cijkl = cijkl(xm, ω) is the
frequency–domain stiffness tensor, ̺ = ̺(xm) is the density and ω is the circular
frequency.

We express the displacement in terms of its amplitude Ui = ui(x
m, ω) and travel

time τ = τ(xm) as

ui = Ui exp(iωτ) . (6)

We expand the frequency–dependent amplitude into high–frequency asymptotic series

Ui =

∞
∑

n=0

(iω)−n U
[n]
i . (7)

We insert displacement (6) into viscoelastodynamic equation (5) and obtain equation

(iω)2N i(Um, τ,n) + iωM i(Um, τ,n) + Li(Um) = 0 , (8)

where the differential operators are defined as

N i(Um, τ,n) = ̺ [Γil(xm, τ,n) Ul − Ui] , (9)

M i(Um, τ,n) = (cijklτ,kUl),j + cijklτ,jUl,k , (10)

and

Li(Um) = (cijklUl,k),j . (11)

Here the Christoffel matrix, defined as

Γil(xm, pn) = aijkl(xm) pj pk , (12)

is a function of six phase–space coordinates xm, pn formed by three spatial coordinates
xm and three slowness–vector components pn. In definition (12),

aijkl(xm) = cijkl(xm)
[

̺(xn)
]−1

(13)

is the density–reduced stiffness tensor.

Inserting series (7) into viscoelastodynamic equation (8) and sorting the terms
according to the order of iω, we obtain the system of equations

N i
(

U
[n]
k , τ,l

)

+ M i
(

U
[n−1]
k , τ,l

)

+ Li
(

U
[n−2]
k

)

= 0 (14)

for each order n = 0, 1, 2, .... Here U
[−1]
k = 0 and U

[−2]
k = 0, i.e., operator M i is missing

in this equation for n = 0 and operator Li is missing in this equation for n = 0, 1.
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3. Christoffel equation and eikonal equation

Equation (14) for n = 0 constitutes the matrix Christoffel equation

Γil(xm, τ,n) U
[0]
l − U

[0]
i = 0 . (15)

The three eigenvalues of Christoffel matrix (12) correspond to three waves: the P wave
and two S waves. Unlike as in the elastic case, the Christoffel matrix is not symmetric.

We select one of three eigenvalues of Christoffel matrix (12) and denote it as
G = G(xm, τ,n). We denote the corresponding right–hand eigenvector of the Christoffel
matrix as gi = gi(x

m, τ,n),
Γil gl = G gi , (16)

and the corresponding left–hand eigenvector of the Christoffel matrix as ~gi = ~gi(x
m, τ,n),

~gi Γil = ~gl G . (17)

The three right–hand eigenvectors of the Christoffel matrix and the three left–hand
eigenvectors of the Christoffel matrix are mutually biorthogonal.

The lengths of the three right–hand eigenvectors of the Christoffel matrix are not
determined, but we choose the lengths of the corresponding left–hand eigenvectors so
that the three right–hand eigenvectors and the three left–hand eigenvectors are mutually
biorthonormal,

~gkgk = 1 . (18)

The zero–order vectorial amplitude then reads

U
[0]
i = U [0] gi , (19)

where the zero–order ray–theory amplitude U [0] will be determined by the transport
equation in Section 5.

In order to satisfy Christoffel equation (15), selected eigenvalue G must be unit,

G(xm, τ,n) = 1 . (20)

Nonlinear first–order partial differential equation (20) for travel time τ is called the
Hamilton–Jacobi equation. In wave propagation problems, it is also often referred to
as the eikonal equation. The methods for solving the Hamilton–Jacobi equation are
already mostly developed (Hamilton, 1837; Červený, 1972; Klimeš, 2002; 2010).

Hamilton–Jacobi equation (20) generates the equations of rays (Hamilton equa-
tions, equations of geodesics) and the related equations like the Hamiltonian equations
of geodesic deviation (dynamic ray tracing equations).

The equations of rays may be expressed in various forms, e.g., as

dxi

dγ
=

1

2

∂G

∂pi

, (21)

dpi

dγ
= −1

2

∂G

∂xi
, (22)

where parameter γ along rays coincides with the values of travel time τ .
Hereinafter, ∂G

∂xi and ∂G
∂pi

denote the partial derivatives of function G(xm, pn) of
six phase–space coordinates xm, pn. Using this notation, the partial derivatives of any
function G

(

xm, τ,n(xa)
)

of three spatial coordinates read

G,j =
∂G

∂xj
+

∂G

∂pk

τ,kj . (23)
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Since

G(xm, pn) = ~gr(x
m, pn)Γrs(xa, pb)gs(x

c, pd) , (24)

the first–order phase–space derivatives of eigenvalue G(xm, pn) can be expressed as

∂G

∂pi

(xm, pn) = ~gr(x
m, pn)

∂Γrs

∂pi

(xa, pb)gs(x
c, pd) (25)

and
∂G

∂xi
(xm, pn) = ~gr(x

m, pn)
∂Γrs

∂xi
(xa, pb)gs(x

c, pd) . (26)

We insert definition (12) into phase–space derivatives (25)–(26), and obtain expressions

∂G

∂pi

(xm, pn) = ~gr(x
m, pn)

[

ariks(xa) + arkis(xa)
]

pkgs(x
c, pd) (27)

and
∂G

∂xi
(xm, pn) = ~gr(x

m, pn)
∂arjks

∂xi
(xa) pjpkgs(x

c, pd) . (28)

Note that

V i(xm, pn) = 1
2~gr(x

m, pn)
[

ariks(xa) + arkis(xa)
]

pkgs(x
c, pd) (29)

is the ray–velocity vector.

4. Principal and additional amplitude components

We decompose vectorial amplitude coefficients U
[n]
i in series (7) into the principal

amplitude component U
[n]
i and two additional amplitude components U⊥[n],

U
[n]
i = U [n]gi +

∑

⊥
U⊥[n] g⊥

i , (30)

where g⊥
i are the other two eigenvectors of Christoffel matrix (12), indexed by ⊥ which

takes two values. Considering expression (19), we assume that both U⊥[0] = 0.

Definition (9) with decomposition (30) yields

N i
(

U [n]
m , τ,n

)

= ̺
∑

⊥
U⊥[n]

(

G⊥ − 1
)

g⊥
i . (31)

We multiply viscoelastodynamic equation (14) by left–hand eigenvector ~g⊥
i of the Chris-

toffel matrix, consider relation (31), and obtain expression

U⊥[n] = −̺−1
[

~g⊥
i M i

(

U
[n−1]
k , τ,n

)

+ ~g⊥
i Li

(

U
[n−2]
k

)

]

(

G⊥ − 1
)−1

(32)

for the additional amplitude components in terms of lower–order amplitudes. Expression
(32) differs from the analogous expression for the symmetric stiffness matrix (Červený,
2001, eq. 5.7.13) just by left–hand eigenvectors ~g⊥

i .
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5. Transport equation

We multiply viscoelastodynamic equation (14) by left–hand eigenvector ~gi of the Chris-
toffel matrix, consider relation (31), and obtain transport equation

~giM
i
(

U
[n]
k , τ,n

)

+ ~giL
i
(

U
[n−1]
k

)

= 0 (33)

for the principal amplitude components. We separate the terms with higher–order
principal amplitude components from the terms containing higher–order additional
amplitude components and lower–order amplitude components,

~giM
i
(

U [n]gk, τ,l

)

=−
∑

⊥
~giM

i
(

U⊥[n]g⊥
k , τ,l

)

− ~giL
i
(

U
[n−1]
k

)

. (34)

Relations (33) and (34) differ from the analogous relations for the symmetric stiffness
matrix (Červený, 2001, eqs. 5.7.19 and 5.7.20) just by left–hand eigenvector ~gi.

We express the left–hand side of transport equation (34) as

~giM
i(U [n]gm, τ,l) = 2̺V jU

[n]
,j + (̺V j),jU

[n] − 2̺ S U [n] , (35)

where ray–velocity vector V j is given by definition (29), which can also be expressed as

̺(xa)V i(xm, pn) = 1
2~gr(x

m, pn)
[

criks(xa) + crkis(xa)
]

pkgs(x
c, pd) . (36)

The first two terms on the right–hand side of relation (35) are well known from the ray
series with a symmetric stiffness matrix (Červený, 2001, eq. 5.7.23). Quantity S in the
rightmost term of transport equation (35) can be determined using definition (10) as

S =
1

2 ̺

{

1

2

[

~gi

(

cijkl + cikjl
)

τ,kgl

]

,j
− ~gi

(

cijklτ,kgl

)

,j
− ~gic

ikjlτ,kgl,j

}

, (37)

see (36). Considering (35), we express transport equation (34) as
√

̺ V jU
[n]
,j + 1

2
√

̺
(̺V j),jU

[n] =
√

̺S U [n] + Z [n−1] , (38)

where

Z [n−1] = − 1

2
√

̺

[

∑

⊥
~giM

i
(

U⊥[n]g⊥
k , τ,n

)

+ ~giL
i
(

U
[n−1]
k

)

]

. (39)

The solution of transport equation (38) for n = 0 reads

U [0] = U
[0]
0 (̺0 J0)

1

2 (̺ J)−
1

2 exp
(∫ τ

τ0

dγ S
)

, (40)

where subscript 0 denotes the initial conditions. Squared geometrical spreading

J = det

(

∂xi

∂γa

)

(41)

(Babich, 1961, eq. 3.7; Červený, 2001, eq. 3.10.9) represents the Jacobian of transfor-
mation from ray coordinates γ1, γ2, γ3 to spatial coordinates xi. Here γ1 and γ2 are the
ray parameters, and γ3 = γ.

Factor exp
(∫ τ

τ0

dγ S
)

in (40) is present due to the skew part of the stiffness matrix,
see the next section.

The solution of transport equation (38) for n > 0 reads (Červený, 2001, eq. 5.7.30)

U [n] = U [0]

[

U
[n]
0

U
[0]
0

+

∫ τ

τ0

dγ
Z [n−1]

U [0] √̺

]

. (42)
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6. Difference between symmetric and non–symmetric stiffness matrices

The only difference of expressions (40) and (42) for the principal amplitudes from
the analogous expressions derived for a symmetric stiffness matrix is exponential term
exp

(∫ τ

τ0

dγ S
)

in expression (40). We shall now derive various expressions for quantity

S = S(xm).
We express definition (37) as

S =
1

2 ̺

{

1

2

[

~gi

(

cijkl+cikjl
)

τ,kgl

]

,j
−

(

~gic
ijklτ,kgl

)

,j
+~gi,jc

ijklτ,kgl−~gic
ikjlτ,kgl,j

}

. (43)

After summation, we obtain expression

S =
1

2

[

~gi,ja
ijklτ,kgl − ~gia

ikjlτ,kgl,j

]

− 1

4 ̺

[

̺~gi

(

aijkl − aikjl
)

τ,kgl

]

,j
, (44)

where aikjl is the density–reduced stiffness tensor given by definition (13). The last
term on the right–hand side differs from

1

2 ̺

(

̺V j
)

,j
=

1

4 ̺

[

̺~gi

(

aijkl + aikjl
)

τ,kgl

]

,j
(45)

just by the subtraction. Note also that
[

̺
(

aijkl − aikjl
)

τ,k

]

τ,j = 0 . (46)

We differentiate the product in the rightmost term of expression (44) and obtain ex-
pression

S =
1

4
~gi,j

(

aijkl+aikjl
)

τ,kgl−
1

4
~gi

(

aijkl+aikjl
)

τ,kgl,j−
1

4 ̺
~gi

[

̺
(

aijkl−aikjl
)

]

,j
τ,kgl . (47)

We differentiate characteristic equation (16) for the right–hand eigenvector with re-
spect to spatial coordinates, consider birthonormality of the left–hand and right–hand
eigenvectors, and obtain relation

gi,j =
∑

⊥
g⊥

i ~g⊥
k Γkl

,j gl

(

G−G⊥)−1
+ gi~gkgk,j (48)

for the spatial gradient of the right–hand eigenvector. The rightmost term in relation
(48) accounts for the undefined changes of the length of the right–hand eigenvector gi.
We differentiate characteristic equation (17) for the left–hand eigenvector with respect
to spatial coordinates, and obtain analogous relation

~gi,j =
∑

⊥
~gkΓkl

,j g⊥
l ~g⊥

i

(

G−G⊥)−1
+ ~gigk~gk,j (49)

for the spatial gradient of the left–hand eigenvector. The rightmost term in relation
(49) accounts for the undefined changes of the length of the left–hand eigenvector ~gi,
and satisfies identity

gk~gk,j = −~gkgk,j (50)

obtained by differentiating normalization condition (18).
We insert the gradients (48) and (49) of the eigenvectors of the Christoffel matrix

into expression (47), consider identity (50) and arrive at expression

S =
1

4

∑

⊥

(

~gkΓkl
,j g⊥

l ~g⊥
r

∂Γrs

∂pj

gs − ~gr

∂Γrs

∂pj

g⊥
s ~g⊥

k Γkl
,j gl

)

(

G−G⊥
)−1

− 1

4 ̺
~gi

(

cijkl− cikjl
)

,j
τ,kgl − ~gkgk,jV

j . (51)
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We now express the spatial derivatives Γkl
,j of the Christoffel matrix in terms of its

phase–space derivatives as

Γkl
,j =

∂Γkl

∂xj
+

∂Γkl

∂ps

τ,sj . (52)

The partial derivatives of the Kelvin–Christoffel matrix (12) with respect to phase–space
coordinates xm and pn read

∂Γkl

∂xj
(xm, τ,n) = akrsl

,j τ,rτ,r (53)

and
∂Γkl

∂pj

(xm, τ,n) =
(

akjrl + akrjl
)

τ,r . (54)

Quantity (51) with identity (52) finally reads

S =
1

4

∑

⊥

(

~gk

∂Γkl

∂xj
g⊥

l ~g⊥
r

∂Γrs

∂pj

gs − ~gk

∂Γkl

∂pj

g⊥
l ~g⊥

r

∂Γrs

∂xj
gs

)

(

G−G⊥
)−1

− 1

4̺
~gi

(

cijkl− cikjl
)

,j
τ,kgl − ~gi

dgi

dγ
. (55)

The last term ~gi
dgi

dγ
in expression (55) represents just the correction of principal ampli-

tude U [n] in decomposition (30) due to the undefined length of right–hand eigenvector
gi, and vanish if we put

~gi

dgi

dγ
= 0 (56)

along each ray.
Each element of matrix (cijkl− cikjl),jτ,k in the last but one term of relation (55)

represents the divergence of a vector tangent to the wavefront, see identity (46). Note
also that

~gk

∂Γkl

∂pj

g⊥
l τ,j = 0 (57)

and

~g⊥
k

∂Γkl

∂pj

gl τ,j = 0 . (58)

Vectors

~gk

∂Γkl

∂pj

g⊥
l (59)

and

~g⊥
k

∂Γkl

∂pj

gl (60)

thus represent two sets of the contravariant basis vectors of the ray–centred coordinate
system.

Expression (55) for quantity S may be singular at slowness–surface singularities,
but is regular at spatial caustics.

Quantity S vanishes for a symmetric stiffness matrix. For a non–symmetric stiffness
matrix, quantity S vanishes in a homogeneous medium.
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Quantity S which expresses the difference between ray series for a symmetric and
non–symmetric stiffness matrices is thus generated by a combination of a non–symmetric
stiffness matrix and heterogeneities. Expression (55) with identities (46), (57) and (58)
suggest that quantity S may mostly be influenced by the wavefront–tangent component
of the gradient of the skew part of the stiffness matrix.
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