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The problem:

 Richards (1984) showed that there may be plane-wave solutions to 
the wave equation which violate the radiation condition.

 Krebes and Dayley (2007) showed that this also creates erroneous
R/T coefficients.

 Ursin et al. (2017) gave a stationary-phase solution which bypasses
these problems.
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The wave equation
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A plane-wave solution is

𝜙𝜙 ∼ e𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝+𝑞𝑞𝑞𝑞−𝑡𝑡

The horizontal slowness 𝑝𝑝 and the vertical slowness 𝑞𝑞 are complex

𝑝𝑝 = 𝑝𝑝𝑅𝑅 + 𝑖𝑖𝑝𝑝𝐼𝐼 and 𝑞𝑞 = 𝑞𝑞𝑅𝑅 + 𝑖𝑖𝑞𝑞𝐼𝐼



The dispersion relation
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The real and imaginary part of the dispersion relation are
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The radiation condition

No disturbance may be radiated from infinity into the finite source region, and the source 

field must remain finite or go to zero at infinity. 

For a complex plane wave this requires that

𝑝𝑝𝑅𝑅𝑝𝑝𝐼𝐼 ≥ 0 and 𝑞𝑞𝑅𝑅𝑞𝑞𝐼𝐼 ≥ 0

The dispersion relation gives
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⋅ Im

1
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This is always satisfied if p is real.



The reflected wavefield

For a point source at a vertical distance 𝑧𝑧1 above a horizontal reflector and a receiver at a 

horizontal distance 𝑥𝑥 from the source and a vertical distance 𝑧𝑧2 above the reflector:
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where all variables may depend on 𝜔𝜔; 𝐴𝐴 is the source spectrum, 

𝜏𝜏 = 𝑝𝑝𝑥𝑥 + 𝑞𝑞𝑧𝑧, 𝑧𝑧 = 𝑧𝑧1 + 𝑧𝑧2

is the phase function, 𝜋𝜋 = 𝜌𝜌𝑐𝑐2 is the shear modulus, and the reflection coefficient is

𝑅𝑅 =
𝜋𝜋𝑞𝑞 − 𝜋𝜋′𝑞𝑞′

𝜋𝜋𝑞𝑞 + 𝜋𝜋′𝑞𝑞′

where 𝜋𝜋′and 𝑞𝑞′ denote the variables in the lower medium; 𝑝𝑝 is real and 𝑞𝑞 is complex. 



The steepest-descent approximation
The stationary point satisfies 

𝑑𝑑𝜏𝜏
𝑑𝑑𝑝𝑝

= 𝑥𝑥 + 𝑧𝑧
𝑑𝑑𝑞𝑞
𝑑𝑑𝑝𝑝

= 0

From the dispersion equation

𝑝𝑝 + 𝑞𝑞
𝑑𝑑𝑞𝑞
𝑑𝑑𝑝𝑝

= 0

and then

�̅�𝑝 =
𝑥𝑥
𝑟𝑟𝑐𝑐

=
sin𝜃𝜃
𝑐𝑐

, �𝑞𝑞 =
𝑧𝑧
𝑟𝑟𝑐𝑐

=
cos𝜃𝜃
𝑐𝑐

Complex rays, homogeneous waves



In the lower medium
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where  Snell′s law has been used.

For specific combinations of wave speeds and recording geometries this quantity will be 

negative corresponding to a non-physical plane wave which propagates away from the 

interface with increasing amplitude. 

The critical angle is 
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Simple equation

Quite often a very simple inverse velocity function 
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is used, and similarly for the lower medium. Then the critical angle is
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When 𝑄𝑄 = 𝑄𝑄′ this is the standard critical angle for reflection.



The stationary-phase approximation

Here 𝑝𝑝 is real, and the stationary-phase condition is
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Approximate solution
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Real ray with attenuation computed along the ray



Numerical example (Ursin et al. 2017)

Complex velocity
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𝑐𝑐
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1
𝑐𝑐0
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Elastic critical angle

sin𝜃𝜃𝑒𝑒 =
1
2

, 𝜃𝜃𝑒𝑒 = 30o

New critical angle

sin𝜃𝜃𝑐𝑐 =
3

4
, 𝜃𝜃𝑐𝑐 = 25.7o

𝑐𝑐0 = 1000 m
s

,𝑄𝑄 = 15,𝜌𝜌 = 2 g
cm3

𝑐𝑐0′ = 2000 m
s

,𝑄𝑄′ = 20, 𝜌𝜌′ = 2.1 g
cm3



Reflection coefficient (a) and phase angle (b) as a function of 
the angle of incidence. 

The solid and dashed lines correspond to the stationary phase 
and steepest-descent solutions, respectively. 

The symbols indicate the numerical evaluation for different 
frequencies (9 (triangles), 10 (circles) and 11 (squares) Hz).



Transmission coefficient (a) and phase angle (b) as a function 
of the angle of incidence. 

The solid and dashed lines correspond to the stationary-phase 
and steepest-descent solutions, respectively. 

The symbols indicate the numerical evaluation for different 
frequencies (9 (triangles up), 10 (circles) and 11 (triangles 
down) Hz).



Conclusions

 The steepest-desent approximation gives complex rays.

It may lead to non-physical wave solutions.

 The stationary-phase approximation is always stable.

It gives a good match to the numerical solution.

 Complex rays may lead to non-physical waves.
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