ON RICHARDS' PARADOX

Bjørn Ursin, NTNU
Lasse Amundsen, NTNU \& Equinor

Želiv, June 1, 2022

The problem:

- Richards (1984) showed that there may be plane-wave solutions to the wave equation which violate the radiation condition.
- Krebes and Dayley (2007) showed that this also creates erroneous R/T coefficients.
- Ursin et al. (2017) gave a stationary-phase solution which bypasses these problems.

Outline

\square Plane waves
\square Dispersion relation
\square The radiation condition
\square Reflection plane-wave integral

- Complex ray solution
\square Stationary-phase approximation
- Real ray solution

Numerical examples
\square Conclusions

The wave equation

$$
\nabla^{2} \phi+\frac{\omega^{2}}{c^{2}} \phi=0
$$

where c is the complex wave speed with

$$
\frac{1}{c}=\operatorname{Re} \frac{1}{c}+i \operatorname{Im} \frac{1}{c}
$$

and where

$$
\operatorname{Re} \frac{1}{c}>0 \text { and } \operatorname{Im} \frac{1}{c} \geq 0
$$

A plane-wave solution is

$$
\phi \sim \mathrm{e}^{i \omega(p x+q z-t)}
$$

The horizontal slowness p and the vertical slowness q are complex

$$
p=p_{R}+i p_{I} \text { and } q=q_{R}+i q_{I}
$$

The dispersion relation

$$
p^{2}+q^{2}=\frac{1}{c^{2}}
$$

The real and imaginary part of the dispersion relation are

$$
p_{R}^{2}-p_{I}^{2}+q_{R}^{2}-q_{I}^{2}=\left(\operatorname{Re} \frac{1}{c}\right)^{2}-\left(\operatorname{Im} \frac{1}{c}\right)^{2}
$$

and

$$
q_{R} q_{I}+p_{R} p_{I}=\operatorname{Re} \frac{1}{c} \cdot \operatorname{Im} \frac{1}{c}
$$

The radiation condition

No disturbance may be radiated from infinity into the finite source region, and the source field must remain finite or go to zero at infinity.

For a complex plane wave this requires that

$$
p_{R} p_{I} \geq 0 \text { and } q_{R} q_{I} \geq 0
$$

The dispersion relation gives

$$
q_{R} q_{I}=\operatorname{Re} \frac{1}{c} \cdot \operatorname{Im} \frac{1}{c}-p_{R} p_{I} \geq 0
$$

This is always satisfied if p is real.

The reflected wavefield

For a point source at a vertical distance z_{1} above a horizontal reflector and a receiver at a horizontal distance x from the source and a vertical distance z_{2} above the reflector:

$$
\phi=\frac{A}{4 \pi \mu} \int_{-\infty}^{\infty} \frac{R(p)}{q(p)} e^{i \omega \tau(p)} d p
$$

where all variables may depend on $\omega ; A$ is the source spectrum,

$$
\tau=p x+q z, \quad z=z_{1}+z_{2}
$$

is the phase function, $\mu=\rho c^{2}$ is the shear modulus, and the reflection coefficient is

$$
R=\frac{\mu q-\mu^{\prime} q^{\prime}}{\mu q+\mu^{\prime} q^{\prime}}
$$

where μ^{\prime} and q^{\prime} denote the variables in the lower medium; p is real and q is complex.

The steepest-descent approximation

The stationary point satisfies

$$
\frac{d \tau}{d p}=x+z \frac{d q}{d p}=0
$$

From the dispersion equation

$$
p+q \frac{d q}{d p}=0
$$

and then

$$
\bar{p}=\frac{x}{r c}=\frac{\sin \theta}{c}, \quad \bar{q}=\frac{z}{r c}=\frac{\cos \theta}{c}
$$

Complex rays, homogeneous waves

In the lower medium

$$
q_{R}^{\prime} q_{I}^{\prime}=\operatorname{Re} \frac{1}{c^{\prime}} \cdot \operatorname{Im} \frac{1}{c^{\prime}}-\bar{p}_{R} \bar{p}_{I},=\operatorname{Re} \frac{1}{c^{\prime}} \cdot \operatorname{Im} \frac{1}{c^{\prime}}-\sin ^{2} \theta \operatorname{Re} \frac{1}{c} \cdot \operatorname{Im} \frac{1}{c} \geq 0
$$

where Snell's law has been used.
For specific combinations of wave speeds and recording geometries this quantity will be negative corresponding to a non-physical plane wave which propagates away from the interface with increasing amplitude.

The critical angle is

$$
\theta_{c}=\arcsin \left(\frac{\operatorname{Re} \frac{1}{c^{\prime}} \cdot \operatorname{Im} \frac{1}{c^{\prime}}}{\operatorname{Re} \frac{1}{c} \cdot \operatorname{Im} \frac{1}{c}}\right)^{\frac{1}{2}}
$$

Simple equation

Quite often a very simple inverse velocity function

$$
\frac{1}{c}=\frac{1}{c_{R}}\left(1+\frac{i}{2 Q}\right)
$$

is used, and similarly for the lower medium. Then the critical angle is

$$
\theta_{c}=\arcsin \left[\frac{c_{R}}{c_{R}^{\prime}}\left(\frac{Q}{Q^{\prime}}\right)^{\frac{1}{2}}\right]
$$

When $Q=Q^{\prime}$ this is the standard critical angle for reflection.

The stationary-phase approximation

Here p is real, and the stationary-phase condition is

$$
\frac{\partial \tau_{R}}{\partial p}=x+z \frac{\partial q_{R}}{\partial p}=0
$$

Approximate solution

$$
\begin{gathered}
p=\sin \theta\left(\operatorname{Re} \frac{1}{c^{2}}\right)^{\frac{1}{2}} \\
q_{R}=\cos \theta\left(\operatorname{Re} \frac{1}{c^{2}}\right)^{\frac{1}{2}} \\
q_{I}=\frac{\operatorname{Im} \frac{1}{c^{2}}}{2 q_{R}}=\frac{\operatorname{Im} \frac{1}{c^{2}}}{2 \cos \theta\left(\operatorname{Re} \frac{1}{c^{2}}\right)^{\frac{1}{2}}}
\end{gathered}
$$

Real ray with attenuation computed along the ray

Numerical example (Ursin et al. 2017)

Complex velocity

$$
\frac{1}{c}=\frac{1}{c_{0}}\left(1+\frac{i}{2 Q}\right)
$$

$$
c_{0}=1000 \frac{\mathrm{~m}}{\mathrm{~s}}, Q=15, \rho=2 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}
$$

$$
c_{0}^{\prime}=2000 \frac{\mathrm{~m}}{\mathrm{~s}}, Q^{\prime}=20, \rho^{\prime}=2.1 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}
$$

Elastic critical angle

$$
\sin \theta_{e}=\frac{1}{2}, \quad \theta_{e}=30^{\circ}
$$

New critical angle

$$
\sin \theta_{c}=\frac{\sqrt{3}}{4}, \quad \theta_{c}=25.7^{\circ}
$$

Reflection coefficient (a) and phase angle (b) as a function of the angle of incidence.

The solid and dashed lines correspond to the stationary phase and steepest-descent solutions, respectively.

The symbols indicate the numerical evaluation for different frequencies (9 (triangles), 10 (circles) and 11 (squares) Hz).

Transmission coefficient (a) and phase angle (b) as a function of the angle of incidence.

The solid and dashed lines correspond to the stationary-phase and steepest-descent solutions, respectively.

The symbols indicate the numerical evaluation for different frequencies (9 (triangles up), 10 (circles) and 11 (triangles down) Hz).

Conclusions

\square The steepest-desent approximation gives complex rays.
It may lead to non-physical wave solutions.
\square The stationary-phase approximation is always stable.
It gives a good match to the numerical solution.
Complex rays may lead to non-physical waves.

References

Krebes, E. S. \& Daley, P. F., 2007. Difficulties with computing anelastic plane-wave reflection and transmission coefficients, Geophys. J. Int., 170, 205-216.

Richards, P.G., 1984. On wavefronts and interfaces in anelastic media, Bull. seism. Soc. Am., 74, 2157-2165.

Ursin, B., Carcione, J. M., and Gei, D., 2017, A physical solution for plane SH waves in anelastic media.
Geophys. J. Internat., 209(2), 661-671.

Ursin, B. \& Amundsen, L., 2022, Plane waves in anelastic media, Geophys. J. Int., submitted.

Acknowledgement

B. Ursin has received financial support from the Norwegian Research Council through the

Center for Geophysical Forecasting (grant no. 309960).

