


SEISMIC RAY THEORY

Seismic Ray Theory presents the most comprehensive treatment of the seismic
ray method available. This method plays an important role in seismology,
seismic exploration, and the interpretation of seismic measurements.
The book presents a consistent treatment of the seismic ray method, based

on the asymptotic high-frequency solution of the elastodynamic equation.
At present, this is the most general and powerful approach to developing the
seismic raymethod. High-frequency seismic bodywaves, propagating in com-
plex three-dimensional, laterally varying, isotropic or anisotropic, layered and
block structures are considered. Equations controlling the rays, travel times,
amplitudes, Green functions, synthetic seismograms, and particle ground
motions are derived, and the relevant numerical algorithms are proposed and
discussed. Many new concepts, which extend the possibilities and increase
the efficiency of the seismic ray method, are included. The book has a tutorial
character: derivations begin with a relatively simple problem in which the
main ideas are easier to explain and then advance to more complex problems.
Most of the derived equations in the book are expressed in algorithmic form
and may be used directly for computer programming. The equations and pro-
posed numerical procedures find broad applications in numerical modeling of
seismicwavefields in complex 3-D structures and inmany important inversion
methods (tomography and migration among others).
Seismic Ray Theory will prove to be an invaluable advanced textbook and

reference volume in all academic institutions in which seismology is taught
or researched. It will also be an invaluable resource in the research and explo-
ration departments of the petroleum industry and in geological surveys.
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Preface

The book presents a consistent treatment of the seismic ray method, applicable to high-
frequency seismic body waves propagating in complex 3-D laterally varying isotropic or
anisotropic layered and block structures. The seismic raymethod is based on the asymptotic
high-frequency solution of the elastodynamic equation. For finite frequencies, the ray
method is not exact, but it is only approximate. Its accuracy, however, is sufficient to
solve many 3-D wave propagation problems of practical interest in seismology and seismic
exploration, which can hardly be treated by any other means. Moreover, the computed rays
may be used as a framework for the application of various more sophisticated methods.

In the seismic ray method, the high-frequency wavefield in a complex structure can be
expanded into contributions, which propagate along rays and are called elementary waves.
Individual elementary waves correspond, for example, to direct P and S waves, reflected
waves, variousmultiply reflected/transmitted waves, and converted waves. A big advantage
of the ray method is that the elementary waves may be handled independently. In the book,
equations controlling the rays, travel times, amplitudes, Green functions, seismograms, and
particle ground motions of the elementary waves are derived, and the relevant numerical
algorithms are developed and discussed.

In general, the theoretical treatment in the book starts with a relatively simple problem
inwhich themain ideas of the solution are easier to explain. Only then are themore complex
problems dealt with. That is one of the reasons why pressure waves in fluid models are also
discussed. All the derivations for pressure waves in fluid media are simple, clear, and com-
prehensible. These derivations help the reader to understand analogous derivations for elas-
ticwaves in isotropic and anisotropic solid structures,which are oftenmore advanced. There
is, however, yet another reason for discussing the pressure waves in fluid media: they have
often been used in seismic exploration as a useful approximation for Pwaves in solidmedia.

Throughout the book, considerable attention is devoted to the seismic ray theory in
inhomogeneous anisotropic media. Most equations derived for isotropic media are also
derived for anisotropic media. In addition, weakly anisotropic media are discussed in some
detail. Special attention is devoted to the qS wave coupling.

A detailed derivation and discussion of paraxial ray methods, dynamic ray tracing,
and ray propagator matrices are presented. These concepts extend the possibilities of the
ray method and the efficiency of calculations. They can be used to compute the travel
times and slowness vectors not only along the ray but also in its vicinity. They also offer
numerous other important applications in seismology and seismic exploration such as
solution of boundary-value ray tracing problems, computation of geometrical spreading,
Fresnel volumes, Gaussian beams, and Maslov-Chapman integrals.
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viii PREFACE

Most of the final equations are expressed in algorithmic form and may be directly used
for programming and applied in various interpretation programs, in numerical modeling
of seismic wave fields, tomography, and migration.

I am greatly indebted to my friends, colleagues, and students from Charles University
and from many other universities and institutions for helpful suggestions and valuable
discussions. Many of them have read critically and commented on certain parts of the
manuscript. I owe a special debt of thanks to PeterHubral, BobNowack, andColinThomson
for advice and constructive criticism. I am further particularly grateful to Ivan Pšenčı́k and
LuděkKlimeš for everydaydiscussions and toEvaDrahotová for careful typing of thewhole
manuscript. I also wish to express my sincere thanks to the sponsors of the Consortium
Project “Seismic Waves in Complex 3-D Structures” for support and to Schlumberger
Cambridge Research for a Stichting Award, which was partially used in the preparation
of the manuscript. Finally, I offer sincere thanks to my family for patience, support, and
encouragement.



CHAPTER ONE

Introduction

The propagation of seismic body waves in complex, laterally varying 3-D layered
structures is a complicated process. Analytical solutions of the elastodynamic
equations for such types of media are not known. Themost common approaches to

the investigation of seismic wavefields in such complex structures are (a) methods based on
direct numerical solutions of the elastodynamic equation, such as the finite-difference and
finite-element methods, and (b) approximate high-frequency asymptotic methods. Both
methods are very useful for solving certain types of seismic problems, have their own
advantages and disadvantages, and supplement each other suitably.

Wewill concentrate heremainly on high-frequency asymptoticmethods, such as the ray
method. The high-frequency asymptotic methods are based on an asymptotic solution of
the elastodynamic equation. They can be applied to compute not only rays and travel times
but also the ray-theory amplitudes, synthetic seismograms, and particle ground motions.
These methods are well suited to the study of seismic wavefields in smoothly inhomoge-
neous 3-D media composed of thick layers separated by smoothly curved interfaces. The
high-frequency asymptotic methods are very general; they are applicable both to isotropic
and anisotropic structures, to arbitrary 3-D variations of elastic parameters and density,
to curved interfaces arbitrarily situated in space, to an arbitrary source-receiver configu-
ration, and to very general types of waves. High-frequency asymptotic methods are also
appropriate to explain typical “wave” phenomena of seismic waves propagating in complex
3-D isotropic and anisotropic structures. The amplitudes of seismic waves calculated by
asymptotic methods are only approximate, but their accuracy is sufficient to solve many
3-D problems of practical interest.

Asymptotic high-frequency solutions of the elastodynamic equation can be sought in
several alternative forms. In the ray method, they are usually sought in the form of the
so-called ray series (see Babich 1956; Karal and Keller 1959). For this reason, the ray
method is also often called the ray-series method, or the asymptotic ray theory (ART).

The seismic ray method can be divided into two parts: kinematic and dynamic. The
kinematic part consists of the computation of seismic rays, wavefronts, and travel times.
The dynamic part consists of the evaluation of the vectorial complex-valued amplitudes of
the displacement vector and the computation of synthetic seismograms and particle ground
motion diagrams.

Themost strict approach to the investigation of both kinematic and dynamic parts of the
ray method consists of applying asymptotic high-frequency methods to the elastodynamic
equations. The kinematic part of the ray method, however, may also be attacked by some
simpler approaches, for example, by variational principles (Fermat principle). It is even
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2 INTRODUCTION

possible to develop thewhole kinematic part of the seismic raymethodusing thewell-known
Snell’s law. Such approaches have been used for a long time in seismology and have given
a number of valuable results. There may be, however, certain methodological objections to
their application. In the application of Snell’s law, we must start from a model consisting
of homogeneous layers with curved interfaces and pass from this model to a smoothly
varying model by increasing the number of interfaces. Such a limiting process offers very
useful seismological insights into the ray tracing equations and travel-time computations in
inhomogeneousmedia, but it ismore or less intuitive. TheFermat principle has been used in
seismology as a rule independently for P andSwaves propagating in inhomogeneousmedia.
The elastic wavefield, however, can be separated into P and S waves only in homogeneous
media (and perhaps in some other simple structures). In laterally varyingmediawith curved
interfaces, the wavefield is not generally separable into P and S waves; the seismic wave
process is more complicated. Thus, we do not have any exact justification for applying the
principle independently to P and S waves. In media with larger velocity gradients, the ray
method fails due to the strong coupling of P and S waves. Only the approach based on the
asymptotic solution of the elastodynamic equation gives the correct answer: the separation
of the seismic wavefield in inhomogeneous media into two independent wave processes (P
and S) is indeed possible, but it is only approximate, in that it is valid for high frequencies
and sufficiently smooth media only.

Similarly, certain properties of vectorial complex-valued amplitudes of seismic body
waves can be derived using energy concepts, particularly using the expressions for the
energy flux. Such an approach is again very useful for intuitive physical understanding of
the amplitude behavior, but it does not give the complete answer. The amplitudes of seismic
bodywaves have a vectorial complex-valued character. Thewavesmay be elliptically polar-
ized (S waves) and may include phase shifts. These phase shifts influence the waveforms.
The energy principles do not yield a complete answer in such situations. Consequently,
they cannot be applied to the computation of synthetic seismograms and particle ground
motion diagrams.

Recently, several new concepts and methods have been proposed to increase the pos-
sibilities and efficiency of the standard ray method; they include dynamic ray tracing,
the ray propagator matrix, and paraxial ray approximations. In the standard ray method,
the travel time and the displacement vector of seismic body waves are usually evaluated
along rays. Thus, if we wish to evaluate the seismic wavefield at any point, we must find
the ray that passes through this point (boundary value ray tracing). The search for such
rays sometimes makes the application of the standard ray method algorithmically very
involved, particularly in 3-D layered structures. The paraxial ray methods, however, allow
one to compute the travel time and displacement vector not only along the ray but also in
its paraxial vicinity. It is not necessary to evaluate the ray that passes exactly through the
point. The knowledge of the ray propagator matrix makes it possible to solve analytically
many complex wave propagation problems that must be solved numerically by iterations in
the standard ray method. This capability greatly increases the efficiency of the ray method,
particularly in 3-D complex structures.

The final ray solution of the elastodynamic equation is composed of elementary waves
corresponding to various rays connecting the source and receiver. Each of these elementary
waves (reflected, refracted, multiply reflected, converted, and the like) is described by
its own ray series. In practical seismological applications, the higher terms of the ray
series have not yet been broadly used. In most cases, the numerical modeling of seismic
wavefields and the interpretation of seismic data by the ray method have been based on the
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zeroth-order leading term of the ray series. In this book, mainly the zeroth-order terms
of the ray series are considered. These zeroth-order terms, however, are treated here in a
great detail. Concise expressions for the zeroth-order ray-theory Green function for a point
source and receiver situated at any place in a general 3-D, layered and blocked, structure
are derived. For a brief treatment of the higher-order terms of the ray series for the scalar
(acoustic) and vectorial (elastic) waves see Sections 5.6 and 5.7.

As is well known, the ray method is only approximate, and its applications to certain
seismological problems have some restrictions. Recently, several new extensions of the ray
method have been proposed; these extensions overcome, partially or fully, certain of these
restrictions. They include the method of summation of Gaussian beams, the method of
summation of Gaussian wave packets, and the Maslov-Chapman method. These methods
have been found very useful in solving various seismological problems, even though certain
aspects of these methods are still open for future research.

The whole book may be roughly divided into five parts.

In the first part, the main principles of the asymptotic high-frequency method as it is
used to solve the elastodynamic equation in a 3-D laterally varyingmediumare briefly
explained and discussed. A particularly simple approach is used to derive and discuss
the most important equations and related wave phenomena from the seismological
point of view. It is shown how the elastic wavefield is approximately separated into
individual elementary waves. These individual waves propagate independently in a
smoothly varying structure, their travel times are controlled by the eikonal equation,
and their amplitudes are controlled by the transport equation. Various important phe-
nomena of seismic wavefields connected with 3-D lateral variations and with curved
interfaces are derived and explained, both for isotropic and anisotropic media. Great
attention is devoted to the differences between elastic waves propagating in isotropic
and anisotropic structures. Exact and approximate expressions for acoustic and elas-
todynamic Green functions in homogeneous media are also derived. See Chapter 2.

The second part is devoted to ray tracing and travel-time computation in 3-D structures.
The ray tracing and travel-time computation play an important role in many seis-
mological applications, particularly in seismic inversion algorithms, even without a
study of ray amplitudes, polarization, and wavelet shape. In addition to individual
rays, the ray fields are also introduced in this part. The singular regions of the ray
fields and related wave phenomena are explained. Special attention is devoted to
the definition, computation, and physical meaning of the geometrical spreading. See
Chapter 3.

The third part is devoted to dynamic ray tracing and paraxial ray methods. The paraxial
raymethods can be used to compute the travel time and other important quantities not
only along the ray but also in its vicinity. Concepts of dynamic ray tracing and of the
ray propagator matrix are explained. The dynamic ray tracing is introduced both in
ray-centered and Cartesian coordinates, for isotropic and anisotropic structures. Var-
ious important applications of the paraxial ray method are explained. See Chapter 4.

The fourth part of the book discusses the computation of ray amplitudes. Very general
expressions for ray amplitudes of an arbitrary multiply reflected/transmitted (possi-
bly converted) seismic body wave propagating in acoustic, elastic isotropic, elastic
anisotropic, laterally varying, layered, and block structures are derived. The medium
may also be weakly dissipative. Both the source and the receiver may be situated
either in a smooth medium or at a structural interface or at the Earth’s surface. Final
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equations for the amplitudes of the ray-theory elastodynamic Green function is lat-
erally varying layered structures are derived. Great attention is also devoted to the
ray-series solutions, both in the frequency and the time domain. The seismological
applications of higher-order terms of the ray series are discussed. See Chapter 5.

The fifth part explains the computation of ray synthetic seismograms and ray synthetic
particle ground motions. Several possibilities for the computation of ray synthetic
seismograms are proposed: in the frequency domain, in the time domain, and by
the summation of elementary seismograms. Advantages and disadvantages of indi-
vidual approaches are discussed. Certain of these approaches may be used even for
dissipative media. The basic properties of linear, elliptic, and quasi-elliptic polariza-
tion are described. The causes of quasi-elliptic polarization of S waves are briefly
summarized. See Chapter 6.

This book, although very extensive, is still not able to cover all aspects of the seismic
ray method. This would increase its length inadmissibly. To avoid this, the author has not
discussedmany important subjects regarding the seismic raymethod (or related closely to it)
or has discussed them only briefly. Nevertheless, the reader should remember that the main
aim of this book is to present a detailed and complete description of the seismic ray method
with a real-valued eikonal for 3-D, laterally varying, isotropic or anisotropic, layered, and
block structures. The author, however, does not and had no intention of including all the
extensions and applications of the seismic ray method and all the problems related closely
to it. We shall now briefly summarize several important topics that are related closely to
the seismic ray method but that will not be treated in this book or that will be treated more
briefly than they would deserve.

1. Although the seismic ray method developed in this book plays a fundamental role
in various inverse problems of seismology and of seismic exploration and in many
interpretational procedures, the actual inversion and interpretational procedures
are not explicitly discussed here. These procedures include seismic tomography,
seismic migration, and the location of earthquake sources, among others.

2. The seismic ray method has found important applications in forward and inverse
scattering problems. With the exception of a brief introduction in Section 2.6.2; the
scattering problems themselves, however, are not discussed here.

3. The seismic raymethodmay be applied only to structural models that satisfy certain
smoothness criteria. The construction of 2-D and 3-D models that would satisfy
such criteria is a necessary prerequisite for the application of the seismic raymethod,
but is not discussed here at all. Mostly, it is assumed that the model is specified in
Cartesian rectangular coordinates. Less attention is devoted to models specified in
curvilinear coordinate systems (including spherical); see Section 3.5.

4. The seismic ray method developed here may be applied to high-frequency seismic
body waves propagating in deterministic, perfectly elastic, isotropic or anisotropic
media. Other types of waves (such as surface waves) are only briefly mentioned.
Moreover, viscoelastic, poroelastic, and viscoporoelasticmodels are not considered.
The exception is a weakly dissipative (and dispersive) model that does not require
complex-valued ray tracing; see Sections 5.5 and 6.3.5. In Sections 2.6.4 and 5.6.8,
the space-time ray method and the ray method with a complex eikonal are briefly
discussed, even though they deserve considerably more attention. The computation
of complex-valued rays in particular (for example, in dissipative media, in the



INTRODUCTION 5

caustic shadow, and in some other singular regions) may be very important in
applications. Actually, the seismic ray method, without considering complex rays,
is very incomplete.

5. Various extensions of the seismic ray method have been proposed in the literature.
These extensions include the asymptotic diffraction theory, the method of edge
waves, the method of the parabolic wave equation, the Maslov-Chapman method,
and the method of summation of Gaussian beams or Gaussian wave packets, among
others. Here we shall treat, in some detail, only the extensions based on the sum-
mation of paraxial ray approximations and on the summation of paraxial Gaussian
beams; see Section 5.8. Themethod based on the summation of paraxial ray approx-
imations yields integrals close or equal to those of the Maslov-Chapman method.
The other extensions of the seismic ray method are discussed only very briefly in
Section 5.9, but the most important references are given there.

6. No graphical examples of the computation of seismic rays, travel times, ray ampli-
tudes, synthetic seismograms, and particle ground motions in 3-D complex models
are presented for two reasons. First, most figures would have to be in color, as 3-D
models are considered. Second, the large variety of topics discussed in this book
would require a large number of demonstration figures. This would increase the
length and price of the book considerably. The interested readers are referred to the
references given in the text, and to the www pages of the Consortium Project
“Seismic Waves in 3-D Complex Structures”; see http://seis.karlov.mff.cuni.cz/
consort/main.htm for some examples.

The whole book has a tutorial character. The equations presented are (in most cases)
derived and discussed in detail. For this reason, the book is rather long. Owing to the
extensive use of various matrix notations and to the applications of several coordinate
systems and transformation matrices, the resulting equations are very concise and simply
understandable from a seismological point of view. Although the equations are given in a
concise and compact form, the whole book is written in an algorithmic way: most of the
expressions are specified to the last detail and may be directly used for programming.

To write the complicated equations of this book in the most concise form, we use
mostly matrix notation. To distinguish between 2 × 2 and 3 × 3 matrices, we shall use
the circumflex (ˆ) above the letter for 3 × 3 matrices. If the same letter is used for both
2 × 2 and 3 × 3 matrices; for example, M and M̂, matrix M denotes the 2 × 2 left upper
submatrix of M̂:

M̂ =

M11 M12 M13

M21 M22 M23

M31 M32 M33


 , M =

(
M11 M12

M21 M22

)
.

Similarly, we denote by q̂ = (q1, q2, q3)T the 3 × 1 column matrix and by q = (q1, q2)T

the 2 × 1 column matrix. The symbol T as a superscript denotes the matrix transpose.
Similarly, the symbol −1T as a superscript denotes the transpose of the inverse, A−1T =
(A−1)T , Â−1T = (Â−1)T .

In several places, we also use 4 × 4 and 6 × 6 matrices. We denote them by boldface
letters in the same way as the 2 × 2 matrices; this notation cannot cause any misunder-
standing.

In parallel with matrix notation, we also use component notation where suitable. The
indices always have the form of right-hand suffixes. The uppercase suffixes take the values
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1 and 2, lowercase indices 1, 2 and 3, and greek lowercase indices 1, 2, 3 and 4. In this way,
MIJ denote elements ofM and Mi j elements of M̂. We also denote f (xi ) = f (x1, x2, x3),
f (xI ) = f (x1, x2), [ f (xi )]xk=0 = f (0, 0, 0), [ f (xi )]xK=0 = f (0, 0, x3), [ f (xi )]x1=0 =
f (0, x2, x3). The Einstein summation convention is used throughout the book. Thus,
MI JqJ = MI1q1 + MI2q2 (I = 1 or 2), Mi jq j = Mi1q1 + Mi2q2 + Mi3q3 (i = 1, 2 or 3).
Similarly, Mi J denotes the elements of the 3 × 2 submatrix of matrix M̂.

We also use the commonly accepted notation for partial derivatives with respect to
Cartesian coordinates xi (for example, λ,i = ∂λ/∂xi , ui, j i = ∂2ui/∂x j∂xi , σi j, j =
∂σi j/∂x j ). In the case of velocities, we shall use a similar notation to denote the partial
derivatives with respect to the ray-centered coordinates. For a more detailed explanation,
see the individual chapters.

In some equations, the classical vector notation is very useful. We use arrows above
letters to denote the 3-D vectors. In this way, any 3-D vector may be denoted equivalently
as a 3 × 1 column matrix or as a vectorial form.

In complex-valued quantities, z = x + iy, the asterisk is used as a superscript to de-
note a complex-conjugate quantity, z∗ = x − iy. The asterisk between two time-dependent
functions, f1(t) ∗ f2(t), denotes the time convolution of these two functions, f1(t) ∗ f2(t) =∫∞
−∞ f1(τ ) f2(t − τ )dτ .

The book does not give a systematic bibliography on the seismic ray method. For
many other references, see the books and review papers on the seismic ray method and on
some related subjects (Červený and Ravindra 1971; Červený, Molotkov, and Pšenčı́k 1977;
Hubral and Krey 1980; Hanyga, Lenartowicz, and Pajchel 1984; Bullen and Bolt 1985;
Červený 1985a, 1985b, 1987a, 1989a; Chapman 1985, in press; Virieux 1996; Dahlen and
Tromp 1998). The ray method has been also widely used in other branches of physics,
mainly in electromagnetic theory (see, for example, Synge 1954; Kline and Kay 1965;
Babich and Buldyrev 1972; Felsen and Marcuvitz 1973; Kravtsov and Orlov 1980).



CHAPTER TWO

The Elastodynamic Equation
and Its Simple Solutions

The seismic ray method is based on asymptotic high-frequency solutions of the
elastodynamic equation. We assume that the reader is acquainted with linear elas-
todynamics and with the simple solutions of the elastodynamic equation in a ho-

mogeneous medium. For the reader’s convenience, we shall briefly discuss all these topics
in this chapter, particularly the plane-wave and point-source solutions of the elastodynamic
equation. We shall introduce the terminology, notations, and all equations we shall need in
the following chapters. In certain cases, we shall only summarize the equations without de-
riving them, mainly if such equations are known from generally available textbooks. This
applies, for example, to the basic concepts of linear elastodynamics. In other cases, we
shall present the main ideas of the solution, or even the complete derivation. This applies,
for example, to the Green functions for acoustic, elastic isotropic and elastic anisotropic
homogeneous media.

In addition to elastic waves in solid isotropic and anisotropic models, we shall also
study pressure waves in fluid models. In this case, we shall speak of the acoustic case.
There are two main reasons for studying the acoustic case. The first reason is tutorial.
All the derivations for the acoustic case are very simple, clear, and comprehensible. In
elastic media, the derivations are also simple in principle, but they are usually more cum-
bersome. Consequently, we shall mostly start the derivations with the acoustic case, and
only then shall we discuss the elastic case. The second reason is more practical. Pres-
sure waves in fluid models are often used as a simple approximation of P elastic waves
in solid models. For example, this approximation is very common in seismic exploration
for oil.

The knowledge of plane-wave solutions of the elastodynamic equation in homogeneous
media is very useful in deriving approximate high-frequency solutions of elastodynamic
equation in smoothly inhomogeneous media. Such approximate high-frequency solutions
in smoothly inhomogeneousmedia are derived in Section 2.4. In the terminology of the ray-
series method, such solutions represent the zeroth-order approximation of the ray method.
The approach we shall use in Section 2.4 is very simple and is quite sufficient to derive
all the basic equations of the zeroth-order approximation of the ray method for acoustic,
elastic isotropic, and elastic anisotropic structures. In the acoustic case, the approach yields
the eikonal equation for travel times and the transport equation for scalar amplitudes. In
the elastic case, it yields an approximate high-frequency decomposition of the wave field
into the separate waves (P and S waves in isotropic; qP, qS1, and qS2 in anisotropic media).
Thereafter, it yields the eikonal equations for travel times, the transport equations for
amplitudes, and the rules for the polarization of separate waves.

7



8 ELASTODYNAMIC EQUATION AND ITS SIMPLE SOLUTIONS

Note that Section 2.4 deals only with the zeroth-order approximation of the ray-series
method. The higher-order terms of the ray series are not discussed here, but will be
considered in Chapter 5 (Sections 5.6 for the acoustic case and Section 5.7 for the elastic
case). From the systematic and theoretical points of view, it would be more convenient
to start the whole treatment directly with the ray-series method, and only then discuss
the zeroth-order approximation, as a leading term of the ray-series method. The reason
why we have moved the ray-series treatment to Sections 5.6 and 5.7 is again tutorial. The
complete treatment of rays, ray-theory travel times, and paraxial methods in Chapters 3
and 4 is based on eikonal equations only. Similarly, all the treatments of ray amplitudes
in Sections 5.1 through 5.5 are based on transport equations only. Thus, we do not need
to know the higher-order terms of the ray series in Chapters 3 and 4 and in Sections 5.1
through 5.5; the results of Section 2.4 are sufficient there. Consequently, the whole ray-
series treatment, which is more cumbersome than the derivation of Section 2.4, can be
moved to Sections 5.6 and 5.7. Most of the recent applications of the seismic ray method
are based on the zeroth-order approximation of the ray series. Consequently, most readers
will be interested in the relevant practical applications of the seismic ray method, such as
ray tracing, travel time, and ray amplitude computations. These readers need not bother
with the details of the ray-series method; the zeroth-order approximation, derived in Sec-
tion 2.4, is sufficient for them. The readers who wish to know more about the ray-series
method and higher order terms of the ray series can read Sections 5.6 and 5.7 immediately
after reading Section 2.4. Otherwise, no results of Sections 5.6 and 5.7 are needed in the
previous sections.

Section 2.5 discusses the point-source solutions and appropriate Green functions for
homogeneous fluid, elastic isotropic, and elastic anisotropic media. In all three cases, exact
expressions for the Green function are derived uniformly. For elastic anisotropic media,
exact expressions are obtained only in an integral form. Suitable asymptotic high-frequency
expressions are, however, given in all three cases. These expressions are used in Chapter 5
to derive the asymptotic high-frequency expressions for the ray-theory Green function
corresponding to an arbitrary elementary wave propagating in a 3-D laterally varying
layered and blocked structure (fluid, elastic isotropic, elastic anisotropic).

The Green function corresponds to a point source, but it may be used in the repre-
sentation theorem to construct considerably more complex solutions of the elastodynamic
equation. If we are interested in high-frequency solutions, the ray-theory Green function
may be used in the representation theorems. For this reason, representation theorems and
the ray-theory Green functions play an important role even in the seismic ray method. The
representation theorems are derived and briefly discussed in Section 2.6. The same sec-
tion also discusses the scattering integrals and the first-order Born approximation. These
integrals contain the Green function. If we use the ray-theory Green function in these inte-
grals, the resulting scattering integrals can be used broadly in the seismic ray method and
in relevant applications. Such approaches have recently found widespread applications in
seismology and seismic exploration.

2.1 Linear Elastodynamics

The basic concepts and equations of linear elastodynamics have been explained in many
textbooks and papers, including some seismological literature. We refer the reader to
Bullen (1965), Auld (1973), Pilant (1979), Aki and Richards (1980), Hudson (1980a),
Ben-Menahem and Singh (1981), Mura (1982), Bullen and Bolt (1985), and Davis (1988),
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where many other references can be found. For a more detailed treatment, see Love (1944),
Landau and Lifschitz (1965), Fung (1965), and Achenbach (1975). Here we shall introduce
only the most useful terminology and certain important equations that we shall need later.
We shall mostly follow and use the notations of Aki and Richards (1980).

To write the equations of linear elastodynamics, some knowledge of tensor calculus
is required. Because we wish to make the treatment as simple as possible, we shall use
Cartesian coordinates xi and Cartesian tensors only.

We shall use the Lagrangian description of motion in an elastic continuum. In the
Lagrangian description, we study the motion of a particle specified by its original position
at some reference time. Assume that the particle is located at the position described by
Cartesian coordinates xi at the reference time. The vector distance of a particle at time t
from position 	x at the reference time is called the displacement vector and is denoted by
	u. Obviously, 	u = 	u(	x, t).

We denote the Cartesian components of the stress tensor by τi j (	x, t) and the Cartesian
components of the strain tensor by ei j (	x, t). Both tensors are considered to be symmetric,

τi j = τ j i , ei j = e ji . (2.1.1)

The strain tensor can be expressed in terms of the displacement vector as follows:

ei j = 1
2 (ui, j + u j,i ). (2.1.2)

The stress tensor τi j (	x, t) fully describes the stress conditions at any point 	x . It can be used
to compute traction 	T acting across a surface element of arbitrary orientation at 	x ,

Ti = τi j n j , (2.1.3)

where 	n is the unit normal to the surface element under consideration.
The elastodynamic equation relates the spatial variations of the stress tensor with the

time variations of the displacement vector,

τi j, j + fi = ρüi , i = 1, 2, 3. (2.1.4)

Here fi denote the Cartesian components of body forces (force per volume), and ρ is the
density. The term with fi in elastodynamic equation (2.1.4) will also be referred to as the
source term. Quantities üi = ∂2ui/∂t2, i = 1, 2, 3, represent the second partial derivatives
of ui with respect to time (that is, the Cartesian components of particle acceleration 	̈u). In
a similar way, we shall also denote the Cartesian components of particle velocity ∂ui/∂t
by vi or u̇i .

The introduced quantities are measured in the following units: stress τi j and traction
Ti in pascals (Pa; that is, in kg m−1 s−2), the components of body forces fi in newtons
per cubic meter (N/m3; that is, in kgm−2 s−2), density ρ in kilograms per cubic meter
(kg m−3), and displacement components ui in meters (m). Finally, strain components ei j
are dimensionless.

2.1.1 Stress-Strain Relations

In a linear, anisotropic, perfectly elastic solid, the constitutive stress-strain relation is given
by the generalized Hooke’s law,

τi j = ci jklekl . (2.1.5)
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Here ci jkl are components of the elastic tensor. The elastic tensor has, in general,
3 × 3 × 3 × 3 = 81 components. These components, however, satisfy the following sym-
metry relations:

ci jkl = c jikl = ci jlk = ckli j , (2.1.6)

which reduce the number of independent components of the elastic tensor from 81 to 21.
The components ci jkl of the elastic tensor are also often called elastic constants, elastic

moduli, elastic parameters, or stiffnesses. In this book, we shall mostly call them elastic
moduli. They are measured in the same units as the stress components (that is, in Pa =
kgm−1 s−2).

If we express ekl in terms of the displacement vector components, see Equation (2.1.2),
and take into account symmetry relations (2.1.6), we can also express Equation (2.1.5) in
the following form:

τi j = ci jkluk,l . (2.1.7)

The components of elastic tensor ci jkl are also often expressed in an abbreviated Voigt
form, with two indices instead of four. We shall denote these components by capital letters
Cmn . Cmn is formed from ci jkl in the following way: m corresponds to the first pair of
indices, i, j and n to the second pair, k, l. The correspondence m → i, j and n → k, l is
as follows: 1 → 1, 1; 2 → 2, 2; 3 → 3, 3; 4 → 2, 3; 5 → 1, 3; 6 → 1, 2.

Due to symmetry relations (2.1.6), the 6 × 6 matrix Cmn fully describes the elastic
moduli of an arbitrary anisotropic elastic medium. It is also symmetric, Cmn = Cnm and is
commonly expressed in the form of a table containing 21 independent elastic moduli:



C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

C66



. (2.1.8)

The elastic moduli Cmn below the diagonal (m > n) are not shown because the table is
symmetrical,Cmn = Cnm . The diagonal elements in the table are always positive for a solid
medium, but the off-diagonal elements may be arbitrary (positive, zero, negative). Note
that Cmn is not a tensor.

A whole hierarchy of various anisotropic symmetry systems exist. They are described
and discussed in many books and papers; see, for example, Fedorov (1968), Musgrave
(1970), Auld (1973), Crampin and Kirkwood (1981), Crampin (1989), and Helbig (1994).
The most general is the triclinic symmetry, which may have up to 21 independent elastic
moduli. In simpler (higher symmetry) anisotropic systems, the elastic moduli are invariant
to rotation about a specific axis by angle 2π/n (n-fold axis of symmetry). We shall briefly
discuss only two such simpler systems which play an important role in recent seismology
and seismic exploration: orthorhombic and hexagonal.

In the orthorhombic symmetry system, three mutually perpendicular twofold axes of
symmetry exist. The number of significant elastic moduli in the orthorhombic system is
reduced to nine. If the Cartesian coordinate system being considered is such that its axes
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coincide with the axes of symmetry, the table (2.1.8) of Ci j reads:


C11 C12 C13 0 0 0
C22 C23 0 0 0

C33 0 0 0
C44 0 0

C55 0
C66



. (2.1.9)

In the hexagonal symmetry system, one sixfold axis of symmetry exists. The number
of significant elastic moduli in the hexagonal system is reduced to five. If the Cartesian
coordinate system being considered is such that the x3-axis coincides with the sixfold axis
of symmetry, the table of nonvanishing elastic moduli is again given by (2.1.9), but Ci j

satisfy the following four relations: C22 = C11,C55 = C44,C12 = C11 − 2C66,C23 = C12.
If the sixfold axis of symmetry coincides with the x1-axis, the four relations are as follows:
C22 = C33,C55 = C66,C23 = C22 − 2C44,C13 = C12.

It is possible to show that the invariance of elastic moduli to rotation by π/3 in the
hexagonal system (sixfold axis of symmetry) implies general invariance to rotation by any
angle. From this point of view, the hexagonal symmetry system is equivalent to a trans-
versely isotropic medium in which the elastic moduli do not change if the medium is rotated
about the axis of symmetry by any angle. Traditionally, the vertical axis of symmetry of the
transversely isotropic medium has been considered. At present, however, the transversely
isotropic medium is considered more generally, with an arbitrarily oriented axis of symme-
try (inclined, horizontal). If it is vertical, we speak of azimuthal isotropy (Crampin 1989).

In seismology, themost commonlyused anisotropy systemscorrespond to thehexagonal
symmetry. Systems more complicated than orthorhombic have been used only exception-
ally. Moreover, the anisotropy is usually weak in the Earth’s interior. A suitable notation
for elastic moduli in weakly anisotropic media was proposed by Thomsen (1986).

As we have seen, the abbreviated Voigt notation Cmn for elastic moduli is useful in
discussing various anisotropy symmetries, particularly if simpler symmetries are involved.
If, however, we are using general equations and expressions, such as the constitutive rela-
tions or the elastodynamic equation and its solutions, it is more suitable to use the elastic
moduli in the nonabbreviated form of ci jkl . Due to the Einstein summation convention, all
general expressions are obtained in a considerably more concise form. For this reason, we
shall consistently use the notation ci jkl for elastic moduli rather than Cmn. As an exercise,
the reader may write out the general expressions for some simpler anisotropy symmetries,
using the notation Cmn for the elastic parameters.

Elastic anisotropy is a very common phenomenon in the Earth’s interior (see Babuška
and Cara 1991). It is caused by different mechanisms. Let us briefly describe three of these
mechanisms. Note, of course, that the individual mechanisms may be combined.

1. Preferred orientation of crystals. Single crystals of rock-forming minerals are
intrinsically anisotropic. If no preferred orientation of mineral grains exists, poly-
crystalline aggregates of anisotropic material behave macroscopically isotropically.
In case of preferred orientation of these grains, however, the material behaves
macroscopically anisotropically. Preferred orientation is probably one of the most
important factors in producing anisotropy of dense aggregates under high pressure
and temperature conditions.
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2. Anisotropy due to alligned inclusions. The presence of aligned inclusions (such
as cracks, pores, or impurities) can cause effective anisotropy of rocks, if observed at
long wavelengths. The most important two-phase systems with distinct anisotropic
behavior are a cracked solid and a poroelastic solid.

3. Anisotropy due to regular sequences of thin layers. Regular sequences of
isotropic thin layers of different properties are very common in the Earth’s inte-
rior, at least in the upper crust (foliation, bedding, and so on). If the prevailing
wavelength of the wave under consideration is larger than the thickness of the
individual thin layers, the regular sequences of thin layers behave anisotropically.

Let us give several typical examples of actual anisotropy symmetries important in seis-
mology:

a. Hexagonal symmetry. (i) Vertical axis of symmetry: periodic horizontal thin layer-
ing. This symmetry is also known as VTI (vertical transverse isotropy) symmetry.
(ii) Horizontal axis of symmetry: parallel vertical cracks. This symmetry is also
known as HTI (horizontal transverse isotropy) symmetry.

b. Orthorhombic symmetry. (i) Olivine (preferred orientation of crystals) and (ii)
Combination of periodic thin layering with cracks perpendicular to the layering.

In the isotropic solid, the components of elastic tensor ci jkl can be expressed in terms
of two independent elastic moduli λ and µ as follows:

ci jkl = λδi jδkl + µ(δikδ jl + δilδ jk); (2.1.10)

see Jeffreys and Jeffreys (1966) and Aki and Richards (1980). Here δi j is the Kronecker
symbol,

δi j = 1 for i = j, δi j = 0 for i �= j. (2.1.11)

Elastic moduli λ,µ are also known as Lamé’s elastic moduli; µ is called the rigidity (or
shear modulus).

For an isotropic medium stress-strain relation, Equation (2.1.5) can be expressed in the
following form:

τi j = λδi jθ + 2µei j , θ = ekk = uk,k = ∇ · 	u. (2.1.12)

Equation (2.1.12) represents the famous Hooke’s law. Quantity θ is called the cubical
dilatation. If we replace θ and ei j by the components of the displacement vector, we obtain

τi j = λδi j uk,k + µ(ui, j + u j,i ). (2.1.13)

Instead of Lamé’s elastic moduli λ and µ, some other elastic parameters are also often
used in isotropic solids: the bulk modulus (or incompressibility) k, the Young modulus E ,
the Poisson ratio σ , and compressibility κ . They are related to λ and µ as follows:

k = λ+ 2
3µ, E = 3µ

(
λ+ 2

3µ
)/

(λ+ µ),
κ = k−1 = (

λ+ 2
3µ
)−1
, σ = 1

2λ/(λ+ µ).
(2.1.14)

The physical meaning of these parameters is explained in many textbooks (Bullen and Bolt
1985; Auld 1973; Pilant 1979).

Ifµ = 0, we speak of a fluid medium (Bullen and Bolt 1985). In this case, σ = 1
2 , k = λ,

and Hooke’s law (2.1.12) reads τi j = λδi jθ . Commonly, we then use pressure p instead
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of τi j ,

τi j = −pδi j , p = − 1
3τi i . (2.1.15)

Constitutive relation (2.1.12) then reads

p = −λθ = −kθ. (2.1.16)

The fluid medium is commonly used in seismic prospecting for oil as an approximation of
the solid medium (the so-called acoustic case).

Pressure p and elastic moduli λ, µ, k, and E are measured in Pa = kgm−1 s−2, the
compressibility is in kg−1m s2, and σ is dimensionless.

Constitutive relations (2.1.5), (2.1.12), and (2.1.16) are related to small deviations from
a “natural ” reference state, in which both stress and strain are zero. Such a natural reference
state, however, does not exist within the Earth’s interior due to the large lithological pres-
sure caused by self-gravitation. It is then necessary to use some other reference state, for
example, the state of static equilibrium. By definition the strain is zero in this state, but the
stress is nonzero. It is obvious that constitutive relations (2.1.5), (2.1.12), and (2.1.16), are
not valid in this case. If we study the deviations from the state of static equilibrium, we can,
however, work with small incremental stresses instead of actual stresses. The incremental
stress is defined as the difference between the actual stress and the stress corresponding to
the static equilibrium state. This incremental stress is zero in the state of static equilibrium
and satisfies constitutive relations (2.1.5), (2.1.12), and (2.1.16) if the deviations from the
state of static equilibrium are small. In the following text, we shall not emphasize the fact
that τi j actually represents the incremental stress, and simply call τi j the stress. See the
detailed discussion in Aki and Richards (1980).

All the elastic moduli are, in general, functions of position. If they are constant (inde-
pendent of position) in some region, we call the medium homogeneous in that region.

Even more complex linear constitutive relations than those given here can be consid-
ered. In linear viscoelastic solids, the elasticmoduli depend on time. In the time domain, the
constitutive relations are then expressed in convolutional forms. Alternatively, in the fre-
quency domain, the elastic moduli are complex-valued andmay depend on frequency. Such
constitutive relations are commonly used to study wave propagation in dissipative media;
see Kennett (1983). Unless stated otherwise, we shall consider only frequency- and time-
independent elastic moduli here. For weakly dissipative media, see Sections 5.5 and 6.3.

2.1.2 Elastodynamic Equation for Inhomogeneous Anisotropic Media

Inserting relation (2.1.7) into elastodynamic equation (2.1.4), we obtain the elastodynamic
equation for an unbounded anisotropic, inhomogeneous, perfectly elastic medium:

(ci jkluk,l), j + fi = ρüi , i = 1, 2, 3. (2.1.17)

The elastodynamic equation (2.1.17) represents a system of three coupled partial dif-
ferential equations of the second order for three Cartesian components ui (x j , t) of the
displacement vector 	u.

Alternatively, the elastodynamic equation may be expressed in terms of 12 partial
differential equations of the first order in threeCartesian components vi (x j , t) of the particle
velocity vector 	v = 	̇u, and 9 components τi j of the stress tensor. We use Equation (2.1.4)
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for v̇i = üi and the time derivative of (2.1.7) for τ̇i j . We obtain

ρv̇i = τi j, j + fi , τ̇i j = ci jklvk,l − ṁi j . (2.1.18)

Function mi j is nonvanishing in regions where the generalized Hooke’s law (2.1.7) is not
valid, for example, in the source region. It is closely related to the so-called stress-glut and
to the moment tensor density. See Kennett (1983, p. 76). System (2.1.18) is alternative to
(2.1.17), if we replace fi in (2.1.17) by fi − mi j, j (equivalent force system).

In this book,we shall use the elastodynamic equation in the formof (2.1.17) consistently.
Ifmi j, j �= 0, it is understood that fi represents fi − mi j, j . Equations (2.1.18) will be used in
Section 5.4.7 only. It is, however, also possible to build the seismic ray method completely
on the elastodynamic equation in the form of (2.1.18). See, for example, Chapman and
Coates (1994) and Chapman (in press).

2.1.3 Elastodynamic Equation for Inhomogeneous Isotropic Media

As in the previous case,we insert (2.1.13) into (2.1.4) and obtain the elastodynamic equation
for the unbounded isotropic, inhomogeneous, perfectly elastic medium,

(λu j, j ),i + [µ(ui, j + u j,i )], j + fi = ρüi , i = 1, 2, 3. (2.1.19)

If we perform the derivatives, we obtain,

(λ+ µ)u j,i j + µui, j j + λ,i u j, j + µ, j (ui, j + u j,i ) + fi = ρüi ,

i = 1, 2, 3. (2.1.20)

This equation is often written in vectorial form:

(λ+ µ)∇∇ · 	u + µ∇2	u + ∇λ∇ · 	u
+ ∇µ× ∇ × 	u + 2(∇µ · ∇)	u + 	f = ρ 	̈u. (2.1.21)

As we can see, the elastodynamic equation (2.1.17) for the anisotropic inhomogeneous
medium is formally simpler than elastodynamic equations (2.1.19) or (2.1.20) for isotropic
inhomogeneous media. This is, of course, due to the summation convention. Consequently,
we shall often prefer to work with (2.1.17), and only then shall we specify the results for
isotropic media.

2.1.4 Acoustic Wave Equation

The elastodynamic equations remain valid even in a fluid medium where µ = 0. However,
rather than working with displacement vector ui , it is thenmore usual to work with pressure
p = − 1

3τi i and with particle velocity vi = u̇i . The acoustic wave equations for nonmoving
fluids are then usually expressed as

p,i + ρv̇i = fi , vi,i + κ ṗ = q. (2.1.22)

Functions fi = fi (	x, t) and q = q(	x, t) represent source terms; fi has the samemeaning as
in (2.1.4) and q is the volume injection rate density; see Fokkema and van den Berg (1993).
Brekhovskikh and Godin (1989) call the same term q the volume velocity source. For a
detailed derivation of acoustic wave equations, even for moving media, see Brekhovskikh
and Godin (1989). Equations (2.1.22) correspond to the elastodynamic equations (2.1.18)
for µ = 0, τi j given by (2.1.15) and q = 1

3κṁii .



2.1 L INEAR ELASTODYNAMICS 15

If we eliminate the particle velocity vi from (2.1.22), we obtain the scalar acoustic
wave equation for pressure p(	x, t),

(ρ−1 p,i ),i + f p = κ p̈, where f p = q̇ − (ρ−1 fi ),i . (2.1.23)

Alternatively, (2.1.23) reads

∇ · (ρ−1∇ p) + f p = κ p̈. (2.1.24)

If density ρ is constant, Equation (2.1.24) yields

∇2 p + ρ f p = c−2 p̈, c =
√
1/ρκ =

√
k/ρ. (2.1.25)

Equation (2.1.25) represents the standardmathematical form of the scalar wave equation, as
known frommathematical textbooks; seeMorse and Feshbach (1953), Jeffreys and Jeffreys
(1966), Bleistein (1984), and Berkhaut (1987), among others. Quantity c = c(	x) is called
the acoustic velocity. The acoustic velocity c(	x) is a model parameter, c = (ρκ)−1/2. It
does not depend at all on the properties of the wavefield under consideration, but only on ρ
and κ . Here we shall systematically use the acoustic wave equation with a variable density
(2.1.23) or (2.1.24). We will usually consider fi = 0, so that f p = q̇.

We can also eliminate the pressure from (2.1.22). We then obtain the vectorial acoustic
wave equation for the particle velocity vi (	x, t)

(kv j, j ),i + f v
i = ρv̈i , where f v

i = ḟ i − (kq),i .

Here k is the bulk modulus. This wave equation is a special case of the time derivative
of the elastodynamic equation (2.1.19) for µ = 0. For this reason, we shall not study it
separately. By the acoustic wave equation, we shall understand the scalar acoustic wave
equation for pressure (2.1.23).

2.1.5 Time-Harmonic Equations

In this book, we shall mostly work directly in the time domain, with transient signals.
Nevertheless, it is sometimes useful to discuss certain problems in the frequency domain.
Let us consider the general elastodynamic equation (2.1.17) with a time-harmonic source
term 	f (	x, t)= 	f (	x, ω) exp[−iωt]. Displacement vector 	u(	x, t) is then also time-harmonic,

	u(	x, t) = 	u(	x, ω) exp[−iωt]. (2.1.26)

Here ω = 2π f = 2π/T is the circular frequency, where f is frequency and T is pe-
riod. To keep the notation as simple as possible, we do not use new symbols for 	u(	x, ω)
and 	f (	x, ω); we merely distinguish them from 	u(	x, t) and 	f (	x, t) by using argument ω
instead of t . Moreover, we shall only use arguments ω and t where confusion might arise.
Instead of circular frequency ω, we shall also often use the frequency f = ω/2π .

The elastodynamic equation (2.1.17) in the frequency domain reads

(ci jkluk,l), j + ρω2ui = − fi , i = 1, 2, 3, (2.1.27)

where ui = ui (	x, ω), fi = fi (	x, ω). Elastodynamic equations (2.1.19) through (2.1.21) can
be expressed in the frequency domain in the same way.

For acousticmedia,we introduce the time-harmonic quantities p(	x, ω),q(	x, ω), 	v(	x, ω),
and 	f (	x, ω) as in (2.1.26). The general acoustic equations (2.1.22) then read

p,i − iωρvi = fi , vi,i − iωκp = q. (2.1.28)
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The acoustic wave equation for pressure (2.1.24) in the frequency domain reads as follows:

∇ · (ρ−1∇ p) + κω2 p = − f p, f p = −iωq − (ρ−1 fi ),i . (2.1.29)

If density ρ is constant, wave equation (2.1.25) yields

∇2 p + k2 p = −ρ f p, k = ω/c, (2.1.30)

where k is the wave number. Equation (2.1.30) is known as the Helmholtz equation.
Instead of the time factor exp[−iωt] in (2.1.26), it would also be possible to use factor

exp[iωt]. We will, however, use exp[−iωt] consistently, even in the Fourier transform.
The Fourier transform pair for a transient signal x(t) will be used here in the following

form:

x( f ) =
∫ ∞

−∞
x(t) exp[i2π f t]dt, x(t) =

∫ ∞

−∞
x( f ) exp[−i2π f t]d f.

(2.1.31)

Function x( f ) is theFourier spectrumof x(t).Weagainuse the same symbol for the transient
signal x(t) (in the time domain) and for its Fourier spectrum x( f ) (in the frequency domain);
we distinguish between the two by arguments t and f , if necessary. The sign convention
used in Fourier transform (2.1.31) is common in books and papers related to the seismic
ray method. For more details on the Fourier transform, see Appendix A.

Note that the Fourier spectrum of the transient displacement vector satisfies elasto-
dynamic equation (2.1.27), where ω = 2π f and 	f is the Fourier spectrum of the body
force. Similarly, the Fourier spectrum of pressure satisfies the acoustic wave equation
in the frequency domain (2.1.29). The elastodynamic equation (2.1.27) in the frequency
domain remains valid even for viscoelastic media, where ci jkl are complex-valued and
frequency-dependent. See Kennett (1983) and Section 5.5. Similarly, (2.1.29) remains
valid for complex-valued frequency-dependent κ .

For a real-valued transient signal x(t), the Fourier spectrum x( f ) of x(t) satisfies the
relation x(− f ) = x∗( f ). For this reason, we shall mostly present the spectra x( f ) only
for f ≥ 0. Unless otherwise stated, we shall use the following convention: the presented
spectrum x( f ) corresponds to f ≥ 0 and can be determined from the relation x(− f ) =
x∗( f ) for negative frequencies.

2.1.6 Energy Considerations

The strictest and most straightforward approach to deriving the basic equations of the
seismic ray theory is based on the asymptotic solution of the elastodynamic equation.
Energy need not be considered in this procedure. Nevertheless, it does provide a very
useful physical insight into all derived equations. We shall, therefore, also briefly discuss
some basic energy concepts. Some of themmay also find direct applications in seismology,
particularly in the investigation of the mechanism of the seismic source.

In studying seismicwave propagation, the deformation processes aremostly considered
to be adiabatic. The density of strain energy W is then given by the relation

W = 1
2τi j ei j ; (2.1.32)

see Aki and Richards (1980). Note thatW is also called the strain energy function. In view
of linear constitutive relation (2.1.5),

W = 1
2ci jklei j ekl . (2.1.33)
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In solids, the strain energy function satisfies the condition of strong stability for any non-
vanishing strain tensor ei j (see Backus 1962),

W = 1
2ci jklei j ekl > 0. (2.1.34)

In a fluid medium (µ = 0), the condition of weak stability, W ≥ 0, is satisfied.
The density of kinetic energy K is given by the relation,

K = 1
2ρu̇i u̇i . (2.1.35)

The sum of W and K is called the density of elastic energy and is denoted by E ,

E = W + K = 1
2ci jklei j ekl + 1

2ρu̇i u̇i . (2.1.36)

All these equations can be found in any textbook on linear elastodynamics; see, for example,
Auld (1973).

For completeness, we shall also give the expression for the density of elastic energy
flux 	S, with Cartesian components Si ,

Si = −τi j u̇ j = −ci jklekl u̇ j = −ci jkluk,l u̇ j . (2.1.37)

See, for example, Kogan (1975), Burridge (1976), Petrashen (1980), and a very detailed
discussion in Auld (1973). Elastic energy flux vector 	S is an analogue of the well-known
Poyinting vector in the theory of electromagnetic waves. It is not difficult to prove, using
elastodynamic equation (2.1.4), that the introduced energy quantities satisfy the energy
equation,

∂E/∂t + ∇ · 	S = 	f · 	̇u. (2.1.38)

We merely multiply (2.1.4) by u̇i and rearrange the terms.
The energy quantitiesW, K , E, 	S introduced here depend on the spatial position and on

time t . In high-frequency signals and/or high-frequencyharmonicwaves, all these quantities
vary rapidly with time. It is, therefore, very useful to study certain time-averaged values
of these quantities, not only instantaneous values. The time averaging can be performed in
several ways. In a time-harmonic wavefield, we usually consider quantities time-averaged
over one period. We denote the energy quantities averaged over one period by a bar above
the letter, W , K , E and Si . For example,

W (xi ) = 1

T

∫ T

0
W (xi , t)dt, (2.1.39)

where T denotes the period of the time-harmonicwave under consideration.Amore general
definition of the time-averaged energy values, applicable even to quasi-harmonic waves,
was proposed by Born and Wolf (1959). The time-averaged value of W (xi , t) is, in this
case, given by the relation

W (xi , t) = 1

t2 − t1

∫ t2

t1

W (xi , t)dt, (2.1.40)

where time interval t2 − t1 is large (that is, considerably larger than the prevailing period
of the wavefield). Averaged quantities K (xi ), E (xi ), and S i (xi ) can be defined in a similar
way. If thewavefield is strictly harmonic, definition (2.1.40) yields (2.1.39) for t2 − t1 � T .

In seismology, however, harmonic and quasi-harmonic wavefields do not play the im-
portant role that they play in other fields of physics; we usually consider signals of a
finite duration, including short signals. Quantity W (xi ) would then depend on the choice
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of t1 and t2. Assume that the signal under consideration is effectively concentrated in time
interval tmin < t < tmax, where tmin represents the effective onset and tmax stands for the
effective end of the signal. Outside time interval (tmin, tmax), the signal effectively vanishes.
It would then be natural to take t1 = tmin and t2 = tmax in (2.1.40). If, however, we take
t1 < tmin and/or t2 > tmax, relation (2.1.40) would lead to a distorted result because the time
averaging would also be performed over time intervals in which the signal is zero.

In certain seismological applications, however, it may be useful to consider a slightly
modified definition (2.1.40) even in the case of shorter high-frequency signals.Wemodify it
by removing constant factor (t2 − t1)−1 and take infinite limits in the integral. As the signal
effectively vanishes outside time interval (t1 = tmin, t2 = tmax), we make no mistake if we
take (−∞,+∞) instead of (t1, t2). However, we do not obtain time-averaged quantities
because we have removed the averaging factor (t2 − t1)−1. We shall call these modified
quantities time-integrated energy quantities and denote them by a circumflex over the letter:

Ŵ (	x) =
∫ ∞

−∞
W (	x, t)dt = 1

2ci jkl

∫ ∞

−∞
ei j (	x, t)ekl(	x, t)dt,

K̂ (	x) =
∫ ∞

−∞
K (	x, t)dt = 1

2ρ

∫ ∞

−∞
u̇i (	x, t)u̇i (	x, t)dt,

Ê(	x) =
∫ ∞

−∞
E(	x, t)dt = Ŵ (	x) + K̂ (	x),

Ŝi (	x) =
∫ ∞

−∞
Si (	x, t)dt = −ci jkl

∫ ∞

−∞
ekl(	x, t)u̇ j (	x, t)dt.

(2.1.41)

These time-integrated energy quantitieswill be very useful in our treatment. Time-averaged
quantitiesW , K , E , S i can be obtained from time-integrated quantities Ŵ , K̂ , Ê, Ŝi in a
very simple way: we merely divide them by the effective length of the signal.

For an acoustic medium (µ = 0), the individual energy quantities W , K , E and Si can
easily be obtained from those given before:

W = 1
2κp

2, K = 1
2ρvivi , E =W + K , Si = pvi . (2.1.42)

Here p is the pressure, vi are components of the particle velocity, and κ is the compress-
ibility. See Section 2.1.4. The time-averaged and time-integrated energy quantities in the
acoustic case can be constructed from (2.1.42) in the same way.

Energy quantities W, K , E , W , K , E and W , K , E represent the energy density and
are measured in J m−3 (joule per cubic meter) = Pa = kg m−1 s−2. Time-integrated quan-
tities Ŵ , K̂ , and Ê are then measured in Pa s= kgm−1s−1. Finally, the densities of energy
flux Si , Si and Si are measured in Jm−2 s−1 = Wm−2 (watt per square meter) = kg s−3,

and Ŝi in J m−2 = Pam= kg s−2.
In physics, the quantities with dimension of energy × time are called the action; con-

sequently, Ŵ , K̂ , and Ê represent the density of action. We shall, however, not use this
terminology but shall refer to Ŵ , K̂ , and Ê as the time-integrated energy quantities.

A physical quantity that plays an important role in many wave propagation applications
is the velocity vector of the time-averaged energy flux. We shall denote it 	U E , and its com-
ponent U E

i . The components are U E
i are defined by the relation

U E
i = Si/E . (2.1.43)

It is easy to see that an alternative definition of U E
i is

U E
i = Ŝi/Ê . (2.1.44)
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2.2 Elastic Plane Waves

In this section, we shall discuss the properties of plane waves propagating in homogeneous,
perfectly elastic, isotropic, or anisotropic media. Plane waves are the simplest solutions
of the elastodynamic equation. The procedure used here to derive the properties of plane
waves will be used in Section 2.4 to study wave propagation in smoothly inhomogeneous
elastic media. Before dealing with plane waves propagating in elastic media, we shall also
briefly discuss acoustic plane waves.

2.2.1 Time-Harmonic Acoustic Plane Waves

We shall seek the plane-wave solutions of the time-harmonic acoustic wave equation
(2.1.30), with c constant and real-valued and with vanishing source term ρ f p. We shall
describe the acoustic pressure plane wave by the equation

p(	x, t) = P exp[−iω(t − T (	x))], (2.2.1)

where p is pressure, ω is the circular frequency (ω = 2π f ), P is some scalar constant
which may be complex-valued, and T (	x) is a linear homogeneous function of Cartesian
coordinates xi ,

T (	x) = pi xi . (2.2.2)

Here pi are real-valued or complex-valued constants. If pi are real-valued, plane wave
(2.2.1) is called homogeneous (even for complex-valued P). For complex-valued pi , plane
wave (2.2.1) is called inhomogeneous. Here we shall consider only real-valued pi ; inho-
mogeneous waves will be discussed in Section 2.2.10. Coefficients pi are not arbitrary but
must satisfy the relations following from the acoustic wave equation. Inserting (2.2.1) into
(2.1.30) with ρ f p = 0, we obtain the condition

p21 + p22 + p23 = 1/c2, (2.2.3)

where c = (ρκ)−1/2. Equation (2.2.3) represents a necessary condition for the existence
of nontrivial plane waves (2.2.1) propagating in an acoustic homogeneous medium. This
condition is known by many names; here we shall call (2.2.3) the existence condition.
Pressure p(	x, t), given by (2.2.1), is a solution of the acoustic wave equation and represents
a plane wave only if constants p1, p2, and p3 satisfy existence condition (2.2.3). The scalar
complex-valued constant P in (2.2.1) may be arbitrary.

The pressure p(	x, t), given by (2.2.1) through (2.2.3), is constant along planes

T (	x) = pi xi = const. (2.2.4)

For t varying, equation t = T (	x) represents a moving plane, here called the wavefront.
This is the reason why wave (2.2.1) is called a plane wave. We shall denote the unit normal
to the wavefront 	N , Ni = pi/

√
pk pk . Hence,

	p = 	N/C, (2.2.5)

where C represents the velocity of the propagation of the wavefront in the direction per-
pendicular to it. This velocity is usually called the phase velocity. By inserting (2.2.5) into
existence condition (2.2.3), we obtain C = c. Thus, the phase velocity of the pressure plane
wave propagating in a homogeneous fluid medium equals c = (ρκ)−1/2. It does not depend
on the frequency or on the direction of propagation 	N . Vector 	pwith Cartesian components
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pi , given by (2.2.5), is called the slowness vector; it is perpendicular to the wavefront, and
its length equals slowness 1/c.

In addition, it is also usual to introduce phase velocity vector 	C, which has the same
direction as slowness vector 	p but length C:

	C = C 	N = 	p/( 	p · 	p). (2.2.6)

The plane-wave solution (2.2.1) of the acoustic wave equation is complex-valued. Both
the real and imaginary parts of (2.2.1), and any linear combination thereof, are again
solutions of (2.1.30) with f p = 0.

Plane-wave solution (2.2.1) can be expressed in many alternative forms; for example,

p(	x, t) = P exp[iknxn] exp[−iωt],

where kn = (ω/c)Nn are Cartesian components of wave vector 	k = ω 	p.
The plane-wave solution of acoustic equation (2.1.28)with fi = q = 0 can bewritten as

p(	x, t)= P exp[−iω(t − T (	x))], 	v(	x, t)=
	NP
ρc

exp[−iω(t − T (	x))].
(2.2.7)

Here P is again an arbitrary constant; all other quantities have the same meaning as de-
fined earlier. Note that the product of velocity and density ρc is also known as the wave
impedance.

2.2.2 Transient Acoustic Plane Waves

Transient pressure plane waves can be obtained from the time-harmonic plane waves using
Fourier transform (2.1.31). We can, however, also work directly with transient signals. For
this purpose, we shall use analytical signals F(ζ ). We shall consider a general, complex-
valued expression for the transient acoustic plane wave

p(	x, t) = PF(t − T (	x)), (2.2.8)

where P is again an arbitrary complex-valued constant and T (	x) is a linear function of the
coordinates given by (2.2.2). For a given real-valued signal x(t), the analytical signal F(ζ )
is defined by the relations

F(ζ ) = x(ζ ) + ig(ζ ), g(ζ ) = 1

π
P.V.

∫ ∞

−∞

x(σ )

σ − ζ dσ, (2.2.9)

where P.V. stands for the principal value. The two functions x(ζ ) and g(ζ ) form a Hilbert
transform pair. More details on analytical signals can be found in Appendix A. A well-
known example of the Hilbert transform pair are functions

x(ζ ) = cosωζ, g(ζ ) = −sinωζ, (2.2.10)

so that F(ζ ) = exp(−iωζ ). Thus, time-harmonic plane wave (2.2.1) is a special case of
transient plane wave (2.2.8). Another important example of the Hilbert transform pair is

x(ζ ) = δ(ζ ), g(ζ ) = −1/πζ, (2.2.11)

where δ(ζ ) is the Dirac delta function. The corresponding analytical signal, called the
analytic delta function, can be expressed as

F(ζ ) = δ(A)(ζ ) = δ(ζ ) − i/πζ. (2.2.12)
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As in the case of time-harmonic planewave (2.2.1), transient planewave (2.2.8) is a solution
of the acoustic wave equation only if constants pi in (2.2.2) satisfy existence condition
(2.2.3). Constant P and analytical signal F(ζ ), however, are arbitrary. For this reason, we
prefer toworkwith the analytical signal solutions and not with the time-harmonic solutions.
In the same way as in the case of the plane time-harmonic wave, we can again introduce
the wavefront, the slowness vector, and the like.

In realistic applications, of course, we can, generally, consider either the real or imagi-
nary part of solution (2.2.8). For example,

p(	x, t) = Re{PF(t − T (	x))}, (2.2.13)

or

p(	x, t) = 1
2{PF(t − T (	x)) + P∗F∗(t − T (	x))}. (2.2.14)

Here the asterisk denotes a complex-conjugate function. Moreover, any linear combination
of the real and imaginary parts of (2.2.8) is again a solution of the acoustic wave equation.

2.2.3 Vectorial Transient Elastic Plane Waves

In a homogeneous elastic, isotropic, or anisotropic medium, the procedure for determining
plane waves and their characteristic parameters is more involved than in the acoustic case.
The main complication is that we can obtain several types of plane waves, propagating in
the same direction with different velocities. The velocities can be determined by solving
eigenvalue problems for certain 3 × 3 matrices.

We shall describe the vectorial transient plane elastic wave by the equation

	u(	x, t) = 	UF(t − T (xi )), (2.2.15)

where 	u is the displacement vector, 	U a complex-valued vectorial constant, and F , t , T
have the same meaning as before. Once again, we shall use F(ζ ) for the analytical signal as
in the expression for the transient pressure plane wave in the acoustic case; see (2.2.8). We
canmake this assignment because we shall treat the acoustic case independent of the elastic
case throughout the book. Actually, the analytical signals corresponding to displacement,
particle velocity, and pressure are mutually related. If the analytical signal for displacement
is F(ζ ) (see (2.2.15)), then the analytical signals for the particle velocity and pressure are
Ḟ(ζ ).

We wish to determine the number of plane waves with different velocities that can
propagate along a specified direction in the medium, as well as their velocities, slowness
vectors, and polarizations. All this can be determined by inserting (2.2.15) into the elasto-
dynamic equation. We shall consider elastodynamic equation (2.1.17) with elastic moduli
ci jkl constant, density ρ constant, and fi = 0. The elastodynamic equation then reads

ai jkluk,l j = üi , i = 1, 2, 3, (2.2.16)

where we have used the notation

ai jkl = ci jkl/ρ. (2.2.17)

Thus, ai jkl are density-normalized elastic moduli of dimension m2 s−2 (velocity squared).
It seems surprising to start our treatment with anisotropic and not with isotropic media.

Due to various symmetries and the Einstein summation convention, however, certain steps
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of the mathematical treatment for the anisotropic medium are formally simpler than for the
isotropic medium, which is, in some ways, a degenerate case of the anisotropic medium.

Inserting ansatz plane-wave solution (2.2.15) into (2.2.16) and assuming F
′′ �= 0, we

obtain the following equations:

ai jkl p j plUk −Ui = 0, i = 1, 2, 3. (2.2.18)

This is a system of three linear equations for U1,U2, and U3. If Ui and pi satisfy
(2.2.18), expression (2.2.15) is then a solution of elastodynamic equation (2.2.16) and
represents a transient elastic plane wave.

2.2.4 Christoffel Matrix and Its Properties

System of equations (2.2.18) can be simplified if we introduce a 3 × 3 matrix Γ̂ with
real-valued components �ik given by the relation

�ik = ai jkl p j pl . (2.2.19)

Then (2.2.18) can be expressed in the following simple form:

�ikUk −Ui = 0, i = 1, 2, 3. (2.2.20)

Matrix Γ̂, given by (2.2.19), will be referred to as the Christoffel matrix, and Equation
(2.2.20) will be called the Christoffel equation. Traditionally, the term Christoffel matrix
has usually been connectedwithmatrix ci jkl N j Nl ; seeHelbig (1994). The notation (2.2.19),
which contains the components of slowness vector 	p, has been broadly used in the ray
method of seismic waves propagating in inhomogeneous anisotropic media, as it is very
suitable for the application of the Hamiltonian formalism. We hope no confusion will be
caused if we use the term Christoffel matrix for Γ̂ given by (2.2.19).

We shall now list four important properties of Christoffel matrix Γ̂.

1. Matrix Γ̂ is symmetric,

�ik = �ki .

2. The elements of matrix Γ̂, �ik , are homogeneous functions of the second degree
in pi . By homogeneous function f (xi ) of the kth degree in xi , we understand a
function f (xi ), which satisfies the relation

f (axi ) = ak f (xi ), (2.2.21)

for any nonvanishing constant a. It is obvious from (2.2.19) that �ik satisfies the
relation

�ik(ap j ) = a2�ik(p j ) (2.2.22)

so that �ik is a homogeneous function of the second degree in pi .
3. Matrix Γ̂ satisfies the relation

p j∂�ik/∂p j = 2�ik . (2.2.23)

This relation follows from Euler’s theorem for homogeneous functions f (xi ) of the
kth degree, which reads

x j∂ f (xi )/∂x j = k f (xi ). (2.2.24)

Euler’s theorem immediately yields (2.2.23). It is also not difficult to derive (2.2.23)
directly from (2.2.19).
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4. Matrix Γ̂ is positive definite. This means that �ik satisfies the inequality

�ikaiak > 0, (2.2.25)

where a j are the components of any nonvanishing real-valued vector 	a. Property
(2.2.25) follows from the condition of strong stability (2.1.34). As ei j and ekl may
be quite arbitrary, we can take ei j = ai p j , ekl = ak pl . Then (2.1.34) yields (2.2.25).

We shall now discuss the eigenvalues and eigenvectors of the matrix Γ̂. We denote the
eigenvalues by the letter G. Eigenvalues G are defined as the roots of the characteristic
equation

det(�ik − Gδik) = 0, (2.2.26)

that is

det


�11 − G �12 �13

�12 �22 − G �23

�13 �23 �33 − G


 = 0. (2.2.27)

This equation represents the cubic algebraic equation

G3 − PG2 + QG − R = 0, (2.2.28)

where P , Q, and R are invariants of matrix Γ̂:

P = tr Γ̂, R = det Γ̂,

Q= det

(
�11 �12

�12 �22

)
+ det

(
�22 �23

�23 �33

)
+ det

(
�11 �13

�13 �33

)
.

(2.2.29)

It is obvious from (2.2.28) that matrix Γ̂ has three eigenvalues. We denote them Gm ,
m = 1, 2, 3. Because matrix Γ̂ is symmetric and positive definite, all the three eigenvalues
G1, G2, and G3 are real-valued and positive.

It is not difficult to conclude from (2.2.26) that eigenvaluesG1,G2,G3 are homogeneous
functions of the second degree in p j , similar to �ik . Thus,

Gm(ap j ) = a2Gm(p j ), (2.2.30)

and

p j∂Gm/∂p j = 2Gm . (2.2.31)

The second relation follows from Euler’s theorem (2.2.24).
Now we shall discuss the eigenvectors of Γ̂. We shall denote the eigenvector corre-

sponding to eigenvalue Gm by 	g(m), m = 1, 2, 3. It is defined by the relations

(�ik − Gmδik)g
(m)
k = 0, i = 1, 2, 3, (2.2.32)

with the normalizing condition,

g(m)
k g(m)

k = 1 (2.2.33)

(no summation over m). As we can see from (2.2.33), we take the eigenvectors as unit
vectors. Thus, matrix Γ̂ has three eigenvalues Gm (m = 1, 2, 3), and three corresponding
eigenvectors 	g(m) (m = 1, 2, 3). Unit vectors 	g(m) are also mutually perpendicular.
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Using (2.2.32) and (2.2.33), we can find an expression for Gm in terms of �ik and g
(m)
i ,

which will be useful in the following. Multiplying (2.2.32) by g(m)
i and taking into account

(2.2.33), we obtain

Gm = �ikg
(m)
i g(m)

k = ai jkl p j plg
(m)
i g(m)

k . (2.2.34)

In the degenerate case of two identical eigenvalues, the direction of the two corresponding
eigenvectors cannot be determined from (2.2.32) and (2.2.33); only the plane in which they
are situated can be determined. This plane is perpendicular to the remaining eigenvector.

2.2.5 Elastic Plane Waves in an Anisotropic Medium

Conditions (2.2.20) following from the elastodynamic equation canbe expressed as follows:

(�ik − δik)Uk = 0, i = 1, 2, 3. (2.2.35)

Equation (2.2.35) represents a system of three homogeneous linear algebraic equations for
U1, U2, and U3. The system has a nontrivial solution only if the determinant of the system
vanishes,

det(�ik − δik) = det


�11 − 1 �12 �13

�21 �22 − 1 �23

�31 �32 �33 − 1


 = 0. (2.2.36)

Here again, �ik = ai jkl p j pl ; see (2.2.19). This equation plays a very important role in
investigating the propagation of plane waves in a homogeneous elastic medium. Plane
wave (2.2.15) is a solution of the elastodynamic equation if, and only if, its slowness vector
	p (with Cartesian components pi ) satisfies Equation (2.2.36). As in the acoustic case, we
shall refer to (2.2.36) as the existence condition for planewaves in homogeneous anisotropic
media. It represents a polynomial equation of the sixth degree in the components of the
slowness vector pi . In the phase space with coordinates p1, p2, and p3, Equation (2.2.36)
represents a surface, known as the slowness surface. For more details on the slowness
surface, refer to Section 2.2.8. The slowness surface has three sheets, corresponding to three
eigenvalues, which will be discussed later. Existence condition (2.2.36) also represents a
cubic equation for the squares of phase velocities C(m), m = 1, 2, 3, of the plane waves,
which can propagate in the medium described by density-normalized elastic moduli ai jkl ,
in any selected direction specified by unit vector 	N , normal to the wavefront. Since pi =
Ni/C(m), �ik = ai jkl N j Nl/(C(m))2.

Here, we shall discuss Equation (2.2.35) not only from the point of view of the exis-
tence condition, but also from a more general point of view. We also wish to determine the
direction of displacement vector amplitude 	U . In this discussion, we shall apply the eigen-
value formalism. This approach, based on the solution of the eigenvalue problem for matrix
�i j , will be applied in Section 2.4 to a more complicated problem of wave propagation in
smoothly inhomogeneous media.

Equation (2.2.35) constitutes a typical eigenvalue problem; see (2.2.32). Comparing
(2.2.35) with (2.2.32), we can conclude that (2.2.35) is satisfied if, and only if, one of the
three eigenvalues of matrix Γ̂ equals unity,

Gm(pi ) = 1, m = 1 or 2 or 3. (2.2.37)

In the phase spacewith coordinates p1, p2, and p3, these equations represent three branches
of the slowness surface (2.2.36). The corresponding eigenvector 	g(m) then determines the
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direction of 	U so that

	U = A	g(m), (2.2.38)

where A is a complex-valued constant scalar amplitude quantity.
As matrix Γ̂ has three eigenvalues Gm , Equations (2.2.35) are satisfied in three cases.

These three cases specify the three plane waves, which can generally propagate in a ho-
mogeneous anisotropic medium in the direction of 	N .

Eigenvectors 	g(m) determine the polarization of the individual waves so that they can
be referred to as polarization vectors. If G1 �= G2 �= G3, they can be strictly determined
from (2.2.32) and (2.2.33). If two eigenvalues are equal, the relevant polarization vectors
cannot be determined uniquely from (2.2.32) and (2.2.33); some other conditions must be
taken into account. We shall speak of the degenerate case of two equal eigenvalues. The
most important degenerate case is the case of isotropic media (see Section 2.2.6); the other
degenerate case is the case of the so-called shear wave singularities in anisotropic media.

Let us now determine the phase velocities C(1), C(2), and C(3) of the three plane waves
propagating in an anisotropic homogeneousmedium in thedirection specifiedby Ni . Putting

pi = Ni/C(m) (2.2.39)

for the mth plane wave (m = 1 or 2 or 3) and inserting it into (2.2.37) yields

C(m)2 = Gm(Ni ), (2.2.40)

due to (2.2.30). HereGm(Ni ) is obtained from standard eigenvalueGm(pi ), if pi is replaced
by Ni . Thus, Gm(Ni ) is the eigenvalue of matrix �̄ik = ai jkl N j Nl . Matrix �̄ik has the same
properties as �ik ; only pi is replaced by Ni in all relations. It is obvious that Gm(Ni ) is
always positive. Both matrices �ik and �̄ik have the same eigenvectors 	g(m), m = 1, 2, 3.

Equation (2.2.40) yields the square of the phase velocity, not the phase velocity itself.
We shall only consider the positive values of C(m):

C(m) =
√
Gm(Ni ). (2.2.41)

Thus, the phase velocities of plane waves in a homogeneous anisotropic medium depend
on the direction of propagation of wavefront Ni .

From a practical point of view, the three phase velocities C(1), C(2), and C(3) for a fixed
direction Ni are determined by the solution of cubic equation (2.2.28), where P , Q, and R
are given by (2.2.29), with pi replaced by Ni (that is, �ik is replaced by �̄ik = ai jkl N j Nl ).
The square roots of the three solutions yield the phase velocities of the three waves.

The planewavewith the highest phase velocity is usually called the quasi-compressional
wave (or quasi-P or qP wave). The remaining two plane waves are called quasi-shear waves
(quasi-S1 and quasi-S2 waves, or qS1 and qS2 waves).

Ifwe combineEquations (2.2.15), (2.2.2), (2.2.38), and (2.2.39),weobtain the following
final expression for any of the three plane waves propagating in a homogeneous anisotropic
medium in a fixed direction Ni :

	u(xi , t) = A	g(m)F
(
t − Ni xi/C(m)

)
, (2.2.42)

where A is an arbitrary complex-valued constant and C(m) is given by (2.2.41). The plane
wave is linearly polarized.
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2.2.6 Elastic Plane Waves in an Isotropic Medium

In isotropic media, the phase velocities can be determined analytically. The elements of
matrix Γ̂ are simply obtained by inserting (2.1.10) into (2.2.19):

�ik = λ+ µ
ρ

pi pk + µ

ρ
δik pl pl . (2.2.43)

Thus, eigenvalues G can be determined from relation (2.2.27), which takes the following
form:

det




λ+µ
ρ
p21 + µ

ρ
pi pi − G λ+µ

ρ
p1 p2

λ+µ
ρ
p1 p3

λ+µ
ρ
p1 p2

λ+µ
ρ
p22 + µ

ρ
pi pi − G λ+µ

ρ
p2 p3

λ+µ
ρ
p1 p3

λ+µ
ρ
p2 p3

λ+µ
ρ
p23 + µ

ρ
pi pi − G


 = 0.

This determinant can be expanded in powers of (ρ−1µpi pi − G). It is easy to see that the
terms with (ρ−1µpi pi − G)n vanish for n = 1 and 0 so that

det(. . .) =
(
µ

ρ
pi pi − G

)3

+
(
µ

ρ
pi pi − G

)2
λ+ µ
ρ

pk pk,

which leads to

det(. . .) =
(
µ

ρ
pi pi − G

)2(
λ+ 2µ

ρ
pi pi − G

)
.

Putting

α =
(
λ+ 2µ

ρ

)1/2

=
(
k + 4

3µ

ρ

)1/2

, β =
(
µ

ρ

)1/2

(2.2.44)

finally yields

det(. . .) = (α2 pi pi − G)(β2 pi pi − G)2.

Thus, in an isotropic homogeneous medium, matrix Γ̂ has the following three eigenvalues:

G1(pi ) = G2(pi ) = β2 pi pi , G3(pi ) = α2 pi pi . (2.2.45)

Two of these eigenvalues, G1 and G2, are identical. If we replace pi by Ni and take into
account Ni Ni = 1, we obtain

G1(Ni ) = G2(Ni ) = β2, G3(Ni ) = α2. (2.2.46)

Equations (2.2.41) then yield the following three phase velocities C(m):

C(1) = C(2) = β, C(3) = α. (2.2.47)

Thus, the isotropicmedium represents a degenerate case of an anisotropicmedium,with two
identical phase velocities. Only two plane waves can propagate in an isotropic medium in a
fixeddirection Ni . The faster, propagatingwith phase velocityα, is called the compressional
wave (Pwave). The slowness vector components pi corresponding to this wavemust satisfy
the existence condition of P waves everywhere:

p21 + p22 + p23 = 1/α2; (2.2.48)
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see (2.2.45) for G3 = 1. The slower plane wave propagates with velocity β and is called
the shear wave (S wave). The slowness vector components pi corresponding to this wave
must satisfy the existence condition of S waves everywhere:

p21 + p22 + p23 = 1/β2. (2.2.49)

Velocities α and β do not depend on the position or the direction of propagation.
As we can see from (2.2.48) and (2.2.49), the slowness surfaces in the phase space p1,

p2, and p3 of both P and S waves are spheres. The radius of the sphere is 1/α for P waves
(the slowness of P waves) and 1/β for S waves (the slowness of S waves).

We will now determine the eigenvectors of �ik in isotropic media. As we know, we
can determine strictly only the eigenvector 	g (3), but not eigenvectors 	g (1) and 	g (2), since
G1 = G2. Eigenvector 	g(3) satisfies relation (2.2.32), with �ik given by (2.2.43) and with
G3 = 1, [

λ+ µ
ρ

pi pk + µ

ρ
δik pl pl − δik

]
g(3)k = 0.

If we insert pi = Ni/α and multiply the equation by g(3)i , we obtain (Nig
(3)
i )2 = 1. This

result yields

	g (3) = ± 	N . (2.2.50)

Thus, the displacement vector of the plane P wave is perpendicular to the wavefront.
Whereas the eigenvector 	g (3) corresponding to the P wave is uniquely determined,

eigenvectors 	g (1) and 	g (2) corresponding to the plane shear wave cannot be strictly deter-
mined. We can only say that they are perpendicular to 	g (3) and that they are also mutually
perpendicular. Thus, they are situated in the wavefront.

The plane P wave can then finally be expressed as

	u(	x, t) = A 	NF(t − Ni xi/α), (2.2.51)

where A is an arbitrary complex-valued constant. Similarly, for the plane S wave,

	u(	x, t) = (B 	e1 + C 	e2)F(t − Ni xi/β), (2.2.52)

where B and C are some complex-valued constants and 	e1 and 	e2 are two mutually per-
pendicular unit vectors, both perpendicular to 	N .

Thus, the plane P wave in an isotropic medium is always linearly polarized in the
direction of 	N , perpendicular to the wavefront. The polarization of the S wave (2.2.52) is,
however, more complicated. Because B andC are generally complex-valued, we are unable
to find a real-valued unit vector 	es for which it would be possible to put B 	e1 + C 	e2 = D 	es .
This means that the S plane waves are not, in general, linearly polarized. If the plane S
wave is time-harmonic, F(ζ ) = exp(−i2π f ζ ), it may be elliptically polarized in the plane
of the wavefront. For general transient signals, we speak of quasi-elliptical polarization,
again in the plane of the wavefront. The elliptical or quasi-elliptical polarization is reduced
to linear polarization only if B or C vanishes, or if

arg B − argC = kπ, k = 0,±1, . . . . (2.2.53)

As a special case of (2.2.53), the S wave is linearly polarized if both B and C are real-
valued. For a more detailed treatment, see Section 6.4.

Note that the compressional (P) plane wave in a homogeneous medium is also known
as the longitudinal, irrotational, or dilatational wave, and the shear (S) plane wave in
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a homogeneous medium is known as the transverse, equivoluminal, or rotational wave.
These terms describe the main features of the two kinds of plane waves propagating in ho-
mogeneous media (i.e., the irrotational character of P waves and equivoluminal character
of S waves).

2.2.7 Energy Considerations for Plane Waves

In this section, we shall specify energy equations presented in Section 2.1.6 for plane
waves.We shall startwith the acoustic case; see (2.1.42).Because the energy expressions are
nonlinear in pressure p and particle velocity vi , we cannot use complex-valued expressions
(2.2.8) but must use expressions (2.2.14). To abbreviate the equations, we shall omit the
argument ζ = t − T (	x) of the analytical signal. Then, in view of (2.2.14) and (2.2.7),

p = 1
2 (PF + P∗F∗), vi = 1

2 (Vi F + V ∗
i F

∗), (2.2.54)

where Vi = pi P/ρ. Here p denotes pressure, and pi stands for Cartesian components of the
slowness vector 	p. The asterisk denotes complex-conjugate quantities. Equations (2.1.42)
then yield

W = 1
8κ(PF + P∗F∗)2,

K = 1
8ρ(Vi F + V ∗

i F
∗)(Vi F + V ∗

i F
∗),

E =W + K ,

Si = 1
4 (PF + P∗F∗)(Vi F + V ∗

i F
∗).

(2.2.55)

To derive the expressions for the time-integrated quantities Ŵ , K̂ , Ê , and Ŝi for plane
waves, we shall need to know several integral properties of the analytical signal. For details
refer to Appendix A, particularly (A.2.9), (A.2.10), (A.3.12), and (A.3.13). Integrating
(2.2.55) over time from −∞ to ∞ yields

Ŵ = 1
2κPP

∗ f p, K̂ = 1
2κPP

∗ f p,

Ê = κPP∗ f p, Ŝi = ρ−1 pi P P∗ f p.
(2.2.56)

Here f p takes the form

f p =
∫ ∞

−∞
x2(t)dt. (2.2.57)

For time-harmonic waves,W , K , E , and Si are again given by (2.2.56), only f p is replaced
by fH ,

fH = 1

T

∫ T

0
x2(t)dt, (2.2.58)

where T is the period. For x(t) = cosωt or x(t) = sinωt , (2.2.58) yields fH = 1
2 .

In the elastic case, the treatment is very similar to the acoustic case. We use the relation

ui = 1
2 (Ui F +U ∗

i F
∗) (2.2.59)

and obtain

ui, j = − 1
2 (Ui p j Ḟ +U ∗

i p j Ḟ
∗
),

ei j = − 1
4 (Ui p j +Uj pi )Ḟ − 1

4 (U
∗
i p j +U ∗

j pi )Ḟ
∗
,

τi j = − 1
2ci jkl pl(Uk Ḟ +U ∗

k Ḟ
∗
).
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Considering (A.3.12) and (A.3.13) for Ḟ instead of F , we obtain

Ŵ = 1
2ρ�ikUiU ∗

k fc, K̂ = 1
2ρUiU ∗

i fc,

Ê = Ŵ + K̂ , Ŝi = 1
2ρai jkl pl(UjU ∗

k +U ∗
j Uk) fc.

(2.2.60)

�ik are elements of matrix Γ̂; see (2.2.19). fc takes the form

fc =
∫ ∞

−∞
ẋ2(t)dt. (2.2.61)

For time-harmonic waves,W , K , E , and Si are again given by (2.2.60); only fc is replaced
by f A,

fA = 1

T

∫ T

0
ẋ2(t)dt, (2.2.62)

where T is the period. For x(t) = cosωt or x(t) = sinωt , (2.2.62) yields

fA = 1
2ω

2 = 2π2 f 2. (2.2.63)

Equations (2.2.60) can be simplified if we take into account (2.2.38) and writeUi = Ag(m)
i

andU ∗
i = A∗g(m)

i . Then, for a general anisotropic medium, �ikUiU ∗
k = �ik g

(m)
i g(m)

k AA∗ =
Gm AA∗ = AA∗, asGm = 1 for the selectedmth planewave; see (2.2.34) and (2.2.37). Sim-
ilarly,UiU ∗

i = AA∗ andai jkl pl(UjU ∗
k +U ∗

j Uk) = 2ai jkl pl g
(m)
j g(m)

k AA∗. Equations (2.2.60)
then read

Ŵ = K̂ = 1
2ρAA

∗ fc,

Ê = 2K̂ = ρAA∗ fc,

Ŝi = ρai jkl pl g
(m)
j g(m)

k AA∗ fc.

(2.2.64)

The result (2.2.64) is very interesting. For anyplanewavepropagating in a homogeneous
anisotropic medium, the time-integrated quantities of the strain and kinetic energies are
equal, Ŵ = K̂ . Let us emphasize that this result is valid for plane waves propagating in
a homogeneous medium, but it is not generally the case. Later on, we shall prove that the
result remains approximately valid even for high-frequency waves propagating in slightly
inhomogeneous media. Note that the result Ŵ = K̂ can also be obtained directly from
(2.2.60), if we use �ikUiU ∗

k = UiU ∗
i , following from (2.2.35).

For time-harmonic plane waves propagating in a homogeneous medium, the result
(2.2.64) remains valid, only fc is replaced by fA; see (2.2.62).

We will now determine the velocity vector of energy flux 	U E of the plane wave in a
homogeneous anisotropic medium; see (2.1.44). For plane waves, the velocity vector of the
energy flux is called the group velocity vector and is denoted 	U . It is given by the relation

Ui = Ŝi/Ê = ai jkl pl g
(m)
j g(m)

k = 1
2∂Gm/∂pi ; (2.2.65)

see (2.1.44). The relation ai jkl plg
(m)
j g(m)

k = 1
2∂Gm/∂pi follows immediately from (2.2.34).

Aswe can see from (2.2.65) and (2.2.6), the group velocity vector 	U is different from the
phase velocity vector 	C in anisotropic media, both in direction and in magnitude. In other
words, in anisotropic media, the energy of plane waves does not propagate perpendicular
to the wavefront. Moreover, the group velocity U is different from the phase velocity C,
where U and C are given by relations

U = (UiUi )1/2, C = (CiCi )1/2 = (pi pi )
−1/2. (2.2.66)
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We can, however, derive simple, but very important relations between the group and phase
velocity vectors. Equations (2.2.34), (2.2.37), and (2.2.65) yield

Ui pi = 1. (2.2.67)

This equation plays a fundamental role in the investigation of elastic waves propagating in
anisotropic media. Alternatively, using (2.2.5) and (2.2.6), we obtain

Ui Ni = C, UiCi = C2, (2.2.68)

where C is the phase velocity.
Similar relations for Ŵ , K̂ , Ê , and Ŝi can be simply obtained even for plane waves in

homogeneous isotropic media. We present them here without deriving them:

Ŵ = 1
2 [(λ+ µ)(Uk pk)(U

∗
i pi ) + µ(UkU

∗
k )pi pi ] fc,

K̂ = 1
2ρ(UiU

∗
i ) fc, Ê = Ŵ + K̂ ,

Ŝi = 1
2 [(λ+ µ)pk(UiU

∗
k +U ∗

i Uk) + 2µ(UkU
∗
k )pi ] fc.

For P waves, 	U = A 	N . This yields

Ŵ = K̂ = 1
2ρAA

∗ fc, Ê = ρAA∗ fc, Ŝi = ραNi AA
∗ fc.

(2.2.69)

For S waves, 	U = B 	e1 + C 	e2, and we obtain

Ŵ = K̂ = 1
2ρ(BB

∗ + CC∗) fc, Ê = ρ(BB∗ + CC∗) fc,

Ŝi = ρβNi (BB∗ + CC∗) fc.
(2.2.70)

To determine the time-averaged quantities for time-harmonic waves, we can again use
(2.2.69) and (2.2.70), but we must substitute fA for fc; see (2.2.61) and (2.2.62).

Finally, the components of group velocity vector Ui and of phase velocity vector Ci are
given by the following relations:

Ui = Ci = αNi for P waves, Ui = Ci = βNi for S waves; (2.2.71)

see (2.1.44) and (2.2.6). Thus, the group velocity vector and the phase velocity vector
coincide for plane waves propagating in a homogeneous isotropic medium. Equations
(2.2.67) and (2.2.68) are, of course, satisfied even in this case.

2.2.8 Phase and Group Velocity Surfaces. Slowness Surface

The phase velocity C, group velocity U , phase slowness 1/C, and group slowness 1/U of
plane waves propagating in a homogeneous anisotropic medium depend on the direction of
propagation of the wave. Several important surfaces have been introduced to demonstrate
clearly these directional variations. These surfaces have foundmany important applications
in the solution of wave propagation problems in anisotropic media and will be needed in
the following sections.

As before, we shall specify the direction of propagation of the wavefront by unit normal
	N with components Ni . Unit vector 	N also specifies the direction of slowness vector 	p =
	N/C and of phase velocity vector 	C = C 	N . The relevant group velocity vector 	U has the
direction of unit vector	t , specified by components ti = Ui/U ; see (2.2.65) for Ui . Similarly,
the vector of the group slowness has the direction of 	t and is given by relation U−1	t . It
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follows from (2.2.67) or (2.2.68) that 	N and 	t satisfy the relation 	t · 	N = cos γ = C/U ,
where γ specifies the angle between 	p and 	U .

Let us consider an arbitrary point O in a homogeneous anisotropic medium and intro-
duce arbitrarily a local Cartesian coordinate system at O . We shall introduce the following
three surfaces at O:

1. Phase velocity surface. The phase velocity surface is defined as the locus of the
end points of phase velocity vector 	C, constructed at O in all possible directions.
Consequently, it represents a polar graph of phase velocity C as a function of the
two take-off angles that specify the direction of 	N . The phase velocity surface is
also called the normal surface, or simply the velocity surface.

2. Slowness surface. The slowness surface is defined as the locus of the end points of
all slowness vectors 	p, constructed at O in all directions. Consequently, it represents
a polar graph of phase slowness 1/C as a function of the two take-off angles that
specify the direction of 	N . The slowness surface is also sometimes called the phase
slowness surface to distinguish it from the analogous group slowness surface. Here
we shall not use the group slowness surfaces at all so that we can use the abbreviated
term slowness surface for the phase slowness surface.

3. Group velocity surface. The group velocity surface is defined as the locus of end
points of all group velocity vectors 	U , constructed at O in all possible directions.
Consequently, it represents a polar graph of group velocity U as a function of the
two take-off angles that specify the direction of 	t . The group velocity surface is
also known as the wave surface.

It may be useful to introduce also some other surfaces, see Helbig (1994). In the
following sections, we shall need only the three surfaces introduced above.

The individual surfaces are mutually related by simple geometric relationships, and
each of them can be constructed geometrically from any other. For example, it is possible
to show that the phase velocity surface can be obtained from the slowness surface (and
vice versa) as the geometric inverse using reciprocal radii. Similarly, the slowness surface
and the wave surface are mutually related by the so-called polar reciprocity. For a detailed
description of these relationships, see Helbig (1994).

In an isotropic homogeneous medium, all these surfaces are spherical. This is, however,
not the case for anisotropic homogeneous media, where the surfaces are more complex.
In Figure 2.1, several typical forms of slowness surfaces and the relevant group velocity
surfaces are shown in a planar section passing through O . Figure 2.1(a) corresponds to an
isotropic medium, and Figures 2.1(b) through 2.1(d) correspond to a transversely isotropic
medium with an axis of symmetry coinciding with p3.

To explain certain pecularities of the slowness surfaces and group velocity surfaces,
we shall discuss them in greater theoretical detail. We shall start with the slowness surface
and consider a local Cartesian system p1, p2, p3 with its origin at O . It can be shown that
the equation

det(ai jkl p j pl − δik) = 0 (2.2.72)

represents the slowness surface. As explained in Section 2.2.5, det(ai jkl p j pl − δik) =
(G1(pi ) − 1)(G2(pi ) − 1)(G3(pi ) − 1), where G1(pi ), G2(pi ), and G3(pi ) are the three
eigenvalues of Christoffel matrix �ik = ai jkl p j pl . Consequently, the slowness surface
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Figure 2.1. Examples of slowness sur-
faces (left) and group velocity surfaces
(right). (a) Isotropic medium; (b)–(d)
transversely isotropic medium whose
axis of symmetry coincides with the p3-
axis. Only the sections passing through
the axis of symmetry are presented. K
and L are the kiss and line singulari-
ties of the slowness surface. The line
singularity is a circle about the axis of
symmetry passing through L . In (d), the
slowness surface is concave between in-
flection points A and B. The group ve-
locity surface is then multivalued and
forms a loopwith cuspoidal points A and
B. The normals to the slowness surface
specify the directions of the group ve-
locity vectors. The directions of the nor-
mals to the slowness surface at points 1,
2, and 3 are the same; therefore; the rele-
vant points 1, 2, and 3 in the group veloc-
ity surface lie on a straight line passing
through O .

(2.2.72) has three sheets, specified by implicit equations

Gm(p1, p2, p3) = 1, m = 1, 2, 3. (2.2.73)

These three sheets correspond to the three plane waves propagating in an anisotropic
homogeneous medium – qP, qS1, and qS2.

The equations of the slowness surfaces (2.2.72) or (2.2.73) may be expressed in several
alternative forms. We can, for example, solve the equation Gm(p1, p2, p3) = 1 for p3
and express the equation for the mth sheet of the slowness vector in explicit form: p3 =
θ (p1, p2). In this explicit form, we shall discuss the slowness surfaces in Section 2.5.5.
The equations of the slowness surfaces can also be expressed in a simple parameteric
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form. If we insert pi = | 	p|Ni into (2.2.73) and take into account that Gm(p1, p2, p3) is a
homogeneous function of the second order in pi , we obtain

Gm(p1, p2, p3) = | 	p|2Gm(N1, N2, N3)

= (| 	p|C(m)(N1, N2, N3)
)2 = 1; (2.2.74)

see (2.2.40). Thus, (2.2.73) yields | 	p| = 1/C(m) along the slowness surface, and, conse-
quently,

pi (N1, N2, N3) = Ni/C(m)(N1, N2, N3), i = 1, 2, 3. (2.2.75)

This equation represents the parameteric equation of the slowness surface and corresponds
fully to the definition of the slowness surface introduced in this section. As a consequence,
(2.2.72) and (2.2.73) represent the implicit analytic equations for the complete slowness
surface and for one of its sheets, respectively.

We shall denote by 	NS the outer unit normal vector to any sheet of slowness surface
Gm(p1, p2, p3) = 1. Normal vector 	N S has the direction of∇Gm(p1, p2, p3) so that NS

i ∼
∂Gm/∂pi . Using (2.2.65), we obtain a very important relation,

Ui = a N S
i , (2.2.76)

where a is a constant of proportionality. Thus, the group velocity vector 	U corresponding
to slowness vector 	p(Ni ) has the direction of the normal 	N S to the slowness surface,
constructed at the end point of slowness vector 	p(Ni ). A similar property can also be
proved conversely: the normal to the group velocity surface determines the direction of
the relevant slowness vector. These two properties, together with the relation 	p · 	U = 1,
express the polar reciprocity of the slowness surface and of the group velocity surface and
may be used to construct one surface from the other.

The slowness surface in an anisotropic medium has three sheets. Each sheet is a
closed continuous surface, symmetric with respect to the origin, with continuous nor-
mals along the surface. The innermost (fastest) sheet, corresponding to qP waves, is
always convex. In most practically important anisotropy symmetries, it is completely
separated from the two outer sheets, corresponding to two qS waves. These two outer
sheets are often concave in certain regions of Ni , particularly in strongly anisotropic me-
dia. See Figures 2.1(c) and 2.1(d). In the planar section of the slowness surface pass-
ing through O , the convex and concave parts are separated by points of inflection at
which the radii of curvature of the slowness surface change sign. Due to the existence
of the concave parts of the slowness surface, the normals 	N S to one sheet of the slow-
ness surface may have the same direction at several different points of this sheet. See
Figure 2.1(d).

As we can see in Figures 2.1(b) and 2.1(c), the individual sheets of the slowness surface
may have common points. These points are known as singular points, and the relevant
directions 	N are called singular directions. Singular directions are very common for qS
sheets. In fact, the two qS sheets of the slowness surface are always connected by singular
points. As the two phase velocities coincide at singular points, the two eigenvalues of the
Christoffel matrix also coincide at these points. Consequently, the relevant eigenvectors of
the two qS waves cannot be uniquely determined. Thus, the polarization of shear waves at
singular points is singular and may be anomalous in the vicinity of these singular points.
For details, see Crampin (1981), Crampin and Yedlin (1981), Grechka and Obolentseva
(1993), Helbig (1994), and Rümpker and Thomson (1994).
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There are three types of such singularities.

a. Point singularity. A point singularity is represented by a point intersection of two
sheets of the slowness surface. The two slowness sheets have a shallow conical
shape in the vicinity of the intersection point, with vertices at that point. In optics,
these singularities are usually called conical points. For a detailed treatment of the
point singularity, see Rümpker and Thomson (1994).

b. Kiss singularity. Akiss singularity is a common point of two sheets of the slowness
surface, at which the two sheets touch tangentially. See point K in Figure 2.1(c).

c. Line singularity. This singularity corresponds to a line along which two sheets
of the slowness surface intersect. Line singularities are common in transversely
isotropic media where the slowness surfaces are axially symmetric. Consequently,
even the line singularities are axially symmetric in this case (circles about the axis).
See Crampin and Yedlin (1981). Note that points L in Figures 2.1(b) and 2.1(c)
correspond to the intersection of the singular line with the presented sections.
Because the medium in Figure 2.1 is presumably transversely isotropic with an axis
of symmetry coinciding with p3, the line singularity corresponds to a circle about
the axis of symmetry p3, intersecting the presented sections at L .

We shall now briefly discuss the intersections of the slowness surface with an arbi-
trarily oriented straight line. These intersections play a very important role in the solution
of the problem of reflection/transmission of plane waves at a plane interface between
two anisotropic media. We shall consider an oriented straight line, its orientation speci-
fied by unit vector 	nL . Any straight line intersects the complete slowness surface at six
points at the most. The number of intersections is always even. At any point of inter-
section, we can construct the outer normal to the slowness surface, represented by the
relevant group velocity vector 	U . The scalar products 	U · 	nL are then always positive at
one half of the intersection points and negative at the other half. For example, in the
very common case of six intersections, three relevant group velocities are oriented “along
	nL” (that is, 	U · 	nL > 0), and three group velocities “against 	nL” (that is, 	U · 	nL < 0). In
general, certain roots corresponding to the intersection of the slowness surface with the
straight line may be complex-valued. In this case, pairs of complex-conjugate roots are
obtained.

We shall now discuss the group velocity surfaces. In this case, we introduce a local
Cartesian coordinate system U1, U2, U3 with its origin at O . The group velocity surfaces
often have a considerably more complicated shape than the slowness surfaces, particularly
if the slowness surface is concave for certain Ni . The group velocity surface is then multi-
valued in the relevant regions and forms loops with cuspoidal edges. The multivaluedness
of the group velocity surface is caused by the normals to the slowness surface, which
have the same direction at several points of the surface if the surface is locally concave.
See Figure 2.1(d). The cusps of the loops in the group velocity surface correspond to the
inflection points on the slowness surface. Note that the group velocity surface of the qP
wave is always single-valued. This is the consequence of the convexity of the qP slowness
sheet. The slowness surface and the relevant group velocity surface are polarly reciprocal;
therefore, the normals to the group velocity surface specify the direction of the relevant
slowness vectors. See points 1, 2, and 3 in Figure 2.1(d).

In certain applications, it is useful to compute the Gaussian curvatures of the slowness
surface K S and of the relevant group velocity surface KG . For more details on K S, KG ,
and other related quantities in anisotropic media, see Section 4.14.4.
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We shall finish this section with an important remark. The slowness surface and group
velocity surface, as introduced here, are fully plane-wave concepts. However, they play
an important role also in the investigation of the elastic wavefields generated by a point
source in homogeneous anisotropic media; see Section 2.5.5. For high-frequency waves,
the group velocity surface represents a wavefront, corresponding to a point source situated
at O in a homogeneous anisotropic medium for travel time T = 1 s. This can be understood
intuitively as the seismic energy propagates from the point source at O along straight lines
in a homogeneous medium and travels the distance corresponding to the group velocity U
in travel time T = 1 s.

2.2.9 Elastic Plane Waves in Isotropic

and Anisotropic Media: Differences

In this section, we shall summarize the most important differences between the properties
of plane elastic waves propagating in homogeneous isotropic and anisotropic media. The
fluid medium (acoustic case) is considered a special case of the elastic isotropic medium.

1. Shearwave splitting. In an anisotropic homogeneousmedium, three types of plane
waves can propagate in a direction specified by Ni : one quasi-compressional (qP)
wave and two quasi-shear (qS1 and qS2) waves. These three waves have, in general,
different properties, particularly different velocities of propagation. In an isotropic
medium, only two types of plane waves can propagate: one compressional (P) and
one shear (S) wave. Because only one shear wave propagates in isotropic media,
and two relevant quasi-shear waves in anisotropic media, we usually speak of shear
wave splitting in anisotropic media. In a fluid medium (acoustic case), only one
type of plane wave can propagate. This is the compressional (P) wave. Shear waves
do not propagate in a fluid medium.

2. Relation between the phase and group velocity vectors. The phase and group
velocity vectors of any individual plane wave propagating in a homogeneous ani-
sotropic medium have different directions and different magnitudes. Because the
phase velocity vector is perpendicular to the wavefront and the group velocity
vector is parallel to the energy flux, we can conclude that the energy flux is not
perpendicular to the wavefront. Later on, we shall identify the trajectories along
which the high-frequency part of seismic energy flows as seismic rays. Thus, we
can also say that the rays are not perpendicular to the wavefronts in anisotropic
media. In isotropic media, the phase and group velocity vectors of the plane wave
under consideration coincide both in direction and in magnitude. Both vectors are
perpendicular to the wavefront. Thus, in isotropic homogeneous media, the rays of
plane waves are perpendicular to the wavefronts. This, of course, also applies to the
acoustic case.

3. Dependence of the phase and group velocities on the direction of propagation.
Both the phase and group velocities of plane waves in a homogeneous anisotropic
medium depend on the direction of propagation of the wavefront, 	N . In isotropic
media, the phase and group velocities of propagation of a plane wave not only
coincide but also do not depend on the direction of propagation of the plane
wave.

4. Polarization. The displacement vector of any of the three plane waves propagat-
ing in a homogeneous anisotropic medium is strictly determined as the relevant
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eigenvector of matrix Γ̂. The direction of the eigenvectors is, in general, different
from the direction of propagation (unit vector 	N ), from the direction of group ve-
locity vector 	U , and from any direction tangent to the wavefront. The polarization
of all three plane waves propagating in an anisotropic solid is linear (assuming that
the qS1 and qS2 waves are separated). In isotropic media, the situation is different.
For P waves, the direction of the phase velocity vector, group velocity vector, and
eigenvector coincide. For S waves, two vectors coincide (phase and group velocity
vectors), and the eigenvectors are perpendicular to them. The polarization of the
compressional plane wave is always linear, but the polarization of the S wave is,
in general, elliptical or quasi-elliptical in a plane perpendicular to 	N . The particle
velocity motion in a fluid medium (acoustic case) is always perpendicular to the
wavefront, as is the displacement vector of compressional waves.

5. Shear wave singularities. For certain specific directions of propagation, the phase
velocity vectors of both qS1 and qS2 waves coincide. The behavior of qS waves
in the vicinity of such directions is particularly complex; we speak of shear wave
singularities. These do not exist in isotropicmedia. See Section 2.2.8 and Figure 2.1.

2.2.10 Inhomogeneous Plane Waves

In the previous sections, we assumed that T (xi ) = pi xi and that pk are real-valued. It is
not difficult to generalize the results for complex-valued pk and T . Instead of standard
homogeneous plane waves, we then obtain inhomogeneous plane waves.

The inhomogeneous plane waves play an important role in various wave propagation
problems, particularly in problems of reflection and transmission of plane waves at plane
structural interfaces. See Caviglia and Morro (1992).

Let us assume that quantities T (xi ) and pk are complex-valued,

T (	x) = T R(	x) + iT I (	x), pk = pRk + ipIk . (2.2.77)

We can then put

T R(	x) = pRk xk, T I (	x) = pIk xk . (2.2.78)

Let us first consider time-harmonic acoustic wave (2.2.1). Then

F(t − T (	x)) = exp[−iω(t − T (	x))]
= exp(−ωT I (	x)) exp[−iω(t−T R(	x))], (2.2.79)

and pressure p(	x, t) is given by the relation

p(	x, t) = P exp(−ωT I (	x)) exp[−iω(t − T R(	x))]. (2.2.80)

Thus, the amplitude factor of the inhomogeneous plane wave is not constant but de-
cays exponentially with increasing ωT I (	x). We will call planes T R(	x) = pRk xk = const.
planes of constant phases (or, alternatively, wavefronts) and planes T I (	x) = pIk xk = const.
planes of constant amplitudes. The real-valued vectors 	pR and 	pI , perpendicular to these
planes, are usually called the propagation vector and the attenuation vector, respectively.

Inhomogeneous plane wave (2.2.80) is a solution of the acoustic wave equation if
complex-valued constants pi satisfy existence condition (2.2.3). If we use (2.2.77) for pk ,
(2.2.3) becomes

pRi p
R
i − pIi p

I
i = 1/c2, 2pRi p

I
i = 0. (2.2.81)
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From the second equation of (2.2.81), we immediately see that the planes of constant
phases pRk xk = const. and the planes of constant amplitudes pIk xk = const. are mutually
perpendicular. Thus, the gradient of amplitudes of inhomogeneous waves is parallel to the
phase fronts.

The actual velocity of propagation of phase fronts cR of inhomogeneous plane waves
in the direction of 	pR is given by the relation

1/c2R = pRi p
R
i = 1/c2 + pIi p

I
i > 1/c2. (2.2.82)

This equation shows that the velocity of propagation of the phase front of the inhomoge-
neous wave cR is lower than velocity c = √

k/ρ of the homogeneous plane wave.
We have considered only real-valued bulkmodulus k. If we are interested in viscoelastic

media,we canuse complex-valued k. Then1/c2 is complex-valued, and the second equation
of (2.2.81) reads 2pRi p

I
i = Im(1/c2). This relationship shows that the planes of constant

amplitudes and the planes of constant phases are not mutually perpendicular in viscoelastic
media.A special terminology related to planewaves is used in viscoelasticmedia. The plane
wave is called homogeneous, if 	pR and 	pI are parallel, and inhomogeneous, if 	pR and 	pI
are not parallel.

We shall now discuss the general expressions for inhomogeneous acoustic plane waves
in the time domain. The analytical signal F(t − T ) must be determined for a complex-
valued T = T R + iT I in this case; see Appendix A.3:

F(t − T ) = 1

π

∫ ∞

−∞

T I x(u)du

(T I )2 + (t − T R − u)2

− i

π

∫ ∞

−∞

(t − T R − u)x(u)du

(T I )2 + (t − T R − u)2
. (2.2.83)

These equations can also be expressed in a more condensed form:

F(t − T ) = − i

π

∫ ∞

−∞

x(u)

t − T − u
du = − i

π (t − T )
∗ x(t). (2.2.84)

The inhomogeneous vectorial plane waves propagating in an elastic isotropic non-
dissipative medium have properties similar to those of the inhomogeneous scalar acoustic
plane waves discussed earlier. Both for P and S plane waves, the planes of constant phases
are perpendicular to the planes of constant amplitudes. Equations (2.2.77) through (2.2.84)
remain valid even in the elastic case. Only acoustic velocity c should be replaced by α (for
P waves) or by β (for S waves), and the amplitude factor in (2.2.80) should be replaced by
the appropriate vectorial amplitude factor; see (2.2.51) and (2.2.52).

The situation is, however, more complex in an elastic anisotropic nondissipative
medium. In an anisotropic medium, the planes of constant amplitudes of inhomogeneous
plane waves are not perpendicular to the planes of constant phases; however, they are per-
pendicular to the planes perpendicular to the group velocity vector 	U . In other words, the
group velocity vector 	U and vector 	pI are mutually perpendicular, 	U · 	pI = 0. Even in an
anisotropic medium, the phase velocity of the inhomogeneous plane wave is less than the
phase velocity of the homogeneous plane wave.

2.3 Elastic Plane Waves Across a Plane Interface

Detailed knowledge of the process of reflection and transmission (R/T process) of plane
elastic waves at a plane structural interface between two homogeneous, isotropic or
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anisotropic media is very useful in the seismic ray theory. As we shall see later, the plane
wave R/T laws may be used locally even in considerably more general structures. We shall,
therefore, briefly explain the main principles of the solution of the problem.

Before we treat the elastic case, we shall demonstrate the R/T process in a simple
acoustic case. The reason is not only tutorial but also practical, because the acoustic case
plays an important role in methods of seismic prospecting for oil. Only after this shall we
consider both isotropic and anisotropic elastic media.

Wewill adopt a nontraditional approach to the treatment of the R/T problem,whichwill
be convenient when we study high-frequency seismic wave fields in 3-D layered structures
later. More specifically, our approach does not require the introduction of a local Cartesian
coordinate system connected with the interface and the plane of incidence. The approach
is particularly useful in anisotropic media, because it does not require the elastic moduli to
be transformed to local Cartesian coordinates. However, it also has convenient applications
in isotropic media because it does not require the rotation of the S wave components into
the plane of incidence and into a direction perpendicular to the plane of incidence.

Wewill consider a plane interface,�(xi ) = 0, with unit normal 	n oriented to either side
of the interface. We denote one of the two homogeneous halfspaces as halfspace 1 and the
other as halfspace 2. We assume that the halfspaces are in welded contact across interface
�. This means that displacement components ui and traction components Ti , acting across
surface �, are the same on both sides of the interface. We remind the reader that traction
components Ti can be expressed in terms of the displacement components as

Ti = ci jkln j uk,l . (2.3.1)

In an isotropic medium, the traction components are given by the relation

Ti = λniuk,k + µn j (ui, j + u j,i ). (2.3.2)

For more details, see, for example, Auld (1973), Pilant (1979), and Aki and Richards
(1980).

In the acoustic case, the six conditions of thewelded contact reduce to twoboundary con-
ditions: continuity of pressure and of the normal component of the particle velocity across
�; see Brekhovskikh and Godin (1989). If we wish to work with pressure only, and not with
the particle velocity, we can express the particle velocity in terms of the pressure gradient.
Instead of vi , we use v̇i = −ρ−1 p,i ; see (2.1.22) with fi = 0. Thus, we require the continu-
ity of pressure and of the normal component of the density-normalized pressure gradient.

In Sections 2.3.1 through 2.3.3, only time-harmonic plane waves (with circular fre-
quency ω) will be considered. It is easy to generalize the results to transient plane waves
using the Fourier transform; see Section 2.3.4.

2.3.1 Acoustic Case

We denote the velocity and density in halfspace 1 by c1 and ρ1 and in halfspace 2 by c2, ρ2.
We assume that a homogeneous time-harmonic pressure plane wave is incident at interface
� from halfspace 1. We shall express the incident plane wave as

p(	x, t) = P exp[−iω(t − pi xi )], pi = Ni/c1. (2.3.3)

Here Ni are Cartesian components of the normal to the wavefront of the incident wave, pi
are Cartesian components of the slowness vector of the incident wave, and P is a scalar
amplitude.
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We remind the reader that normal 	n to interface � may be oriented to either side of
interface � (that is, into halfspace 1 or into halfspace 2). We distinguish these two cases
by orientation index ε,

ε = sgn( 	p · 	n), (2.3.4)

where 	p is the slowness vector of the incident wave. Thus, ε = −1 denotes the situation
in which normal 	n is oriented into the first medium (“against the incident wave”), whereas
ε = 1 denotes the situation in which the normal is oriented into the secondmedium (“along
the incident wave”).

The incident wave itself cannot satisfy the two boundary conditions [continuity of pres-
sure p and the density-normalized normal component of the pressure gradient
(∇ p · 	n)/ρ]. We introduce two new time-harmonic plane waves generated at the inter-
face: one reflected wave pr (	x, t) and one transmitted wave pt (	x, t),

pr (	x, t) = Prexp
[−iω(t − pri xi )

]
, pri = Nr

i

/
c1, (2.3.5)

pt (	x, t) = Ptexp
[−iω(t − pti xi )

]
, pti = Nt

i

/
c2. (2.3.6)

Here Pr , Pt , 	Nr , 	Nt , 	pr , and 	pt have obvious meanings. These quantities are not yet
known. We will prove that the three plane waves (incident, reflected, and transmitted)
satisfy the two boundary conditions and determine the unknown functions and quantities
of (2.3.5) and (2.3.6) from these boundary conditions.

The normal component of the density-normalized pressure gradient for the incident
wave is then

ρ−1
1 ∇ p · 	n = iωρ−1

1 ( 	p · 	n)P exp[−iω(t − pi xi )]. (2.3.7)

Similar expressions are obtained also for the reflected and transmitted waves. Thus, the
two boundary conditions along � can now be expressed as

P exp[iωpi xi ] + Pr exp
[
iωpri xi

] = Pt exp
[
iωpti xi

]
,

ρ−1
1 P( 	p · 	n) exp[iωpi xi ] + ρ−1

1 Pr ( 	p r · 	n) exp[iωpri xi ] (2.3.8)

= ρ−1
2 Pt ( 	p t · 	n) exp[iωpti xi].

The factors exp[−iωt] and iω have been omitted in (2.3.8). It is obvious that the amplitudes
of theR/Tplanewaves, Pr and Pt , should be constants, independent of 	x ; otherwise, (2.3.5)
and (2.3.6) would not represent plane waves. If (2.3.8) is to yield Pr and Pt independent
of 	x , the following relations must be satisfied along the interface:

exp[iωpi xi ] = exp
[
iωpri xi

] = exp
[
iωpti xi

]
. (2.3.9)

Boundary conditions (2.3.8) then greatly simplify:

P + Pr = Pt , P( 	p · 	n)/ρ1 + Pr ( 	p r · 	n)/ρ1 = Pt ( 	p t · 	n)/ρ2.
(2.3.10)

Now we shall discuss (2.3.9) in more detail and propose procedures to determine 	p r

and 	p t . Equations (2.3.9) yield

	p · 	x = 	p r · 	x = 	p t · 	x (2.3.11)

along �. These relations imply that the travel times of reflected waves, T r (	x) = 	p r · 	x ,
and the travel times of transmitted waves, T t (	x) = 	p t · 	x , equal the travel times of the
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incident wave, T (	x) = 	p · 	x , along interface �. Consequently, the tangential components
of slowness vectors 	p, 	p r and 	p t along � are the same.

We will decompose the slowness vectors into tangential and normal components:

	p = 	a + σ 	n, 	p r = 	a r + σ r 	n, 	p t = 	a t + σ t 	n. (2.3.12)

Here σ , σ r , and σ t are constants, and 	a, 	a r , and 	a t are the vectorial tangential components
of the appropriate slowness vectors. σ , σ r , and σ t can be expressed as

σ = 	p · 	n, σ r = 	p r · 	n, σ t = 	p t · 	n. (2.3.13)

Using (2.3.12) and (2.3.13), we obtain the relations for the tangential components 	a, 	a r ,
and 	a t of the slowness vector:

	a = 	p − 	n( 	p · 	n), 	a r = 	p r − 	n( 	p r · 	n), 	a t = 	p t − 	n( 	p t · 	n).
(2.3.14)

Equations (2.3.14) allow us to express the relation 	a = 	a r = 	a t in the following way:

	p r − 	n( 	p r · 	n) = 	p t − 	n( 	p t · 	n) = 	p − 	n( 	p · 	n). (2.3.15)

Equations (2.3.15) are not just valid for homogeneous acoustic waves but are valid very
generally. They are also valid for elastic waves in isotropic or anisotropic media, given
an arbitrarily oriented interface � and an arbitrarily oriented plane incident wave. They
remain valid even for inhomogeneous plane waves.

Equations (2.3.15) are not sufficient to determine the slowness vectors of reflected and
transmitted waves 	p r and 	p t . In addition, we must consider existence condition (2.2.3).
Identical existence conditions are satisfied also for plane waves in isotropic solids so that
the final equations will also be valid for P and S waves in an isotropic medium; see (2.2.48)
and (2.2.49). For plane waves in an anisotropic medium, however, the existence condition
has a different form; see (2.2.36).

Herewe shall only determine 	p t ; the expression for 	p r will then be obtained as a special
case. Because 	a t = 	a, (2.3.12) yields 	p t = 	a + σ t 	n. The only unknown quantity in this
relation is σ t . It can be determined from (2.2.3), which reads 	p t · 	p t = 1/c22. Inserting
	p t = 	a + σ t 	n yields

	a · 	a + (σ t )2 = 1
/
c22.

Thus

σ t = ±(1/c22 − 	a · 	a)1/2 = ±[1/c22 − 1
/
c21 + ( 	p · 	n)2]1/2. (2.3.16)

As we can see in (2.3.16), σ t is either real-valued (for 1/c22 > 	a · 	a) or purely imaginary
(for 1/c22 < 	a · 	a). We shall discuss these two cases independently.

a. For 1/c22 > 	a · 	a, σ t is real-valued. The sign in (2.3.16) is selected in the following
way. As the wave is transmitted,

sgn σ t = sgn( 	p t · 	n) = sgn σ = sgn( 	p · 	n) = ε, (2.3.17)

where ε is given by (2.3.4). Thus,

σ t = ε
[
1
/
c22 − 1

/
c21 + ( 	p · 	n)2]1/2.

The final equation for the slowness vector of the transmitted wave is then

	p t = 	p − {
( 	p · 	n) − ε[(1/c2)2 − (1/c1)

2 + ( 	p · 	n)2]1/2}	n. (2.3.18)
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b. For 1/c22 < 	a · 	a, σ t is purely imaginary, and the transmitted wave is inhomoge-
neous. The sign of σ t must be chosen in such a way to obtain the wave that decays
exponentially from the interface. We denote by x0i the Cartesian coordinates of an
arbitrarily selected point on� and express the argument of the exponential function
of the transmitted wave (2.3.6) as follows:

−iω
(
t − pti xi

) = −iω
[
t − pti x

0
i − ai

(
xi − x0i

)]− ωni
(
xi − x0i

)
Im σ t .

Thus, we require that the following condition be satisfied:

ni (xi − xi0) Im σ
t > 0. (2.3.19)

As the wave is transmitted and propagates in the halfspace 2, sgn(ni (xi − xi0)) = ε.
This result yields the final form of the condition (2.3.19):

ε Im σ t > 0. (2.3.20)

Condition can be modified, introducing directly the square root instead of Im σ t .
We obtain(

1
/
c22 − 	a · 	a)1/2 = +i

(	a · 	a − 1
/
c22
)1/2

for 	a · 	a > 1
/
c22. (2.3.21)

Thus, for an inhomogeneous transmitted wave, (2.3.18) reads

	p t = 	p − {
( 	p · 	n) − iε

[
(1/c1)

2 − (1/c2)
2 − ( 	p · 	n)2]1/2}	n. (2.3.22)

Here 1/c22 < 	a · 	a, with 	a · 	a = 1/c21 − ( 	p · 	n)2.
The reflected acoustic wave is always homogeneous, with σ r real-valued. For reflected

waves, the choice of sign should be as follows:

sgn σ r = sgn( 	p r · 	n) = −sgn σ = −sgn( 	p · 	n) = −ε.
For reflected acoustic waves, we substitute c2 for c1 in (2.3.18) and obtain

	p r = 	p − 2( 	p · 	n)	n. (2.3.23)

These are the final equations for 	p t and 	p r , the slowness vectors of R/T waves.
We shall now solve (2.3.10) for Pr and Pt . In view of (2.3.23),

( 	p r · 	n) = −( 	p · 	n).
The solution of (2.3.10) is then

Pr = ρ2( 	p · 	n) − ρ1( 	p t · 	n)
ρ2( 	p · 	n) + ρ1( 	p t · 	n) P, Pt = 2ρ2( 	p · 	n)

ρ2( 	p · 	n) + ρ1( 	p t · 	n) P.
(2.3.24)

Quantities Pr/P and Pt/P are usually called acoustic reflection and transmission coeffi-
cients for pressure; Rr = Pr/P is the reflection coefficient, and Rt = Pt/P the transmis-
sion coefficient.

Let us summarize. We have derived the general equations for the slowness vectors
of both generated waves, (2.3.18) and (2.3.23). We have also derived the expressions
for the amplitudes of both generated waves; see (2.3.24). Thus, the problem has been
solved completely. For more details on acoustic reflection/transmission coefficients, see
Section 5.1.4.

In the whole treatment of the R/T process, we have not used certain traditional concepts
such as the plane of incidence, angles of incidence, and angles of reflection and transmis-
sion.Wehave also not introduced a localCartesian coordinate systemat the interface.More-
over, we have not had to compute certain trigonometric functions, but we have replaced
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them by scalar products. In the acoustic case, these differences have, more or less, a formal
meaning. They will, however, play a considerably more important role in the elastic case.

For completeness, we shall also briefly explain certain of these traditional concepts
used in the investigation of the R/T process. The plane of incidence is introduced as a
plane specified by unit normal vector 	n and by the slowness vector of the incident wave,
	p. Equations (2.3.15) then imply that the slowness vectors of R/T waves, 	p r and 	p t , are
also situated in the plane of incidence. Angle of incidence i inc is defined as the acute angle
between normal 	n and the slowness vector of the incident wave. The angles of reflection
ir and transmission i t are introduced similarly. Taking the scalar product of (2.3.18) with
the unit vector tangent to the interface, we obtain

sin i t

c2
= sin i inc

c1
. (2.3.25)

This is the famous Snell’s law. We also find, as a special case of (2.3.25), that the angle of
reflection equals the angle of incidence. Using angles i inc and i t , R/T coefficients (2.3.24)
can be expressed in a more familiar way,

Rr = ρ2c2 cos i inc − ρ1c1 cos i t
ρ2c2 cos i inc + ρ1c1 cos i t ,

Rt = 2ρ2c2 cos i inc

ρ2c2 cos i inc + ρ1c1 cos i t ;
(2.3.26)

see (2.3.24).
These are the final expressions for the acoustic R/T coefficients for pressure. We can,

however, also introduce the acoustic R/T coefficients for particle velocity, Rrpv and R
t
pv. For

the incident pressure plane wave given by (2.3.3), particle velocity 	v(	x, t) can be expressed
in the following form:

	v(	x, t) = V 	NF(t − pi xi ), V = P/(ρ1c1);

see (2.2.7). Similar expressions can also be given for reflected and transmitted waves,
with V r = Pr/(ρ1c1) and V t = Pt/(ρ2c2). It is easy to see that Rrpv = V r/V = Pr/P =
Rr but that Rtpv = V t/V = (ρ1c1/ρ2c2)Pt/P = (ρ1c1/ρ2c2)Rt . Thus, the acoustic R/T
coefficients for particle velocity are given by the relations

Rrpv = Rr = ρ2c2 cos i inc − ρ1c1 cos i t
ρ2c2 cos i inc + ρ1c1 cos i t ,

Rtpv = ρ1c1
ρ2c2

Rt = 2ρ1c1 cos i inc

ρ2c2 cos i inc + ρ1c1 cos i t .

2.3.2 Isotropic Elastic Medium

We will now discuss the reflection and transmission of plane elastic waves at a plane
interface between two homogeneous isotropic elastic halfspaces. We denote the velocities
of the P and S waves and the densities in halfspace 1 by α1, β1, and ρ1 and in halfspace
2 by α2, β2, and ρ2. Similarly, Lamé’s elastic moduli in halfspace 1 are λ1 and µ1 and
in halfspace 2 are λ2 and µ2. We assume that a homogeneous plane wave is incident at
the interface from halfspace 1. The displacement vector of the incident P wave will be
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expressed as

	u(	x, t) = A 	N exp[−iω(t − pi xi )], (2.3.27)

where 	N is the unit normal to the wavefront, pi = Ni/α1. For the incident S wave,

	u(	x, t) = (B 	e1 + C 	e2) exp[−iω(t − pi xi )], (2.3.28)

where pi = Ni/β1.We assume that 	e1, 	e2, and 	N form a right-handed,mutually orthogonal
triplet of unit vectors for each of the considered waves. B and C are two components of the
displacement vector of the incident Swave in the direction of unit vector 	e1 (S1 component)
and of unit vector 	e2 (S2 component). Thus, components B and C depend on the definition
of 	e1 and 	e2. If 	e1 and 	e2 are rotated about 	N to different 	e ′

1 and 	e ′
2, we, of course, obtain a

different B and C .
The incident plane wave itself cannot satisfy the six conditions of the welded contact at

interface�, and reflected P and S and transmitted P and S plane waves must be introduced.
Four of them are of the same type as the incident wave (P→ P, S→ S) and are called
unconverted reflected/transmitted waves. Four others are of a type different to the incident
wave (P→ S, S→ P) and are called converted reflected/transmitted waves. Expressions for
all the generated plane R/T waves are similar to those for the incident wave; see (2.3.27)
and (2.3.28).We shall only denote their amplitude functions Ar , Br , andCr for the reflected
waves and At , Bt , and Ct for the transmitted waves. The slowness vectors 	p of the four
generated waves are, of course, different; consequently, 	e1 and 	e2 should also be different.
In the sameway as for the acousticwaves in Section 2.3.1, we shall determine their slowness
vectors 	p from the interface conditions and from the existence conditions. If we insert all
expressions for the incident, reflected, and transmitted waves into the boundary condition
of the welded contact, we find that argument pi xi should be equal for all the waves along
the interface. This finding and the existence conditions allow us to compute the slowness
vectors for all generated waves from the slowness vector of the incident wave. Let us use
V to denote the velocity of the incident wave (that is, α1 for the incident P wave and β1 for
the incident S wave) and Ṽ to denote the velocity of any selected generated wave (that is,
α1, β1, α2, or β2 according to the type of selected wave). We also denote by 	̃p the slowness
vector of the selected R/T wave. Then, in view of (2.3.18) and (2.3.23),

	̃p = 	p − {
( 	p · 	n) ∓ ε[(1/Ṽ )2 − (1/V )2 + ( 	p · 	n)2]1/2}	n. (2.3.29)

Here 	p is the slowness vector of the incident wave, 	n is the unit normal to interface �.
The upper sign (−) corresponds to the transmitted wave, the lower sign (+) refers to the
reflected wave, and ε is the orientation index; see (2.3.4). Equation (2.3.29) is very general,
it is valid for any type of reflected or transmitted P or S wave and for any arbitrarily oriented
interface �. For the unconverted reflected wave (V = Ṽ ), Equation (2.3.29) simplifies to

	̃p = 	p − 2( 	p · 	n)	n. (2.3.30)

For the converted reflected wave, however, general expression (2.3.29) must be used.
The generated R/T wave may be inhomogeneous. We again denote the slowness vector

of the selected R/T wave by p̃i = ai + σni . If the selected wave is inhomogeneous, σ is
purely imaginary. The inhomogeneous wave must decay exponentially from the interface.
The sign condition can be determined in the same way as in Section 2.3.1. It reads:

±ε Im σ > 0. (2.3.31)
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The upper sign corresponds to a transmitted wave, and the lower sign refers to a reflected
wave. Alternatively, we can use the condition

(1/Ṽ
2 − 	a · 	a)1/2 = +i(	a · 	a − 1/Ṽ

2
)1/2 for 	a · 	a > 1/Ṽ

2
. (2.3.32)

Condition (2.3.32) is the same for reflected and transmitted waves and for any orientation
index ε. Thus, the slowness vector 	̃p of any R/T inhomogeneous wave is given by the
relation

	̃p = 	p − {
( 	p · 	n) ∓ iε

[
(1/V )2 − (1/Ṽ )2 − ( 	p · 	n)2]1/2}	n; (2.3.33)

see (2.3.29). Thus, reflected waves also may be inhomogeneous for Ṽ > V .
As we can immediately see from (2.3.29), the slowness vectors of all four generated

R/T plane waves are situated in the plane of incidence, determined by normal 	n to interface
� and by slowness vector 	p of the incident wave. Taking the scalar product of (2.3.29)
with the unit vector tangent to the interface, we obtain the standard Snell’s law:

sin irp

α1
= sin irs

β1
= sin i tp

α2
= sin i ts

β2
= sin i inc

V
. (2.3.34)

Here V = α1 for the incident P wave, and V = β1 for the incident S wave. All angles i are
defined as acute angles between normal 	n and the slowness vectors of the relevant waves.
The type of wave is indicated by the superscript (r and t stand for reflected and transmitted;
p and s refer to P and S waves).

The boundary conditions require the continuity of the displacement and of the traction
vectors across interface�. We can express these boundary conditions in general Cartesian
coordinates; local Cartesian coordinates will not be introduced at this step. The displace-
ment components can be expressed in a straightforward way. The traction components in
an isotropic solid can be expressed in terms of 	u using (2.3.2). For the incident P wave, the
traction components are given by the following expressions:

Ti = iωA[λ1ni (Nk pk) + 2µ1Ni (nk pk)] exp[−iω(t − pi xi )], (2.3.35)

where 	p is the relevant slowness vector of the incident P wave, and Ni = α1 pi . For the
incident S wave, the analogous expression is

Ti = iω[Bµ1n j (e1i p j + e1 j pi )+Cµ1n j (e2i p j + e2 j pi )] exp[−iω(t−pi xi )].

(2.3.36)

Here 	p is the slowness vector of the incident S wave.
The expressions for the traction components of the generated R/Twaves are practically

the same as (2.3.35) and (2.3.36); only the individual quantities in these expressions must
be properly specified for each of the waves. The six boundary equations then read

At Nt
i + Btet1i + Ctet2i − Ar Nr

i − Brer1i − Crer2i = Di ,

At Xt
i + BtY t

i + Ct Zti − Ar Xr
i − BrY r

i − Cr Zri = Ei .
(2.3.37)

where i = 1, 2, 3. Here quantities Xi , Yi , and Zi have the following meaning:

Xi = λni (Nk pk) + 2µNi (nk pk),

Yi = µn j (e1i p j + e1 j pi ),

Zi = µn j (e2i p j + e2 j pi );

(2.3.38)
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see (2.3.35) and (2.3.36). Notations (2.3.38) are formally the same for the reflected waves
(Xr

i , Y
r
i , Z

r
i ) and for the transmitted waves (Xt

i , Y
t
i , Z

t
i ), but all the quantities must be

properly specified for thesewaves. In system (2.3.37), unit vectors 	e1, 	e2, and 	N are denoted
by superscripts r and t , which indicate whether they refer to reflected or transmitted waves.
The slowness vector for each wave should be determined using (2.3.29).

Note that 	Nr , 	er1 , and 	er2 in (2.3.37) do not form a mutually orthogonal triplet of
unit vectors because they correspond to different reflected waves with different rays: 	N r

corresponds to the reflected P wave, and 	er1 , 	er2 corresponds to the reflected S wave. The
same also applies to the transmitted wave.

The right-hand-side (RHS) expressions in (2.3.37), Di and Ei , correspond to the inci-
dent wave. For the incident P wave,

Di = ANi , Ei = AXi . (2.3.39)

For the incident S wave, we write

Di = Be1i + Ce2i , Ei = BYi + CZi . (2.3.40)

Here Xi , Yi , and Zi are again given by (2.3.38), with appropriately specified quantities.
The unknown amplitude factors of the reflected and transmitted plane waves, Ar , Br ,

Cr , At , Bt , and Ct , can be determined using the system of six equations (2.3.37).
System (2.3.37) is very general. As we know, unit vector 	e3 ≡ 	N is perpendicular to

the relevant wavefront for each wave, and the three unit vectors 	e1, 	e2, 	e3 ≡ 	N , correspond-
ing to the wave under consideration, must form a right-handed, mutually orthogonal triplet
of unit vectors. Otherwise, however, unit vectors 	e1 and 	e2 may be chosen arbitrarily. They
need not be perpendicular or parallel to the plane of incidence. In general, they can be
arbitrarily rotated about 	N .

For example, let us consider the incident S wave and denote the relevant unit
vectors 	es1 and 	es2 and 	e s3 ≡ 	N s . Unit vector 	N s can be strictly determined, but 	e s1
and 	e s2 may be chosen in different ways in the plane perpendicular to 	N s . System (2.3.37)
with (2.3.40) remains valid for any of these choices of 	es1 and 	es2 . The incident wave may
even be elliptically polarized. System (2.3.37) is also valid for different choices of the unit
vectors 	e1 and 	e2 for reflected and transmitted S waves.

We can also introduce reflection/transmission coefficients, if we formally consider the
S1 and S2 components of the displacement of S waves as independent waves. We introduce
the reflection coefficient Rmn (m, n = 1, 2, 3) for displacement so that m specifies the type
of incident wave, and n indicates the type of generated reflected wave. Indices m and n are
determined as follows:

m = 1, S1 component of the incident S wave (unit vector 	e1),
m = 2, S2 component of the incident S wave (unit vector 	e2),
m = 3, P incident wave (unit vector 	N ).

The definition of n is similar but is related to the reflected waves. For example,

R12 = Cr/B, R11 = Br/B, R33 = Ar/A.

The whole set of nine reflection coefficients Rmn forms a 3 × 3 matrix of reflection coeffi-
cients R̂r for displacement. In very much the same way, we also obtain the 3 × 3 matrix of
transmission coefficients for displacement. The total number of reflection and transmission
coefficients is 18.
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The analytical solution of system (2.3.37) for the individual coefficients is cumbersome;
the system should be solved numerically. The system, however, can be simplified if we
consider particular unit vectors 	e1 and 	e2. We will choose 	e2 perpendicular to the plane of
incidence for all waves. Unit vector 	e1 for all waves can then be calculated using the relation
	e1 = 	e2 × 	N . In this particular case, it is convenient (but not necessary) to introduce a local
Cartesian coordinate systemwherein the x2-axis coincideswith 	e2 and the x3-axis coincides
with the normal to the interface. Traditionally, the x3-axis is vertical so that the interface
is horizontal; the S2 component of the S wave is also horizontal. Consequently, it is usual
in seismology to call the S2 component of the S wave the SH component (S horizontal), or
even the SH wave. Similarly, the S1 component is called the SV component (S vertical),
or the SV wave. This terminology is a little confusing for several reasons. First, SH and
SV are components of the S wave, not waves. Second, the plane interface may be inclined
so that SH is not necessarily horizontal. Third, even if the interface is horizontal, SV is
not vertical. Nevertheless, the terminology is very common, so we shall occasionally use
it here. We will, however, prefer to speak of S1 and S2 components of S waves.

Using the foregoing specification for 	e2 and of the relevant local Cartesian coordinate
system, we obtain

N2 = Nr
2 = Nt

2 = 0, e12 = er12 = et12 = 0,

n1 = n2 = 0, n3 = 1, (2.3.41)

e22 = er22 = et22 = 1, e21 = er21 = et21 = e23 = er23 = et23 = 0.

System (2.3.37) can then be decomposed into two subsystems. The first contains only four
linear equations for At , Bt , Ar , and Br ,

At N t
1 + Btet11 − Ar Nr

1 − Brer11 = D1,

At N t
3 + Btet13 − Ar Nr

3 − Brer13 = D3,

At Xt
1 + BtY t

1 − Ar Xr
1 − BrY r

1 = E1,

At Xt
3 + BtY t

3 − Ar Xr
3 − BrY r

3 = E3.

(2.3.42)

Note that D1, D3, E1, and E3 in (2.3.42) are given by (2.3.39) for the incident P wave and
by (2.3.40) for the incident S wave. In (2.3.40), the terms with C vanish due to (2.3.41).
The second system consists of only two equations, for Cr and Ct ,

Ct − Cr = C,

Ctρ2β2Nt
3 − Crρ1β1Nr

3 = Cρ1β1N3.
(2.3.43)

Systems (2.3.42) and (2.3.43) have certain important consequences. Let us consider
three possible incident waves:

a. Incident P wave (A �= 0, B = C = 0). Then D2 = E2 = 0, and only P reflected,
SV reflected, P transmitted and SV transmitted waves are generated.

b. Incident SV wave (B �= 0, A = C = 0). Again D2 = E2 = 0, and only P reflected,
SV reflected, P transmitted and SV transmitted waves are generated.

c. Incident SH wave (C �= 0, A = B = 0). Then D1 = D3 = E1 = E3 = 0, and only
SH reflected, and SH transmitted waves are generated.

Thus, the SHwaves are fully separated from P and SVwaves in the process of reflection
and transmission of plane waves at a plane interface. For this reason, system (2.3.42) is
also called the P-SV system, and system (2.3.43) is called the SH system.
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In this case, the matrices of reflection and transmission coefficients R̂r and R̂t for
displacement are also simpler as R12 = R21 = R23 = R32 = 0. For R̂r , we then obtain

R̂r =

 R11 0 R13

0 R22 0
R31 0 R33


 . (2.3.44)

Here the reflection coefficients have the traditional meaning of displacement reflection
coefficients: R11, SV→ SV; R22, SH→ SH; R33, P→ P; R13, SV→ P; and R31, P→ SV.
The literature related to these reflection coefficients (and to alternative transmission co-
efficients) is quite extensive. The analytical expressions for these R/T coefficients are
well-known. They will also be given in Section 5.3, where the most important references
can be found. Individual R/T coefficients are also discussed there from a seismological
point of view. Note that the total number of R/T coefficients is, in this case, 10 (5 reflection
coefficients and 5 transmission coefficients).

Thus, to compute the amplitudes of plane waves, both reflected and transmitted, at a
plane interface, we can use one of two procedures:

a. Solving the system of six equations (2.3.37) numerically.
b. Solving decomposed systems (2.3.42) and (2.3.43). For an incident P wave, this

possibility is always simpler. For an incident S wave, the situation is not as straight-
forward. It may also prove very convenient if 	e2 is situated perpendicularly to the
plane of incidence. If 	e2 is oriented generally, the application of (2.3.42) and (2.3.43)
requires preliminary rotation of the S components about 	N .

In Section 5.3, the suitability of system (2.3.37) and of decomposed systems (2.3.42)
and (2.3.43) will be discussed from the point of view of the ray method and its applications
to complex structures. It will be demonstrated that decomposed systems (2.3.42) and
(2.3.43) are more convenient in 1-D and mostly in 2-D media. In general 3-D structures,
however, the application of general system (2.3.37) may be more efficient. Section 5.3
also gives analytical expressions for the individual R/T coefficients and some numerical
examples.

One question is still open: how to choose 	e1 and 	e2 for reflected and transmitted waves.
In general, they may be chosen arbitrarily, but they must be perpendicular to the normal
	N to the wavefront of the wave under consideration. (Vectors 	N of all generated waves
are known from Snell’s law.) Some choices, however, may be more convenient. We shall
describe one such choice briefly, and call it the standard choice. We denote by 	e1, 	e2 and	N the right-handed orthogonal triplet corresponding to the incident wave, by 	er1 , 	er2 and
	N r

the analogous triplet corresponding to the arbitrarily selected reflected/transmitted
wave, and by 	i2 the unit vector perpendicular to the plane of incidence. In the standard
choice, it is required that the angle between 	er2 and 	i2 is the same as the angle between 	e2
and 	i2. The standard choice has certain important consequences. For example, it implies
that 	e t1 and 	e t2 approach 	e1 and 	e2 if α1 → α2 and β1 → β2. Thus, in the limiting case of
a vanishing interface, 	e1 and 	e2 are continuous across the interface. The standard choice
also implies the reciprocity of determination of 	er1 and 	er2 .

We shall now describe how to determine 	er2 and 	er2 for an arbitrarily selected reflected
wave, corresponding to the standard choice. The results will also be valid for the transmitted
waves. We assume that vector 	e1 and 	e2 of the incident wave are known and that 	N
and 	N r

are known. We denote 	i2 the unit vector perpendicular to the plane of incidence,
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	i2 = (	n × 	N )/| 	n × 	N |. Now we determine auxiliary unit vectors 	e ′
1, 	e ′

2 and 	er ′1 , 	er ′2 , which
specify the planes perpendicular to 	N and 	N r

,

	e ′
2 = 	er ′2 = 	i2, 	e ′

1 = 	i2 × 	N , 	er ′1 = 	i2 × 	N r
.

We can put

	e2 = A	e ′
1 + B 	e ′

2

so that A = 	e2 · 	e ′
1 and B = 	e2 · 	e ′

2. In the standard choice, 	er2 must satisfy the equivalent
relation,

	er2 = A	er ′1 + B 	er ′2 .
Thus, the final solution is

	er2 = (	e2 · 	e ′
1)	er ′1 + (	e2 · 	e ′

2)	er ′2 , 	er1 = 	er2 × 	N r
. (2.3.45)

If unit vector 	e2 of the incident wave equals 	i2, standard choice (2.3.45) simplifies to

	er2 = 	e2, 	er1 = 	er2 × 	N r
. (2.3.46)

This is indeed the option we have used to decompose general system (2.3.37) into systems
(2.3.42) and (2.3.43). This choice can be interpreted simply: in the plane of incidence, the
SV components of all waves (incident, reflected, transmitted) must point to the same side
of the relevant slowness vectors. For more details, see Section 5.3.

2.3.3 Anisotropic Elastic Medium

In this section, we shall solve the problem of reflection and transmission of plane elas-
tic waves at a plane interface � between two homogeneous anisotropic halfspaces. We
shall denote the elastic moduli and the density in halfspace 1 by c(1)i jkl and ρ

(1) and in the
halfspace 2 by c(2)i jkl and ρ

(2). We shall also use density-normalized elastic moduli given
by relations a(1)i jkl = c(1)i jkl/ρ

(1) and a(2)i jkl = c(2)i jkl/ρ
(2). We assume that a homogeneous plane

wave is incident at interface� from halfspace 1 and that it is one of the three possible types:
a quasi-compressional (qP) or one of the two quasi-shear waves (qS1 or qS2). The slow-
ness vector 	p of the selected incident wave must satisfy existence condition (2.2.36). The
phase velocity C(m) of the incident wave is then given by the relation C(m) = (Gm(Ni ))1/2,
where Gm(Ni ) is the eigenvalue of matrix �̄ik = a(1)i jkl N j Nl . Unit vector 	N again denotes
the unit normal to the wavefront, pi = Ni/C(m). The displacement vector of the incident
wave points in the same direction as the relevant eigenvector 	g (m) of matrix Γ̂, and the
group velocity vector is given by relation (2.2.65).

In the following discussion, we shall omit the superscript (m) specifying the selected
type of incident wave (m = 1, 2, or 3) and tacitly understand that the incident wave may
be of any type. Thus, in view of (2.2.42), the displacement vector of the incident wave can
be expressed as

	u(	x, t) = A	g exp[−iω(t − pi xi )]. (2.3.47)

Here all the symbols have their standard meanings.
As we know, three different types of plane waves, with different velocities, may prop-

agate in a homogeneous anisotropic medium. Thus, six plane waves will, in general, be
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generated at interface�. Any one of them can be described by a relation similar to (2.3.47),

	uk(	x, t) = Ak 	gk exp[−iω
(
t − pki xi

)]
, (2.3.48)

with k = 1, 2, . . . , 6 (no summation over k). The first three correspond to the first medium
(reflected waves; k = 1, 2, 3), and the last three correspond to the second medium (trans-
mitted waves; k = 4, 5, 6). The unknown quantities in (2.3.48) will be determined from
known parameters of the incident wave (2.3.47) and from the boundary conditions of the
welded contact.

The boundary conditions also indicate that the arguments of the exponential functions
of all waves must be the same along interface�. In other words, the tangential components
of the slowness vector must be equal for all waves along �. This yields

	pk − 	n( 	pk · 	n) = 	p − 	n( 	p · 	n); (2.3.49)

see (2.3.15). These equations are not yet sufficient to determine 	pk ; they only determine the
tangential components of 	pk . To determine the normal component of 	pk , we must also use
existence condition (2.2.36).A specific procedure of determining the slowness vectors of all
six generated waves will be discussed later; nowwe shall return to the boundary conditions.

The boundary conditions require the displacement and traction to be continuous across
�. The displacement is straightforward; see (2.3.47) and (2.3.48). For the traction, we
shall use (2.3.1). We then obtain the following six equations, representing the boundary
conditions at �:

A1g1i + A2g2i + A3g3i − A4g4i − A5g5i − A6g6i = −Agi ,

A1X 1
i + A2X 2

i + A3X 3
i − A4X 4

i − A5X 5
i − A6X 6

i = −AXi ,
(2.3.50)

i = 1, 2, 3. Here

Xk
i = c(1)i jnln j g

k
n p

k
l , k = 1, 2, 3,

Xk
i = c(2)i jnln j g

k
n p

k
l , k = 4, 5, 6

(2.3.51)

(no summation over k). The right-hand sides of (2.3.50) correspond to the incident wave,
and Xi is given by the same expression as Xk

i , k = 1, 2, 3. In this case, values gkn and pkl
correspond to the incident wave and, of course, must be properly specified.

System (2.3.50) represents the final system of six linear algebraic equations in six
unknown amplitude factors of the generated reflected/transmitted, qP, qS1, and qS2 waves.

System (2.3.50) canbeused to determine the reflection/transmission coefficients for dis-
placement Ak/A. There are nine reflection coefficients and nine transmission coefficients.
The 3 × 3 matrices of reflection and transmission coefficients R̂r and R̂t for displacement
now have a clear physical meaning; as qS1 and qS2 represent independent waves, not just
two components S1 and S2 of one wave. We remind the reader that S1 and S2 are two
components of the S wave in isotropic media.

System (2.3.50) can be decomposed into two independent systems only in exceptional
cases of some planes of symmetry. Analytical solutions are also very exceptional and
cumbersome. In most cases, the direct numerical solution of (2.3.50) is the simplest and
most straightforward.

Before solving (2.3.50), however, wemust know the slowness vectors and the eigenvec-
tors of all generated waves. It is considerably more complicated to determine the slowness
vectors and eigenvectors of R/T waves in anisotropic media than in isotropic media, and
it is also more complicated than the numerical solution of (2.3.50).
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Let us now return to the determination of slowness vectors 	p r and 	p t , correspond-
ing to reflected and transmitted waves. They must satisfy (2.3.49), as well as existence
conditions (2.2.36). Geometrically, the existence conditions represent slowness surfaces
(2.2.72). They are different for reflected and transmitted waves. For reflected waves, the
density-normalized elastic parameters ai jkl in (2.2.72) correspond to a(1)i jkl ; for transmitted
waves, they correspond to a(2)i jkl . To simplify the treatment, we assume that the normal 	n to
interface � is oriented into halfspace 1. We shall first consider only reflected waves, with
ai jkl = a(1)i jkl in (2.2.72).

a. REFLECTED WAVES
The procedure for determining the slowness vectors of the three reflectedwaves follows.

We express the slowness vector of reflected wave 	p r in the form 	p r = 	a + σ 	n, where 	a is
the component of the slowness vector tangent to the interface. This is the same for all three
reflected waves, including the incident wave, and can be considered known. Because the
normal vector 	n to the interface is also known, the only unknown quantity in the relation
	p r = 	a + σ 	n is σ . We can determine it by inserting 	p = 	a + σ 	n into the slowness surface
equation for reflected waves (2.2.72), where ai jkl = a(1)i jkl . We obtain an algebraic equation
of the sixth order in σ . The equation has six roots σi , i = 1, 2, . . . , 6. Geometrically, the
describedprocedure is equivalent to the computationof intersections of the slowness surface
(2.2.72) of reflected waves with a straight line 	p = 	a + σ 	n. The problem was discussed in
Section 2.2.8. Some of the six roots σ1, σ2, . . . , σ6 may be double and are then considered
as two coinciding roots. Complex-valued roots may also occur, always appearing as pairs
of complex-conjugate roots. Consequently, the number of real-valued roots is always even
or zero.

The determination of all six roots σ1, σ2, . . . , σ6 is a standard numerical problem. The
final, but more important step consists of selecting the three physical solutions correspond-
ing to the actual reflected waves from the six available roots σ1, σ2, . . . , σ6.

We shall first discuss the real-valued roots. In isotropic media, the selection of roots is
simple; it is based on the sign of σi . The waves with positive σi propagate into the halfspace
to which the unit normal is pointing, and the waves with negative σi propagate to the other
halfspace. This divisionmakes it simple to select the correct solutions. In anisotropicmedia,
the selection is more complex. The direction of the slowness vector is different from the
direction of the energy flux represented by group velocity vector 	U . The slowness vector
of the plane R/T wave being considered may point to one side of the interface, and the
relevant group velocity vector may point to the other side of the interface. The rule for
selecting proper roots σi is based on the direction of the group velocity vector, not on the
direction of the phase velocity vector. Thus, for reflected waves, we must select such σi for
which group velocity vector 	U points into the first medium. The relevant condition is

	U · 	n > 0. (2.3.52)

This condition is often called the radiation condition of reflected waves for real-valued
roots. There is always just one half of the real-valued roots σi for which the radiation
condition is satisfied; see Section 2.2.8. The other roots σi , which do not satisfy (2.3.52),
are of no importance in the problem of reflection of plane waves and should be excluded
from the list.

If all six roots σi are real-valued, radiation condition (2.3.52) solves the problem com-
pletely. An even number of roots, however, may be complex-valued (pairs of complex-
conjugate roots). Only one physical root of any pair of complex-conjugate roots should be
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selected. The proper radiation condition of reflected waves for complex-conjugate roots
can be expressed in two alternative forms:

Im( 	p) · 	n > 0, Im(σ ) > 0. (2.3.53)

The plane wave selected by (2.3.53) is inhomogeneous, with amplitudes decreasing expo-
nentially with increasing distance from the interface to the first halfspace. Let us emphasize
again that the normal 	n in radiation conditions (2.3.52) and (2.3.53) is oriented into half-
space 1.

The radiation conditions of reflected waves, (2.3.52) and (2.3.53), select three physical
roots σ k, k = 1, 2, 3, of the six roots σi , i = 1, 2, . . . , 6. Using σ k , the relevant slowness
vectors 	p k = 	a + σ k 	n, k = 1, 2, 3, can be determined and used in (2.3.50). Thus, we
always have three reflected waves, some of them homogeneous and some inhomogeneous.
For singular directions, two of these roots may coincide, and the number of reflected waves
may reduce to two.

b. TRANSMITTED WAVES
For transmitted waves, the procedure is analogous to that for reflected waves. Slowness

surface (2.2.72) with ai jkl = a(2)i jkl should be considered in this case. Six relevant roots
σ1, σ2, . . . , σ6 are determined in the same way as for the reflected waves. They are, of
course, different from the analogous quantities for reflected waves, because the slowness
surfaces of reflected and transmitted waves are different. The selection of the three physical
roots σ 4, σ 5, σ 6 of roots σ1, σ2, . . . , σ6 is practically the same as for the reflected waves.
If the roots are real-valued, the group velocity vectors must point into the second medium.
Similarly, if the roots are complex-valued, the amplitudes of the inhomogeneous plane
wave must decrease exponentially with increasing distance from the interface into the
second halfspace. This property yields the following radiation conditions of transmitted
waves:

	U · 	n < 0, Im( 	p) · 	n < 0 or Im(σ ) < 0. (2.3.54)

The first radiation condition corresponds to the real-valued roots σ ; the other two al-
ternative conditions correspond to the complex-valued roots σ . Finally, three transmit-
ted waves are obtained with slowness vectors 	p 4, 	p 5, and 	p 6, given by the relation
	p k = 	a + σ k 	n.

Let us again emphasize that the group velocity vectors of the selected reflected waves
always point into the firstmedium, and the group velocity vectors of the selected transmitted
waves point into the second medium (if the roots are real-valued). The slowness vectors
of reflected waves, however, may point into the second medium, and the slowness vectors
of the transmitted waves may point into the first medium. We remind the reader that the
normal 	n in radiation conditions (2.3.54) is oriented into halfspace 1.

For many other details regarding the reflection and transmission of plane elastic waves
at a plane interface between two homogeneous anisotropic halfspaces and for numerical
examples of R/T coefficients see, for example, Fedorov (1968), Henneke (1972), Rokhlin,
Bolland, and Adler (1976), Keith and Crampin (1977), Daley and Hron (1977, 1979),
Petrashen (1980), Šı́lený (1981), Payton (1983), Gajewski and Pšenčı́k (1987a), Wright
(1987), Graebner (1992), Schoenberg and Protázio (1992), Kim,Wrolstad, andAminzadeh
(1993), Blangy (1994), Chapman (1994, in press), Thomson (1996a, 1996b), and Rueger
(1997). See also Section 5.4.7.
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2.3.4 Transient Plane Waves

In previous sections, the problem of reflection and transmission of plane elastic waves
at a plane interface between two homogeneous halfspaces was solved for time-harmonic
waves. The generalization of the results for transient plane waves is straightforward.

Let us first discuss the acoustic case. Assume that the incident pressure plane wave is
given by the relation

p(	x, t) = PF(t − pi xi ). (2.3.55)

Here F(ζ ) is the analytical signal, F(ζ ) = x(ζ ) + ig(ζ ), where x(ζ ) and g(ζ ) form a
Hilbert transform pair. Quantities P and pi have the same meaning as in (2.3.3). Because
the problem of reflection/transmission is linear, we can apply the Fourier transform and
obtain the following expressions for reflected and transmitted plane waves:

pr (	x, t) = Rr PF
(
t − pri xi

)
, pt (	x, t) = Rt PF

(
t − pti xi

)
. (2.3.56)

Here Rr and Rt are the reflection and transmission coefficients given by (2.3.24) or (2.3.26).
Slowness vectors 	pr and 	pt can be obtained using (2.3.23) and (2.3.18).

Thus, the analytical signals corresponding to reflected and transmitted acoustic plane
waves equal the analytical signal of the incident wave. This very important conclusion
follows from the fact that R/T coefficients Rr and Rt are frequency-independent.

For elastic media (both isotropic and anisotropic), the conclusion is the same. The
analytical signals corresponding to all reflected and transmitted elastic plane waves equal
the analytic signal of the incident wave.

These conclusions, however, do not imply that the shapes of the real-valued signals
of R/T waves cannot be different from the shape of the real-valued signal of the incident
wave. To study the actual shapes of the real-valued signals, wemust pass from the complex-
valued representations (2.3.55) and (2.3.56) to real-valued representations; see (2.2.13).
We then obtain

p(	x, t) = Re(P) Re(F(t − pi xi )) − Im(P) Im(F(t − pi xi )),

pr (	x, t) = Re(Rr P) Re
(
F
(
t − pri xi

))− Im(Rr P) Im
(
F
(
t − pri xi

))
,

pt (	x, t) = Re(Rt P) Re
(
F
(
t − pti xi

))− Im(Rt P) Im
(
F
(
t − pti xi

))
.

(2.3.57)

Assume now that the incident plane wave is homogeneous (with real-valued pi ), with
a real-valued amplitude P . Then Im(P) = 0, and (2.3.57) yields p(	x, t) = Px(t − pi xi ).
Thus, the shape of the signal of the incident wave is represented by function x(t − pi xi ).
The shapes of the signals of the reflected and transmitted plane waves will be different
from x(ζ ) in the following two cases.

a. If the reflection/transmission coefficient of the generated wave is complex-valued,
the shape of the generated wave is then a linear combination of x(ζ ) and its Hilbert
transform g(ζ ). This also applies to homogeneous plane waves.

b. If the slowness vector components of the generated wave are complex-valued, the
generated wave is then inhomogeneous, and (2.2.83) must be used to determine
Re(F(ζ )) and Im(F(ζ )).

Equations (2.3.57) are sufficiently general to calculate the shape of the signal of R/T
waves even in the case of an inhomogeneous wave with complex-valued R/T coefficients.
They also allow incident inhomogeneous plane waves to be considered.
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It is simple to show that the acoustic R/T coefficients become complex-valued for the
so-called postcritical angle of incidence i inc > i∗, where i∗ = arcsin(c1/c2); see (2.3.25).
For i inc > i∗, cos i t is imaginary, which implies that the shape of the signals of the R/T
waves is different from the shape of the signal of the incident wave for postcritical angles
of incidence.

If i∗ < i inc < 90◦, the reflected acoustic plane wave is homogeneous, but the trans-
mitted plane wave is inhomogeneous. In this case, there is a basic difference between the
signals of the reflected and transmitted plane waves. The signal of the reflected homoge-
neous plane wave remains fixed as the wave propagates from the interface, but the signal
of the transmitted inhomogeneous plane wave varies; see (2.2.83) with T I varying.

We shall now consider the reflection and transmission of elastic waves. Several critical
angles of incidence correspond to the individual generated waves. All the R/T coefficients
become complex-valued when the angle of incidence is larger than the minimum critical
angle. Moreover, certain transmitted and reflected waves may be inhomogeneous for post-
critical angles of incidence (for example, the converted reflected S → P wave). For more
details, refer to Section 5.3.

2.4 High-Frequency Elastic Waves
in Smoothly Inhomogeneous Media

In Section 2.2, we studied the propagation of elastic planewaves in homogeneous, isotropic,
and anisotropic unbounded media. In all these cases, we determined the types of plane
waves that can propagate in such media and their most important characteristics. In the
acoustic case, only one type of plane wave of a scalar character may propagate: the pressure
wave. In an elastic homogeneous isotropic medium (withµ �= 0), two types of plane waves
of a vectorial character may exist: the compressional (P) and the shear (S) wave. Finally,
in an elastic homogeneous anisotropic medium, three types of plane waves of a vectorial
character are admissible: one quasi-compressional (qP) and two quasi-shear (qS) waves.
We have already shown how to determine the velocities of propagation for these waves. In
addition, we have determined the polarization of the plane waves of vectorial character.

In inhomogeneous media, the solution of the elastodynamic equation is considerably
more complex. Themain problem in solving the elastodynamic equation in inhomogeneous
media resides in the fact that the wavefield cannot, in general, be resolved into several
independent waves. For example, the elastic wavefield in an inhomogeneous isotropic
medium cannot be strictly separated into compressional and shear waves.

The Earth’s interior, however, is inhomogeneous, and P and S waves have been success-
fully observed on seismological records. This seems to contradict the previous statement.
The explanation follows. Actually, in smoothly inhomogeneous media, the high-frequency
elastic waves separate into P and S waves approximately. The separated waves, however,
do not satisfy the elastodynamic equation exactly, but only approximately. The properties
of these high-frequency P and S waves propagating in smoothly inhomogeneous elastic
media are locally very similar to the properties of the P and S plane waves propagating in
homogeneous media.

The most popular method of studying these high-frequency waves propagating in
smoothly inhomogeneous media is the ray-series method (also simply called the ray
method). It is based on the asymptotic solution of the elastodynamic equation in the form
of a ray series. In the frequency domain, the ray series corresponds to a series in in-
verse powers of frequency ω. The ray-series method will be discussed in more detail in
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Sections 5.6 and 5.7. See also Babich (1956), Babich and Alekseyev (1958), Karal and
Keller (1959), Alekseyev and Gel’chinskiy (1959), Alekseyev, Babich, and Gel’chinskiy
(1961), Červený and Ravindra (1971), Červený, Molotkov, and Pšenčı́k (1977), Červený
and Hron (1980), and Achenbach, Gautesen, andMcMaken (1982), among others. In prac-
tical applications in seismology and in seismic prospecting, the first (leading) term of the
ray series is primarily the only one used. This approximation is also often called the zeroth-
order approximation of the ray method. The higher order terms of the ray series have been
used only occasionally.

Thus, we are mostly interested in the zeroth-order ray approximation, and not in the
higher order terms of the ray series. In this section,we attempt to explain the basic properties
and derive the basic equations of the ray method in a very simple way, considering only
the zeroth-order terms of the ray series. The derivation is straightforward and easy to
understand. The main purpose is to explain the approximate separation of the wavefield
into individual waves and to derive the equations for their travel times (eikonal equation),
for the amplitudes in the zeroth-order approximation (transport equation), and for the
polarization of these waves. All complications connected with the higher order terms of
the ray series, the principal and additional components of these terms, and the transport
equation of higher order are discussed in Sections 5.6 and 5.7.

The approach used here to derive the approximate high-frequency expressions for seis-
mic bodywaves propagating in smoothly varyingmedia is based on a simple generalization
of the plane-wave approach used in Section 2.2. The solution is again assumed to have the
form of (2.2.15), in which vectorial complex-valued amplitude 	U and travel time T are
arbitrary slowly varying functions of coordinates, 	U = 	U (xi ) and T = T (xi ). We remind
the reader that 	U is a constant vector and T (xi ) is a linear function of coordinates in the
case of plane waves. Let us first consider the time-harmonic solution. Inserting it into the
elastodynamic equation yields a polynomial in ω, consisting of three terms. Because we
are looking for high-frequency solutions, we can only consider the terms with the high-
est powers of ω. The first term immediately yields the eikonal equation, which controls
the travel-time function T (xi ), and the second term yields the transport equation, which
controls the amplitude function. The third term (with the lowest power of ω) is, in fact,
neglected.

In the ray-series method, see Sections 5.6 and 5.7, the third term is compensated by
the higher order terms of the ray series. The zeroth-order term, however, is not affected
at all by neglecting this term. Thus, all the equations we shall derive in this section for
travel time T (xi ) and for the zeroth-order term of the ray series 	U (xi ) are also valid in the
ray-series method.

Instead of the time-harmonic high-frequency waves, we can also use high-frequency
signals. We call the analytical signal F(t) given by (2.2.9) the high-frequency analytical
signal, if its Fourier spectrum F(ω) effectively vanishes for low frequencies,

|F(ω)| = 0, for 0 ≤ ω ≤ ω0, (2.4.1)

where ω0 is high. Then

|F̈(t)| � |Ḟ(t)| � |F(t)|. (2.4.2)

Thus, we can neglect the term that contains |F(t)| with respect to the terms containing
|Ḟ(t)| and |F̈(t)|. This is physically simple to understand.

The condition that the frequency should be high has only a very qualitative meaning.
Without going into details, we can roughly explain this condition in terms of a (prevailing)
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wavelength. Wavelength λ can be expressed by the equation λ = 2πc/ω, where ω is the
(prevailing) frequency and c is the average propagation velocity at a given point. The
approximate high-frequency solution of the elastodynamic equation in a smooth medium
requires that the appropriate material parameters of the medium (ρ, c, λ, µ, ci jkl) not vary
greatly over distances of the order of wavelength λ.We also require that the slowness vector
and the amplitude vector of the wave under consideration not vary greatly over the same
distance of λ. The validity conditions of the ray method will be discussed in Section 5.9.

2.4.1 Acoustic Wave Equation

It is simple to derive the approximate HF solutions of the acoustic wave equation. Let us
first consider an acoustic wave equation (2.1.25) for pressure p, with a variable velocity
c = c(xi ), a constant density, and no source term,

∇2 p = 1

c2(xi )
p̈. (2.4.3)

We shall try to find an approximate time-harmonic high-frequency solution of this equation
in the following form:

p(xi , t) = P(xi ) exp[−iω(t − T (xi ))]. (2.4.4)

We assume that frequency ω is high, ω � 0. Both P(xi ) and T (xi ) are presumably smooth
scalar functions of coordinates. For P(xi ) = const. and T (xi ) = pi xi , Equation (2.4.4)
represents a plane-wave solution. Equation t = T (xi ) represents the moving wavefront of
the wave under consideration, which is, in general, curved.

If we take into account the vectorial identity ∇ · a	b = 	b · ∇a + a∇ · 	b, we obtain
∇2 p = ∇ · ∇ p

= {iω(∇P + iωP∇T ) · ∇T
+ (∇2P + iω∇T · ∇P + iωP∇2T )} exp[−iω(t − T (xi )].

We can then express acoustic equation (2.4.3) in the following form:

−ω2P
[
(∇T )2 − 1/c2

]+ iω[2∇P · ∇T + P∇2T ] + ∇2P = 0. (2.4.5)

Because Equation (2.4.5) should be satisfied for any frequency ω, the expressions with
ω2, ω1, and ω0 must vanish. We have, however, three expressions and only two unknown
functions, T (xi ) and P(xi ), which presumably do not depend on ω. Thus, (2.4.5) cannot
be satisfied exactly. For high frequencies ω, however, the most important terms will be the
first (with ω2) and the second (with ω). Because we are interested in the HF solutions of
(2.4.5), we shall require that the two first terms in (2.4.5) vanish. We then arrive at the
eikonal equation,

(∇T )2 = 1/c2, (2.4.6)

and the transport equation,

2∇P · ∇T + P∇2T = 0. (2.4.7)

Both equations play a fundamental role in the ray method. The eikonal equation represents
a nonlinear partial differential equation of the first order for travel time T (xi ). It has
usually been solved by ray tracing and by subsequent computation of T along the rays;
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see Chapter 3. The transport equation represents a linear partial differential equation of the
first order in P(xi ). It simplifies very much if it is solved along the rays. It then reduces to
an ordinary differential equation of the first order for P(xi ) and can be solved analytically
in terms of the ray Jacobian. See Section 3.10.

But what about term ∇2P in (2.4.5), which has not been considered in our treatment?
If we assume the solution in the form of (2.4.4), we can do nothing. Solution (2.4.4) can,
however, be generalized. The amplitude may be considered as a series in inverse powers
of frequency,

P(xi , ω) = P0(xi ) + 1

iω
P1(xi ) + 1

(iω)2
P2(xi ) + · · · · (2.4.8)

Inserting (2.4.8) into (2.4.4), we obtain the ray-series solutions. These solutions will be
discussed in more detail in Section 5.6, where a system of transport equations of higher
order for P1(xi ), P2(xi ), . . . , will be derived. The system can be used to compute succes-
sively P0(xi ), P1(xi ), P2(xi ), . . . . The leading term P0(xi ), of course, satisfies transport
equation (2.4.7).

The ray-series solution (2.4.8) eliminates the last term in (2.4.5) quite strictly. Several
other attempts to eliminate the last term of (2.4.5) have also been reported in the literature.
In all these cases, ∇2P is considered to be a correction, a small term. We shall briefly
mention three such attempts.

1. It is possible to consider the last term of (2.4.5) as a source term in the acoustic wave
equation and take it into account in some sort of generalized Born approximation,
similar to perturbation methods. The regions of high ∇2P then formally represent
nonphysical sources of the scattered wavefield. See Section 2.6.2 for more details.

2. It is possible to combine the last term of (2.4.5) with its second term and construct
a frequency-dependent transport equation. This transport equation can be solved
by iterations, keeping ∇2P on the RHS.

3. Finally, it is possible to combine the last termwith the first (eikonal) term.This yields
a frequency-dependent eikonal (sometimes called the hypereikonal) and frequency-
dependent rays. See Biondi (1992) and Zhu and Chun (1994b).

The approximate HF equations are simple even if the acoustic wave equation contains
a variable density, ρ,

∇ · 1
ρ

∇ p = 1

ρc2
p̈. (2.4.9)

Using the ansatz solution (2.4.4), we obtain an alternative to (2.4.5):

−ω2P

[
(∇T )2 − 1

c2

]
+ iω

[
2∇P · ∇T + P∇2T −

(
P

ρ

)
∇T · ∇ρ

]

+ ρ∇ · 1
ρ

∇P = 0.

Thus, the eikonal equation is again obtained in the form of (2.4.6). The transport equation
is, however, slightly different:

2∇P · ∇T + P∇2T − (P/ρ)∇T · ∇ρ = 0. (2.4.10)

We can give it the same form as (2.4.7), if we use P/
√
ρ instead of P:

2∇T · ∇(P/
√
ρ) + (P/

√
ρ)∇2T = 0. (2.4.11)
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Thus, the difference is only formal. The variable density does not complicate the approx-
imate solutions at all. Consequently, in the following text we shall primarily consider the
acoustic wave equation with the variable density.

We have discussed the time-harmonic solution, (2.4.4). It is not difficult to work directly
with the analytical signals. Instead of (2.4.4), we shall express the solution in the following
form:

p(xi , t) = P(xi )F(t − T (xi )),

where F(ζ ) is a high-frequency analytic signal. Equation (2.4.5) now reads

P[(∇T )2 − 1/c2]F̈(ζ ) − [2∇P · ∇T + P∇2T ]Ḟ(ζ ) + ∇2PF(ζ ) = 0,

with ζ = t − T (xi ). Because the equation must be satisfied identically for any ζ , it again
yields eikonal equation (2.4.6) and transport equation (2.4.7).

Transport equations (2.4.7) and (2.4.11) are sometimes expressed in different alternative
forms; instead of P , we use PP∗, where P∗ denotes the complex conjugate of P . For real-
valued travel times T , transport equation (2.4.7) is also valid for P∗:

2∇P∗ · ∇T + P∗∇2T = 0.

Multiplying (2.4.7) by P∗, multiplying the foregoing equation by P , and adding the two
products yields

∇ · (PP∗∇T ) = 0. (2.4.12)

Similarly, for a variable density, (2.4.11) can be expressed as

∇ ·
(
PP∗

ρ
∇T

)
= 0. (2.4.13)

Both equations (2.4.12) and (2.4.13), of course, also remain valid if P is real-valued; in
this case, PP∗ = P2.

2.4.2 Elastodynamic Equation for Isotropic Inhomogeneous Media

In principle, the derivation of the basic equations for high-frequency seismic body waves
propagating in isotropic smoothly inhomogeneous media remains the same as in the acous-
tic case. There is only one important difference: the elastodynamic equation is vectorial,
whereas the acoustic wave equation for pressure is scalar. We have two options in treat-
ing the elastodynamic equation: in vectorial form, see (2.1.21), or in component form,
see (2.1.20). Here we shall use the component form to be consistent with the anisotropic
case, where the component form is more convenient. As in the acoustic case, we shall not
consider the source term.

Our ansatz solution for the displacement vector 	u(x j , t) will read
ui (x j , t) = Ui (x j )F(t − T (x j )), (2.4.14)

where F(ζ ) represents a high-frequency analytical signal, ζ = t − T (x j ). Solution (2.4.14)
again represents a generalization of the plane-wave solution, with Ui and T varying ar-
bitrarily (but slowly) with the coordinates. Before we insert (2.4.14) into elastodynamic
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equation (2.1.20), we shall compute several derivatives:

ui, j = Ui, j F −UiT, j Ḟ,

ui, jm = Ui, jm F −Ui, j T,m Ḟ −Ui,mT, j Ḟ −UiT, jm Ḟ +UiT, j T,m F̈,

üi = Ui F̈ .

Inserting these expressions into elastodynamic equation (2.1.20) yields

Ni ( 	U )F̈ − Mi ( 	U )Ḟ + Li ( 	U )F = 0, (2.4.15)

where

Ni ( 	U ) = −ρUi + (λ+ µ)UjT,i T, j + µUiT, j T, j ,

Mi ( 	U ) = (λ+ µ)[Uj,i T, j +Uj, j T,i +UjT,i j ] + µ[2Ui, j T, j +UiT, j j ]

+ λ,iU j T, j + µ, jUi T, j + µ, jU j T,i ,

Li ( 	U ) = (λ+ µ)Uj,i j + µUi, j j + λ,iU j, j + µ, j (Ui, j +Uj,i ).

(2.4.16)

Equations (2.4.16) look rather cumbersome, but their derivation is easy and straightforward.
They will also simplify considerably later on.

We shall again try to satisfy (2.4.15) approximately, for high-frequency wavefields. As
in the acoustic case, we put

Ni ( 	U ) = 0 (2.4.17)

and

Mi ( 	U ) = 0. (2.4.18)

Equation (2.4.17) will yield the approximate separation of the high-frequency wavefield
into two wavefields corresponding to P and S waves. It will also yield the eikonal equations
corresponding to bothwaves. Equation (2.4.18)may then be used to determine the transport
equations for the amplitudes of the P and S waves.

Now we shall discuss Equation (2.4.17) in more detail. It can be altered to read

(�i j − δi j )Uj = 0, i = 1, 2, 3, (2.4.19)

where

�i j = λ+ µ
ρ

T,i T, j + µ

ρ
δi j T,kT,k . (2.4.20)

As we can see, (2.4.19) represents a system of three linear algebraic equations in U1, U2,
and U3. It coincides formally with plane-wave equations (2.2.35) and (2.2.43), if we put

	p = ∇T . (2.4.21)

We shall again call 	p the slowness vector. The slowness vector, however, is not constant
now (as it was in the case of plane waves) but is rather a function of position. Similarly, ρ, λ,
and µ are also functions of coordinates. Nevertheless, Equation (2.4.19) can be discussed
in exactly the same way as for the plane waves, realizing that (2.4.19) represents a typical
eigenvalue problem.We remind the reader that matrix�i j has three eigenvalues in isotropic
media:

G1(xi , pi ) = G2(xi , pi ) = β2(xi )pi pi , G3(xi , pi ) = α2(xi )pi pi .

(2.4.22)
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Thus, two eigenvalues coincide. Here α(xi ) and β(xi ) are given by the relations

α(xi ) =
[
λ(xi ) + 2µ(xi )

ρ(xi )

]1/2
, β(xi ) =

[
µ(xi )

ρ(xi )

]1/2
. (2.4.23)

The definition ofα(xi ) andβ(xi ) is formally the same as in the case of planewaves; however,
α and β are not constant but rather functions of coordinates.

The eigenvectors of �i j (	g(1), 	g(2), and 	g(3)) have the following directions: eigenvector
	g(3) corresponding to eigenvalueG3 = α2 pi pi has the same direction as the slowness vector
	p = ∇T . Eigenvectors 	g(1) and 	g(2), corresponding to the two coinciding eigenvaluesG1 =
G2 = β2 pi pi , are mutually perpendicular unit vectors, also perpendicular to 	p = ∇T .
Their direction in the plane perpendicular to 	p, however, cannot be determined uniquely
from (2.4.19).

We can draw the following conclusions. Two different types of high-frequency seismic
body waves can propagate in a smoothly inhomogeneous isotropic elastic medium.

1. P waves. The travel-time field of the P waves satisfies equation G3(xi , pi ) = 1 so
that

∇T · ∇T = 1/α2(xi ). (2.4.24)

This is the eikonal equation for P waves; α(xi ) is given by (2.4.23). The P wave is linearly
polarized and the particle motion has the same direction as 	p = ∇T . The slowness vector
can also be expressed as

	p = ∇T = 	N/α, (2.4.25)

where 	N is the unit vector perpendicular to wavefront T (xi ) = const. This means that the
displacement vector is polarized along 	N ,

	U (xi ) = A(xi ) 	N , (2.4.26)

where A(xi ) is a scalar, complex-valued amplitude function of the P waves.

2. S waves. The travel-time field of the S wave satisfies equation G1(xi , pi ) =
G2(xi , pi ) = 1, so that

∇T · ∇T = 1/β2(xi ). (2.4.27)

This is the eikonal equation for shear waves; β(xi ) is given by (2.4.23). The displacement
vector is polarized in the plane perpendicular to 	N (that is, in the plane tangent to the
wavefront). As in Section 2.2.6, we introduce two mutually perpendicular unit vectors 	e1
and 	e2, which are also perpendicular to 	N . Then,

	U (xi ) = B(xi )	e1 + C(xi )	e2, (2.4.28)

where B(xi ) and C(xi ) are scalar, complex-valued amplitude functions of the S waves. The
slowness vector of the S wave is given by the relation

	p = ∇T = 	N/β, (2.4.29)

where 	N is the unit vector perpendicular to wavefront T (xi ) = const.
A note concerning the terminology. In inhomogeneous media, the P waves are not

purely compressional, longitudinal, or irrotational. Similarly, the S waves are not purely
shear, transverse, or equivoluminal. To avoid possible misunderstanding, we shall not use
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these terms but shall call them P and S waves systematically throughout the text. This
terminology corresponds to the classical seismological meaning: P (primae), S (secundae).

In expressions (2.4.26) and (2.4.28), the amplitude functions A(xi ), B(xi ), and C(xi )
are still undetermined. To determine them, we can use (2.4.18). We expect to obtain the
transport equations for A, B, and C .

Let us again start with P waves. We multiply Mi ( 	U ) by pi = T,i and use the relations

Uj = AαT, j , Uj,i = A,iαT, j + A(α,i T, j + αT, j i ).
Then

Mi (A 	N )T,i = (λ+ 2µ)[2α−1A,i T,i + A(2α−2α,i T,i

+ 2αT, j i T, j T,i+α−1T,i i )] + α−1A(λ+ 2µ),i T,i .

We shall now calculate expressions T, j i T, j T,i ,

T, j i T, j T,i = 1
2 (T, j T, j ),i T,i = −α−3α,i T,i

and obtain

Mi (A 	N )T,i = 2αρA,i T,i + αρAT,i i + α−1(α2ρ),i T,i A.

Equation (2.4.18) implies that this expression must be zero. This yields the first form of
the transport equation for P waves, in component form:

2ραA,i T,i + αρAT,i i + α−1(α2ρ),i T,i A = 0. (2.4.30)

In vector form, (2.4.30) reads

2ρα∇A · ∇T + A(αρ∇2T + α−1∇T · ∇(α2ρ)) = 0. (2.4.31)

The transport equation can be simplified if we consider
√
ρα2A instead of A:

2∇T · ∇(
√
ρα2A) +

√
ρα2A∇2T = 0. (2.4.32)

This is the final form of the transport equation for P waves in inhomogeneous elastic
media. It has exactly the same form as the transport equation for acoustic waves if we
use

√
ρα2A(xi ) = √

λ+ 2µA(xi ) instead of P(xi ); see (2.4.7). Alternatively, it can be
expressed in the following form:

∇ · (ρα2AA∗∇T ) = 0. (2.4.33)

It may seem surprising that the transport equation for pressure waves in the acoustic case
(2.4.11) and the transport equation for the P waves in elastic isotropic media are formally
different; the first of them is for P/

√
ρ, and the second is for

√
ρα2A. The explanation is

simple. The approximate high-frequency relation between the amplitude of pressure wave
P and the amplitude of the displacement vector of P wave A is as follows: P = ραA (with
α = c). Thus, P/

√
ρ =

√
ρα2A, and both the transport equations (2.4.32) and (2.4.11)

coincide.
The transport equations for S waves can be derived in a way similar to that for P waves.

We insert expression (2.4.28) into Equation (2.4.18) and take the scalar products of (2.4.18)
with 	e1 and 	e2:

Mie1i = [(λ+ µ)e1i T, j + 2µT,i e1 j ]Uj,i

+ [(λ+ µ)T,i j e1i + µe1 j T,kk + λ,i T, j e1i + µ,kT,ke1 j ]Uj = 0,
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Mie2i = [(λ+ µ)e2i T, j + 2µT,i e2 j ]Uj,i

+ [(λ+ µ)T,i j e2i + µe2 j T,kk + λ,i T, j e2i + µ,kT,ke2 j ]Uj = 0.

Taking into account that

Uj = Be1 j + Ce2 j , Uj,i = B,i e1 j + C,i e2 j + Be1 j,i + Ce2 j,i ,

we obtain

2µT,i B,i + B(µ,kT,k + µT,kk) + 2CµT,i e1 j e2 j,i = 0,

2µT,iC,i + C(µ,kT,k + µT,kk) + 2BµT,i e2 j e1 j,i = 0.
(2.4.34)

These equations represent two transport equations for S waves, particularly for the ampli-
tude functions B(xi ) andC(xi ), expressed in component form. They are valid for arbitrarily
chosen unit vectors 	e1 and 	e2, perpendicular to 	N . Of course, 	e1 and 	e2 must also bemutually
perpendicular. Transport equations (2.4.34) are not as simple as the transport equations of
P waves because they are mutually coupled. The coupling is caused by the terms containing
T,i e1 j e2 j,i and T,i e2 j e1 j,i .

In the seismic ray method, unit vectors 	e1 and 	e2 are traditionally assumed to coincide
with unit normal 	n and unit binormal 	b to the ray. The transport equations (2.4.34) for this
choice of 	e1 and 	e2 can be found in Červený and Ravindra (1971) and Červený, Molotkov,
and Pšenčı́k (1977). This option, however, does not remove the coupling of transport
equations for B(xi ), C(xi ), and, consequently, the coupling of both S wave components.
Transport equation (2.4.34) can be decoupled and considerably simplified if we choose 	e1
and 	e2 so that

T,i e1 j e2 j,i = 0, T,i e2 j e1 j,i = 0. (2.4.35)

It is simple to see that Equations (2.4.35) are satisfied if vectors T,i e1 j,i and T,i e2 j,i have
only one nonvanishing component, oriented in the direction of the slowness vector,

T,i e1 j,i = aT, j , T,i e2 j,i = bT, j . (2.4.36)

Here a and b are some quantities that should be chosen to guarantee that 	e1 and 	e2 are unit
vectors.

It is not difficult to compute 	e1 and 	e2 such that they satisfy (2.4.35) along the ray. We
shall discuss the relevant algorithms in Section 4.1.

If 	e1 and 	e2 are selected to satisfy (2.4.35), transport equations (2.4.34) simplify con-
siderably. In component form,

2µT,i B,i + B(µ,kT,k + µT,kk) = 0,

2µT,iC,i + C(µ,kT,k + µT,kk) = 0.
(2.4.37)

In vector form,

2∇T · ∇(
√
ρβ2B) + (

√
ρβ2B)∇2T = 0,

2∇T · ∇(
√
ρβ2C) + (

√
ρβ2C)∇2T = 0.

(2.4.38)

Aswecan see, transport equations (2.4.37) and (2.4.38) for B andC are fully decoupled.The
first transport equation for B does not containC , and vice versa. For this reason, we usually
call unit vectors 	e1 and 	e2, satisfying decoupling conditions (2.4.35), the polarization
vectors of S waves.
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Transport equation (2.4.38) for S waves can be expressed in an alternative form in a
manner similar to that for acoustic waves and elastic P waves:

∇ · (ρβ2BB∗∇T ) = 0, ∇ · (ρβ2CC∗∇T ) = 0. (2.4.39)

We can also express the transport equation for BB∗ + CC∗ as

∇ · (ρβ2(BB∗ + CC∗)∇T ) = 0. (2.4.40)

The transport equations (2.4.38) for both components of the high-frequency S waves prop-
agating in a smooth inhomogeneous isotropic medium again have exactly the same form
as transport equation (2.4.11) for the acoustic case and as transport equation (2.4.32) for
P waves. They are not expressed directly for quantities B and C but for

√
ρβ2B = √

µB
and for

√
ρβ2C = √

µC .

2.4.3 Elastodynamic Equation for Anisotropic Inhomogeneous Media

We shall seek approximate high-frequency solutions of the elastodynamic equation (2.1.17)
with fi = 0 in an anisotropic, smoothly inhomogeneousmedium.We again assume the vec-
torial solution in the form (2.4.14). Inserting (2.4.14) into elastodynamic equation (2.1.17)
again yields (2.4.15), where Ni , Mi , and Li are given by the relations

Ni ( 	U ) = ci jklT,l T, jUk − ρUi ,

Mi ( 	U ) = ci jkl T, jUk,l + (ci jklT,lUk), j ,

Li ( 	U ) = (ci jklUk,l), j .

(2.4.41)

For high-frequency wavefields propagating in a smoothly varying medium, we obtain an
approximate solution of (2.4.15) if we put Ni ( 	U ) = 0 andMi ( 	U ) = 0.We shall now discuss
these equations.

The equations Ni ( 	U ) = 0 can be expressed in the following form:

(�ik − δik)Uk = 0, i = 1, 2, 3, (2.4.42)

where

�ik = ci jkl
ρ

T, j T,l . (2.4.43)

In this case all quantities ci jkl , ρ, and T,i are functions of coordinates. We can again put
	p = ∇T . Equations (2.4.42) then take exactly the same form as in the case of plane waves
in homogeneous anisotropic media (see (2.2.35)) and can be solved in the same way: using
the eigenvalues and eigenvectors of the Christoffel matrix �ik .

The Christoffel matrix �ik has, in general, three eigenvalues G1(xi , pi ), G2(xi , pi ),
G3(xi , pi ) and three relevant eigenvectors 	g(1)(xi , pi ), 	g(2)(xi , pi ), and 	g(3)(xi , pi ). In the
same way as for plane waves, we can formulate the following conclusions.

Three seismic body waves (qS1, qS2, and qP) may propagate in a smoothly inhomo-
geneous anisotropic medium in a specified direction. They correspond to the three eigen-
valuesGm(xi , pi ),m = 1, 2, 3, and to the relevant three eigenvectors 	g(1), 	g(2), and 	g(3). Let
us consider one of them. The travel-time field of the selected wave satisfies the nonlinear
partial differential equation of the first order

Gm(xi , pi ) = 1, pi = T,i . (2.4.44)
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We again call (2.4.44) the eikonal equation. The relevant wave with travel time T (xi )
satisfying (2.4.44) is then linearly polarized:

	U (x j ) = A(x j )	g(m)(x j ). (2.4.45)

Here 	g(m) is the eigenvector corresponding to eigenvalueGm , and A(x j ) is a scalar, complex-
valued, amplitude function. For simplicity, we shall omit superscript m.

We shall now derive the transport equation for A(x j ). We insert (2.4.45) into Mi given
by (2.4.41) and multiply it by gi :

Mi (A	g)gi = ci jkl p j gi (Agk),l + (ci jkl plgk A), j gi
= ci jkl p j gi gk A,l + ci jkl p j gi Agk,l

+ (ci jkl Aplgkgi ), j − ci jkl pl Agkgi, j

= ci jkl p j gi gk A,l + (ci jkl pl Agi gk), j
= ci jkl p j gi gk A,l + ci jkl plgkgi A, j + A(ci jkl plgkgi ), j
= 2ci jkl p j gi gk A,l + A(ci jkl pl gkgi ), j .

Let us now introduce vector 	U with components

Ui = ρ−1ci jkl plgkg j . (2.4.46)

As we have shown in Sections 2.2 and 2.3, this vector has the meaning of a group velo-
city vector in the case of plane waves propagating in homogeneous anisotropic media.
In the next section, we shall show that it also has the same meaning in the case of high-
frequency seismic body waves propagating in smoothly varying anisotropic media. Using
this notation, we can express the equation Mi (A	g)gi = 0 in the following form:

2ρUi A,i + A(ρUi ),i = 0. (2.4.47)

This is oneof thepossible formsof the transport equation for an inhomogeneous anisotropic
medium. It can be expressed in many alternative forms. Its vector form is simple:

2ρ 	U · ∇A + A∇ · (ρ 	U) = 0. (2.4.48)

Some simple algebra involving ρ yields

2 	U · ∇(
√
ρA) + (

√
ρA)∇ · 	U = 0. (2.4.49)

This is the final form of the transport equation for an anisotropic smoothly inhomogeneous
medium that we shall use in the following text. The sought function in (2.4.49) is

√
ρA,

not A. An alternative form of transport equation (2.4.49) is

∇ · (ρAA∗ 	U) = 0. (2.4.50)

Because the anisotropic medium includes, as a special case, the isotropic medium,
transport equation (2.4.49) must also include the transport equation for waves propagating
in isotropic inhomogeneous media; see (2.4.32) and (2.4.38). We shall prove that this is
true for P waves. For P waves in isotropic models, 	U = α2∇T . Inserting this relation into
(2.4.49) yields

2α2∇T · ∇(
√
ρA) + (

√
ρA)∇ · (α2∇T ) = 0.

It is not difficult to prove that this equation is fully equivalent to (2.4.32). The proof for
S waves is analogous. It is, of course, required that unit vectors 	e1 and 	e2 satisfy relations
(2.4.35).
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In Section 3.10.6, we shall show that all types of transport equations can be solved
simply along rays. The transport equation then takes the form of an ordinary differential
equation of the first order.

If we multiply (2.4.46) by pi and use (2.2.34) and (2.4.44), we obtain an important
relation:

piUi = 1. (2.4.51)

The same relation was derived earlier for plane waves propagating in a homogeneous
anisotropic medium; see (2.2.67). Thus, the relation is valid more generally, even for high-
frequency seismic bodywaves propagating in anisotropic, smoothly inhomogeneousmedia.
The quantities pi and Ui in (2.4.51) are now functions of position.

For more details on the ray-series method in inhomogeneous anisotropic media, see
Section 5.7. See also Babich (1961a), Červený (1972), Červený, Molotkov, and Pšenčı́k
(1977), and Gajewski and Pšenčı́k (1987a).

2.4.4 Energy Considerations for High-Frequency Waves Propagating

in Smoothly Inhomogeneous Media

The expressions derived in the previous sections for HF seismic body waves propagat-
ing in inhomogeneous media differ from the expressions for plane waves propagating in
homogeneous media in three ways.

a. Travel-time field T (xi ) is not a linear function of the coordinates (as in the case of
plane waves) but is a general function of coordinates. This property also implies
that slowness vector 	p = ∇T (xi ) is not a constant vector but rather depends on the
coordinates. Travel time T (xi ) satisfies the eikonal equation.

b. The amplitudes of waves under consideration are not constant (as in the case of
plane waves) but vary with the coordinates. They satisfy the transport equation.

c. Finally, the polarization vectors of elastic waves ( 	N , 	e1, and 	e2 in isotropic inho-
mogeneous media and 	g(1), 	g(2), and 	g(3) in anisotropic inhomogeneous media) are
not constant vectors but vary with the coordinates.

The expressions for the strain energy function and for the energy flux require the
differentiation of the displacement vector. Thus, they will also include derivatives of the
amplitudes, slowness vectors, and polarization vectors of the waves under consideration.
Consequently, they will be more complex than the expressions for the plane waves derived
in Section 2.2.7.

Let us demonstrate these expressions on the simple case of a time-harmonic acoustic
wavefield with variable density. We remind the reader that the general energy quantities
W , K , and Si are given by relations

W = 1
2κp

2, K = 1
2ρvivi , Si = pvi ; (2.4.52)

see (2.1.42). Here p is the pressure, and vi are components of the particle velocity. We
shall consider high-frequency acoustic waves in the following form:

p(xi , t) = P(xi ) exp[−iω(t − T (xi ))],

vi (xi , t) = Vi (xi ) exp[−iω(t − T (xi ))].
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If we take into account Equations (2.1.28) with fi = 0 connecting pressure p and particle
velocity vi , we can express Vi in terms of pressure amplitude P as follows:

Vi = pi
ρ
P + 1

iωρ

∂P

∂xi
.

Again considering p(xi , t) and vi (xi , t) in real-valued form, we obtain

p = 1
2 (P exp[−iωζ ] + P∗ exp[iωζ ]),

vi = 1
2 (Vi exp[−iωζ ] + V ∗

i exp[iωζ ]).

Inserting these expressions into (2.4.52) and time-averaging over one period, we finally
arrive at

W = 1
4 (ρc

2)−1PP∗,

K = 1
4 (ρc

2)−1[PP∗ + 2pic
2ω−1 Im(P∗∂P/∂xi )

+ c2ω−2(∂P/∂xi )(∂P
∗/∂xi )],

Si = 1
2ρ

−1[pi P P
∗ + ω−1 Im(P∗∂P/∂xi )].

(2.4.53)

As we can see, all relations in (2.4.53) for the averaged energy quantities are expressed in
terms of pressure, not in terms of particle velocities. Only the expression forW corresponds
fully to the plane wave expression; see (2.2.56) where f p being replaced with fH = 1

2 . The
expressions for K and Si are different; they have more terms.

We can, however, observe a very interesting and important fact. The expressions for K
and Si are expressed as a series in descending powers of ω. For high-frequency waves, it
is sufficient to consider only the leading terms:

W = K = 1
4 (ρc

2)−1PP∗, Si = 1
2ρ

−1 pi P P
∗. (2.4.54)

Equations (2.4.54) are exactly the same as those obtained for the plane waves in a ho-
mogeneous medium. The only difference is that quantities ρ, c, pi , and P depend on the
coordinates in (2.4.54).

In Section 2.2.7, the group velocity vector 	U of plane waves propagating in a homo-
geneous medium was introduced as the velocity vector of the energy flux 	U E . Conse-
quently, the Cartesian components of the group velocity vector Ui are given by relations
Ui = Ŝi/Ê = Si/E , where Ê = Ŵ + K̂ and E = W + K . In the same way, we can intro-
duce the group velocity vector 	U even for high-frequency seismic body waves propagating
in smoothly inhomogeneous media. In this case, the group velocity vector 	U depends on
position.

To calculate the group velocity vector of high-frequency acoustic waves propagating
in an inhomogeneous medium, (2.4.54) yields the expected result:

Ui = Si

W + K
= c2 pi = cNi . (2.4.55)

Thus, the group velocity vector of HF acoustic waves is perpendicular to the wavefront
and its magnitude is c.

A result similar to that for time-harmonic waves is also obtained for HF transient waves.
After neglecting higher order terms, the time-integrated energy quantities become

Ŵ = K̂ = 1
2 (ρc

2)−1PP∗ f p, Ŝi = ρ−1 pi P P
∗ f p, (2.4.56)

where f p is given by (2.2.57).
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Thederivation of the energy expressions corresponding to high-frequency elastic waves
propagating in inhomogeneous media is in principle the same as in the acoustic case. If
we retain only the leading terms corresponding to the highest powers of frequency, we
obtain the same result as for the plane waves in homogeneous media. For the readers’
convenience, we shall summarize the expressions for the time-integrated energy quantities
Ŵ (strain energy), K̂ (kinetic energy), Ê (elastic energy), Ŝi (components of the energy
flux), and Ui (components of the group velocity vector) for various situations.

a. HF P waves in inhomogeneous isotropic media:

	u(xi , t) = A(xi ) 	NF(t − T (xi )),

Ŵ = K̂ = 1
2ρAA

∗ fc, Ê = 2Ŵ = ρAA∗ fc,

Ŝi = ραNi AA∗ fc, Ui = αNi .

(2.4.57)

b. HF S waves in inhomogeneous isotropic media:

	u(xi , t) = (B(xi )	e1 + C(xi )	e2)F(t − T (xi )),

Ŵ = K̂ = 1
2ρ(BB

∗ + CC∗) fc,

Ê = 2Ŵ = ρ(BB∗ + CC∗) fc,

Ŝi = ρβNi (BB∗ + CC∗) fc, Ui = βNi .

(2.4.58)

c. HF waves in inhomogeneous anisotropic media:

	u(xi , t) = A(xi )	g(m)F(t − T (xi )),

Ŵ = K̂ = 1
2ρAA

∗ fc, Ê = Ŵ + K̂ = ρAA∗ fc, (2.4.59)

Ŝi = ρai jkl plg
(m)
j g(m)

k AA∗ fc, Ui = ai jkl plg
(m)
j g(m)

k .

In all these expressions, fc is given by (2.2.61).

2.4.5 High-Frequency Seismic Waves Across a Smooth Interface

The explanation of propagation of seismic body waves in inhomogeneous media would be
incompletewithout considering the interaction of thesewaveswith structural interfaces.We
will consider two inhomogeneous media that are in contact along a curved interface�. The
exact investigation of the process of reflection and transmission at this interface is rather
complicated; analytical solutions are knownonly for very special cases of some symmetries.
Thus, the process can be investigated numerically (finite differences) or approximately. For
smooth interfaces, the approximate high-frequency methods provide very useful results.
The solutions, of course, have only a local character; the solution at one point on the
interface may be quite different from the solution at another point on the interface.

Because we shall be discussing the high-frequency solutions, we shall require interface
� to be only slightly curved.Let us consider a point Q atwhich thewaveunder consideration
is incident at interface� and denote the twomain radii of curvature of� at Q by R1(Q) and
R2(Q). It is then required that R1(Q) and R2(Q) be considerably larger than the prevailing
wavelength λ of the wave incident at Q,

R1(Q) � λ(Q), R2(Q) � λ(Q). (2.4.60)

As in the previous section, we shall consider only the zeroth-order term of the ray series.
The complete ray-series solution, including the higher order terms, will be discussed in
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Sections 5.6 and 5.7. For the leading term of the ray series, of course, we shall obtain
exactly the same results here as in Chapter 5.

We shall again first consider only the acoustic case. We shall use the notation of
Section 2.3.1 in full. We must, however, remember that all material parameters may vary
with the coordinates. Thus, we have velocity c1(xi ) and density ρ1(xi ) in the first medium
and the corresponding quantities c2(xi ) and ρ2(xi ) in the second medium. The incident
wave, propagating in the first medium, is given by the relation

p(xi , t) = P(xi ) exp[−iω(t − T (xi ))]. (2.4.61)

For reflected and transmitted waves, we shall assume the solutions in the relevant forms:

pr (xi , t) = Pr (xi ) exp[−iω(t − T r (xi ))],

pt (xi , t) = Pt (xi ) exp[−iω(t − T t (xi ))].
(2.4.62)

The travel time T , slowness vector 	p = ∇T , and amplitude P of the incident wave are
known at point Q.Weneed to determine travel times T r and T t , slowness vectors 	pr = ∇T r

and 	pt = ∇T t , and amplitudes Pr and Pt at Q. The knowledge of T r (Q) and 	pr (Q) will
provide sufficient initial conditions to perform ray tracing of the reflected ray from initial
point Q and to calculate the travel time along it. Similarly, the knowledge of Pr (Q) will
provide the initial condition to determine the amplitude function of the reflectedwave along
the ray. For the transmitted waves, the situation is similar.

Across the interface, the pressure and the normal component of the particle velocity
are continuous. Similarly, as in Section 2.3.1, we shall use the time derivative of the normal
component of particle velocity v̇n instead of vn . For the incident wave, v̇n is given by the
following relation at Q:

v̇n(xi , t) = −ρ−1(iωPni pi + P,i ni ) exp[−iω(t − T (xi ))];

see (2.1.22) with fi = 0 and (2.4.61). Similar expressions are also obtained for the reflected
and transmitted waves.

Theboundary conditions along interface� contain factors exp(iωT (xi )), exp(iωT r (xi )),
and exp(iωT t (xi )). For T r (xi ) and T t (xi ) different from T (xi ) along �, the boundary
conditions would yield amplitudes Pr and Pt of reflected and transmitted waves depend-
ing exponentially on frequency ω and on the coordinates. This conclusion implies that
T r (xi ), T t (xi ), and T (xi ) must be equal along �. The boundary conditions along � can
then be expressed as

P + Pr = Pt ,

ρ−1
1 (pini )P + ρ−1

1

(
pri ni

)
Pr = ρ−1

2

(
pti ni

)
Pt −�. (2.4.63)

Here the symbol � has the following meaning:

� = (iω)−1
[
ρ−1
1 (P,i ni ) + ρ−1

1

(
Pr
,i ni
)− ρ−1

2

(
Pt
,i ni
)]
. (2.4.64)

It is not simple to solve the system of equations (2.4.63), due to term �. We are, however,
seeking high-frequency approximate solutions. We can then neglect�, because it is of the
order of 1/iω.

Thus, for high-frequency waves, we can put � = 0 in (2.4.63). Formally, we obtain
exactly the same system of equations as for the acoustic plane waves on the plane inter-
face between two homogeneous media (2.3.10). We must, however, remember two basic
differences.
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a. All quantities in (2.4.63) may vary along the interface, and the interface itself may
be curved. System (2.4.63) must be solved at the point of incidence Q, considering
all quantities at that point.

b. Equations (2.4.63) are only approximate and are valid for high-frequency waves.

We shall now discuss the relations

T (xi ) = T r (xi ) = T t (xi ) (2.4.65)

along�. Equations (2.4.65) express a physically simply understandable fact that the travel
times of the reflected and transmitted waves equal the travel time of the incident wave
along interface �. It is usual to call (2.4.65) the phase-matching relations and to call the
procedure the phase matching. Here we shall use the phase-matching relations to determine
T r (Q), T t (Q), 	pr (Q), and 	pt (Q).

The phase-matching relation immediately implies

T (Q) = T r (Q) = T t (Q). (2.4.66)

If we expand T (xi ), T r (xi ), and T t (xi ) into a Taylor series in terms of Cartesian coordinates
xi at Q, phase-matching relation (2.4.65) also implies that the first, second, and higher
tangential derivatives (in the plane tangential to interface � at Q) of T , T r , and T t at
Q are equal. The equality of the first tangential derivatives of the travel-time fields along
interface � has been discussed in more detail for plane waves in Section 2.3.1. Here we
shall exploit these results very briefly. As in the case of plane waves, the slowness vectors
of reflected wave 	p r (Q) and of transmitted wave 	p t (Q) are given by relations (2.3.23) and
(2.3.18), where all quantities are taken at point Q.

If we put � = 0, the system of equations (2.4.63) simplifies considerably:

P + Pr = Pt ,

ρ−1
1 (pini )P + ρ−1

1

(
pri ni

)
Pr = ρ−1

2

(
pti ni

)
Pt .

(2.4.67)

All quantities in (2.4.67) are taken at Q. The system fully coincides with the system for
amplitudes of the plane waves reflected and transmitted at the plane interface between
two homogeneous media. This means that the solution can be expressed in terms of the
reflection and transmission coefficients of plane waves at a plane interface,

Pr (Q) = Rr P(Q), Pt (Q) = Rt P(Q). (2.4.68)

Here reflection coefficient Rr and transmission coefficient Rt are given by (2.3.24) or
(2.3.26), where all the quantities are taken at point Q. Thus, in the high-frequency approxi-
mation, the ratio of the amplitude of the reflected (transmitted) wave to the amplitude of the
incident wave at point Q does not depend on the curvature of the interface, on the curvature
of the wavefront of the incident wave, and on the gradients of velocities and densities in the
vicinity of Q. It depends only on the local values of the velocities and densities directly at
point Q on both sides of� (c1(Q), c2(Q), ρ1(Q), and ρ2(Q)) and on the angle of incidence
i1. This ratio is given by a standard reflection (transmission) coefficient of the plane wave
at the plane interface between two homogeneous media.

We emphasize one important point: we are speaking of amplitudes of reflected (trans-
mitted) waves only on interface� at point Q. The amplitudes of the reflected (transmitted)
wave away from the interface depend, of course, on all the previously mentioned factors.
The transport equation must be used to evaluate the amplitudes of the reflected (transmit-
ted) waves away from the interface. Term ∇2T r (∇2T t ) in the transport equation for the
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reflected (transmitted) wave depends considerably on all these factors, particularly on the
curvature of the interface.

All the preceding conclusions are valid only for the zeroth-term of the ray series
(zeroth-order approximation). In the zeroth-order approximation, term � in the system of
equations (2.4.63) really does not influence the results. It would, however, also be possible
to use the whole ray series; see Section 5.6. Then, the higher order terms of the ray series
calculated in this way compensate term� in (2.4.63). Thus, the higher order terms depend
on ∂P/∂xi , ∂Pr/∂xi , and ∂Pt/∂xi at Q; see (2.4.64). As discussed earlier, Pr (xi ) and
Pt (xi ) in the vicinity of point Q also depend on the curvature of the wavefront of the
incident wave, the curvature of the interface, the gradients of velocities ∇c1 and ∇c2, and
densities ∇ρ1 and ∇ρ2 in the vicinity of Q. Consequently, ∇Pr and ∇Pt , computed at
Q, also depend on the factors mentioned, and the higher order terms of the ray series of
reflected (transmitted) waves will depend on these factors directly at point Q. This is the
primary difference between the zeroth-order term, discussed here, and the higher order
terms.

Let us now consider interface� between two inhomogeneous isotropic elastic media.
The P and S velocities and the density in the first medium are denoted by α1(xi ), β1(xi ),
and ρ1(xi ), and in the second medium by α2(xi ), β2(xi ), and ρ2(xi ). The incident wave
may be P or S. Four waves are then generated at the interface: two reflected (P and S), and
two transmitted (P and S). We can investigate the process of reflection and transmission
in exactly the same way as in the acoustic case. We are again interested only in the high-
frequency approximate solution or, more specifically, in the zeroth-order approximation
of the ray method. We will not present all the equations here because the procedure is the
same as that for acoustic waves. We shall only briefly summarize the main conclusions. We
shall not distinguish between velocities α and β but simply use V . The equations will then
be valid both for P and S waves. We merely insert V = α, if the wave under consideration
is P, and V = β, if it is S. We shall now select one of the four reflected/transmitted waves
and denote all quantities corresponding to this wave with a tilde over the relevant symbol.
The same quantities for the incident wave are without the tilde. Snell’s law may then be
expressed in the following way:

sin i(Q)

V (Q)
= sin ĩ(Q)

Ṽ (Q)
, (2.4.69)

where i(Q) is the angle of incidence at Q and ĩ is the angle of reflection/transmission. The
equation for the initial value of slowness vector p̃(Q) of the reflected/transmittedwave reads

	̃p(Q) = 	p(Q) − {
( 	p(Q) · 	n(Q))

∓ ε[Ṽ−2(Q) − V−2(Q) + ( 	p(Q) · 	n(Q))2]1/2}	n(Q). (2.4.70)

Here ε is again the orientation index, given by the relation

ε = sgn( 	p(Q) · 	n(Q)). (2.4.71)

The upper sign (−) in (2.4.70) corresponds to the transmitted waves; the lower sign (+)
refers to the reflected waves. Formula (2.4.70) is valid both for unconverted R/T waves
(P→ P, S→ S) and for converted R/T waves (P→ S, S→ P). The validity of Equations
(2.4.69) and (2.4.70) is, of course, limited only to high-frequency waves. Only for plane
waves, reflected or transmitted at the plane interface between twohomogeneous half-spaces,
do the equations have an exact meaning.
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In the same way as for acoustic waves, the initial values for the amplitudes of the
generated waves at Q, Ã(Q) for P waves and/or B̃(Q) and C̃(Q) for S waves, can be
calculated using the standard plane wave equations. For example, we can use explicit
expressions for plane-wave reflection/transmission coefficients or directly use the system
of equations (2.3.37). All the equations have, of course, only a local character, and the
quantities included in these equations must be taken at point Q. Amplitudes Ã(Q), B̃(Q),
and C̃(Q), corresponding to the individual reflected/transmitted waves, do not depend on
the curvature of the interface, on the curvature of the incident wave, or on the gradients of
the velocities and densities at Q. They depend only on α1(Q), α2(Q), β1(Q), β2(Q) and
ρ1(Q), ρ2(Q), on the angle of incidence, and on the amplitude of the wave incident at Q.

Finally, the reflection/transmission of nonplanar high-frequency elastic waves at a
curved interface between two inhomogeneous anisotropic media can again be solved in the
same way. In the zeroth-order ray approximation, the general rules derived for plane waves
at a plane interface between two homogeneous anisotropic solids in Section 2.3.3 remain
valid even now, but must be considered locally, at point Q.

2.4.6 Space-Time Ray Method

Several alternative methods have been used to investigate the propagation of elastic waves
in smoothly inhomogeneous layeredmedia.We shall briefly discuss one of them: the space-
time ray method. Instead of (2.4.14), we shall use a more general ansatz solution:

ui (x j , t) = Ui (x j , t) exp[iθ (x j , t)]. (2.4.72)

The solution in this form is usually called the space-time ray solution, or theWKB solution.
It is assumed that the complex-valued vectorial amplitude function Ui (x j , t) is a slowly
varying function of xi and t and that the scalar real-valued phase function θ (x j , t) is a
rapidly varying function of xi and t . Solution (2.4.72) represents a quasi-monochromatic
wave packet. The local instantaneous frequency ω(xi , t) and the local instantaneous wave
vector 	k(xi , t) are defined by relations ω = −∂θ/∂t , ki = ∂θ/∂xi . The ansatz solution
(2.4.72) is more general than the standard space ray method ansatz solution ui (x j , t) =
Ui (x j ) exp[−iω(t − T (x j ))], whereUi does not depend on t , and θ (x j , t) is a linear function
of t , θ (x j , t) = −ω(t − T (x j )).

Various versions of (2.4.72) have been used. Often, a large parameter p is formally
introduced into the exponential function of (2.4.72) so that the exponential factor reads
exp[ipθ (x j , t)]. Function θ (x j , t) may then vary slowly. It is also possible to construct the
space-time ray series, in inverse powers of (ip). In this section, we shall not discuss the
space-time ray series solution, but only the zeroth-order approximation (2.4.72).

The space-time ray method can be applied to different wave fields, including elastic,
acoustic, and electromagnetic. It has found useful applications in the investigation of waves
propagating in viscoelastic media and inmovingmedia, also including nonlinear problems.
Typical wave phenomena studied by the space-time ray method are dispersion and absorp-
tion of waves. For the most comprehensive treatment of the space-time ray-series approach
and for its early historical development see Babich, Buldyrev, and Molotkov (1985), where
many other references can be found. For the application of the space-time ray method to
viscoelastic media see Thomson (1997a), Section 6.

This book is devoted mainly to the propagation of high-frequency seismic body waves
in perfectly elastic models, where the standard space ray method can be applied. For this
reason, we shall not consider the space-time ray method in detail. To give the reader a
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taste of the space-time ray method, we shall apply it to perfectly elastic, inhomogeneous,
anisotropic media, controlled by the elastodynamic equation (2.1.17). The treatment of
pressure waves in fluid media and elastic waves in isotropic media is quite analogous.
For more complex media (viscoelastic and the like), it would, of course, be necessary to
consider the appropriate elastodynamic equations.

Inserting (2.4.72) into the elastodynamic equation (2.1.17) for a perfectly elastic, in-
homogeneous, anisotropic medium yields

−Ni ( 	U ) + iMi ( 	U ) + Li ( 	U ) = 0, i = 1, 2, 3, (2.4.73)

where Ni ,Mi , and Li are given by relations

Ni ( 	U ) = ci jklθ, jθ,lUk − ρθ2,tUi ,

Mi ( 	U ) = (ci jklθ,lUk), j + ci jklθ, jUk,l − ρUiθ,t t − 2ρθ,tUi,t , (2.4.74)

Li ( 	U ) = (ci jklUk,l), j − ρUi,t t .

Here θ,i = ∂θ/∂xi , θ,t = ∂θ/∂t , and so on. Ni ( 	U ) is the most rapidly varying function; it is
quadratic in θ,i and θ,t . Mi ( 	U ) is linear in θ,i , θ,t , θ,i j , and θ,t t , and Li ( 	U ) does not depend
on θ at all. The elastodynamic equation (2.1.17) with ansatz (2.4.72) is approximately
satisfied if Ni ( 	U ) = 0 and Mi ( 	U ) = 0. Equation Ni ( 	U ) = 0 can be used to separate the
three waves that can propagate in smoothly inhomogeneous anisotropic media (qS1, qS2,
qP) and to find the eikonal equations for phase function θ and the polarization vectors of
these three waves. Equation Mi ( 	U ) = 0 can then be used to find the transport equation.

Equation Ni ( 	U ) = 0 can be expressed in the following form:

�ikUk − θ 2,tUi = 0, �ik = ai jklθ, jθ,l . (2.4.75)

The 3 × 3 matrix Γ̂, given by (2.4.75), is a space-time Christoffel matrix. We use the same
notation for it as in the space ray method and hope that there will be no misunderstanding.
Equations (2.4.75) constitute a 3 × 3 eigenvalue problem, in the same way as Equations
(2.2.35) in the space raymethod.We can determine the three eigenvaluesGm (m = 1, 2, 3),
and the three relevant eigenvectors 	g (m) (m = 1, 2, 3) of the space-time Christoffel matrix.
These three eigenvalues and eigenvectors correspond to the three waves that can propagate
in smoothly varying anisotropic media: qS1, qS2, and qP waves. The eikonal equation of
the space-time ray method, corresponding to the mth wave (m = 1, 2, 3), reads

Gm(xi , θ, j ) = θ2,t , Gm = ai jklθ, jθ,l g
(m)
i g(m)

k . (2.4.76)

It differs from the eikonal equation (2.4.44) of the space ray method by factor θ2,t . Eigen-
vector 	g (m) determines the polarization of the mth wave, 	U = A	g (m).

As ω = −θ,t and ki = θ,i , the eikonal equation (2.4.76) for a given xi also represents
the relation between ω and ki . Such relations are called local dispersion relations. We
shall present two alternative forms of the local dispersion relation for waves propagating
in inhomogeneous anisotropic media:

ω2 = Gm(xi , k j ), ω = �(xi , k j ), (2.4.77)

where �(xi , k j ) = [Gm(xi , k j )]1/2.
Before we discuss equation Mi ( 	U ) = 0, it will be useful to derive equations for certain

average energy quantities, in much the same way as in Section 2.4.4. We are particularly
interested in the average strain (potential) energy W , average kinetic energy K , average
elastic energy E = W + K , and average elastic energy flux Si . The averaging is performed
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with respect to θ , over a period of 2π . Moreover, only the leading terms in θ,i and θ,t are
considered. All derivations are the same as in the space ray method, and we shall not repeat
them. Assuming ansatz solution (2.4.72) in real-valued form,

ui (x j , t) = 1
2 (Ui exp(iθ ) +U ∗

i exp(−iθ )), (2.4.78)

with real-valued θ and gi , but complex-valued Ui , we obtain

W = 1
4ci jklθ, jθ,lUiU ∗

k , K = 1
4ρθ

2
,tUiU ∗

i ,

E = W + K , Si = − 1
4ci jklθ,lθ,t (UjU ∗

k +U ∗
j Uk).

(2.4.79)

All the expressionsW ,K , E , and Si dependbothonposition xi and time t .Using Ni ( 	U ) = 0,
it is also possible to show that W = K . We can then simply determine the average elastic
energy E :

E = W + K = 2K = 1
2ρθ

2
,tUiU

∗
i . (2.4.80)

Now we shall return to equation Mi ( 	U ) = 0. InsertingUk = Ag(m)
k and multiplying the

equation by g(m)
i yields

Mi

(
A	g (m)

)
g(m)
i = 2Wj A, j + AWj, j − 2ρθ,t A,t − ρθ,t t A = 0, (2.4.81)

where we have used the notation

Wj = ci jkl g
(m)
i g(m)

k θ,l . (2.4.82)

(2.4.81) represents one form of the transport equation for A, analogous to (2.4.47). It can
be expressed in several other forms. By multiplying (2.4.81) with A∗ and adding to it the
complex-conjugate form, we obtain a simpler transport equation for AA∗:

(Wj AA
∗), j = (ρθ,t AA

∗),t . (2.4.83)

This is a generalization of (2.4.50). Finally, by multiplying (2.4.83) by θ,t and taking into
account ci jklθ, jθ,lt g

(m)
k g(m)

i = 2ρθ,tθ,t t , we obtain an important and well-known relation:

∂E/∂t + Si,i = 0. (2.4.84)

Thus, the average energy quantities E = W + K and Si satisfy the energy equations
(2.1.38) in the space-time ray method.

As usual, we can introduce the group velocity vector 	U by the relation

Ui = Si/E = −ai jklθ,l g(m)
i g(m)

k

/
θ,t . (2.4.85)

Note that θ,t = −ω, so that the sign in (2.4.85) is + if we use ω instead of θ,t . Using
(2.4.85), energy relation (2.4.84) yields the next familiar form:

∂E/∂t + (EUi ),i = 0. (2.4.86)

Because the eikonal equation (2.4.76) of the space-time ray method is known, it is
easy to construct the space-time ray tracing systems, representing the characteristics of
the eikonal equation. Standard Hamiltonian procedures can be used in this case. As an
example, see the surface-wave ray tracing systems in Section 3.12. Similarly, the derived
transport equations can be used to determine the amplitude variations along the space-time
rays.

For more details on the space-time ray method and on its applications refer to Babich
(1979), Kirpichnikova and Popov (1983), and particularly to the monograph by Babich,
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Buldyrev, andMolotkov (1985). Considerable attention has also been devoted to the space-
time ray method in some other books on the ray method; see Felsen and Marcuvitz (1973)
and Kravtsov and Orlov (1980). The space-time ray method may also be applied to solv-
ing some problems involving time-dependent boundary conditions, moving sources, and
faulting sources among others. This includes the investigation of the reflection of waves
from moving bodies and the related Doppler effect. Finally, the complex-valued variant
of the space-time ray method can be used to derive and study the Gaussian wave packets
propagating along space rays. See Babich and Ulin (1981a, 1981b), Babich, Buldyrev, and
Molotkov (1985), and other references given in Section 5.8.2. Gaussian wave packets have
found applications in the construction of solutions of the elastodynamic equations, based
on the integral superposition of Gaussian wave packets. Such solutions remove certain
singularities of the ray method. See the references cited in Section 5.8.5.

An alternative method, close to the space-time ray method, is based on variational prin-
ciples. In 1965, G. B.Whitham postulated a new variational principle in the theory of wave-
fields, which has also found applications in seismic wavefields (Whitham 1965, 1974). The
principle is known as the principle of the average Lagrangian, or asWhitham’s variational
principle. For a detailed comparison ofWhitham’s variational principle with the space-time
ray-series method, see Babich, Buldyrev, and Molotkov (1985, Section 2, §4). For appli-
cations of Whitham’s variational principle in seismology, see Dahlen and Tromp (1998)
and Ben-Hador and Buchen (1999), where other references can also be found. Dahlen
and Tromp (1998) use Whitham’s variational principle to develop in full the zeroth-order
approximation of the space ray method for seismic body waves propagating in isotropic,
smoothly inhomogeneous, global Earthmodels.Moreover, they also formulate the principle
for models containing structural interfaces and the boundary of themodel (Earth’s surface).

2.5 Point-Source Solutions. Green Functions

The simplest solutions of the elastodynamic and acoustic wave equations in homogeneous
media are the plane waves studied in Sections 2.2 and 2.3. The next simplest solutions
refer to a point source. Whereas the plane-wave solutions cannot be defined for an in-
homogeneous medium, the point-source solutions have a well-founded physical meaning
even there. Certain strictly defined point-source solutions of the acoustic and elastody-
namic wave equations are called acoustic and elastodynamic Green functions. They play
a very important role in many seismological applications, both in the numerical modeling
of seismic wavefields and in the inversion of seismic data. See Section 2.6.

In this section, we shall derive the general expressions for the point-source solutions
of the acoustic and elastodynamic wave equations for homogeneous media. We shall
then determine the Green functions for both cases. For the acoustic case, we shall use
two approaches to determine the Green function: the exact approach and the approximate
approach. The approximate high-frequency approach is based on the results of Section
2.4, particularly on the eikonal and transport equations. The exact and approximate high-
frequency approaches yield the same results in the acoustic case, if one free constant in the
approximate solution is properly specified. Both the exact and approximate approaches will
also be applied in the elastodynamic case for the isotropic media. See Sections 2.5.3 and
2.5.4. Finally, in Section 2.5.5, we shall derive the asymptotic high-frequency expressions
for the elastodynamic Green function in anisotropic homogeneous media.

In all three cases (acoustic, elastic isotropic, and elastic anisotropic), we shall use
the same approach to derive the integral representation of the Green functions, based on
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contour integrals in the complex plane. For the acoustic and elastic isotropic case, the final
integrals can be computed exactly using the Weyl integral; see Section 2.5.1. The Weyl
integral is, however, not applicable to the anisotropic medium, and the resulting integrals
can be calculated only approximately, by the method of stationary phase.

The results of this sectionwill be used in Chapter 5 to derive asymptotic high-frequency
(ω → ∞) expressions for the ray-theory Green functions in general 3-D laterally varying
layered structures (acoustic, elastic isotropic, and elastic anisotropic).

2.5.1 Point-Source Solutions of the Acoustic Wave Equation

Let us first consider the acoustic wave equation for a homogeneous medium without the
source term

∇2 p = c−2 p̈, p = p(xi , t). (2.5.1)

We shall solve this equation in spherical coordinates (r, θ, φ), with r = 0 at the origin of
Cartesian coordinates. Equation (2.5.1) can be solved easily in spherical coordinates by
the Fourier method of separation of variables. For details and results, see, for example,
Bleistein (1984). Here, however, we are interested only in radially symmetric solutions,
independent of θ and φ. Laplacian ∇2 p then takes the following form:

∇2 p = 1

r2
∂

∂r

(
r 2
∂p

∂r

)
= 1

r

∂2(rp)

∂r 2
.

Inserting this into (2.5.1) yields

∂2(rp)

∂r 2
= 1

c2
∂2(rp)

∂t2
. (2.5.2)

Quantity rp depends only on r and t so that (2.5.2) represents a one-dimensional wave
equation in rp. Its solution is simple:

rp(r, t) = aF(t − T (r )) + bF(t + T (r )), T (r ) = r/c. (2.5.3)

Here F(t ∓ T ) is an analytical signal, and a and b are constants that may be complex-
valued. Equation (2.5.3) finally yields the radially symmetric solution of the acoustic wave
equation (2.5.1),

p(r, t) = a

r
F

(
t − r

c

)
+ b

r
F

(
t + r

c

)
. (2.5.4)

The solution (2.5.4) of acoustic wave equation (2.5.1) represents two spherical waves.
Both solutions are constant along spherical surfaces T (r ) = const. (that is, r = const.).
The solution with the minus sign (−) corresponds to the spherical wave with an expanding
wavefront (for t increasing), propagating away from the origin of coordinates to infinity.
Similarly, the plus sign (+) corresponds to the spherical wave with the wavefront propagat-
ing toward the origin of coordinates. The spherical waves with the expanding wavefronts
are usually called outgoing (or exploding) spherical waves, and the spherical waves with
the shrinking wavefronts are called ingoing (or imploding) spherical waves.

The time-harmonic spherical waves are given by the general relation

p(r, t) = a

r
exp

[
−iω

(
t − r

c

)]
+ b

r
exp

[
−iω

(
t + r

c

)]
. (2.5.5)
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Equation (2.5.5) can also be expressed in the following form:

p(r, t) =
(
a

r
exp[ikr ] + b

r
exp[−ikr ]

)
exp[−iωt], (2.5.6)

where k is the wave number, k = ω/c. The first terms in (2.5.5) and (2.5.6) correspond to
the outgoing spherical waves, and the second terms correspond to the ingoing spherical
waves.

The outgoing spherical waves correspond towaves generated by a point source situated
at the origin of coordinates. In this section, we shall consider only these point-source
solutions. Thus, instead of (2.5.4), the solution now reads

p(r, t) = a

r
F

(
t − r

c

)
. (2.5.7)

Note, however, that the imploding spherical waves also play an important role in various
seismological applications and in the backward continuation of wavefields.

For a time-harmonic point source, the solutions are given by the relation

p(r, t) = a

r
exp

[
−iω

(
t − r

c

)]
= a

r
exp[ikr ] exp[−iωt]. (2.5.8)

Formally, constant a in (2.5.8) represents the amplitude of the spherical time-harmonic
wave at unit distance from the source (r = 1). It depends on the strength of the source. For
the time-domain solution (2.5.7), a does not represent the amplitude at r = 1 because |F |
may be different from unity.

For certain strictly defined point sources, and, consequently, for a strictly defined con-
stant a and analytical signal F , the solution p(r, t) given by (2.5.7) is called the acoustic
Green function. See Section 2.5.2.

Equations (2.5.4) through (2.5.8) yield exact solutions of acousticwave equation (2.5.1).
At large distances from the point source, the wavefront of the spherical wave is locally
close to a plane wavefront, and amplitude a/r varies only slowly with respect to Cartesian
coordinates xi . Thus, we can also try to seek the high-frequency solutions of acoustic wave
equation (2.5.1) using the approximate method of Section 2.4. The method is based on the
ansatz solution p(xi , t) = P(xi )F(t − T (xi )), on the determination of phase function T (xi )
from the eikonal equation (∇T )2 = 1/c2, and on the determination of amplitude function
P(xi ) from the transport equation 2∇T · ∇P + P∇2T = 0; see (2.4.6) and (2.4.7). For a
symmetric (omnidirectional) point source situated at the origin of the coordinates, T and
P depend on r only, and we have ∇T · ∇T = (dT/dr )2. The eikonal equation then yields
T (r ) = ±r/c. The Laplacian reads

∇2T = 1

r2
d

dr

(
r 2
dT

dr

)
= ± 2

rc
.

Because 2∇T · ∇P = ±(2/c)dP/dr , the transport equation reduces to

dP/dr = −P/r.

This yields the solution P = a/r , where a is a constant independent of r . Thus,

p(r, t) = a

r
F

(
t − r

c

)
. (2.5.9)

This solution corresponds to the outgoing spherical wave and is the same as (2.5.7).
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Thus, in this case, the approximatemethod based on the eikonal and transport equations
yields an exact solution.

In (2.5.9), constant a does not depend on coordinates r, θ, and φ. In fact, in the ap-
proximate method, a should be independent of r , but it may depend on θ and φ. Function
P(r, θ, φ) = (1/r )a(θ, φ) is still a solution of transport equation (2.4.7). Thus, the approx-
imate high-frequency solution of acoustic wave equation (2.5.1) can be expressed as

p(r, θ, φ, t) = a(θ, φ)

r
F

(
t − r

c

)
. (2.5.10)

Function a(θ, φ) represents the amplitude of the time-harmonic pressure wave generated
by a point source at unit distance (r = 1) from the source. Alternatively, we can say that
it represents the distribution of amplitudes along a unit spherical surface with its center
at the source. Function a(θ, φ) may be arbitrary, but it should be smooth. In the text, we
shall use the following terminology: a point source with a(θ, φ) = const. will be called
omnidirectional.

We shall now consider an omnidirectional time-harmonic point source. An important
role in the theory of wave propagation is played by the integral expansion of a spherical
wave into plane waves, given by the classicalWeyl integral (Weyl 1919):

exp[−iω(t − r/c)]

r
= iω

2π

∫∫ ∞

−∞

dp1dp2
p3

exp[−iω(t − pi xi )]. (2.5.11)

Here r = (x21 + x22 + x23 )
1/2 and pi satisfy the relation pi pi = 1/c2 so that

p3 = (
1/c2 − p21 − p22

)1/2
. (2.5.12)

If p21 + p22 > 1/c2, p3 is imaginary, with the sign taken as follows: Im p3 > 0.
We shall not derive theWeyl integral (2.5.11) because this has been done in many other

textbooks on wave propagation. For a detailed derivation, discussion, and seismological
applications, see Tygel and Hubral (1987) and DeSanto (1992). The Weyl integral (2.5.11)
has been used to solve theoretically various wave propagation problems of great seismolog-
ical interest. For example, it has been broadly used in computing the wavefield generated
by a point source in a 1-D layered structure.

Thus,when a solution of anywave propagation problem in a specified structure is known
for plane waves, a formal integral solution of the same problem for a point source can be
obtained using theWeyl integral and will consist of an integral superposition of plane-wave
solutions. It should be emphasized that the Weyl integral also includes inhomogeneous
plane waves for p21 + p22 > 1/c2.

The integral representation (2.5.11) can be expressed in several alternative forms. For
axially symmetric point-source solutions, the cylindrical coordinates can be introduced,
and one integral in (2.5.11) can be replaced by aBessel function. This yields the Sommerfeld
integral, representing an expansion of a spherical wave into cylindrical waves. Many im-
portant methods of wave propagation in 1-D layered models are based on the Sommerfeld
integral; these methods include the reflectivity method (Fuchs 1968a, 1968b; Fuchs and
Müller 1971; Müller 1985). For details on the Sommerfeld integral, again refer to Tygel
and Hubral (1987) and DeSanto (1992).
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2.5.2 Acoustic Green Function

We shall now derive the exact expression for the acoustic Green function in a homogeneous
unbounded medium (ρ= const., c= const.) for time harmonic waves. It would be possible
to use several alternative methods to derive these expressions. We shall use an approach
based on contour integrals in a complex plane. The advantage of this method is that we can
use it not only for acoustic but also for elastic, isotropic, and anisotropicmedia. For acoustic
models, certain other approaches may yield the acoustic Green function in a simpler and
more straightforward way.Wewish, however, to use the samemethod in all cases (acoustic,
elastic isotropic, and elastic anisotropic).

We shall first seek the integral solution of the acoustic wave equation (2.1.29) for
pressure p(x j ) in a homogeneous medium in the frequency domain, assuming an arbitrary
source term f p(x j ).Only later shallwe specify f p(x j ) to obtain the acousticGreen function.
For a homogeneous medium, (2.1.29) reads

1

ρ
∇2 p(x j ) + ω2

ρc2
p(x j ) = − f p(x j ). (2.5.13)

To solve (2.5.13) for p(x j ), we use the 3-D Fourier transform:

p(x j ) =
∫∫∫ ∞

−∞
p̄(k j ) exp[iknxn]dk1dk2dk3,

f p(x j ) =
∫∫∫ ∞

−∞
f̄ p(k j ) exp[iknxn]dk1dk2dk3.

(2.5.14)

The inverse Fourier transform reads

p̄(k j ) = (8π3)−1

∫∫∫ ∞

−∞
p(x j ) exp[−iknxn]dx1dx2dx3,

f̄ p(k j ) = (8π3)−1

∫∫∫ ∞

−∞
f p(x j ) exp[−iknxn]dx1dx2dx3.

(2.5.15)

Multiplying (2.5.13) by exp[−iknxn]/8π 3 and taking the integral
∫∫∫∞

−∞ . . . dx1dx2dx3 of
the resulting equation yields the relation between p̄(k j ) and f̄ p(k j ):

p̄(k j )(ω
2/c2 − kiki ) = −ρ f̄ p(k j ). (2.5.16)

Note that the quantities ki in (2.5.14) through (2.5.16) have the physical meaning of the
components of wave vector 	k. Inserting (2.5.16) into (2.5.14) yields the final equation for
p(xi ),

p(xi ) =
∫∫∫ ∞

−∞

ρ f̄ p(k j )

kiki − ω2/c2
exp[iknxn]dk1dk2dk3. (2.5.17)

This is the formal integral solution of (2.5.13), assuming that source function f p(x j ) is
known. Function f̄ p(k j ) is obtained from f p(x j ) using (2.5.15).

It will be useful to express the solution (2.5.17) for p(x j ) in a slightly modified form:

p(x j ) = ρ

∫∫ ∞

−∞
I (kJ , x3) exp[ikN xN ]dk1dk2, (2.5.18)

I (kJ , x3) =
∫ −∞

−∞

f̄ p(k j )

k23 − (ω2/c2 − kNkN )
exp[ik3x3]dk3. (2.5.19)

The summations in kNkN and kN xN are over N = 1, 2.
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Integral I (kJ , x3) can be evaluated by contour integration in complex plane k3 =
Re(k3) + i Im(k3), using the Jordan lemma.We choose contourC in complex plane Re(k3),
Im(k3) along real axis Im(k3) = 0 and along a half-circle with its center at point k3 = 0 and
with radius Rc in the upper half-plane Im(k3) > 0. We denote the region inside contour C
by C+. The contribution along the semicircle with radius Rc in the upper half-plane van-
ishes for Rc → ∞ due to factor exp(ik3x3) in the integrand. Thus, integral (2.5.19) can be
expressed in terms of the residues corresponding to poles situated in the upper half-plane
and along the real axis.

If kNkN < ω2/c2, there are two poles along the real axis: k3 = ±(ω2/c2 − kNkN )1/2,
corresponding to outgoing and ingoing waves. If kNkN > ω2/c2, the pole is on the posi-
tive part of the imaginary axis, corresponding to an inhomogeneous wave, exponentially
decreasing with increasing x3. We are interested here only in the outgoing waves, not
in the ingoing waves. To eliminate the ingoing waves, we use the classical approach:
we assume that ω is complex-valued, with a slight positive imaginary-valued part. Pole
k3 = + (ω2/c2 − kNkN )1/2 is then shifted from the real-valued axis into the upper half-plane,
and pole k3 = −(ω2/c2 − kNkN )1/2 moves into the lower half-plane. Integral (2.5.19) re-
duces to the residue calculated at point k3 = +(ω2/c2 − kNkN )1/2. A simple calculation of
the residue yields

I (kJ , x3) = iπk−1
3 f̄ p(k j ) exp[ik3x3]. (2.5.20)

To interpret (2.5.18) and (2.5.20) in terms of familiar quantities, we substitute ki = ωpi .
Thus, instead of variables ki , which have the meaning of components of wave vector 	k,
we shall use variables pi , which have the meaning of the slowness vector components.
Inserting kN = ωpN and (2.5.20) into (2.5.18) yields

p(x j ) = iπρω
∫∫ ∞

−∞

f̄ p(k j )

p3
exp[iωpnxn]dp1dp2, (2.5.21)

where p3 = (1/c2 − pN pN )1/2, and Imp3 > 0 for p21 + p22 > 1/c2.
Equation (2.5.21) represents the final form of the exact solution of wave equation

(2.5.13). It can be used for very general forms of source term f p(x j ). Frequency ω may
again be taken real-valued, eliminating its small imaginary partwe considered in calculating
(2.5.19).

In the following, we shall specify f̄ p(k j ) in (2.5.21) for a point source corresponding
to the acoustic Green function. We shall first introduce the acoustic Green function in
the time domain. By acoustic Green function in the time domain, we shall understand the
solution of the acoustic wave equation for pressure (2.1.23) with fi = 0, in which source
term f p(x j , t) is specified as follows:

f p(x j , t) = ∂q(x j , t)/∂t = δ(t − t0)δ(	x − 	x0). (2.5.22)

Here δ(t − t0) is a 1-D and δ(	x − 	x0) a 3-D delta function. We shall denote the acoustic
Green function by

G(	x, t ; 	x0, t0). (2.5.23)

Thus, the acoustic Green function is a solution of the equation

∇ · (ρ−1∇G) − κG̈ = −δ(t − t0)δ(	x − 	x0). (2.5.24)

From a physical point of view, the acoustic Green function G(	x, t ; 	x0, t0) represents the
pressure at point 	x and time t caused by a point source situated at point 	x0, representing the
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first time derivative ∂q/∂t of injection volume rate density q(t), with a time dependence
of ∂q/∂t corresponding to an impulse delta function applied at time t0.

Because δ(t − t0) has the dimension of s−1 and δ(	x − 	x0) has the dimension of m−3,
the dimension of the Green function G(	x, t ; 	x0, t0) is kgm−4 s−1; see (2.5.24). To assign
G(	x, t ; 	x0, t0) the physical units of pressure, we must multiply f p(x j , t) by a constant of
unit magnitude and dimension m3 s−1.

We can also introduce the time-harmonic acoustic Green function G(	x, 	x0, ω), which
is the solution of the time-harmonic acoustic wave equation

∇ · (ρ−1∇G) + ω2κG = −δ(	x − 	x0). (2.5.25)

In this equation, we consider t0 = 0. The dimension of the time-harmonic acoustic Green
function G(	x, 	x0, ω) is kgm−1. To assign G(	x, 	x0, ω) the physical units of pressure, we
must multiply the RHS of (2.5.25) by a constant of unit magnitude and dimension s−2.

We shall now derive the expression for the acoustic Green function in the frequency
domain, for a homogeneous medium. In this case, (2.5.25) takes the form

1

ρ
∇2G + ω2

ρc2
G = −δ(	x − 	x0). (2.5.26)

Comparing (2.5.26) with (2.5.13) we obtain f p(x j ) = δ(	x − 	x0). Equation (2.5.15) then
yields f̄ p(k j ) = (1/8π3) exp[−iωpnx0n]. Inserting this into (2.5.21) yields

G(	x, 	x0, ω) = iρω

8π 2

∫∫ ∞

−∞

1

p3
exp[iωpn(xn − x0n)]dp1dp2. (2.5.27)

Using the Weyl integral (2.5.11) finally yields

G(	x, 	x0, ω) = ρ

4πr
exp[iωr/c], (2.5.28)

where r = |	x − 	x0|. It is also simple to express the acoustic Green function G(	x, t ; 	x0, t0)
in the time domain:

G(	x, t ; 	x0, t0) = ρ

4πr
δ(t − t0 − r/c). (2.5.29)

These are the final expressions for the acoustic Green functions in the frequency and time
domains in a homogeneous medium. As we can see, the amplitudes of the Green function
decrease with increasing r as r−1 in a 3-D homogeneous medium.

2.5.3 Point-Source Solutions of the Elastodynamic Equation

We will again consider the elastodynamic equation for a homogeneous isotropic medium
(with λ = const., µ = const., and ρ = const.), with source term 	f vanishing,

(λ+ µ)u j,i j + µui, j j = ρüi , i = 1, 2, 3. (2.5.30)

We will look for spherical wave solutions using the approximate high-frequency method
described in Section 2.4.2. Using Equations (2.4.14), (2.4.26), and (2.4.28), we obtain the
approximate solution

	u(xi , t) = A(xi ) 	NF(t − T P (xi )) + (B(xi )	e1 + C(xi )	e2)F(t − T S(xi )).

(2.5.31)
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Here 	N is the unit vector normal to the wavefront, 	e1 and 	e2 are twomutually perpendicular
unit vectors tangent to the wavefront (perpendicular to 	N ). Travel-time functions T P (xi )
and T S(xi ) satisfy eikonal equations (2.4.24) and (2.4.27). Similarly, amplitude functions
A(xi ), B(xi ), and C(xi ) are the solutions of transport equations (2.4.32) and (2.4.38). In
the same way as in Section 2.5.1, we can find the solutions of the eikonal and transport
equations:

T P (r ) = r/α, T S(r ) = r/β,

A(r, θ, φ) = a(θ, φ)/r, B(r, θ, φ) = b(θ, φ)/r, (2.5.32)

C(r, θ, φ) = c(θ, φ)/r.

Here a, b, and c are arbitrary smooth functions of two radiation (take-off) angles θ and
φ. The final approximate high-frequency expression for a wavefield generated by a point
source reads

ui (x j , t) = 1

r
a(θ, φ)Ni F

(
t − r

α

)
+ 1

r
b(θ, φ)e1i F

(
t − r

β

)

+ 1

r
c(θ, φ)e2i F

(
t − r

β

)
. (2.5.33)

Expression (2.5.33) is, of course, only approximate. It is valid only at larger distances from
the source, where the slowness vectors and vectorial amplitudes of the waves generated by
a point source do not vary greatly over the distance of the prevailing wavelength. We also
speak of the far-field zone. In the exact solution of the point-source problem in an isotropic
homogeneous medium, some additional terms occur; these terms play an important role in
the near-field zone but can be neglected in the far-field zone.

The analytical signals of the P and S waves generated by a point source in (2.5.33) are
the same in our treatment. Only then can the complete wavefield be properly separated
into the wavefields of P and S waves. It would, however, also be possible to consider three
independent solutions, one for the P and the other two for the S1 and S2 waves, both with
different analytical signals.

Similarly, as in the acoustic case, we shall speak of omnidirectional point sources of
P, S1 or S2 waves if a(θ, φ) = const., b(θ, φ) = const., or c(θ, φ) = const., respectively.

2.5.4 Elastodynamic Green Function for Isotropic Homogeneous Media

We shall consider a unit single-force point source situated at point 	x0, oriented along axis
xn . We assume that its time dependence is represented by a spike (delta function) at time
t0. The Cartesian components of force 	f in elastodynamic equation (2.1.17) can then be
described by the relation,

fi (x j , t) = δinδ(t − t0)δ(	x − 	x0), (2.5.34)

and the elastodynamic equation reads

(ci jkluk,l), j − ρüi = −δinδ(t − t0)δ(	x − 	x0). (2.5.35)

We shall call the solution of (2.5.35) the elastodynamic Green function and denote it

ui (x j , t) = Gin(	x, t ; 	x0, t0). (2.5.36)
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Thus, elastodynamic Green function Gin(	x, t ; 	x0, t0) is a solution of the equation

(ci jklGkn,l), j − ρG̈in = −δinδ(t − t0)δ(	x − 	x0). (2.5.37)

From a physical point of view, Gin(	x, t ; 	x0, t0) represents the i th Cartesian component
of the displacement vector at location 	x and time t due to a point source situated at
	x0, representing a single unit force oriented along the nth Cartesian axis, with the time
dependence corresponding to an impulse delta function applied at time t0.

Time-harmonic elastodynamic Green function Gin(	x, 	x0, ω) is a solution of the
equation

(ci jklGkn,l), j + ρω2Gin = −δinδ(	x − 	x0). (2.5.38)

The foregoing definitions of the elastodynamic Green functions are also valid for in-
homogeneous anisotropic media. For isotropic homogeneous unbounded media, however,
the elastodynamic equations for the Green functions can be solved analytically. In most
other cases, the differential equations should be solved numerically, or approximately.

We shall now consider a homogeneous isotropic unboundedmedium.Differential equa-
tion (2.5.37) then has the form

(λ+ µ)G jn,i j + µGin, j j − ρG̈in = −δinδ(t − t0)δ(	x − 	x0). (2.5.39)

The exact solutionof this equation canbe found in several alternativeways. For example,
Aki andRichards (1980) used an approach based onLamé’s potentials.Here,we shall derive
the expressions for the elastodynamic Green function directly for the displacement vector
components, not invoking Lamé’s potentials at all. We shall use an approach similar to that
in Section 2.5.2. The advantage of this approach is that it is quite universal; it can be used
for both isotropic and anisotropic media. For anisotropic media, Lamé’s potentials cannot
be used.

We shall againfirst seek the solution of elastodynamic equation (2.1.27) in the frequency
domain for a general source term fi (x j ). Only later shall we specify fi using (2.5.34)
to obtain the elastodynamic Green function. Using the 3-D Fourier transform, we can
write

uk(x j ) =
∫∫∫ ∞

−∞
ūk(k j ) exp[iknxn]dk1dk2dk3,

fk(x j ) =
∫∫∫ ∞

−∞
f̄ k(k j ) exp[iknxn]dk1dk2dk3.

(2.5.40)

The inverse 3-D Fourier transform is as follows:

ūk(k j ) = (8π3)−1

∫∫∫ ∞

−∞
uk(x j ) exp[−iknxn]dx1dx2dx3,

f̄ k(k j ) = (8π3)−1

∫∫∫ ∞

−∞
fk(x j ) exp[−iknxn]dx1dx2dx3.

(2.5.41)

Multiplying (2.1.27) by exp(−iknxn)/8π 3 and taking the integral
∫∫∫∞

−∞ . . . dx1dx2dx3 of
the resulting equations yields the system of three linear equations in ūi (k j ) for a homoge-
neous medium,

Dikūk = ρ−1 f̄ i , Dik = ai jklk j kl − ω2δik . (2.5.42)
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The solution of this system is

ūk(k j ) = Bki f̄ i (k j )

ρ det D̂
, (2.5.43)

where Bki are cofactors of Dki . Inserting (2.5.43) into (2.5.40), we obtain the general solu-
tion of the elastodynamic equation (2.1.27) for a homogeneous medium in the frequency
domain

uk(x j ) = 1

ρ

∫∫ ∞

−∞
Ik(kJ , x3) exp[ikN xN ]dk1dk2, (2.5.44)

where the integral Ik is given by the relation

Ik(kJ , x3) =
∫ ∞

−∞

Bki f̄ i (k j )

det D̂
exp[ik3x3]dk3. (2.5.45)

Equations (2.5.44) and (2.5.45) are valid for both isotropic and anisotropic media, for
arbitrary source terms fi (x j ). Function f̄ i (k j ) must be determined from fi (x j ) using
(2.5.41).

Now we shall discuss the isotropic homogeneous elastic medium. The expression for
Bki/ det D̂ can be calculated analytically from (2.5.42):

Bki

det D̂
= (β2 − α2)kkki + (α2ksks − ω2)δki

(α2ksks − ω2)(β2klkl − ω2)
. (2.5.46)

Inserting this into (2.5.45) yields the final expression for Ik(k j , x3) for an isotropic homo-
geneous medium,

Ik(kJ , x3) =
∫ ∞

−∞

(β2 − α2)kkki + (α2ksks − ω2)δki
(α2ksks − ω2)(β2klkl − ω2)

f̄ i (k j ) exp[ik3x3]dk3.

(2.5.47)

Integral (2.5.47) can again be computed by contour integration in a complex plane k3 =
Re(k3) + i Im(k3), using the same approach as in Section 2.5.2. Since ω is complex-valued
with a small positive imaginary part, integral (2.5.47) has two poles within C+, kα3 , and k

β

3 :

kα3 = (ω2/α2 − kNkN )
1/2, kβ3 = (ω2/β2 − kNkN )

1/2. (2.5.48)

It is not difficult to compute the residues at poles k3 = kα3 and k3 = kβ3 . Equation (2.5.47)
then yields

Ik(kJ , x3) = iπ

ω2

{
kkki
kα3

f̄
α

i (k j ) exp
[
ikα3 x3

]
− kkki − ω2δik/β

2

kβ3
f̄ βi (k j ) exp

[
ikβ3 x3

]}
, (2.5.49)

where

f̄ αi (k j ) = [ f̄ i (k j )]k3=kα3 f̄ βi (k j ) = [ f̄ i (k j )]k3=kβ3 .

Expression (2.5.49) for Ik(kJ , x3) is also valid if kNkN > ω2/α2 and/or kNkN > ω2/β2.
We then only have to consider Im(kα3 ) > 0 and/or Im(kβ3 ) > 0.

Inserting (2.5.49) into (2.5.44) yields two integrals. In the first, we introduce new
variables pαI by substituting kI = ωpαI . Similarly, in the second one, we introduce the



2.5 POINT-SOURCE SOLUTIONS. GREEN FUNCTIONS 83

variables pβI by substituting kI = ωpβI . This yields

uk(x j ) = π iω

ρ

{∫∫ ∞

−∞

pαi p
α
k

pα3
f̄ αi exp

[
iωpαs xs

]
dpα1 dp

α
2

+
∫∫ ∞

−∞

δik/β
2 − pβi p

β

k

pβ3
f̄ βi exp

[
iωpβs xs

]
dpβ1 dp

β

2

}
. (2.5.50)

Here

pα3 = (
1/α2 − pαN p

α
N

)1/2
, Im

(
pα3
)
> 0 for pαN p

α
N > 1/α2,

pβ3 = (
1/β2 − pβN p

β

N

)1/2
, Im

(
pβ3
)
> 0 for pβN p

β

N > 1/β2.
(2.5.51)

The source terms f̄ αi and f̄ βi in (2.5.50) are obtained from f̄ αi (k j ) and f̄ βi (k j ) by the
appropriate substitution, kI = ωpαI or kI = ωpβI .

Equation (2.5.50) is still very general and is valid for an arbitrary source function fi (x j ).
If fi (x j ) is known, the functions f̄ αI and f̄ βi in (2.5.50) can be computed using (2.5.41).

We now wish to compute the elastodynamic Green function in the frequency do-
main. We must consider fi (x j ) given by the relation fi (x j ) = −δinδ(	x − 	x0); see (2.5.38).
Using (2.5.41), we can compute f̄ i (k j ) and obtain f̄ αi = (δin/8π 3) exp[−iωpαs x0s], f̄

β

i =
(δin/8π3) exp[−iωpβs x0s]. Inserting this into (2.5.50) yields

Gkn(	x, 	x0, ω) = iω

8π 2ρ

{∫∫ ∞

−∞

pαk p
α
n

pα3
exp

[
iωpαs (xs − x0s)

]
dpα1 dp

α
2

+
∫∫ ∞

−∞

δkn/β
2 − pβk p

β
n

pβ3
exp

[
iωpβs (xs − x0s)

]
dpβ1 dp

β

2

}
.

(2.5.52)

The integrals in (2.5.52) can be computed using the Weyl integral (2.5.11). Taking the
second partial derivatives of (2.5.11) with respect to xk and xn yields

∂2

∂xk∂xn

exp[iωr/c]

r
= − iω3

2π

∫∫ ∞

−∞

pk pn
p3

exp[iωps(xs − x0s)]dp1dp2,

(2.5.53)

where r = |	x − 	x0|. Using (2.5.53), we obtain this simple result from (2.5.52),

Gkn(	x, 	x0, ω) = δkn

4πρβ2r
exp[iωr/β]

− 1

4πρω2

∂2

∂xk∂xn

exp[iωr/α] − exp[iωr/β]

r
, (2.5.54)

with r = |	x − 	x0|. This is the final exact expression for the elastodynamic Green function
in a homogeneous isotropic medium, in the frequency domain. It may be expressed in many
alternative forms. For example, we can write it in the form of a finite series in (−iω)−1:

Gkn(	x, 	x0, ω) = GP
kn(	x, 	x0, ω) + GS

kn(	x, 	x0, ω), (2.5.55)

where GP
kn and G

S
kn are given by relations

GP
kn(	x, 	x0, ω)

=
[

1

4πρα2
NkNn − Akn

(−iω)4πραr
− Akn

(−iω)24πρr2

]
exp[iωr/α]

r
,
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GS
kn(	x, 	x0, ω)

=
[
δnk − NnNk

4πρβ2
+ Akn

(−iω)4πρβr
+ Akn

(−iω)24πρr2

]
exp[iωr/β]

r
.

(2.5.56)

Here Akn = δkn − 3NkNn . Using the Fourier transform, we arrive at the expressions for the
elastodynamic Green function in a homogeneous isotropic medium in the time domain:

Gkn(	x, t ; 	x0, t0) = NkNn

4πρα2r
δ

(
t − r

α

)
+ δkn − NkNn

4πρβ2r
δ

(
t − r

β

)

+ 3NkNn − δkn
4πρr3

∫ r/β

r/α
τδ(t − τ ) dτ. (2.5.57)

Expressions (2.5.54) through (2.5.57) are exact. At large distances r from the source,
sufficient accuracy may be achieved if the second and third terms in (2.5.56) are neglected.
We then speak of the far-field approximation of the elastodynamic Green function

Gkn(	x, 	x0, ω) .= NkNn

4πρα2r
exp[iωr/α] + δkn − NkNn

4πρβ2r
exp[iωr/β].

(2.5.58)

The far-field approximation is simultaneously a high-frequency approximation in view of
the factors 1/(−iω) and 1/(−iω)2 with the second and third terms.

As we can see, the expression (2.5.33) obtained in Section 2.5.3 corresponds to the
high-frequency approximation of the elastodynamic Green function, if constants a, b, and
c are chosen as follows:

a = Nn

4πρα2
, b = e1n

4πρβ2
, c = e2n

4πρβ2
. (2.5.59)

Comparing (2.5.58) with (2.5.33), we have taken into account the identity,

e1ne1i + e2ne2i = δin − Ni Nn. (2.5.60)

The physical interpretation of (2.5.59) is simple. The quantities e1n, e2n, and Nn represent
the decomposition of the single unit force oriented along the xn-axis into unit vectors 	e1,
	e2, and 	e3 ≡ 	N .

2.5.5 Elastodynamic Green Function for Anisotropic

Homogeneous Media

To derive the elastodynamic Green function for an anisotropic homogeneous medium, we
can start with Equations (2.5.44) and (2.5.45). These equations are exact. Unfortunately,
in anisotropic media, we are not able to solve integrals (2.5.44) and (2.5.45) exactly, in
terms of simple analytical functions, as in the case of isotropic media. We shall only
derive approximate, high-frequency asymptotic expressions (ω → ∞) for the elastody-
namic Green function, using Buchwald’s (1959) approach. For alternative approaches, see
Lighthill (1960), Duff (1960), Burridge (1967), Yeatts (1984), Hanyga (1984), Kazi-Aoual,
Bonnet, and Jouanna (1988), Tverdokhlebov and Rose (1988), Ben-Menahem (1990),
Ben-Menahem and Sena (1990), Tsvankin and Chesnokov (1990), Zhu (1992), Kendall,
Guest, and Thomson (1992), Wang and Achenbach (1993, 1994, 1995), Every and Kim
(1994), and Vavryčuk and Yomogida (1996).
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We assume that the source is situated at S, the receiver is situated at R, and distance
SR is large with respect to the wavelength. Following Buchwald (1959), we first rotate the
axes x1, x2, and x3 in (2.5.44) and (2.5.45) so that the positive x3-axis is in the direction
from S to R. Integrals (2.5.44) and (2.5.45) then read

uk(R) = 1

ρ

∫∫ ∞

−∞
Ikdk1dk2, Ik =

∫ ∞

−∞

Bki f̄ i (k j )

det D̂
exp[ik3x3]dk3.

(2.5.61)

As in Section 2.5.4, we shall calculate integral Ik of (2.5.61) by contour integration in
complex plane k3 = Re(k3) + i Im(k3). Contour C is again composed of two parts; the
first part is along the real axis and the second is along a semicircle in the upper half-plane,
Im(k3) > 0. The residues correspond to the roots of the equation det D̂ = 0. Because det D̂
is a sixth-order polynomial in k3, the equation det D̂ = 0 has six roots for k3. Some of them
may be real-valued, and others may be complex-valued.

Let us first discuss the complex-valued roots. If they are situated in the lower half-plane,
they are outside region C+ and do not contribute to the integral. The complex-valued roots
with the positive imaginary parts, situated in the upper half-plane, yield inhomogeneous
waves, which become exponentially small at large distances SR as ω → ∞. Because we
are interested only in regular asymptotic high-frequency contributions (for ω → ∞), we
can omit the complex-valued roots in our treatment. Thus, we shall consider only the
real-valued roots, situated along the real k3-axis.

As in Sections 2.5.2 and 2.5.4, the poles situated along the real k3-axis represent
outgoing and ingoing waves. We wish to consider only the outgoing waves, so that we shall
shift the poles corresponding to k3 > 0 from the real k3-axis into region C+ (upper half-
plane). We can follow Buchwald (1959) and consider ω with a small positive imaginary
part, ω + iε. This shifts the poles situated along the positive part of real axis k3 into
region C+, but the poles situated along the negative part of the real k3-axis are outside
region C+.

Finally, we shall consider only the situations in which the individual poles are well
separated. The situations of coinciding poles and of poles situated close to other poles
require special treatment.

We shall now select one of the roots of det D̂ = 0 for k3 in region C+ and denote it
k3 = θ (k1, k2). Because we are not considering inhomogeneous waves in our treatment,
function θ (k1, k2) is real-valued and positive. Calculating the residue of integral Ik in
(2.5.61) for root k3 = θ (k1, k2) yields

Ik = 2π i

{
Bki f̄ i (k j )

∂ det D̂/∂k3
exp[ik3x3]

}
k3=θ (k1,k2)

. (2.5.62)

Now we shall return to the real-valued ω, neglecting ε. The final expressions for uk(R) is
obtained from (2.5.61),

uk(R) = 2π i

ρ

∫∫ ∞

−∞

{
Bki f̄ i (k j )

∂ det D̂/∂k3
exp[ik3x3]

}
k3=θ (k1,k2)

dk1dk2. (2.5.63)

We now substitute kI = ωpI . Then det D̂ = ω6 det(�in − δin), where �in are components
of the well-known Christoffel matrix �in = ai jnl p j pl . Similarly, Bki = ω4Ski , where Ski
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are cofactors of �ki − δki . Hence, (2.5.63) yields

uk(R) = 2π iω

ρ

∫∫ ∞

−∞
Aki (p1, p2) f̄i

θ
(p1, p2) exp[iωθ (p1, p2)x3]dp1dp2,

(2.5.64)

Aki (p1, p2) =
{

Ski
∂ det(�in − δin)/∂p3

}
p3=θ (p1,p2)

,

f̄
θ

i (p1, p2) = { f̄ i (ωp j )}p3=θ (p1,p2).
(2.5.65)

Quantity p3 = θ (p1, p2) is a positive real-valued root of the equation det(�in − δin) = 0.
The equation det(�in − δin) = 0 represents the complete slowness surface, including the
slowness surface branches corresponding to qP, qS1, and qS2 waves. Thus, we can say that
integral (2.5.64) represents the integral over slowness surface p3 = θ (p1, p2).

Expression (2.5.65) for Aki (p1, p2) can be expressed in an alternative useful form.
Substituting ki = ωpi into (2.5.42), we obtain the equation for ūk in the following form:
(�ik − δik)ūk = ω−2ρ−1 f̄ i . We shall seek solution ūk using the relation ūk = ω−2Agk ,
where 	g is the eigenvector of �ik , corresponding to eigenvalue G. (We do not denote them
	g(m) and Gm , because this relation can be used for any sheet of the slowness surface.)
Multiplying the equation by gi yields

A(�ik gi gk − 1) = A(G − 1) = ρ−1gi f̄ i ;

see (2.2.34). Consequently, one of the solutions of equation (�ik − δik)ūk = ω−2ρ−1 f̄ i
reads ūk = ω−2ρ−1gi gk f̄ i/(G − 1). Using this new form of solution in integrals (2.5.60)
through (2.5.63) again yields (2.5.64), where Aki (p1, p2) is given by the relation,

Aki (p1, p2) = gkgi/(∂G/∂p3) = 1
2 gkgi/U3. (2.5.66)

Expression (2.5.64) with (2.5.65) or (2.5.66) is still valid for any source term fi (x j ). It
will represent the elastodynamic Green function Gkn(R, S, ω) if we put fi (x j ) = δinδ(	x −
	x(S)); see (2.5.38). Then f̄ θi (p1, p2) is given by the relation,

f̄ θi (p1, p2) = (8π3)−1δin exp[−iωx03θ (p1, p2)],

where x03 = x3(S); see (2.5.41) and (2.5.65). Inserting this expression for f̄ θi (p1, p2) into
(2.5.64) yields

Gkn(R, S, ω)= iω

4π2ρ

∫∫ ∞

−∞
Akn(p1, p2) exp[iω(x3 − x03)θ (p1, p2)]dp1dp2.

(2.5.67)

The expression (2.5.67) does not consider the inhomogeneous waves generated by the
point source, but it is highly accurate. Using (2.5.67), the Green function Gkn(R, S, ω)
may be calculated in three ways. The first is based on analytical computation. This is,
however, possible only occasionally for very simple types of anisotropy. The second consists
in the numerical treatment of (2.5.67). Finally, the third option is to compute (2.5.67)
asymptotically, for |ω(x3 − x03)| → ∞.

Here we shall treat (2.5.67) asymptotically for |ω(x3 − x03)| → ∞, using the method
of stationary phase. We denote the stationary point by p1 = pr1 and p2 = pr2. It satisfies
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the relations

[∂θ (p1, p2)/∂p1]pr1,pr2 = 0, [∂θ (p1, p2)/∂p2]pr1,pr2 = 0.

Geometrically, this means that the stationary points are situated at points (pr1, p
r
2) of the

slowness surface such that the plane tangent to the slowness surface is perpendicular to
the p3-axis (in the pi -space). In other words, stationary points (pr1, p

r
2) are points of the

slowness surface, at which the normals to the slowness surface are parallel to the source-
receiver direction. This can also be interpreted in terms of the group velocity vector 	U , of
which we know that it is perpendicular to the slowness surface. At stationary points, the
group velocity vector is parallel to the source-receiver direction.

To calculate the stationary contributions in a very simple and objective way, we shall
follow Buchwald (1959) and rotate axes p1 and p2 into the direction of the principal
curvatures of the slowness surface at stationary point p1,2 = pr1,2. In the vicinity of the
stationary point,

θ (p1, p2) = pr3 + 1
2k1
(
p1 − pr1

)2 + 1
2k2
(
p2 − pr2

)2 + . . . , (2.5.68)

where k1 and k2 are the principal curvatures of the slowness surface along the p1- and
p2-axes, at p1,2 = pr1,2. The linear terms are missing in expansion (2.5.68) because point
(pr1, p

r
2) is stationary. The slowness surface is convex at p1,2 = pr1,2 for direction SR if

k1 < 0 and k2 < 0. Similarly, it is concave if k1 > 0 and k2 > 0. Point p1,2 = pr1,2 is called
elliptical if k1 > 0 and k2 > 0 or if k1 < 0 and k2 < 0. It is called hyperbolic if k1 > 0
and k2 < 0 or k1 < 0 and k2 > 0. Finally, it is called parabolic if k1 = 0 and k2 �= 0 or
k2 = 0 and k1 �= 0. The parabolic points are excluded from our asymptotic high-frequency
treatment; they are singular in the ray method.

Inserting (2.5.68) into (2.5.67) yields approximately

Gkn(R, S, ω) = (iω/4π 2ρ)Akn
(
pr1, p

r
2

)
exp

[
iωpr3(x3 − x03)

]
×
(∫ ∞

−∞
exp

[
1
2 iωk1

(
p1 − pr1

)2
(x3 − x03)

]
dp1

)

×
(∫ ∞

−∞
exp

[
1
2 iωk2

(
p2 − pr2

)2
(x3 − x03)

]
dp2

)
. (2.5.69)

We shall now use the well-known Poisson integral:∫ ∞

−∞
exp[iku2]du =

√
π/|k| exp[ 14 iπ sgn k

]
. (2.5.70)

Equation (2.5.69) then yields

Gkn(R, S, ω)

= 1

2πρ(x3 − x03)
√

|K S| Akn
(
pr1, p

r
2

)
exp

[
iσ0

π
2 + iωpr3(x3 − x03)

]
.

(2.5.71)

Here K S = k1k2 is the Gaussian curvature of the slowness surface at p1,2 = pr1,2, and

σ0 = 1 + 1
2 sgn k1 + 1

2 sgn k2. (2.5.72)

Thus, σ0 = 0 if both sgn k1 and sgn k2 are negative (convex elliptic point), σ0 = 2 if both
of them are positive (concave elliptic point), and σ0 = 1 if k1 and k2 have opposite signs.
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Inserting (2.5.66) into (2.5.71) yields a new expression for Gkn:

Gkn(R, S, ω) = gkgn

4πρ(x3 − x03)U3

√
|K S| exp

[
iπ2 σ0 + iωpr3(x3 − x03)

]
.

(2.5.73)

This is the final equation for the ray-theory elastodynamic Green function Gkn(R, S, ω). In
its derivation, we have chosen the x3-axis along the direction SR and axes x1 and x2 along
the main directions of the slowness surface. It is not difficult to modify (2.5.73) for general
orientation of axes x1, x2, and x3. We only need to replace x3 − x03 by r = SR and U3 by
|U |. The Gaussian curvature K S is invariant so that we can retain it. We can also express
σ0 in the alternative form:

σ0 = 1 − 1
2 SgnD

S. (2.5.74)

Here SgnDS is the signature of the 2 × 2 curvature matrixDS of the slowness surface. The
reader is reminded that the signature of DS equals the number of positive eigenvalues of
DS minus the number of negative eigenvalues ofDS . Thus, it equals 2, 0 or −2. If we again
use the positive Cartesian x3-axis in the direction from S to R and define the slowness
surface by the equation p3 = θ (p1, p2), then DS

11 = −∂2θ/∂p21, DS
22 = −∂2θ/∂p22, and

DS
12 = DS

21 = −∂2θ/∂p1∂p2. Suitable expressions for DS can also be found directly from
the equations for the slowness surface (2.2.72) or (2.2.73) or from the known expression for
the Hamiltonian; see (4.14.28). In isotropic media, DS

11 = DS
22 = V and DS

12 = DS
21 = 0.

If the slowness surface is locally convex (outward from S), then SgnDS = 2 and σ0 = 0, as
in isotropic media. In the concave parts of the slowness surface, SgnDS = −2, σ0 = 2, and
exp[iπ2 σ0] = −1. Finally, when one eigenvalue of DS is positive and the other is negative,
SgnDS = 0 and σ0 = 1. The last two “anomalous” possibilities cannot accur in isotropic
media. Note that K S can be expressed in terms ofDS as K S = det DS . The final expression
for Gkn(R, S, ω) then reads

Gkn(R, S, ω) = gkgn

4πρrU
√

|K S| exp
[
iπ2 σ0 + iωT (R, S)

]
. (2.5.75)

Here all the quantities σ0, K S, pi , and U are taken at the relevant stationary points p1,2 =
pr1,2 of the slowness surface at which group velocity vector 	U is parallel to direction SR,
and T (R, S) = pri (xi − x0i ) is the travel time from the source S to the receiver R. To obtain
the complete Green function, contributions (2.5.75) must be added for all stationary points
on the slowness surface.

In the time domain, the ray-theory elastodynamic Green function for a homogeneous
anisotropic medium reads

Gkn(R, t ; S, t0) = gkgn

4πρrU
√

|K S| exp
[
iπ2 σ0

]
δ(A)(t − t0 − T (R, S)).

(2.5.76)

The expressions (2.5.75) and (2.5.76) for the ray-theory elastodynamic Green func-
tion in a homogeneous anisotropic medium can be modified in several alternative ways.
Instead of the curvature matrix DS of the slowness surface and its Gaussian curvature K S ,
some alternative quantities (curvature of the wavefront, curvature of the group velocity
surface, and the like) can be used. Many useful relations for DS and K S can be found in
Section 4.14.4.
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2.6 Application of Green Functions to the Construction
of More General Solutions

In previous sections, we have discussed the plane-wave and point-source solutions of acous-
tic and elastodynamic equations. Both solutions have played a very important role in the
construction of more general solutions of acoustic and elastodynamic wave equations.
There is, however, a basic difference between the two. Plane-wave solutions apply only to
homogeneous media, which may contain planar nonintersecting interfaces. Any inhomo-
geneity of the medium and/or any complexity of the interface (edges or curvature) destroys
planar wavefronts and generates a more complex wavefield. Point-source solutions and
relevant Green functions, however, are well defined even in laterally varying layered struc-
tures with nonplanar interfaces. The problem, of course, consists in their computation. The
computation of Green functions is simple for homogeneous media (see Section 2.5) but
may be more involved for complex structures.

In this book, we exploit broadly both the plane-wave and point-source solutions. The
application of the plane-wave solutions is, more or less, methodological. They are ex-
tremely useful in the development of approximate high-frequency solutions of acoustic
and elastodynamic equations in smoothly inhomogeneous media (see Section 2.4) and in
the derivation of basic equations of the ray method. In fact, the zeroth-order approximation
of seismic ray method consists in the local application of plane-wave solutions. This is well
demonstrated on the zeroth-order ray theory treatment of the reflection and transmission
of seismic body waves on a curved interface; see Section 2.4.5. Thus, the plane waves
themselves cannot be used in laterally varying media containing curved interfaces, but
the ray method, which represents a local extension of plane waves, can be used there. In
other words, many plane-wave rules can be applied locally even in laterally varying layered
structures.

The application of point-source solutions and relevant Green functions is quite differ-
ent. Using Green functions, solutions of acoustic and elastodynamic equations for a very
general distribution of sources and complex boundary conditions can be constructed using
the representation theorems; see Section 2.6.1. The Green functions represent “building
blocks” of such solutions. If the Green functions in the representation theorems are treated
exactly, the representation theorems yield exact solutions. In complex structures, exact
expressions for Green functions are not usually feasible. If we are, however, interested
in asymptotic, high-frequency solutions, we can apply the ray-theory Green functions in
representation theorems. This reasoning explains why the derivation of ray-theory Green
functions for complex, laterally varying, isotropic or anisotropic layered structures is one
of the main aims of this book. See Chapter 5 for such derivations.

The Green functions have also found important applications in the investigation of the
scattering of acoustic and elastic waves. Just as in representation theorems, the Green func-
tions represent building blocks of scattering integrals. Among various forms of scattering
integrals, the so-called Born integrals, representing the single-scattering approximation,
are very popular. The Born approximation plays a very important role both in direct and in-
verse problems of seismology, particularly in seismic exploration for oil. See Section 2.6.2
for a brief treatment of the Born approximation. The Born approximation has also been
generalized and used to increase the accuracy of the zeroth-order approximation of the ray
method. See also Section 2.6.2.

As an example of the representation theorems derived in Section 2.6.1, we shall derive
expressions for the wavefield generated by a line source in a homogeneous medium in
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Section 2.6.3. Such expressions will be used in Chapter 5 to derive the Green functions for
2-D models, corresponding to a line source parallel to the axis of symmetry of the model.
The 2-D Green functions may find applications in 2-D computations similar to the 3-D
Green functions in 3-D models.

The applications of Green functions are too numerous to be treated here exhaustively.
The Green functions have found extensive applications in the inversion of seismic data, but
herewe aremainly interested in forwardmodeling.Our aim ismodest: just to derive suitable
expressions for the ray-theory Green functions that could be used in such applications (see
Chapter 5) and to outline briefly howmore general solutions of acoustic and elastodynamic
equations can be constructed using the Green functions.

2.6.1 Representation Theorems

We shall work in the frequency domain and follow the derivation given by Kennett (1983).
For a time-domain treatment, see Aki and Richards (1980) or Hudson (1980a).

Wemultiply (2.1.27) byGin(	x, 	x0, ω) and subtract the product of (2.5.38) with ui (	x, ω).
Then we integrate the result over a volume V , which includes point 	x0. We obtain

un(	x0, ω) =
∫
V
fiGindV (	x) +

∫
V
[(ci jkluk,l), jGin − (ci jklGkn,l ), j ui ]dV (	x).

(2.6.1)

Here fi = fi (	x, ω), uk = uk(	x, ω),Gin = Gin(	x, 	x0, ω),Gkn,l = ∂Gkn/∂xl , dV (	x) = dx1
dx2dx3. If we consider symmetry relations (2.1.6), particularly ci jkl = ckli j , we obtain a
new version of (2.6.1):

un(	x0, ω) =
∫
V
fiGindV (	x) +

∫
V
(τi j Gin − ui Hi jn), jdV (	x). (2.6.2)

Here τi j is the stress tensor at 	x and Hi jn is the “Green function” stress tensor at 	x , due to
a single-force point source situated at 	x0 and oriented along the xn-axis:

τi j = τi j (	x, ω) = ci jkl(	x)∂uk(	x, ω)/∂xl,
Hi jn = Hi jn(	x, 	x0, ω) = ci jkl(	x)∂Gkn(	x, 	x0, ω)/∂xl .

The second integral in (2.6.2) can be transformed into the surface integral over surface S
of V using the Gauss divergence theorem:

un(	x0, ω) =
∫
V
fiGindV (	x) +

∫
S
(τi jGin − ui Hi jn)n jdS(	x)

=
∫
V
fiGindV (	x) +

∫
S
(TiGin − uihin)dS(	x). (2.6.3)

Here 	n is the outward normal to S, Ti = Ti (	x, ω) = τi j n j is the i th component of traction
	T (	x, ω) corresponding to the normal 	n to S at 	x , and hin = hin(	x, 	x0, ω) = Hi jn(	x, 	x0, ω)n j
is the “Green function” traction component at 	x .
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At this point, it is usual to interchange the role of 	x and 	x0. In addition, we shall use 	x ′

instead of 	x0. Equation (2.6.3) then yields the final form of the representation theorem:

un(	x, ω) =
∫
V
fi (	x ′, ω)Gin(	x ′, 	x, ω)dV (	x ′)

+
∫
S
[Ti (	x ′, ω)Gin(	x ′, 	x, ω) − ui (	x ′, ω)hin(	x ′, 	x, ω)]dS(	x ′).

(2.6.4)

The first integral in (2.6.4) represents the displacement at 	x due to the single-force point
sources 	f (	x ′, ω) distributed within V . The second, surface integral represents the displace-
ment at 	x due to the boundary conditions along S: (a) due to displacement 	u(	x ′, ω) along
S and (b) due to traction 	T (	x ′, ω) along S.

A certain disadvantage of the representation theorem (2.6.4) is that the Green functions
Gin(	x ′, 	x, ω) and hin(	x ′, 	x, ω) in (2.6.4) correspond to the “source” at 	x and “receiver” at
	x ′. It would be physically more understable to have the arguments 	x ′ and 	x in the opposite
order. It is possible to prove (see Aki and Richards 1980) that Gin(	x ′, 	x, ω) satisfies the
following reciprocity relation:

Gin(	x ′, 	x, ω) = Gni (	x, 	x ′, ω), (2.6.5)

ifGin satisfies homogeneous boundary conditions on S. For details on homogeneous bound-
ary conditions, see Aki and Richards (1980, p. 25). Then (2.6.4) yields

un(	x, ω) =
∫
V
fi (	x ′, ω)Gni (	x, 	x ′, ω)dV (	x ′)

+
∫
S
[Ti (	x ′, ω)Gni (	x, 	x ′, ω) − ui (	x ′, ω)hni (	x, 	x ′, ω)]dS(	x ′).

(2.6.6)

If the Green functions in the representation theorems are treated exactly, the representa-
tion theorems yield an exact solution of the elastodynamic equation, corresponding to the
arbitrary distribution of single-force point sources 	f (	x, ω) in V and to the boundary con-
ditions along S. If we use the ray-theory Green functions, the representation theorems will
only yield an approximate result. In this case, however, the representation theorem (2.6.6)
can always be used because the ray-theory Green function always satisfies the reciprocity
relations (2.6.5). This will be proved in Chapter 5.

Surface S may even represent a structural interface, the Earth’s surface, or the like.
The advantage of the representation theorems in the form of (2.6.4) and (2.6.6) is that
all quantities under the integrals (Ti , ui ,Gin , and hin) are continuous across the structural
interface.

Similar representation theorems can also be derived in the acoustic case for pressure p
in fluid media. Multiplying (2.5.25) by p(	x, ω) and (2.1.29) by G(	x, 	x0, ω), we obtain

p(	x, ω) =
∫
V
f p(	x ′, ω)G(	x ′, 	x, ω)dV (	x ′)

+
∫
S
niρ

−1(	x ′)[p,i (	x ′, ω)G(	x ′, 	x, ω)

− p(	x ′, ω)G,i (	x ′, 	x, ω)]dS(	x ′), (2.6.7)

as in the elastodynamic case. Here p,i and G ,i denote derivatives with respect to x ′
i . This

is the representation theorem for pressure in fluid media. In the case of homogeneous
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boundary conditions, we can use the reciprocity relation

G(	x, 	x ′, ω) = G(	x ′, 	x, ω). (2.6.8)

The representation theorem then reads

p(	x, ω) =
∫
V
f p(	x ′, ω)G(	x, 	x ′, ω)dV (	x ′)

+
∫
S
niρ

−1(	x ′)[p,i (	x ′, ω)G(	x, 	x ′, ω)

− p(	x ′, ω)G,i (	x, 	x ′, ω)]dS(	x ′). (2.6.9)

Representation theorems (2.6.7) and (2.6.9) are applicable even if S is an interface.
Quantities p,i and G ,i , however, are not continuous across the interface. It is possible to
modify (2.6.7) and (2.6.9) to contain only quantities continuous across the interface. We
use the notation

v̇(n) = −ρ−1ni p,i , h = −ρ−1niG,i . (2.6.10)

Here v̇(n) is the time derivative of the normal component of particle velocity, and h is
the relevant Green function. Both v̇(n) and h are continuous across the interface. Inserting
(2.6.10) into (2.6.7) yields

p(	x, ω) =
∫
V
f p(	x ′, ω)G(	x ′, 	x, ω)dV (	x ′)

+
∫
S
[p(	x ′, ω)h(	x ′, 	x, ω) − v̇(n)(	x ′, ω)G(	x ′, 	x, ω)]dS(	x ′).

(2.6.11)

All the quantities in the surface integral of (2.6.11) (v̇(n), p,G, and h) are now contin-
uous across a structural interface. If reciprocity relation (2.6.8) is valid, we can replace
G(	x ′, 	x, ω) and h(	x ′, 	x, ω) in (2.6.11) by G(	x, 	x ′, ω) and h(	x, 	x ′, ω).

As in the elastodynamic case, the representation theorems (2.6.7), (2.6.9), and (2.6.11)
are exact if the Green functionG is treated exactly. They yield only an approximate solution
if the ray-theory Green functions are used. It will be proved in Section 5.1 that the ray-
theory Green function always satisfies the reciprocity relation (2.6.8). Consequently, the
representation theorem can be used in the form of (2.6.9).

For more details on the representation theorems see Burridge and Knopoff (1964),
Achenbach (1975), Pilant (1979), Aki and Richards (1980), Hudson (1980a), Kennett
(1983), and Bleistein (1984). The surface integrals in the representation theorems (2.6.7),
(2.6.9), and (2.6.11) for pressure are known as Kirchhoff integrals, or acoustic Kirchhoff
integrals; seeSection 5.1.11.Analogously, the surface integral in the representation theorem
(2.6.6) for the displacement vector is called the Kirchhoff integral for elastic waves (or also
simply the elastic Kirchhoff integral); see Section 5.4.8. Kirchhoff integrals have also been
successfully used in the inversion of seismic data, particularly in seismic exploration for oil
(Kirchhoff migration); see Bleistein (1984), Carter and Frazer (1984), Kuo and Dai (1984),
Wiggins (1984), Kampfmann (1988), Keho and Beydoun (1988), Docherty (1991), Gray
and May (1994), and Tygel, Schleicher, and Hubral (1994) among others. See also Haddon
and Buchen (1981), Sinton and Frazer (1982), Scott and Helmberger (1983), Frazer and
Sen (1985), Zhu (1988), Ursin and Tygel (1997), and Chapman (in press).
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In earthquake seismology, the representation theorems have found important applica-
tions in the earthquake source theory. For a very detailed treatment, see Aki and Richards
(1980) and Kennett (1983). Note that representation theorems (2.6.4) and (2.6.6) remain
valid even for viscoelastic models, with complex-valued, frequency-dependent elastic pa-
rameters and for prestressed media. For prestressed media, the expressions for Ti and hni
must, of course, be modified. See details in Kennett (1983).

2.6.2 Scattering Integrals. First-Order Born Approximation

Let us consider a structural modelM described by elastic parameters ci jkl(	x) and density
ρ(	x). The source distribution in modelM is specified by fi (	x, ω). We wish to determine
the displacement vector 	u(	x, ω), which satisfies elastodynamic equation (2.1.27). Often,
it may be considerably simpler to find the solution of elastodynamic equation (2.1.27) for
the same source distribution but for some other reference modelM0 close toM. Denote
the elastic parameters and the density in the reference model M0 c0i jkl(	x) and ρ0(	x) and
introduce quantities �ci jkl(	x) and �ρ(	x) as follows:

ci jkl(	x) = c0i jkl (	x) +�ci jkl(	x), ρ(	x) = ρ0(	x) +�ρ(	x). (2.6.12)

We call�ci jkl (	x) and�ρ(	x) the perturbations of elastic parameters and density and assume
that they are small. In other words, we assume that reference modelM0 is close to model
M. Reference modelM0 is also called the nonperturbed or background model, and model
M is called the perturbed model.

We shall assume that the solution 	u0(	x, ω) of the elastodynamic equation (2.1.27) for
reference model M0 and for the source distribution 	f (	x, ω) is known. We express the
unknown solution 	u(	x, ω) of elastodynamic equation (2.1.27) for the perturbed modelM
and for the same source distribution fi (	x, ω) in terms of 	u0(	x, ω) as follows:

	u(	x, ω) = 	u0(	x, ω) +�	u(	x, ω). (2.6.13)

We again assume that the perturbations of the displacement vector�	u(	x, ω) are small. We
now wish to find �	u(	x, ω). Having done so, we can also easily determine 	u(	x, ω) from
(2.6.13).

Inserting (2.6.12) and (2.6.13) into (2.1.27) and subtracting (2.1.27) for the reference
model, we obtain(

c0i jkl�uk,l
)
, j

+ ρ0ω2�ui = −(u0k,l�ci jkl), j − ω2u0i�ρ

− (�ci jkl�uk,l), j − ω2�ρ�ui . (2.6.14)

Here �uk,l denotes (�uk),l , the partial derivative of the perturbation �uk with respect to
xl .

The last two terms in (2.6.14) contain products of two, presumably small, perturbations.
We shall neglect them and consider only the first-order perturbation theory. Hence,(

c0i jkl�uk,l
)
, j

+ ρ0ω2�ui = − f 0i (	x, ω), (2.6.15)

where f 0i (	x, ω) is given by the relation

f 0i (	x, ω) = [
u0k,l(	x, ω)�ci jkl(	x)

]
, j

+ ω2u0i (	x, ω)�ρ(	x). (2.6.16)

But (2.6.15) represents the elastodynamic equation (2.1.27) for �	u(	x, ω) in the refer-
ence, backgroundmodelM0, the source term 	f 0(	x, ω) being given by (2.6.16). Because
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we assume that 	u0(	x, ω) is known, source term 	f 0(	x, ω) is also known. It depends on
perturbations �ci jkl and �ρ. For �ci jkl = 0 and �ρ = 0, 	f 0(	x, ω) = 0.

The solution of elastodynamic equation (2.6.15) can be found using representation
theorem (2.6.4). Considering only the volume integral and reciprocity relations (2.6.5), we
arrive at

�un(	x, ω) =
∫
V

[
(u0k,l(	x ′, ω)�ci jkl(	x ′)), j + ω2u0i (	x ′, ω)�ρ(	x ′)

]
×G0

ni (	x, 	x ′, ω)dV (	x ′). (2.6.17)

The integration is taken over volume V in which �ci jkl(	x ′) and �ρ(	x ′) are nonvanish-
ing, and dV (	x ′) = dx ′

1dx
′
2dx

′
3. The Green function G0

ni (	x, 	x ′, ω) corresponds to reference
mediumM0. Integral (2.6.17) contains the derivatives of perturbations �ci jkl(	x ′). It can,
however, be expressed in a more suitable form, which does not contain the derivatives of
�ci jkl(	x ′). Using(

u0k,l�ci jkl
)
, j
G0
ni = (

u0k,lG
0
ni�ci jkl

)
, j

− u0k,lG
0
ni, j�ci jkl,

inserting this into (2.6.17) and transforming the volume integral over the first term into a
surface integral, we obtain, for an unbounded medium,

�un(	x, ω) =
∫
V

[
ω2u0i (	x ′, ω)�ρ(	x ′)G0

ni (	x, 	x ′, ω)

− u0k,l (	x ′, ω)�ci jkl(	x ′)G0
ni, j (	x, 	x ′, ω)

]
dV (	x ′). (2.6.18)

The wavefield�un(	x, ω) given by (2.6.17) or (2.6.18) is called the scattered wavefield, and
integrals (2.6.17) and (2.6.18) are called the scattering integrals. Becausewehave neglected
two terms in (2.6.14), the scattering integrals yield only an approximate result (the so-called
single-scattering approximation). We speak of the first-order Born approximation for the
scattered wavefield.

Aswe can see from (2.6.16), perturbations�ci jkl and�ρ form the source term 	f 0(	x, ω),
which generates the scattered wavefield. These sources, however, have a character different
from the actual physical sources 	f (	x, ω). They generate a scattered wavefield only if they
are excited by an incident wave. In other words, they wait passively for an incident wave
and generate the scattered wavefield only after the incidence of the wave. For this reason,
we also speak of passive sources, compared to the active sources described by 	f (	x, ω).

In the same way as in elastic media, we can also derive scattering integrals for pressure
wavefields in fluids. We consider the reference model M0, described by compressibility
κ0(	x) and densityρ0(	x), and the perturbedmodelM, described by compressibility κ(	x) and
density ρ(	x). We consider arbitrary “physical” sources f p(	x, ω). We denote the (known)
solution of the acoustic wave equation (2.1.29) with source term f p(	x, ω) in reference
modelM0 by p0(	x, ω) and in perturbed modelM by p(	x, ω). We introduce perturbations
�κ,�ρ−1, and �p as

κ(	x) = κ0(	x) +�κ(	x), ρ−1(	x) = ρ0−1(	x) +�ρ−1(	x),
p(	x, ω) = p0(	x, ω) +�p(	x, ω). (2.6.19)

We assume that �κ , �ρ−1, and �p are small and that p0(	x, ω) is known. The first-order
Born approximation for the scattered pressure wavefield in an unbounded medium then
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reads

�p(	x, ω) =
∫
V

[(
p0,i (	x ′, ω)�ρ−1(	x ′)

)
,i

+ ω2 p0(	x ′, ω)�κ0(	x ′)
]

×G0(	x, 	x ′, ω)dV (	x ′). (2.6.20)

In the derivation of (2.6.20), we have neglected the nonlinear terms with �p�κ and
�p�ρ−1 and have used the reciprocity relation (2.6.8) for the acoustic Green function. As
for the elastic case, we can eliminate the derivatives of perturbations �ρ−1. Hence,

�p(	x, ω) =
∫
V

[
ω2 p0(	x ′, ω)�κ0(	x ′)G0(	x, 	x ′, ω)

− p0,i (	x ′, ω)�ρ−1(	x ′)G0
,i (	x, 	x ′, ω)

]
dV (	x ′). (2.6.21)

The Born approximation yields a linear relation between�un (or�p) on the one hand
and�ci jkl,�ρ (or�κ,�ρ−1) on the other. See (2.6.18) and (2.6.21). This property is very
attractive in the inversion of seismic data.

The Born approximation has been known for a long time in theoretical physics, where
it has been used to solve problems of potential scattering. For a more detailed treatment and
many other references see Hudson and Heritage (1981), Bleistein (1984), Chapman and
Orcutt (1985), Cohen, Hagin, and Bleistein (1986), Bleistein, Cohen, and Hagin (1987),
Beydoun and Tarantola (1988), Beydoun andMendes (1989), Wu (1989a, 1989b), Beylkin
and Burridge (1990), Coates and Chapman (1990a), Ben-Menahem and Gibson (1990),
Gibson and Ben-Menahem (1991), Červený and Coppoli (1992), and Ursin and Tygel
(1997). An alternative to the Born approximation is the so-called Rytov approximation;
see Rytov, Kravtsov, and Tatarskii (1987) and Samuelides (1998) among others. A good
reference to both the Born and Rytov approximation is Beydoun and Tarantola (1988).

The scattering Born integrals (2.6.18) and (2.6.21) can be expressed inmany alternative
forms. They can also be generalized in several ways. We shall briefly outline two such
generalizations.

1. Scattering integral equations. The major inaccuracies in the first-order Born ap-
proximation (2.6.18) are caused by neglecting the last two terms in (2.6.14). These terms
contain �ui and their spatial derivatives. In fact, the whole procedure leading to (2.6.18)
may be performed even without neglecting these two terms. Then the final equation, which
is analogous to (2.6.18), would be exact. The integral, however, would contain�ui . Conse-
quently, the equation would represent an integral equation for�un(	x, ω). Similar exact in-
tegral equations can be derived even for�p(	x, ω) in the acoustic case (Lippman-Schwinger
equation). Various approaches have been proposed to solve the integral equations (for ex-
ample, the Born series method). The leading term in the Born series corresponds to the
Born approximation derived here.

2. GeneralizedBorn scattering. If referencemodelM0 is inhomogeneous, theGreen
functions inM0 are usually not known exactly. They are often calculated by some asymp-
totic high-frequency method (for example, by the ray method). This introduces errors into
the computations. In principle, it is possible to find expressions for the relevant error terms
and introduce them into the treatment outlined in this section. The scattering integrals then
include these error terms. Consequently, the scattering integrals represent both scattering
from medium perturbations and scattering from errors. If models M0 and M are iden-
tical, the scattering integrals represent merely the scattering from errors. The scattering
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integrals give satisfactorily accurate results even in regions where the asymptotic method
used is highly inaccurate, or fails completely. As an example, let us consider the shear
waves in inhomogeneous anisotropic media in the vicinity of shear wave singularities. The
penalty for this increase in accuracy is a considerably more extensive computation. The
method was proposed by Coates and Chapman (1991). For a very detailed and comprehen-
sive theoretical treatment of inhomogeneous anisotropic media, see Chapman and Coates
(1994), where simple expressions for the error terms are also derived. See also Coates and
Chapman (1990b) and Coates and Charrette (1993).

2.6.3 Line-Source Solutions

In 2-D models in which the elastic parameters and the density do not depend on one
Cartesian coordinate, say x2, it is very common to consider a line source parallel to the
x2-axis instead of the point source. Such line sources have been broadly used in the inter-
pretation of profilemeasurements and in 2-D finite-difference computations. Consequently,
briefly discussing even the ray-theory solutions for such a case would be useful. In this
section, we shall solve a relevant canonical example corresponding to a line source in a
homogeneous medium. The solution given here will be generalized for a line source in a
laterally varying layered structure in Chapter 5. In Sections 5.1.12 and 5.2.15, a consider-
ably more general line source, situated in a 3-D laterally varying layered structure, with an
arbitrary curvature and torsion and with an arbitrary distribution of the initial travel times
along it, will be also considered.

Several methods can be used to solve the canonical example. For example, we could
solve thewave equation in cylindrical coordinates; see, for example, Bleistein (1984). Here,
however, we shall use a different approach based on representation theorems because we
wish to demonstrate the simplicity of applications of the representation theorem and 3-D
Green functions.

We shall consider a pressure wavefield in fluid media in the frequency domain. The
pressure wavefield satisfies the equation (2.5.13), where f p does not depend on x2. The
pressure does not then depend on x2 in the whole space either. Without loss of generality,
we shall consider receivers situated in plane x2 = 0.

We put

f p(x j , ω) = δ(x1 − x01)δ(x3 − x03). (2.6.22)

The relevant solution p(	x, ω) of (2.5.13) then represents the 2-D acoustic Green function
G2D(	x, 	x0, ω) (for x2 = x20 = 0). We emphasize that δ(x2 − x02) is not present in (2.6.22).
The coordinates of the line source in plane x2 = 0 are x01, x03.

To determine G2D(	x, 	x0, ω), we shall use the representation theorem (2.6.9) for the
unbounded medium. The integral over S then vanishes, and (2.6.9) yields

G2D(	x, 	x0, ω) =
∫
V
δ(x ′

1 − x01)δ(x
′
3 − x03)G(	x, 	x ′, ω)dV (	x ′)

= 1
4ρπ

−1

∫ ∞

−∞

(
l2 + r2l

)−1/2
exp

[
iω
(
l2 + r2l

)1/2/
c
]
dl.

(2.6.23)

Here we have used (2.5.28) for the 3-D Green function G(	x, 	x ′, ω), with r = (l2 + r2l )
1/2,

where l is the arclength along the line source, and rl is the distance of the receiver from
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the line source in plane x2 = 0, rl = [(x1 − x01)2 + (x3 − x03)2]1/2. The volume integral in
(2.6.23) reduces to a line integral due to the delta functions in the integrand.

For high ω, the integral can be simply calculated by the method of stationary phase.
The stationary point is l = 0, and we can put (l2 + r2l )

1/2 .= rl + 1
2 l

2/rl in the exponent and
(l2 + r2l )

−1/2 .= r−1
l in the amplitude terms. We then apply the Poisson integral (2.5.70) to

(2.6.23) and obtain

G2D(	x, 	x0, ω) .= 1
2ρ(c/2πωrl )

1/2 exp[iωrl/c + iπ/4]. (2.6.24)

Integral (2.6.23) can also be computed exactly. It can be transformed to another integral
representing the Hankel function of the first kind and zeroth order, H (1)

0 :

G2D(	x, 	x0, ω) = 1
4 iρH

(1)
0 (ωrl/c); (2.6.25)

see Abramowitz and Stegun (1970), Bleistein (1984), and DeSanto (1992). Equation
(2.6.25) represents the exact solution. Thus, the representation theorem gives an exact
solution. Using the well-known asymptotic expression of H (1)

0 (ωrl/c) for ωrl/c → ∞,
we obtain (2.6.24) from (2.6.25). Note that (2.6.24) and (2.6.25) correspond to ω > 0. If
ω < 0, complex conjugate quantities must be considered.

Using the Fourier transform, the frequency-domain 2-D Green function can be trans-
formed into a time-domain 2-D acoustic Green function. The time-domain 2-D acoustic
Green function G2D(	x, t ; 	x0, t0) is a solution of the acoustic wave equation (2.1.25) with
f p(	x, t) given by the relation

f p(	x, t) = δ(t − t0)δ(x1 − x01)δ(x3 − x03). (2.6.26)

Using the Fourier transform relations given in Appendix A.1, the asymptotic expression
(2.6.24) yields

G2D(	x, t ; 	x0, t0) .= 1
2ρπ

−1(c/2rl)
1/2H (t − t0 − rl/c)(t − t0 − rl/c)

−1/2,

(2.6.27)

and the exact expression (2.6.25) yields

G2D(	x, t ; 	x0, t0) = 1
2ρπ

−1H (t − t0 − rl/c)
[
(t − t0)

2 − r2l
/
c2
]−1/2

.

(2.6.28)

Here H (ζ ) is the Heaviside function. In the first-motion approximation t − t0
.= rl/c,

the exact equation (2.6.28) yields (2.6.27), as (t − t0)2 − r2l /c
2 = (t − t0 − rl/c)(t − t0 +

rl/c)
.= (2rl/c)(t − t0 − rl/c).

If we compare the 3-D (point-source) acoustic Green functions G(	x, 	x0, ω) and G(	x, t ;
	x0, t0) given by (2.5.28) and (2.5.29) with the analogous 2-D (line-source) acoustic Green
functions (2.6.24) through (2.6.28), we see several basic differences. Let us first discuss
the frequency-domain Green functions.

1. Whereas the exact 3-D Green function (2.5.28) is very simple, the exact 2-D Green
function (2.6.25) is more complex and is expressed in terms of the Hankel function.
The expression simplifies if we consider ωrl/c → ∞ (far-field zone and/or high-
frequency asymptotics); see (2.6.24). Thus, in 2-D with a line source, we need
to distinguish between exact and asymptotic computations, even in homogeneous
media.
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2. The 3-DGreen function (2.5.28) decreases with increasing distance r from the point
source as r−1. The 2-D asymptotic Green function (2.6.24), however, decreaseswith
increasing distance rl from the line source as r−1/2

l .
3. The Fourier spectrum of the 3-D Green function (2.5.28) is constant, independent

of frequency. The Fourier spectrum of the 2-D Green function (2.6.24), however, is
not constant, but rather proportional to |ω|−1/2 exp[i(π/4) sgn(ω)].

As we can see from (2.5.28) and (2.6.24), the amplitude of the 2-D (line-source) asymp-
totic time-harmonic Green function G2D(	x, 	x0, ω) can be calculated from the 3-D (point-
source) time-harmonic Green function in two steps:

a. Replace r by (rl/c)1/2.
b. Multiply it by filter F(ω) given by the relation:

F(ω) = (2π/|ω|)1/2 exp[iπ4 sgn(ω)]. (2.6.29)

We shall call F(ω) given by (2.6.29) the two-dimensional frequency filter.
In the time domain,we can also calculate the 2-D (line-source)Green functionG2D(	x, t ;

	x0, t0) given by (2.6.27) from the 3-D (point-source) Green function G(	x, t ; 	x0, t0) given
by (2.5.29) in two steps. Step a is the same as before, but step b should be replaced by
step b∗.

b∗. Perform the following replacement:

δ(t − t0 − r/c) →
√
2H (t − t0 − rl/c)(t − t0 − rl/c)

−1/2. (2.6.30)

In Chapter 5, we shall show that the 2-D ray-theory Green function can be calculated
from the 3-D ray-theory Green function in the same way as already shown for 2-D laterally
varying layered structures. Step a is equivalent to replacing the relative geometrical spread-
ing L by the in-plane relative geometrical spreading L‖. In a homogeneous medium, this
is equivalent to step a. Steps b and b∗ remain valid even in this case without any change.

Regarding the time-domain expressions (2.6.27) and (2.6.28) for the 2-D acousticGreen
functions, the most striking difference is that the 2-D Green functions do not contain the
delta functions as in 3-D; see (2.5.29). The time-domain 2-D Green functions are infinite
at the wavefront, but they also include a long tail that behaves with increasing time t as
[(t − t0)2 − r2l /c

2]−1/2. The long tail can be simply understood if we realize that the travel
time from a point on the line source to the fixed receiver increases with the distance of the
point from the plane x2 = 0.

The procedure just outlined can also be used to find the 2-D elastodynamic Green func-
tions for isotropic media. Similarly, as in the acoustic case, we need to distinguish between
exact and asymptotic 2-D Green functions. Asymptotic high-frequency expressions for
2-D Green functions, however, can be constructed from 3-D Green functions in the same
way as in the acoustic medium, see steps a, b, and b∗ and Section 5.2.15. We shall not
repeat the whole procedure here; the interested reader is referred to Hudson (1980a) for
exact expressions and to Section 5.2.15.



CHAPTER THREE

Seismic Rays and Travel Times

The twomost important concepts in the propagation of high-frequency seismic body
waves in smoothly varying, layered and block structures are their travel times and
rays. Both concepts are closely related. Many procedures to compute rays and

travel times have been proposed. The selection of the appropriate procedure to compute
seismic rays and the relevant travel times is greatly influenced by such factors as:

a. The dimensionality of the model under consideration (1-D, 2-D, 3-D).
b. The computer representation and the complexity of the model (for example, a

smooth model with smooth interfaces, a grid model, or a cell model).
c. The source-receiver configuration (localization of earthquakes, surface profile

measurements, VSP, cross-hole configuration, migration, and the like) and by the
volume of the required computations. As an example, compare the volume of com-
putations for a point-source 2-D surface profile configuration and for extensive
3-D migration/inversion grid computations.

d. The required accuracy of computations.
e. The required numerical efficiency of computations.
f. The type of computed travel times (first arrivals only, later arrivals, diffractedwaves,

and the like).
g. The required comprehensiveness of computations (travel times only, rays and travel

times, or alsoGreen function, synthetic seismograms, and particle groundmotions).
h. The practical purpose of ray tracing and travel-time computation.

Some of these factors, of course, overlap and/or aremutually connected.Moreover, both
travel times and rays have been defined and used in seismology and in seismic exploration
in various conflicting ways and with different definitions. In this book, we shall introduce
the rays and the travel times using mostly the high-frequency asymptotic methods applied
to acoustic and elastodynamic wave equations. For exceptions, see Section 3.8.

In the acoustic case, the application of HF asymptotic methods to the acoustic wave
equation immediately yields the eikonal equation (∇ T )2 = 1/c2 as the basic equation to
calculate travel time T and rays �; see Section 2.4.1. In an isotropic elastic medium, the
derivation of similar eikonal equations is not quite straightforward. The application of HF
asymptotic methods to the elastodynamic isotropic equation yields the separation of the
wavefield into two waves, which may propagate separately: P and S waves. The relevant
travel times and rays of these waves are, however, again controlled by similar eikonal
equations: (∇ T )2 = 1/α2 for P waves and (∇ T )2 = 1/β2 for S waves, where α and β are
the local velocities of the P and S waves given by (2.4.23). See Section 2.4.2 for details.
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Finally, in anisotropic inhomogeneous media, the application of HF asymptotic methods
to the elastodynamic equation yields three different types of waves that may separately
propagate in the medium: one qP and two qS (qS1 and qS2). The relevant eikonal equation
for any of these three waves is Gm(xi , pi ) = 1, m = 1, 2, 3, where Gm are eigenvalues of
the Christoffel matrix; see Section 2.4.3.

Thus, if we exclude the anisotropic medium, we can formally use the same eikonal
equation (∇ T )2 = 1/V 2, for both acoustic and elastic isotropic media. Here V = c for
the acoustic case, V = α for P waves in the elastic medium, and V = β for S waves in the
elastic medium. The eikonal equation (∇ T )2 = 1/V 2 is the basic equation of Chapter 3.
The exception is only Section 3.6, where anisotropic inhomogeneous media are treated.

The eikonal equation (∇ T )2 = 1/V 2(xi ) is a nonlinear partial differential equation
of the first order. In mathematics, such equations are usually solved for T in terms of
characteristics (see Bleistein 1984). The characteristics of the eikonal equation are some
trajectories, described by a system of ordinary differential equations that can be solved eas-
ily by standard numerical procedures. The main advantage of characteristics of the eikonal
equation is that the travel time T along them can be calculated by simple quadratures.

In the seismic ray theory, we define rays as characteristics of the eikonal equation and
call the system of ordinary differential equations for the characteristics the ray tracing
system or the system of ray equations. The ray tracing system may be expressed in various
forms; see Section 3.1. In layered media, we need to supplement the definition of rays,
based on the characteristics of the eikonal equation, with Snell’s law at those points where
the ray has contact with a structural interface; see Section 2.4.5.

Both the rays and travel times may also be introduced in different ways than explained
here. For different definitions of seismic rays, see Section 3.1. Regarding the travel times,
we distinguish between two basic definitions.

a. Ray-theory travel times. Ray-theory travel times are introduced here as the travel
times of the individual elementary waves (such as direct, reflected, multiply re-
flected, and converted), calculated along the rays of these waves. Thus, for differ-
ent elementary waves, we obtain different ray-theory travel times. For this reason,
ray-theory travel times are also sometimes called elementary travel times. It is ob-
vious that the term ray-theory travel time only has an approximate, asymptotic HF
meaning.

b. First-arrival travel times. The first-arrival travel times have an exact, not asymp-
totic, meaning, even for inhomogeneous layered structures. They correspond to the
exact solution of an elastodynamic equation in a given model and to the complete
wavefield, which is not separated into individual elementary waves.

For more detailed definitions of these two types of travel times, their extensions, and
an explanation of differences, see Section 3.8.1.

In the following text, unless otherwise stated, we shall refer to the ray-theory travel
times as travel times. We remind the readers that any ray-theory travel time corresponds to
a selected elementary wave. Only if the travel times could be confused, will their type be
specified.

Several direct methods to calculate the travel times of seismic body waves and wave-
fronts, without computation of rays, have been used in seismology and seismic prospecting.
They will be briefly discussed in Section 3.8. The rays, if they are needed, are com-
puted afterwards, from known travel times. The computation of travel times by first-order
perturbation methods is discussed in Section 3.9. Both isotropic and anisotropic layered
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structures are considered. The advantage of the perturbation methods is that they require
ray tracing to be performed only in a simpler background medium. The travel time in a
perturbed medium is then obtained by quadratures along the known ray in a background
medium. The perturbation methods are very attractive in the solution of inverse kinematic
structural problems (seismic tomography).

Mostly, however, ray tracing is a necessary prerequisite for the ray-theory travel-time
computations. For this reason, considerable attention is devoted in Chapter 3 to ray tracing.
There are two main types of the ray tracing: (a) initial-value ray tracing and (b) boundary-
value ray tracing. In the initial-value ray tracing, the direction of the ray is known at some
point of the ray (or, at least, it may be simply determined from some other known data, for
example, at an initial surface). The position of the point and the direction of the ray at that
point then constitute the complete system of initial conditions for the ray tracing system,
and the ray trajectory can be calculated with the required accuracy using various methods.
In the boundary-value ray tracing, the direction of the ray is not known at any of its points.
Instead, some other conditions are known at the ray; for example, we are seeking the ray
of a specified elementary wave that connects two given points. The direction of the ray at
any of these two points is not known a priori. We then speak of two-point ray tracing. In
yet another example, we know how to compute the initial direction of rays at all points
on some initial surface and are seeking the ray that passes through a specified fixed point
R outside the initial surface. We then speak of initial surface-fixed point ray tracing. For
details, refer to Section 3.11.

In this chapter, we devote most of our attention to various approaches to solving of the
initial-value ray tracing problem in relation to the computation of ray-theory travel times.
In the following, we shall present a brief review of these approaches. We shall consider an
arbitrary elementary wave propagating in general 3-D inhomogeneous layered and block
structures.We shall mainly discuss approaches suitable for isotropic media. For anisotropic
media, see Section 3.6.

There are four main methods of initial-value ray tracing.

1. The first method involves the numerical solution of ray-tracing equations, supple-
mented by Snell’s law at those points where the ray contacts structural interfaces.
The relevant ray-theory travel times are either obtained automatically by ray tracing
(if the variable in the ray tracing system is T ) or by quadratures along the known
rays. The numerical solution of the ray tracing system can be performed, with
controlled accuracy using various methods such as the Runge-Kutta method and
Hamming’s predictor-corrector method. For details, refer to Sections 3.2 and 3.3.
In Section 3.2.3, various anomalous situations in numerical ray tracing (boundary
rays, critical rays, diffracted rays, sliding rays, edge rays, and the like) are described.

2. The second method is based on analytical solutions of the ray tracing system.
Analytical solutions, however, are available only exceptionally, for example, for
models in which V−n(xi ) (n = ±1, ±2, . . .) is a linear function of Cartesian coor-
dinates. See Section 3.4, particularly Sections 3.4.1 through 3.4.5. The most gen-
eral case for which the analytical solutions are known corresponds to V−2(xi ) =
a + bi xi + ci j xi x j ; see Körnig (1995) and Section 3.4.6.

3. The thirdmethod is based on semianalytical solutions. Thismethod has two alterna-
tives. In the first alternative, themodel is divided into layers and/or blocks, separated
by curved structural interfaces. The velocity distribution inside the individual layers
and blocks is specified in such a way that it allows the analytical computation of
rays. In the second alternative, the model is divided into cells (usually rectangular
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or triangular in 2-D and rectangular or tetrahedral in 3-D) in which the velocity is
again specified in such a way that it allows the analytical computation of rays. In
both alternatives, the resulting rays in the whole model are then obtained as a chain
of ray elements in the individual layers, blocks, or cells, computed analytically. Both
alternatives may, of course, be combined. For details see Sections 3.4.7 and 3.4.8.

4. The fourthmethod is applicable only to 1-Dmodels (vertically inhomogeneouswith
plane structural interfaces, radially symmetric with spherical interfaces). The ray
tracing and ray-theory travel-time computations can then be performed by standard
quadratures of ray integrals. This is a classical problem in seismology and is well
described in the seismological literature. See Section 3.7 for the basic ray integrals.

Ray tracing systems can be expressed (and solved) in any curvilinear coordinate system,
including nonorthogonal coordinates; see Section 3.5, which devotes considerable attention
to spherical coordinates, due to their importance in global seismology. See Sections 3.5.4
and 3.5.5. The systems derived can, however, also be applied to ellipsoidal and other
coordinates.

In anisotropic inhomogeneous media, the numerical solution of the ray tracing system
is the most important; analytical solutions are quite exceptional. See Section 3.6.

The initial-value ray tracing is also widely used in the boundary-value ray tracing
problem, particularly in the so-called shooting method. A classification and explanation
of different boundary-value ray tracing problems can be found in Section 3.11. In addition
to shooting methods, many other methods are also discussed there; these methods include
bending methods and methods based on the perturbation theory and on the paraxial ray
theory. Section 3.11 only gives the classification and a very brief explanation of various
boundary-value ray tracing approaches and the relevant literature; the individual methods
on which these approaches are based are explained in greater detail elsewhere in the
book. For the shooting methods, see Sections 3.1 through 3.7. The solution of paraxial
boundary-value ray tracing problems is discussed in Chapter 4, particularly in Section 4.9.
For the application of perturbation methods in the two-point computation of travel times,
see Section 3.9. Finally, Section 3.8 treats the computation of first-arrival travel times along
2-D and 3-D grids of points.

Section 3.10 is not devoted to single rays but to orthonomic systems of rays, correspond-
ing to an arbitrary elementary seismic wave propagating in a 3-D layered structure. These
systems of rays are also called simply ray fields. Many important concepts connected with
ray fields, particularly ray parameters, ray coordinates, ray Jacobians, elementary ray tubes
and their cross-sectional areas, geometrical spreading, caustics, and the KMAH index, are
introduced. The properties of the ray Jacobian are discussed, and various methods of its
computation are described. Section 3.10 also briefly explains how the transport equations
can be simply solved along rays in terms of the ray Jacobian. Such solutions of the trans-
port equation will be broadly used in Chapter 5 to study the ray amplitudes of seismic
body waves. The derived equations are very general; many of them are applicable both to
isotropic and anisotropic media.

3.1 Ray Tracing Systems in Inhomogeneous Isotropic Media

Rays play a basic role in various branches of physics. For this reason, it is not surprising that
many different approaches can be used to define them and to derive ray tracing systems.

The most general approach to deriving seismic ray tracing systems is based on the
asymptotic high-frequency solution of the elastodynamic equation. This approach yields
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a very important result, namely that the high-frequency seismic wave field in a smoothly
inhomogeneous isotropic medium is approximately separated into two independent waves:
the P and the S wave. The travel-time fields of these two independent waves satisfy the
relevant eikonal equations. See Section 2.4 for an approximate derivation of the eikonal
equations. Such an approach is formal, but it is also the most rigorous and straightforward
and will be used to derive the ray tracing system in this section.

It will also be shown that the rays of P andSwaves in smoothly inhomogeneous isotropic
media, introduced as characteristics of the eikonal equation, satisfy the following important
geometrical and physical properties.� They are orthogonal to wavefronts.� They are extremal curves of Fermat’s functional.� They satisfy locally Snell’s law, modified for smooth inhomogeneous media.� They represent trajectories along which the high-frequency part of the time-averaged

energy flows.

Some of these properties can also be used alternatively to derive the ray tracing systems
of P and S waves. Only the energy approach, however, offers the possibility of separating
high-frequency P and S waves in smoothly inhomogeneous isotropic media. In the three
remaining approaches, the separation is not derived, but it is assumed a priori.

3.1.1 Rays as Characteristics of the Eikonal Equation

The eikonal equation of high-frequency P and S waves propagating in smoothly inho-
mogeneous isotropic media (∇T )2 = 1/V 2 was derived in Section 2.4.2. In Cartesian
coordinates, it reads

pi pi = 1/V 2(xi ), where pi = ∂T/∂xi . (3.1.1)

Here T = T (xi ) is the travel time (eikonal), pi are components of the slowness vector,
	p= ∇T , V = α for P waves, and V = β for S waves.

Equation (3.1.1) is a nonlinear partial differential equation of the first order for T (xi ). It
can be expressed in many alternative forms. In general, we shall write the eikonal equation
in the following form:

H(xi , pi ) = 0, (3.1.2)

where functionHmay be specified in differentways. For example,H(xi , pi )= pi pi − V−2,
H(xi , pi ) = 1

2 (V
2 pi pi − 1), H(xi , pi ) = (pi pi )1/2 − 1/V , and H(xi , pi ) = 1

2 ln(pi pi ) +
ln V .

The nonlinear partial differential equation (3.1.2) is usually solved in terms of
characteristics. The characteristics of (3.1.2) are 3-D space trajectories xi = xi (u) (u being
some parameter along the trajectory), along which H(xi , pi ) = 0 is satisfied, and along
which travel time T (u) can be simply evaluated by quadratures. The characteristic curve
is a solution of the so-called characteristic system of ordinary differential equations of
the first order. The detailed derivation of the characteristic system can be found in many
textbooks and monographs such as Smirnov (1953), Morse and Feshbach (1953), Kline
and Kay (1965), Courant and Hilbert (1966), Bleistein (1984), and Babich, Buldyrev, and
Molotkov (1985). In particular, the book by Bleistein (1984) offers a very detailed and
tutorial treatment. Here we shall not derive the characteristic system of equations, but refer
the reader to these papers and books. The characteristic system of the nonlinear partial
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differential equation (3.1.2) reads

dxi
du

= ∂H
∂pi
,

dpi
du

= −∂H
∂xi
,

dT

du
= pk

∂H
∂pk

, i = 1, 2, 3.

(3.1.3)

In a 3-D medium, the system consists of seven equations. The six equations for xi (u)
and pi (u) are, in general, coupled and must be solved together. The solution to these six
equations is xi = xi (u), the characteristic curve as a 3-D trajectory, and pi = pi (u), the
components of the slowness vector along the characteristic. The seventh equation for the
travel time along the trajectory, T = T (u), is not coupled with the other six equations and
can be solved independently, as soon as the characteristic is known. The solution T = T (u)
is then obtained by simple quadratures. It is not difficult to see thatH(xi , pi ) = 0 is satisfied
along the characteristic, as soon as it is satisfied at one reference point of the characteristic.

Parameter u along the characteristic cannot be chosen arbitrarily. It depends on the
specific form of function H in (3.1.2). Increment du along the characteristic is related to
the increment of the travel time, dT , as

du = dT/(pk∂H/∂pk). (3.1.4)

Since the rays have been defined as characteristic curves of the eikonal equation, the
system of ordinary differential equations (3.1.3) can be used to determine the ray trajectory
and the travel time along it. We call this the system of ray equations, or the ray tracing
system.

In the seismological literature, it is common to give a mechanical interpretation to the
eikonal equation, written in the form of (3.1.2), and to the ray tracing system (3.1.3). In
classical mechanics, equations (3.1.3) represent the canonical equations of motion of a
particle that moves in the field governed by the Hamiltonian function H(xi , pi ) and has
energyH = 0. See Kline and Kay (1965) and Goldstein (1980). The Hamiltonian function
H(xi , pi ) is usually called just the Hamiltonian, quantities pi are called the momenta,
and (3.1.3) are called the Hamiltonian canonical equations. This terminology has recently
been used in seismology; see, for example, Thomson and Chapman (1985) and Farra and
Madariaga (1987).We shall also use it in this book; but we shall prefer the term components
of the slowness vector in the case of pi .

In the Hamiltonian formalism of classical mechanics, xi and pi are considered to
be independent coordinates in a six-dimensional phase space. They are also often called
canonical coordinates, and the 6 × 1 column matrix (x1, x2, x3, p1, p2, p3)T is called the
canonical vector. Equation H(xi , pi ) = 0 then represents a hypersurface in 6-D phase
space. On the hypersurface,

dH = ∂H
∂xi

dxi + ∂H
∂pi

dpi = 0.

The relation is satisfied if we put

dxi/(∂H/∂pi ) = −dpi/(∂H/∂xi ), i = 1, 2, 3 (3.1.5)

(no summation over i). If we put these expressions equal to the differential of auxiliary
variable du, we obtain the first six equations of the canonical Hamilton system (3.1.3). The
additional equation for T is then obtained simply as

pi
∂H
∂pi

= pi
dxi
du

= ∂T

∂xi

dxi
du

= dT

du
.
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Thus, the solution of the Hamilton system of equations, where xi = xi (u) and pi =
pi (u), can also be interpreted as the parametric equations of a curve in 6-D phase space
xi , pi (i = 1, 2, 3) on hypersurface H(xi , pi ) = 0. This curve is also often called the
(6-D) characteristic curve of (3.1.2). Ray xi = xi (u) is then a 3-D projection of the 6-D
characteristic curve into the x1, x2, x3-space.

We shall now express the characteristic systems (3.1.3) corresponding to several dif-
ferent forms of eikonal equation (3.1.2). We shall first use a rather general form of the
Hamiltonian, which includes many other options,

H(xi , pi ) = n−1
{
(pi pi )

n/2 − 1/V n
}
, (3.1.6)

where n is a real-valued quantity. In applications, we shall consider n to be an integer. We
shall use (3.1.6) also in the limit for n → 0. The l’Hospital rule then yields

H(xi , pi ) = 1
2 ln(pi pi ) + ln V = 1

2 ln(V
2 pi pi ). (3.1.7)

Factor 1/n in (3.1.6) is used to obtain a suitable parameter u along the characteristic.
The characteristic system of equations (3.1.3) corresponding to Hamiltonian (3.1.6)

reads,

dxi
du

= (pk pk)
n/2−1 pi ,

dpi
du

= 1

n

∂

∂xi

(
1

V n

)
,

dT

du
= (pk pk)

n/2 = V−n;
(3.1.8)

see (3.1.3). Because we have identified the characteristics of the eikonal equations as rays,
system (3.1.8) represents the ray tracing system.

It will be useful to write explicitly several forms of the ray tracing system for different
n and, consequently, for different parameters u along the ray.

For n = 0, dT/du = 1. Thus, parameter u along the ray is directly equal to travel time
T . The ray tracing system then reads

dxi
dT

= (pk pk)
−1 pi ,

dpi
dT

= −∂ ln V
∂xi

. (3.1.9)

For n = 1, dT/du = 1/V . Parameter u along the ray is arclength s along the ray. The
ray tracing system reads

dxi
ds

= (pk pk)
−1/2 pi ,

dpi
ds

= ∂

∂xi

(
1

V

)
,

dT

ds
= 1

V
. (3.1.10)

The simplest ray tracing system is obtained for n = 2. We now denote parameter u
along the ray by σ :

dxi
dσ

= pi ,
dpi
dσ

= 1

2

∂

∂xi

(
1

V 2

)
,

dT

dσ
= 1

V 2
. (3.1.11)

Finally, we shall also use the ray tracing system for n = −1. We then denote parameter
u along the ray by ζ , and the ray tracing system reads

dxi
dζ

= (pk pk)
−3/2 pi ,

dpi
dζ

= −∂V
∂xi
,

dT

dζ
= V . (3.1.12)

All the ray tracing systems (3.1.8) through (3.1.12) are shown in the form of Hamilton
canonical equations (3.1.3) for eikonal equation H(xi , pi ) = 0; see (3.1.2).
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One of the great advantages of systems (3.1.8) through (3.1.12) is that the RHSs of
equations for dxi/du depend only on canonical coordinates pi (not xi ), and the RHSs of
equations for dpi/du only on canonical coordinates xi (not pi ). This allows closed-form
analytical solutions of the ray tracing equations to be found in many useful cases.

Many other forms of the HamiltonianH(xi , pi ) also yield suitable ray tracing systems.
For example, we can multiply (3.1.6) by V n,

H(xi , pi ) = n−1
{
(V 2 pk pk)

n/2 − 1
} = 0.

An interesting property of this Hamiltonian is that dT/du = (V 2 pk pk)n = 1 for arbitrary
n. Thus, the variable u along the ray equals travel time T for any n. The most common
case is to consider n = 2. The Hamiltonian then reads

H(xi , pi ) = 1
2 (V

2 pk pk − 1) = 0, (3.1.13)

and the relevant ray tracing system is

dxi/dT = V 2 pi , dpi/dT = − 1
2 pk pk∂V

2/∂xi . (3.1.14)

Another suitable form of the Hamiltonian is

H(xi , pi ) = 1
2V

2−n(pk pk − V−2). (3.1.15)

Because theHamiltonian (3.1.15) satisfies the relation pi∂H/∂pi = V−n , it yields the same
monotonic parameter u along the ray as (3.1.6) for the same n. For n = 0, (3.1.15) yields
u = T , for n = 1 it yields u = s, and for n = 2 it yields u = σ . The Hamiltonian (3.1.15)
has often been used for n = 1 (that is, for u = s). Then it reads

H(xi , pi ) = 1
2V (pk pk − V −2), (3.1.16)

and the relevant ray tracing system is

dxi/ds = V pi , dpi/ds = − 1
2 pk pk∂V/∂xi + 1

2∂(1/V )/∂xi . (3.1.17)

Even more general forms of Hamiltonians can be introduced. As an example, see (3.4.11).
The next example isH(xi , pi ) = 1

2 F(xi )(pk pk − V−2), where F(xi ) is an arbitrary contin-
uous positive function. Then, dT/du = F(xi )/V 2(xi ).

Because the eikonal equation H(xi , pi ) = 0 is satisfied along the whole ray (once
it is satisfied at one of its points), we can modify the ray tracing systems by inserting
pk pk = V−2. Equations (3.1.8) through (3.1.10) and (3.1.12) then yield

dxi
du

= V 2−n pi ,
dpi
du

= 1

n

∂

∂xi

(
1

V n

)
,

dT

du
= 1

V n
, (3.1.18)

dxi
dT

= V 2 pi ,
dpi
dT

= −∂ ln V
∂xi

, (3.1.19)

dxi
ds

= V pi ,
dpi
ds

= ∂

∂xi

(
1

V

)
,

dT

ds
= 1

V
, (3.1.20)

dxi
dζ

= V 3 pi ,
dpi
dζ

= −∂V
∂xi
,

dT

dζ
= V . (3.1.21)

Similarly, (3.1.14) and (3.1.17) also yield (3.1.19) and (3.1.20). Equations (3.1.18)
through (3.1.21) are not expressed in the Hamiltonian form (3.1.3). Nevertheless, they
represent very useful ray tracing systems.
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The simplest version of ray tracing system (3.1.11) corresponds to the Hamiltonian
H(xi , pi ) = 1

2 (pk pk − 1/V 2); see Burridge (1976). The relevant variable σ along the ray,
connected with travel time T by relation dT/dσ = 1/V 2, is sometimes called the natural
variable along the ray.

In a 3-Dmedium, the ray tracing system consists of six ordinary differential equations of
the first order, with one additional equation for the travel time. The system of six ordinary
differential equations of the first order can be expressed as a system of three ordinary
differential equations of the second order. Let us demonstrate this on system (3.1.18):

d

du

(
V n−2 dxi

du

)
= 1

n

∂

∂xi

(
1

V n

)
, i = 1, 2, 3. (3.1.22)

The simplest system of ordinary differential equations of the second order is again obtained
for n = 2,

d2xi
dσ 2

= 1

2

∂

∂xi

(
1

V 2

)
, i = 1, 2, 3. (3.1.23)

Instead of the components of the slowness vector pi in the ray tracing systems, it would
also bepossible to use someother quantities specifying the slowness vector. For example,we
can express pi in terms of the three angles i1, i2, and i3 as follows: p1 = V−1 cos i1, p2 =
V−1 cos i2, and p3 = V−1 cos i3. The ray tracing system for a 3-D medium then con-
sists of six ordinary differential equations of the first order for xk and ik , k = 1, 2, 3.
See Yeliseyevnin (1964) and Červený and Ravindra (1971, p. 25). Another possibility
is to express pi in terms of two angles i and φ as follows: p1 = V−1 sin i cosφ, p2 =
V−1 sin i sinφ, and p3 = V−1 cos i . The ray tracing system for a 3-D medium then con-
sists of five ordinary differential equations of the first order for x1, x2, x3, i, and φ only.
The eikonal equation is automatically satisfied along the ray. For a 2-D medium, the rel-
evant system consists of three ordinary differential equations of the first order only. See
Pšenčı́k (1972) and Červený, Molotkov, and Pšenčı́k (1977, pp. 59, 62). In general, how-
ever, the foregoing ray tracing systems in terms of pi are numerically more efficient than
those expressed in terms of some angular quantities. For this reason, we do not present
and discuss the latter systems here but refer the reader to the previously given refer-
ences.

In general, the number of ordinary differential equations of the first order in the ray
tracing systems can always be reduced from six to four. One of the three equations for
pi can be replaced by the eikonal equation, and one of the three equations for xi can be
removed by taking u equal to coordinate xi . Similarly, if we express the ray tracing system
in terms of ordinary differential equations of the second order, the number of equations
can always be reduced from three to two. This applies not only to ray tracing systems
in Cartesian coordinates but also to any other orthogonal or nonorthogonal coordinates.
Moreover, this also applies to anisotropic media. Many such “reduced” ray tracing systems
are known from the seismological literature.

The general procedure of deriving the reduced ray tracing system is simple and is based
on the so-called reduced Hamiltonian. Here we shall introduce the reduced Hamiltonian
for Cartesian coordinates only; for curvilinear coordinates, see Section 3.5. We shall first
solve the eikonal equation for p3 and obtain

p3 = −HR(x1, x2, x3, p1, p2). (3.1.24)
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We shall callHR(xi , pI ) the reduced Hamiltonian. The minus sign (−) in (3.1.24) is taken
for convenience. Now we define the HamiltonianH(xi , pi ) as

H(xi , pi ) = p3 +HR(x1, x2, x3, p1, p2) = 0. (3.1.25)

For this Hamiltonian, we can express the standard ray tracing system using (3.1.3). As
a variable u along the ray, we use x3. Consequently, we do not need to calculate dx3/du
because it equals unity. Moreover, we do not need to calculate dp3/du because p3 is given
explicitly by (3.1.24). Thus, ray tracing system (3.1.3) reduces to four ordinary differential
equations of the first order:

dxI
dx3

= ∂HR

∂pI
,

dpI
dx3

= −∂H
R

∂xI
, I = 1, 2. (3.1.26)

The additional relation for the travel-time calculation along the ray is

dT

dx3
= p3 + pI

∂HR

∂pI
; (3.1.27)

see (3.1.3). Alternative equations to (3.1.24) through (3.1.27) are obtained if the eikonal
equation is solved for p1 and the variable u along the ray is taken as u = x1. Similarly, we
can solve the eikonal equation for p2 and take u = x2.

As pi = ∂T/∂xi , Equation (3.1.24) represents a nonlinear partial differential equation
of the first order, which is known as the Hamilton-Jacobi equation. Note that the reduced
HamiltonianHR(xi , pI ) does not vanish along the ray but equals −p3. Consequently, it is
not constant along the ray.

We shall now express the reduced HamiltonianHR(xi , pI ) in Cartesian coordinates:

HR(xi , pI ) = −[1/V 2(x1, x2, x3) − p21 − p22
]1/2
. (3.1.28)

The minus sign (−) corresponds to propagation in the direction of increasing x3 (positive
p3); see (3.1.24). For the opposite direction of propagation, it would be necessary to take
the + in (3.1.28). The reduced ray tracing system (3.1.26) is taken as

dxI
dx3

= V pI[
1 − V 2

(
p21 + p22

)]1/2 ,
dpI
dx3

= 1[
1 − V 2

(
p21 + p22

)]1/2 ∂

∂xI

(
1

V

)
, I = 1, 2.

(3.1.29)

For the travel time, we obtain

dT/dx3 = V−1
[
1 − V 2

(
p21 + p22

)]−1/2 = 1/V 2 p3; (3.1.30)

see (3.1.27).
Ray tracing system (3.1.29) consisting of four ordinary differential equations of the first

order can also be expressed as a system of two ordinary differential equations of the second
order.Wemerely express pI in terms of x ′

I = dxI /dx3 from the first equation of (3.1.29) and
insert them into the second equation of (3.1.29). We obtain pI = V−1x ′

I [1 + x ′2
1 + x ′2

2 ]
−1/2

and

d

dx3

[
1

V

x ′
I√

1 + x ′2
1 + x ′2

2

]
− ∂

∂xI

(
1

V

)√
1 + x ′2

1 + x ′2
2 = 0,

I = 1, 2. (3.1.31)

Ray tracing system (3.1.29) is simple and consists of four ordinary differential equations
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of the first order only. The great disadvantage of the system is that parameter u = x3 is
not necessarily monotonic along the ray. Ray tracing system (3.1.29) fails at ray turning
points at which the ray has a minimum with respect to coordinate x3. In the following, we
shall consider only the complete ray tracing systems consisting of six equations, unless
otherwise stated. For more details, see Sections 3.3.1 and 3.3.2.

3.1.2 Relation of Rays to Wavefronts

In isotropic inhomogeneous media, the rays are orthogonal trajectories to wavefronts.
This is a well-known fact from general courses of physics. However, in certain types of
media (for example, in anisotropic media), the rays are not orthogonal to wavefronts. Thus,
wavefronts and rays are not orthogonal in general. We are not justified in assuming this,
even in isotropic media a priori; we must prove it.

In this section, wavefronts T = T (xi ), satisfying eikonal equation ∇T · ∇T = 1/V 2,
are assumed to be known, and we wish to derive the system of differential equations for
the orthogonal trajectories to wavefronts. We shall see that the system is identical with the
ray tracing system.

We specify the orthogonal trajectory to the wavefronts by parameteric equations xi =
xi (s), where xi are the Cartesian coordinates of points along the orthogonal trajectory
and s is the arclength. The unit vector tangent to the orthogonal trajectory is 	t = d	x/ds.
The vector perpendicular to the wavefront is denoted by 	p = ∇T . At any point on the
orthogonal trajectory, 	t must be of the same direction as 	p. Thus, ti = λpi , where λ is some
constant. This constant is simply obtained from the eikonal equation, λ = V . Consequently,
ti = dxi/ds = V pi . Comparing this equation with (3.1.20), we can conclude that the rays
in isotropic inhomogeneous media are perpendicular to wavefronts.

To derive the complete set of differential equations for the orthogonal trajectories,
we must still find the equations for dpi/ds. Taking into account that pi = ∂T/∂xi and
pi pi = 1/V 2,

dpi
ds

= ∂pi
∂x j

dx j
ds

= V p j
∂

∂x j

(
∂T

∂xi

)
= V p j

∂

∂xi

(
∂T

∂x j

)

= V pj
∂p j
∂xi

= 1

2
V
∂

∂xi
(p j p j ) = 1

2
V
∂

∂xi

(
1

V 2

)
= ∂

∂xi

(
1

V

)
.

Together with dxi/ds = V pi , this result yields ray tracing system (3.1.20).
The rays are orthogonal to the wavefronts in isotropic media irrespective of the coor-

dinate system used. Thus, we can use this concept to derive the ray tracing systems for
isotropic media in any curvilinear coordinate system.

3.1.3 Rays as Extremals of Fermat’s Functional

Rays are often introduced using variational principles, namely using Fermat’s principle.
The weakness of this approach in the case of seismic waves wasmentioned earlier. Fermat’s
principle is applied to P and S waves as if they were two independent waves. But as we
know, this separation cannot be performed generally; the elastic wavefield is fully separated
into P and S waves only in homogeneous media. This separation can be proved only by
asymptotic methods.

Let us denote the propagation velocity of the wave under consideration (either P or S)
by V and assume that V (xi ) with its first derivatives are continuous functions of Cartesian
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coordinates xi . Consider the following integral:

J =
∫ R

S
dT =

∫ R

S

ds

V
, (3.1.32)

where S and R denote two arbitrary but fixed points. The integration is performed along
some curve connecting S and R, where s is the arclength along this curve. The value of J
denotes the travel time from S to R. It, of course, depends on the curve along which the
integral is taken. Integral (3.1.32) is called Fermat’s functional.

Fermat’s principle establishes alongwhich curve the signal propagates from S to R. The
signal propagates from point S to point R along a curve that renders Fermat’s functional
(3.1.32) stationary. The curve for which Fermat’s functional is stationary is called the
extremal curve or the extremal of Fermat’s functional.

We shall now prove that the extremal of Fermat’s functional satisfies the same system
of ordinary differential equations as the characteristic of the eikonal equation. Recall that
the statement that the functional is stationary along a curve means that the first variation
of the functional vanishes along that curve,

δ J = δ

∫ R

S
dT = δ

∫ R

S

ds

V
= 0. (3.1.33)

In the calculus of variations, the functional is often expressed in the following form:

J =
∫ x1

x0

L(x, y, z, y′, z′)dx, (3.1.34)

where y = y(x), z = z(x), y′ = dy/dx , and z′ = dz/dx . Points [x0, y(x0), z(x0)] and
[x1, y(x1), z(x1)] are fixed. The extremal curve y = y(x), z = z(x) of the preceding func-
tional J satisfies Euler’s equations,

d

dx

(
∂L
∂y′

)
− ∂L
∂y

= 0,
d

dx

(
∂L
∂z′

)
− ∂L
∂z

= 0, (3.1.35)

with the relevant boundary conditions at x0 and x1.
Function L(x, y, z, x ′, y′) is often called the Lagrangian. (3.1.34) represents Fermat’s

functional if we put

L(x, y, z, x ′, y′) = (1 + y ′2 + z′2)1/2/V (x, y, z). (3.1.36)

Euler’s equations (3.1.35) then read

d

dx

(
1

V

y ′

(1 + y′2 + z′2)1/2

)
= ∂

∂y

(
1

V

)
(1 + y′2 + z′2)1/2,

d

dx

(
1

V

z′

(1 + y′2 + z′2)1/2

)
= ∂

∂z

(
1

V

)
(1 + y′2 + z′2)1/2.

(3.1.37)

These equations are fully equivalent to ray tracing equations (3.1.31) (in the notation
x = x3, y = x1, z = x2). Thus,we have proved that the raysmay be interpreted as extremals
of Fermat’s functional.

Functional (3.1.34) andEuler’s equations (3.1.35) are suitablemainly if the extremal has
no turning points with respect to the x-coordinate. We, however, prefer to use a monotonic
parameter along the ray instead of the x-coordinate. It is then more convenient to consider
the variational problem in parameteric form. We shall consider any monotonic parameter
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u along the curves. The functional then reads

J =
∫ R

S
L(xi , x ′

i )du, i = 1, 2, . . . , n, (3.1.38)

where xi = xi (u), x ′
i = dxi/du. Points S and R are fixed, but parameter u need not be fixed

at these points. We assume that the same function L(xi , x ′
i ) can be used for an arbitrary

choice of parameter u. In other words, we require that the same extremal curve be obtained
for any parameter u. This implies that L(xi , x ′

i ) is a homogeneous function of the first
degree in x ′

i . Then again, the extremal curve xi = xi (u) of functional (3.1.38) satisfies
Euler’s equations,

d

du

(
∂L
∂x ′

i

)
− ∂L
∂xi

= 0, i = 1, 2, . . . , n. (3.1.39)

For details, see Smirnov (1953), Jeffreys and Jeffreys (1966), Courant and Hilbert (1966),
Babich and Buldyrev (1972), and Goldstein (1980).

We shall refer to (3.1.39) as Euler’s equations in parameteric form. Note that (3.1.39)
are invariant with respect to the choice of parameter u.

We shall now seek Euler’s equations in parameteric form for Fermat’s functional. The
infinitesimal length element ds along the curve can be expressed in terms of x ′

i as

ds = (
x ′
1
2 + x ′

2
2 + x ′

3
2)1/2du, x ′

i = dxi/du.

Fermat’s functional (3.1.38) then reads

J =
∫ R

S
V−1(xi )

(
x ′
1
2 + x ′

2
2 + x ′

3
2)1/2du

so that L = V−1(xi )(x ′
1
2 + x ′

2
2 + x ′

3
2)1/2 is a homogeneous function of the first order in x ′

i .
Euler’s equations in this particular case read

d

du

(
1

V

x ′
i(

x ′
1
2 + x ′

2
2 + x ′

3
2)1/2

)
− ∂

∂xi

(
1

V

)(
x ′
1
2 + x ′

2
2 + x ′

3
2)1/2 = 0.

(3.1.40)

Let us now consider a special parameter u along the extremal, which is related to arclength s
as du = V n−1ds. Note that n and u nowhave the samemeaning as they have in Section 3.1.1.
Therefore, (x ′

1
2 + x ′

2
2 + x ′

3
2)1/2 = ds/du = V 1−n , and (3.1.40) reads

d

du

(
V n−2 dxi

du

)
= 1

n

∂

∂xi

(
1

V n

)
, i = 1, 2, 3.

This equation is fully equivalent to (3.1.22). We have thus again proved that the rays may
be interpreted as extremals of Fermat’s functional, even if we consider Fermat’s functional
in the parameteric form.

Fermat’s principle, in its original version, states that the rays represent the paths that
require the least time for a signal to travel from S to R. Thus, it speaks of the minimum of
Fermat’s functional, not of its stationary value. Consequently, we shall speak of Fermat’s
minimum-time principle. Fermat’s minimum-time principle may still play an important role
in seismology, if we are interested in the computations of the first arrival times only; see
Section 3.8. We know, however, that the rays do not necessarily correspond to the least
time. In seismology, situations in which the travel-time curve of a certain wave has a loop
are common, even if the velocity distribution without interfaces is quite smooth. For a
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selected elementary wave, the first arrival corresponds to an absolute minimum of Fermat’s
functional, and the other merely corresponds to the stationary values. The original version
of Fermat’s principle does not explain these later arrivals. Note that rays never correspond
to the absolute maximum of Fermat’s functional. They may correspond to the maximum
of some selected system of curves, but Fermat’s functional is actually stationary in this
case.

Thus, the same ray tracing systems can be derived from either the Hamiltonian function
H(xi , pi ) (related to the eikonal equation) or the Lagrangian function L(xi , x ′

i ) (related
to Fermat’s principle). The ray tracing systems derived from the Hamiltonian function
H(xi , pi ) consist of six ordinary differential equations of the first order for xi and pi (posi-
tion and slowness vector components).We also speak of ray tracing systems inHamiltonian
form, or of Hamiltonian ray tracing systems. The ray tracing systems derived from the
Lagrangian functionL(xi , x ′

i ) consist of three ordinary differential equations of the second
order, but they contain xi and x ′

i = dxi/du instead of xi and pi . We also speak of ray tracing
systems in a Lagrangian form, or of Lagrangian ray tracing systems. Here we have derived
the Lagrangian ray tracing systems (3.1.37) and (3.1.40) as extremals of Fermat’s func-
tional. It should be, however, emphasized that the Lagrangian ray tracing systems can also
be derived directly from the Hamiltonian ray tracing systems, without involving Fermat’s
principle at all. See (3.1.22) and (3.1.23).

The Hamiltonian and Lagrangian ray tracing systems have a well-known analogy in
classical mechanics. The canonical equations of motion (3.1.3) of a particle moving in a
field governed by the Hamiltonian function H(xi , pi ) can also be expressed in terms of
the Lagrangian equation of motion, corresponding to Euler’s equations (3.1.39). For this
reason, it is also common to call (3.1.39) the Euler-Lagrange equations. Of course, this
also applies to Equations (3.1.35). In this book, we consistently use the approach based
on the asymptotic high-frequency solutions of the wave equations, and on the consequent
eikonal and transport equations. As a result, we do not need Fermat’s principle and the
Lagrangian function at all. For more details on mutual relations between the Hamiltonian
and Lagrangian functions and on the relevant Legendre transformation, see Kline and Kay
(1965) and Goldstein (1980).

An alternative approach to the definition of rays is also based on variational principles.
We shall prove that the rays are geodesics in a Riemannian space with a specially chosen
metric tensor. Let us consider a Riemannian space with curvilinear coordinates xi (i =
1, 2, 3) and with metric tensor gi j . The square of the distance between two adjacent points
is given by relation

ds2 = gi jdx
idx j . (3.1.41)

The summation in (3.1.41) is over the same upper and lower indices. Distance s may have
various physical meanings. The geodesic in a Riemannian space is a curve, whose length
has a stationary value with respect to arbitrarily small variations of the curve and whose
end points are fixed (see Synge and Schild 1952). Thus, the geodesic between points S and
R satisfies the variational condition

δ

∫ R

S
ds = δ

∫ R

S
(gi jdx

idx j )1/2 = 0. (3.1.42)

Let us now assume that ds in (3.1.41) represents the infinitesimal travel time between
two adjacent points. In this case, the definition of the geodesic is exactly the same as the
definition of the ray; see (3.1.33).
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We shall present a simple example of a Riemannian space in which the distance cor-
responds to the travel time. We shall consider Cartesian coordinates xi and adopt the
following metric tensor:

gi j = V−2(xi )δi j , (3.1.43)

where V is the velocity and δi j is the Kronecker delta symbol. As a result, (3.1.41)
yields gi jdxidx j = V−2[(dx1)2 + (dx2)2 + (dx3)2] = dT 2. Thus, rays are geodesics in the
Riemannian space with metric tensor gi j given by (3.1.43).

3.1.4 Ray Tracing System from Snell’s Law

In this section, we shall derive the ray tracing system by applying Snell’s law (2.4.70)
locally, without any additional assumption. The approach, however, is not as strict as other
approaches, as we simulate a smooth medium by a system of thin homogeneous layers
and then decrease the thicknesses of the layers to zero. The limiting process is performed
without rigorous proof and is, more or less, intuitive.

We shall consider only unconverted transmitted waves, either P or S. We denote the
velocity of the selected wave V . First, we derive an approximate version of Snell’s law

(2.4.70) for an interface with a small velocity contrast Ṽ − V . If ( 	p · 	n)2 � |Ṽ−2 − V−2|,
then, approximately,[

Ṽ
−2 − V−2 + ( 	p · 	n)2]1/2 .= | 	p · 	n| − V−3(Ṽ − V )/| 	p · 	n|.

Inserting this into Snell’s law (2.4.70) and taking into account that ε| 	p · 	n| = 	p · 	n, we
obtain Snell’s law in the following form:

	̃p .= 	p − V−3(Ṽ − V )	n/( 	p · 	n). (3.1.44)

We shall nowsimulate a smoothmediumbyusing a systemof thin homogeneous layers,with
first-order interfaces along isovelocity surfaces; see Figure 3.1. (We understand isovelocity
surface to be a surface along which the velocity is constant.) If the medium is smooth,
the isovelocity surfaces are only slightly curved. We shall replace them locally by tangent
planes at the point of intersection with the ray. Moreover, if we choose sufficiently thin
layers, the velocity contrast across the individual fictitious interfaces will be small. We can
then use (3.1.44). Unit normal 	n at any point of incidence is perpendicular to the isovelocity
surface so that 	n = ±∇V/|∇V |. Equation (3.1.44) then yields

� 	p = −�V
V 3

∇V
	p · ∇V , � 	p = 	̃p − 	p, �V = Ṽ − V .

Figure 3.1. Derivation of the ray trac-
ing system from Snell’s law. The smooth
velocity distribution is simulated by a
system of thin homogeneous layers with
interfaces along isovelocity surfaces (see
thin lines). The arrows denote the unit
normals to the isovelocity surfaces.
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In the limit, for infinitesimally thin layers, we obtain

d 	p = − 1

V 3

∇V
	p · ∇V dV .

We now denote the ray trajectory by the parametric equations xi = xi (s), where s is the
arclength along the ray. We also denote the unit vector to the ray 	t , so that d	x/ds = 	t .
Because Snell’s law (2.4.70) implicitly takes the slowness vector to be tangent to the ray,
we can put 	t = V 	p and d	x/ds = V 	p. Moreover, we obtain dV/ds = 	t · ∇V = V 	p · ∇V ,
and then

d 	p
ds

= − 1

V 3

∇V
	p · ∇V

dV

ds
= ∇

(
1

V

)
.

Thus, the final ray tracing system is

d	x/ds = V 	p, d 	p/ds = ∇(1/V ).

This is fully equivalent to ray tracing system (3.1.20), derived from the eikonal equation
by the method of characteristics.

3.1.5 Relation of Rays to the Energy Flux Trajectories

In this section, we shall show that the time-averaged energy of high-frequency elastic waves
in smoothly inhomogeneous isotropic media flows along rays. If we use travel time T as a
parameter along the ray, the ray tracing system in isotropic inhomogeneous media reads

dxi/dT = V 2 pi = V Ni , dpi/dT = −∂ ln V/∂xi ; (3.1.45)

see (3.1.19). Here V = α for Pwaves and V = β for Swaves. Derivatives dxi/dT represent
components of vector 	vr , often called the ray velocity vector. Ray velocity vector 	vr is
tangent to the ray at any point of the ray. Moreover, ray velocity vr = (	vr .	vr )1/2 represents
the propagation velocity of the wave along the ray trajectory.

The group velocity vector 	U of high-frequency elastic waves propagating in smooth
inhomogeneous media was introduced in Section 2.4.4 as the velocity vector of the energy
flux. For elastic inhomogeneous isotropic media, it is given by the relation 	U = V 	N ,
where V = α for P waves, V = β for S waves, and 	N is the unit vector perpendicular to
thewavefront; see (2.4.57) and (2.4.58). Comparing 	U with (3.1.45),we see that ray velocity
vector 	vr equals group velocity vector 	U in isotropic media. Thus, the high-frequency part
of the elastic energy flows along rays in smoothly inhomogeneous isotropic media. In
Section 3.6, we shall prove that the same conclusion applies to inhomogeneous anisotropic
media.

3.1.6 Physical Rays. Fresnel Volumes

Let us consider ray �, and two points, S and R, situated on this ray. Assume that point S
represents the point source and point R, the receiver.

In the ray method, ray path � can be interpreted as a trajectory along which the high-
frequency part of the energy of the seismic wave under consideration propagates from
source S to receiver R. The ray trajectory, however, is only mathematical fiction. In fact,
the wavefield at R is also affected by the structure and velocity distribution in some vicinity
of �.
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S

Figure 3.2. Fresnel volumes. (a) The
Fresnel volume in an inhomogeneous
medium, corresponding to the point
source at S and receiver at R, for a se-
lected frequency f . The bold line de-
notes the ray� from S to R. The Fresnel
volume consists of points F satisfying
the condition (3.1.46). (b) The Fresnel
volume in a homogeneous medium cor-
responding to the point source at S and
receiver at R is represented by an ellip-
soid of revolution with foci at S and R.

The region that actually affects the wavefield at R has been the subject of interest and
investigation for a long time. As a result of numerous experiments, it is believed that the
wavefield at R is affected by the structure in some vicinity of central ray� which is called
the Fresnel volume. The Fresnel volume, of course, depends on the position of S and R.
Therefore, we shall speak of the Fresnel volume corresponding to a point source at S and
a receiver at R.

The Fresnel volume has been defined in different ways. Here we shall use a very simple
definition proposed byKravtsov and Orlov (1980). Let us consider an elementary harmonic
wave propagating from the point source at S to the receiver at R. Denote the frequency of
the harmonic wave by f and the ray connecting S and R by�. Let us consider an auxiliary
point F in the vicinity of central ray � and construct the rays connecting F with S and R.
Point F then belongs to the Fresnel volume corresponding to the point source at S and the
receiver at R if, and only if,

|T (F, S) + T (F, R) − T (R, S)| < 1
2 f

−1. (3.1.46)

Here T (F, S) is the travel time from S to F , and similarly for T (F, R) and T (R, S). See
Figure 3.2(a).

The physical meaning of condition (3.1.46) is obvious. Points F such that time differ-
ence |T (F, S) + T (F, R) − T (R, S)| is larger than one half of the period do not affect the
wavefield at R significantly. For these time differences, destructive interference plays an
important role.

Fresnel volumes are closely related to Fresnel zones. Here we shall define the Fresnel
zone at point O of ray� as a section of the Fresnel volume by a plane perpendicular to ray
� at O . In a similar way, we can define the interface Fresnel zone at a point of incidence
Q on interface � as a section of the Fresnel volume by interface �.

As a simple but very important example, we shall briefly discuss the Fresnel volumes of
direct waves generated by a point source in a homogeneousmedium.We denote the distance
between S and R by l and the propagation velocity by V . It is not difficult to prove that the
Fresnel volume of the direct wave in a homogeneous medium is an ellipsoid of revolution,
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whose rotational axis passes through S and R. To prove this, we introduce a local Cartesian
coordinate system x, y, z with its origin at point O , situated in themiddle between S and R,
and with the x-axis coinciding with the straight line SR. The x-coordinates of points S, O
and R are − 1

2 l, 0, and
1
2 l, respectively. See Figure 3.2(b). In local coordinates, (3.1.46)

yields the following equation for the boundary of the Fresnel volume:[(
x − 1

2 l
)2 + r2

]1/2 + [(
x + 1

2 l
)2 + r 2

]1/2 − l = 1
2λ, (3.1.47)

where r2 = y2 + z2, λ = V f −1. After some simple algebra, this equation yields the equa-
tion of the ellipsoid of revolution,

x2

a2
+ y2 + z2

b2
= 1, (3.1.48)

where a and b are the semiaxes of the Fresnel ellipsoid. They are given by relations

a = 1
2 l
(
1 + 1

2λ/ l
)
, b = 1

2

√
λl
(
1 + 1

4λ/ l
)1/2
. (3.1.49)

The quantity b represents the most important parameter of the Fresnel volume: its half-
width. Note that the Fresnel zones are circular in a homogeneous medium. Consequently,
quantity b also represents the radius of the Fresnel zone at point O .

As we can see from Figure 3.2(b), the boundary of the Fresnel volume intersects the
x-axis at points S′ and R′, outside S and R. We can introduce overshooting distance � by
the relation

� = S′S = R′R = a − 1
2 l = 1

4λ. (3.1.50)

The overshooting distance has an obvious physical meaning. It does not depend on the
distance between the source S and the receiver R.

In the high-frequency approximation (λ � l), we can neglect 1
2λ/ l and

1
4λ/ l in the

brackets of (3.1.49) with respect to unity. We then obtain the simple equations,

a
.= 1

2 l, b
.= 1

2

√
λl = 1

2 f
−1/2

√
lV , � = 1

4λ = 1
4 f

−1V . (3.1.51)

For f → ∞, the frequency dependence of the three quantities a, b, and � is different:
b ∼ f −1/2, a ∼ f 0, and � ∼ f −1.

Thus, the half-width of the Fresnel volume b is proportional to f −1/2. Consequently,
for high frequencies, the Fresnel volume is closely concentrated to ray� connecting S and
R. With increasing frequency, the width of the Fresnel volume decreases as f −1/2.

The Fresnel volumes introduced by (3.1.46) correspond to the wavefield generated by
a point source situated at S. The Fresnel volumes (and relevant Fresnel zones), however,
may be introduced even for a wavefield generated at an arbitrary initial surface passing
through S. Let us consider a simple case of a plane wave, with wavefront�S perpendicular
to ray � at S. Similarly, as in the case of a point source, it is not difficult to prove that the
relevant Fresnel volume corresponding to a receiver at R in a homogeneous medium is a
paraboloid of revolution, whose rotational axis is normal to �S and passes through R. In
the high-frequency approximation, the radius of the relevant Fresnel zone at �S is given
by the relation

b ∼ f −1/2
√
lV =

√
λl. (3.1.52)

Here l is again the distance between S and R.
The term Fresnel volume is due to Kravtsov and Orlov (1980). Fresnel volumes are also

known as 3-D Fresnel zones and regions responsible for diffraction among others. They
are also called physical rays, as opposed to the mathematical ray �. For a more detailed
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treatment of Fresnel volumes, including a historical review and many references, refer
to Gelchinsky (1985), Červený and Soares (1992), and Kvasnička and Červený (1994,
1996).

Fresnel volumes play an important role in the solution of many wave propagation
problems. For example, they can be used effectively to formulate the validity conditions
of the ray method (see Section 5.9) and to study the resolution of seismic methods. For
efficient calculations and amore detailed discussion of Fresnel volumes in laterally varying
3-D layered structures and for many other references refer to Section 4.11.

3.2 Rays in Laterally Varying Layered Structures

InSection 3.1,wederived the ray tracing systems to evaluate rays in general laterally varying
isotropic media without interfaces. To compute rays in actual laterally varying layered
structures, we must also discuss the problem of the continuation of rays across curved
interfaces. Moreover, we must also specify the initial conditions for the ray tracing system.

3.2.1 Initial Conditions for a Single Ray

Each ray and the travel time along the ray are fully specified by the coordinates of the initial
point S of the ray, by the initial components of slowness vector 	p0 at point S and by the
initial travel time at S. We shall use the following notation:

At S: xi = xi0, pi = pi0, T = T0. (3.2.1)

Quantities pi0 determine the initial direction of the ray at S. They are not arbitrary; they
must satisfy the eikonal equation at S,

pi0 pi0 = 1/V 2
0 , V0 = V (xi0). (3.2.2)

Instead of the pi0, which must satisfy (3.2.2), the initial direction of the ray may be defined
by two take-off angles at S, i0 and φ0. These can be defined as spherical polar coordinates
at S:

p10 = V−1
0 sin i0 cosφ0, p20 = V−1

0 sin i0 sinφ0,

p30 = V−1
0 cos i0,

(3.2.3)

with 0 ≤ i0 ≤ π , 0 ≤ φ0 ≤ 2π ; see Figure 3.3. Such pi0 satisfy (3.2.2) automatically.

Figure 3.3. The definition of initial
take-off angles i0 and φ0 at initial point
S. The bold continuous line denotes ini-
tial slowness vector 	p0; the bold dashed
line represents the projection of 	p0 into
the x3 = 0 plane.
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Note that spherical polar coordinates r , i0, and φ0, where r is the distance from S,
form a right-handed orthogonal coordinate system with its origin at S. This system is
common in studying wavefields generated by a point source at S. Cartesian coordinate
system xi (≡ x, y, z) is defined in the following way. The origin of the coordinate system
is situated at the epicenter, axis x1(≡ x) is tangent to the Earth’s surface and points to the
North, axis x2(≡ y) is tangent to the surface and points to the East, and axis x3(≡ z) points
downward. See Aki and Richards (1980, pp. 114–15).

It is also possible to use some alternative angles to define the direction of the ray at S.
For example, we can use θ0 = 1

2π − i0, − 1
2π ≤ θ0 ≤ 1

2π . Then

p10 = V−1
0 cos θ0 cosφ0, p20 = V−1

0 cos θ0 sinφ0,

p30 = V−1
0 sin θ0,

(3.2.4)

It is simple to see that angle θ0 is now measured from the equator, not from the polar point
as i0. A right-hand rectangular coordinate system is then formed by r , θ0, and −φ0, with
its origin at S.

We do not present here the initial conditions for the reduced ray tracing system (3.1.29)
and for equation (3.1.30) for the travel time. They follow immediately from (3.2.1) and
(3.2.2).

We have so far been interested only in the initial conditions for a single ray. The problem
of determining the initial conditions for a single ray, if the initial travel-time field is known
along an initial surface or along an initial line, will be discussed in Section 4.5, together
with the initial conditions for the dynamic ray tracing system.

3.2.2 Rays in Layered and Block Structures. Ray Codes

Let us now consider a 3-D laterally varying model divided by structural interfaces into
layers and blocks, in which the distribution of model parameters is smooth. Assume that all
layers (blocks) in the model are suitably numbered and also that the individual structural
interfaces between blocks and layers are numbered. The numbering may, of course, be
performed in many ways.

We now wish to compute ray � in such a model, with the initial point situated at S
and with a specified initial direction at S; see Section 3.2.1. To start the ray tracing, we
need to know whether the first element of the ray at S is P or S. Then the computation is
unique, but only until ray � strikes a structural interface. Then we must decide which of
the generated waves should be chosen (reflected, transmitted, P, or S). See Figure 3.4. A
similar decision must be made at every other point of incidence. The relevant information
on the selection of generated waves at structural interfaces must be available a priori, in the
input data (similarly as xi0 and pi0 at S). This a priori information is known as the ray code.
The ray code is also often called the ray signature. There are many ways of constructing
ray codes. Usually, the ray codes are formed by a chain of characters (mostly integers and
letters) and spaces. The ray code may successively specify the numbers of interfaces at
which points of incidence Q1, Q2, . . . , QN are situated, and also the types of the selected
generated waves at S, Q1, Q2, . . . , QN ; see Figure 3.5. Alternatively, the ray code may
follow individual elements of the ray (SQ1, Q1Q2, . . .), specifying the numbers of layers
(blocks) in which the elements are situated and the types of waves along these elements
(P or S). Many variants and modifications of ray codes are possible. They depend, in large
measure, on the method used to construct the model (model building). For example, the
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Figure 3.4. Reflection/transmission of a
seismic body wave at a curved interface
� between two inhomogeneous isotropic
media. In a high-frequency approxima-
tion, the problem is locally reduced to
the problem of R/T of a plane wave at
a plane interface between two homoge-
neous media in the vicinity of the point
of incidence Q. Four seismic bodywaves
are generated: Two reflected (P and S)
and two transmitted waves (P and S).

3-D ray tracing program Complete Ray Tracing (CRT), described in Červený, Klimeš, and
Pšenčı́k (1988b), uses optionally five alternative ray codes constructed in different ways.
Each of them may be suitable in certain computations.

Let us now consider rays with the initial point at S and with a specified ray code. The
initial directions of rays at Smaybe arbitrary.We call thewave propagating along these rays,
described by the ray code, the elementary wave. Consequently, we can also speak of ray
codes of elementary waves. We may have numerical codes of elementary waves (Červený,
Molotkov, and Pšenčı́k 1977, p. 88) and alphanumerical codes of elementary waves among
others. As the ray codes may be constructed in different ways, also the decomposition of
the complete wavefield into elementary waves depends on the coding of waves used. One
elementary wave in one code may include two or more elementary waves in another code.
For examples, see Červený, Molotkov, and Pšenčı́k (1977, pp. 88, 89).

Thus, the computation of ray�, starting at points Swith known initial condition (3.2.1),
and specified by a ray code, is as follows. We start the ray tracing at S, using any of the
ray tracing systems derived in Section 3.1, for the type of wave specified by the ray code
(P or S). As soon as the computed ray strikes an interface, we check whether the number
of the interface corresponds to the ray code. If not, we stop the computation. If it does,
we select the proper generated wave specified by the ray code and try to determine the
appropriate initial conditions for the slowness vector of the selected generated wave using
(2.4.70). If (2.4.70) cannot be applied (for example, at edges in interfaces or for a generated

Figure 3.5. Ray � of a multiply reflected/transmitted wave in a laterally varying layered and block
model. The points of incidence at the interfaces are successively denoted by Q1, Q2, . . . , QN . Between
the individual interfaces, the wave may propagate as either P or S.
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inhomogeneous wave, see Section 3.2.3), we also must stop the computation. If (2.4.70)
can be applied, we start the new ray tracing using the appropriate ray tracing system. The
procedure is successively repeated, interface by interface or layer by layer. The raymay also
strike the bottom or side boundary of the model; we then also need to stop the computation.
We use the term successful ray to refer to the ray that terminates on the specified reference
surface �R , along which the receivers are distributed.

It is useful to assign to each computed ray (even to unsuccessful rays) the so-called
history function. The history function specifies completely the numbers of interfaces
crossed by the ray, the numbers of layers (blocks) in which the individual elements of
the rays are situated, the types of waves along the individual elements (P or S), the caustics
encountered, the positions of the termination points, and the reason for termination. Let
us emphasize the difference between the ray code and the ray history. The ray code is an a
priori information, which should be known before starting computations. The ray history
is known only when its computation has been terminated. Ray histories play an important
role in boundary value ray tracing by shooting methods; see Section 3.11.2.

In the discussion so far, we have considered only the elementary waves generated by
point source S. Later on, however, we shall also consider the elementary waves generated
at initial surfaces or at initial lines. The concepts of ray codes and ray histories also apply
to these cases.

The next new problem that appears in ray tracing in layered structures involves the
determination of the intersection points Q1, Q2, . . . , QN of ray � with structural inter-
faces. In some simple situations, the intersection point may be found analytically; in other
situations it should be determined numerically. Various numerical algorithms may be used
to find this intersection point, but we shall not discuss them here.

To apply Snell’s law (2.4.70), wemust know the slowness vector of incident wave 	p(Q),
the velocities V (Q) and Ṽ (Q) of the incident wave and of the selected reflected/transmitted
wave, and the unit normal 	n(Q) to the interface. Assume that the interface is described by
equation �(xi ) = 0. We can then compute 	n at point Q of interface �,

	n= ε∗∇�
(∇� · ∇�)1/2 , that is, nk = ε∗ ∂�

∂xk

/( ∂�
∂xn

∂�

∂xn

)1/2

. (3.2.5)

Here ε∗ equals either 1 or −1; which we choose is quite arbitrary. The second equation of
(3.2.5) is expressed in Cartesian coordinates. For curvilinear coordinates, see Section 3.5.

The interface is often described by relation x3 = f (x1, x2). Then

�(xi ) = x3 − f (x1, x2) = 0, (3.2.6)

and, consequently,

∂�

∂x1
= − ∂ f

∂x1
,

∂�

∂x2
= − ∂ f

∂x2
,

∂�

∂x3
= 1. (3.2.7)

Unit normal 	n(Q) to interface � is then given by the second equation of (3.2.5).
Thus, using the equations of Sections 3.1 and 2.4.5, we are able to compute the rays

and relevant travel times of arbitrarymultiply reflected (possibly converted) high-frequency
body waves in a 3-D laterally varying layered and block structure.
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3.2.3 Anomalous Rays in Layered Structures

In certain situations, ray tracing in layered and block structures fails. It may fail for several
reasons. For example, Snell’s law (2.4.70) may yield complex-valued components p̃i (Q) of
the slowness vector for the reflected or transmitted wave we wish to compute. Additionally,
if the interface is not smooth at the point of incidence, the vector 	n normal to the interface
is not defined there. Consequently, Snell’s law cannot be applied.

In some other situations, a ray can be calculated by standard ray tracing, but it may
still be anomalous in some way. As examples, we can name the boundary rays, which
separate an illuminated region from a shadow zone, critical rays, and the like. Although
the computation of such anomalous rays does not cause any difficulty, the amplitudes of
seismic waves propagating along the anomalous rays cannot be computed by standard
ray procedures described in Section 2.4, based on the transport equation, Snell’s law, and
R/T coefficients. Usually, the amplitudes along anomalous rays and in their vicinity are
frequency-dependent.

All such situations will be discussed in Section 5.9. Extensions of the ray method to
compute the wavefield in anomalous regions will be discussed there. Here we shall only
very briefly describe the most important anomalous rays and anomalous regions, typical in
routine 2-D and 3-D ray tracing in laterally varying, layered and block structures. In many
cases, we shall refer to other sections of the book, where the individual anomalous regions
are treated in more detail.To simplify the explanations in this section, we shall primarily
discuss anomalous rays and anomalous regions for unconverted waves only.

a. Postcritical incidence and inhomogeneous waves. The angle of reflection or
transmission ĩ is related to the angle of incidence i by the standard Snell’s law, sin ĩ =
(Ṽ /V ) sin i . For sin i > V/Ṽ , angle ĩ , the relevant eikonal and components of slowness
vector p̃i become complex-valued. The generated waves with the complex-valued eikonal
are called inhomogeneous or evanescent; see Section 2.2.10. They physically exist but
cannot be computed by the standard ray method. Note that the angle of incidence i = i∗,
for which sin i∗ = V/Ṽ , is called the critical angle of incidence, angles i > i∗ are called
postcritical (as well as overcritical or supercritical), and angles i < i ∗ are called subcrit-
ical. See Figure 3.6. This means that inhomogeneous waves are generated for postcritical
angles of incidence only. The ray tracing must be stopped at the interface if the ray code

Figure 3.6. Subcritical (a), critical (b), and postcritical (c) angles of incidence i . For the subcritical
angle of incidence i , the R/T angle ĩ and the corresponding ray are real-valued; see (a). For the critical
angle of incidence i = i∗, for which sin i∗ = V/Ṽ , R/T angle ĩ equals 1

2π , and the ray of the R/T wave
is parallel to the interface; see (b). For the postcritical (also called overcritical) angles of incidence i ,
R/T angle ĩ and the relevant ray of the R/T wave are complex-valued; see (c). The R/T wave is then
inhomogeneous.
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would continue with a complex eikonal. For more details on inhomogeneous waves refer to
Section 5.9.3. The ray of the reflected wave corresponding to the critical angle of incidence
is called the critical ray. The critical ray and rays close to the critical ray are real-valued and
may be simply evaluated by standard ray tracing, but the wavefield in the critical region is
singular. See Section 5.9.2, part 2.

b. Edges and vertexes in interfaces. If the ray of an incident wave is incident at an
edge or a vertex in the interface, vector 	n normal to the interface is not defined, and the
initial conditions for reflected/transmitted rays cannot be computed. The ray tracing must
be stopped at the edge or at the vertex. The wavefield of waves generated at the edges and
vertexes becomes more complicated. There is a one-parameteric system of normals at any
point on the edge and a relevant one-parameteric system of rays. They correspond to the
so-called edge wave. Similarly, there is a two-parameteric system of normals at the vertex
and a relevant two-parameteric system of rays. They correspond to the so-called vertex
wave or tip wave. For more details on edge and vertex waves, see Section 5.9.2, part 3, and
Section 4.5.

c. Rays tangent to an interface. In laterally varying layered structures, rays locally
tangent to an interface (or to the boundary of a smooth body) are quite common. A ray
locally tangent to a smooth interface can be simply computed by standard ray tracing,
including adjacent rays not crossing the interface. The wavefield in the vicinity of this
ray is, however, singular beyond the tangent point. A shadow zone is usually formed
beyond the tangent point, in the region between the ray and the interface. Thus, beyond
the tangent point, the ray locally tangent to the interface becomes a boundary ray between
the shadow zone and the illuminated region. Various waves of diffractive nature penetrate
into the shadow zone.We speak of smooth interface diffraction or smooth body diffraction.
The computation of diffracted waves again requires special treatment. See Section 5.9.2,
part 3.

In some simple situations (for example, in the case of a plane interface between two
homogeneous media), a ray may even be globally tangent to the interface (grazing ray).
This applies, for example, to the ray of a transmitted wave if the angle of incidence is
critical; see Figure 3.6. The relevant transmitted wave generates a head wave propagating
to the other side of the interface. The rays of head waves satisfy Snell’s law and may be
calculated by standard ray tracing, with initial ray points distributed along the interface.
The wavefield of head waves, however, cannot be computed by the standard ray method.
Head waves belong to the class of higher order waves and can only be treated using the
higher-order terms of the ray series. See Sections 5.6.7 and 5.7.10.

d. Rays reflected and transmitted at interfaces of higher order. These interfaces are
often introduced formally, by piecewise approximation of the inhomogeneous model. The
rays and travel times of all reflected and transmittedwavesmay be calculated by standard ray
tracing, including Snell’s law (2.4.70). The reflected and converted transmitted waves are,
however, higher order waves, similar to head waves. Their amplitudes cannot be computed
by standard ray equations. See Sections 5.6.4 and 5.7.6.

e. Caustics. Caustic surfaces are envelopes of rays. At any point situated close to
the caustic surface on its illuminated side, there are always at least two intersecting rays,
one approaching the caustics and the second leaving it. On the other side of the caustic
surface, a caustic shadow is formed. No regular rays, but only complex-valued rays, pen-
etrate into the caustic shadow. The rays tangent to caustics on its illuminated side can be
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calculated simply; standard ray tracing may be used. The ray amplitudes, however, become
infinite at caustic points (at points where the ray is tangent to a caustic). The wavefield
is also anomalous in some vicinity of the caustic point, but not along the whole ray. At
larger distances from the caustic point, the wavefield is again regular. See Section 5.9.2,
part 1.

f. Regions of high velocity gradient. In these regions, the validity conditions of the
ray method are not satisfied. Although the rays passing through such a region are formally
simple to evaluate, the accuracy of the wavefield computations will be low.

g. Large curvature of interface. The rays of reflected/transmitted waves are formally
simple to calculate, even if the curvature of the interface is large at the point of incidence.
The ray calculations of the wavefield will, however, be very inaccurate.

h. Strong interference effects. Any situation in which the wavefield displays a strong
interference character and is formed by a superposition of a large number of elementary
waves can hardly be treated by the ray method, or, at least, the application of the ray
method becomes cumbersome. The best conditions for applying the ray method are those
in which the wavefield is formed by several (not too many) noninterfering waves. See also
Section 5.9.4.

i. Chaotic behavior of rays. The chaotic behavior of rays is characterized by the
exponential sensitivity of rays to initial conditions. The chaotic rays diverge exponentially,
although they are initially close. The consequence is that the rays exceeding in length
some “predictability horizon” cannot be traced backward to recover their initial conditions,
and the two-point ray tracing problem cannot be solved. The chaotic propagation may be
quantified by Lyapunov exponents. The rays may behave chaotically both in deterministic
and stochastic (random) media. Multiple scattering by irregularities of the model (rough
structural interfaces, smooth obstacles, and the like) are most likely to cause the chaotic
behavior of rays. For more details, see Section 4.10.7.

3.2.4 Curvature and Torsion of the Ray

Rays are general 3-D curves. In certain applications, it is useful to know the curvature
K and the torsion T of the ray. These quantities may be determined simply from the ray
tracing system. We denote 	t , 	n, and 	b as the unit tangent, unit normal, and unit binormal
to the ray, respectively, and use Frenet’s formulae:

d	t/ds = K 	n, d	n/ds = T 	b − K 	t, d	b/ds = −T 	n, (3.2.8)

where s denotes the arclength along the ray.
Using ray tracing system (3.1.10) in vector form and by inserting 	p = V−1	t , we arrive

at

d(V−1	t )/ds = ∇(V−1).

Performing the derivatives and using the first of Frenet’s formulae yields

KV−1	n + 	td(V−1)/ds = ∇(V−1). (3.2.9)

This equation shows that vectors 	n, 	t , and ∇(V−1) are coplanar and that binormal 	b is
always perpendicular to ∇(V−1) and 	t .
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Curvature K is obtained immediately from (3.2.9) if multiplied by 	n,
K = V 	n · ∇V−1 = −V−1	n · ∇V . (3.2.10)

To determine torsion T , we first differentiate (3.2.9) with respect to s,

	n d

ds
(KV−1) + KV−1 d	n

ds
+ 	t d

2

ds2
V−1 + d	t

ds

d

ds
V−1 = d

ds
∇V−1.

Multiplying this equation by 	b yields

KV−1 d	n
ds

· 	b + d	t
ds

· 	b d

ds
(V−1) = 	b · d

ds
∇
(
1

V

)
.

Using Frenet’s formulae, we obtain the expression for T ,

T = V K−1	b · d∇V−1/ds. (3.2.11)

For completeness, we also give the equations for 	n and 	b,

	b = 	t × ∇(V−1)

|	t × ∇(V−1)| , 	n = 	b × 	t = (	t × ∇(V−1)) × 	t
|	t × ∇(V−1)| . (3.2.12)

3.3 Ray Tracing

This section is devoted mainly to initial-value ray tracing; for boundary-value ray tracing,
see Section 3.11. Ray tracing systems in laterally varying structures can be solved in
four ways: numerically, analytically, semianalytically, or by cell ray tracing approaches.
The most general approach is based on the numerical solution of the ray tracing system;
see Section 3.3.1. The simplest and fastest solution of the ray tracing system, however,
is based on the analytical solution, wherever the complexity of the model allows such
solutions. It is, however, very difficult to describe the velocity distribution in the whole
model by a simple velocity function that would allow the analytical solution of the ray
tracing system. Therefore, the whole model (or the whole layer or the whole block) is
often divided into suitable cells, in which the velocity distribution can be approximated
by simple functions that permit analytical ray computations. The ray is then obtained as
a chain of analytically computed segments. Each of these ray tracing approaches has its
advantages and disadvantages.One approachmay be suitable in some applications,whereas
another approach is more appropriate in other applications. In this section, we shall devote
our attention mainly to numerical ray tracing; for analytical, semianalytical, and cell ray
tracing approaches, refer to the next section.

3.3.1 Numerical Ray Tracing

The ray tracing systems presented in Section 3.1 are mostly systems of ordinary differential
equations of the first order, with appropriate initial conditions. The numerical procedures
for the solution of a system of ordinary differential equations of the first orderwith specified
initial conditions are well known. Various standard numerical techniques, which give the
solution of such systems with the required accuracy, are described in detail in textbooks
on numerical mathematics. The routines designed for numerical integration of systems of
ordinary differential equations of the first order can be found in many subroutine packages.
Among the most popular are the Runge-Kutta method and Hamming’s predictor-corrector
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method. We shall not go into details of these procedures from the mathematical point of
view; we refer the interested reader to any textbook on numerical methods.

To perform numerical ray tracing, we must first select the proper ray tracing system; in
other words, we need to select the parameter u along the ray we wish to use (arclength s,
travel time T , parameter σ , and so on). The selection of the integration parameter will be
discussed in the next section. We then need to select regular step�u in the parameter along
the ray, the accuracy of computations of the evaluated quantities required in one step, and
the maximum number of regular steps.

The standard algorithms for numerical ray tracing can keep the required accuracy of the
computation below some limit. For example, the computation for each step�u is performed
in two ways: (a) with step �u and (b) twice with step �u/2. If the differences between
both these computations satisfy the accuracy conditions, the computation continues. If
not, the step is halved, and the computations are repeated. If the accuracy conditions are
not satisfied even if the step is halved, the step is halved again, and so on. The maximum
number of halvings in standard procedures is optional, but it is usually 5 to 10. After several
halvings, the required accuracy is usually achieved. In standard subroutines, a message is
given if the required accuracy has not been reached, even with the maximum number of
halvings. This is, however, an exceptional case. Thus, we can see that the choice of step�u
in the integration is not particularly critical. If the medium is sufficiently smooth and the
layers thick, the choice of a larger step �u can often increase the numerical efficiency of
the computations, without detriment to accuracy. The accuracy is kept below the required
limit by halving the intervals wherever necessary.

An independent test of the accuracy of computations is also the eikonal equation
H(xi , pi ) = 0, which must be satisfied along the whole ray. Thus, we can require |pi pi −
1/V 2| < δ, where δ is some specified small quantity. The accuracy and stability of the ray
tracing is increased if pi pi is normalized to 1/V 2 at any step of the numerical ray trac-
ing. Actually, this normalization is always very useful. Although the constraint (eikonal)
equation should be theoretically satisfied along the whole ray, the numerical noise could
influence its validity.

The maximum number of steps in the computation of the ray has a more or less formal
meaning; it stops the ray computation if the ray becomes extremely long for some reason
(for example, incorrect input data).

At any step of the numerical ray tracing, it is necessary to perform a check for crossing
interfaces, boundaries of themodel, and possible other surfaces atwhichwewish to knowor
to store the results. If the check is positive, it is necessary to find the point of intersection of
the ray with the surface under consideration. The point of intersection can be determined in
manyways.A two-point iterativemethod is usually used. Themethod of halving of intervals
is safe, but very slow. This method may be combined with some faster algorithms.

If we compute a ray in a layered/block structure, the new initial slowness vector com-
ponents p̃i (Q) of the relevant R/T wave must be determined at each point Q at which the
ray crosses an interface; see Sections 3.2.2 and 3.2.3. We also need to remember that point
Q does not correspond, as a rule, to a regular grid of points computed along the ray with
step �u. Thus, we must find a new point on the ray of the R/T wave that corresponds to
the regular grid even across the interface. Only then can we start standard ray tracing at
regular steps �u.

For a detailed description of the algorithms of numerical initial-value ray tracing in 3-D
laterally varying inhomogeneous layered and block structures, refer to Červený, Klimeš,
and Pšenčı́k (1988b).
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3.3.2 Choice of the Integration Parameter Along the Ray

In practical ray tracing, the most popular parameters along a ray are travel time T and
arclength s. We can, however, also choose many other parameters, such as σ (dσ = V 2dT )
or ζ (dζ = dT/V ). From a numerical point of view, none of these parameters has a distinct
advantage in ray tracing. If we wish to evaluate not only rays but also wavefronts, it may
perhaps be useful to use travel time T as the variable along the ray. The wavefronts are
then obtained automatically as a by-product of the ray tracing.

All these parameters varymonotonically along the ray. This is a great advantage because
we have no problems with the turning points. In certain applications, it is also common
to use one of the Cartesian coordinates as the parameter along the ray and the relevant
reduced Hamiltonian; see (3.1.28) through (3.1.30).

System (3.1.29) is suitable for computing rays corresponding to waves propagating
roughly in the x3-direction. In this case, the sign in the expression for p3 can be determined
uniquely. The ray tracing system fails completely for rays nearly perpendicular to the x3-
axis. Its application to rays that may have some turning points with respect to the x3-axis
will be problematic.

In some applications in geophysics, rays propagate roughly in the direction of one of the
coordinate axes. Examples are common in reflection seismology if the rays do not deviate
considerably from the vertical axis. Another example is the propagation of acoustic waves
in an ocean waveguide.

Let us discuss a very simple example of simplifying system (3.1.37), which is analogous
to (3.1.29) if the wave propagates roughly in the x-direction. Assume that V depends on
z only, that the initial conditions are y0 = py0 = 0, and that the ray deviates only slightly
from the x-direction so that z′2 � 1. In this case, y = 0, py = 0 along the whole ray, and
(3.1.37) reduces to the second equation only. Since 1 + z′2 .= 1,

d

dx

(
1

V
z′
)

= ∂

∂z

(
1

V

)
.

Because d(V−1z′)/dx = z′2∂V−1/∂z + V−1z′′, the ray tracing equation becomes

d2z/dx2 = −V−1∂V/∂z. (3.3.1)

This ray tracing equation is used broadly in the investigation of long-range sound trans-
mission in oceans, see Flatté et al. (1979).

3.3.3 Travel-Time Computation Along a Ray

The basic quantity we wish to determine by ray tracing is the travel time. The travel time
along the ray can be computed in several different ways.

The first is to use the travel time directly as parameter u along the ray. This leads to ray
tracing systems (3.1.9), (3.1.14), and (3.1.19). As discussed in Section 3.3.2, this approach
also allows us to plot the wavefronts simply.

If we use some other parameter u along the ray, we must add one ordinary differential
equation of the first order for travel time T to the system of equations for rays, dT/du =
pi∂H/∂pi ; see (3.1.3) or (3.1.27) for the reduced HamiltonianHR . We can solve this equa-
tion either together with the equations for rays or after the ray trajectory has been computed.

There are several reasons for computing the travel time together with the ray, using
a system consisting of seven equations. In this case, it is simple to keep the accuracy of
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the travel-time computation (not only of the ray) below some limit. If the accuracy is not
sufficient, integration step �u is halved automatically. If we evaluate travel time T by
quadratures along a known ray, the integration step cannot be decreased unless we perform
a new ray tracing.

3.3.4 Ray Tracing in Simpler Types of Media

InSection3.1.1,wederived several formsof the ray tracing system for arbitrary 3-D laterally
varying structures. In this sectionwe shall start with the ray tracing systems consisting of six
ordinary differential equations of the first order for xi and pi and reformulate the systems
for certain simpler situations, mainly for situations in which the velocity model has lower
dimensions. We shall not try to seek analytical solutions of these systems; this will be done
in the next section. We shall only seek to separate the equations or to decrease the number
of equations in the system.

As a starting point, we shall mainly use the simplest ray tracing system (3.1.11) with
variable σ along the ray (dT = dσ/V 2). Ray tracing system (3.1.11) corresponds to the
general ray tracing system (3.1.8) for n = 2. Ray tracing system (3.1.11) provides useful
simplifications even if the general ray tracing system cannot be simplified at all. We shall
use the initial conditions specified by Equations (3.2.1) with (3.2.2).

1. PARTIAL SEPARATION OF VARIABLES
Let us assume that the square of the slowness distribution is described by the following

relation:

1/V 2(x1, x2, x3) = A(x1, x3) + B(x2). (3.3.2)

Ray tracing system (3.1.11) then separates into two independent systems, coupled only by
the initial conditions. The first system reads

dx1
dσ

= p1,
dx3
dσ

= p3,
dp1
dσ

= 1

2

∂A

∂x1
,

dp3
dσ

= 1

2

∂A

∂x3
, (3.3.3)

and the second reads

dx2
dσ

= p2,
dp2
dσ

= 1

2

∂B

∂x2
. (3.3.4)

The initial conditions are again given by (3.2.1), but (3.2.2) takes the form

p210 + p220 + p230 = A(x10, x30) + B(x20). (3.3.5)

Travel time T is given by the relation

T (σ ) = T (σ0) +
∫ σ

σ0

(A + B)dσ

= T (σ0) +
∫ σ

σ0

(
p21 + p23

)
dσ +

∫ σ

σ0

p22dσ. (3.3.6)

For certain simple functions B(x2), system (3.3.4) can be solved analytically. The
system of six ordinary differential equations then reduces to four equations (3.3.3). Equa-
tions (3.3.4) can be useful if we wish to extend the 2-D computations to simple 3-Dmodels.

Note that the general ray tracing system (3.1.8) yields this separation only for n = 2,
but for no other n.
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2. 3-D COMPUTATIONS IN 2-D MODELS
We shall now consider a 2-D model. We understand a 2-D model to be a model in

which the velocity does not vary along a selected direction. Without loss of generality,
we shall consider this direction to be along the x2-axis. Then the coordinate x2 does not
appear explicitly in the eikonal equation. In mechanics, such a coordinate is usually called
cyclic or implicit coordinate. The computations in 2-D models are usually performed only
in plane x1-x3, perpendicular to the x2-axis. These computations will be considered later.
Here, however, we shall consider general 3-D computations in a 2-D model, with arbitrary
orientation of the initial slowness vector. Such computations are also sometimes called
21
2 -dimensional computations; see Brokešová (1994).
We shall obtain our ray tracing systems in a straightforwardway from (3.3.3) and (3.3.4),

by putting B = 0 in (3.3.2). Thus, A = 1/V 2. System (3.3.4) can be solved analytically to
yield

x2(σ ) = x20 + p20(σ − σ0), p2(σ ) = p20. (3.3.7)

System (3.3.3) remains valid even now, only A = 1/V 2,

dx1
dσ

= p1,
dp1
dσ

= 1

2

∂

∂x1

(
1

V 2

)
,

dx3
dσ

= p3,
dp3
dσ

= 1

2

∂

∂x3

(
1

V 2

)
.

(3.3.8)

The initial conditions for the ray tracing system are given by (3.2.1), where p10 and p30
satisfy the relation

p210 + p230 = V−2
0 − p220. (3.3.9)

Thus, p20 also affects the solution of system (3.3.8) due to initial conditions (3.3.9).
Please note, however, that the projection of the ray into horizontal plane x1-x2 is not a

straight line. This means that the rays in the 2-D models are, in general, 3-D spatial curves,
with nonzero torsion.

Travel time T (σ ) is given by a simple integral, namely,

T (σ ) = T (σ0) +
∫ σ

σ0

V−2dσ

= T (σ0) + p220(σ − σ0) +
∫ σ

σ0

(
p21 + p23

)
dσ. (3.3.10)

Ray tracing system (3.1.8) can also be simplified if V−n depends only on x1 and x3, but
not on x2. Then

x2(u) = x20 + p20

∫ u

u0

(pk pk)
n/2−1du = x20 + p20

∫ u

u0

V 2−ndu,

p2(u) = p20.

(3.3.11)

In plane x1-x3, the ray tracing system remains the same as (3.1.8), but consists of four, not
six equations. The travel-time equation is not changed. For more details, see Brokešová
(1994).
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3. 2-D COMPUTATIONS IN 2-D MODELS
We have so far considered quite general initial conditions p10, p20, and p30, which

satisfy (3.2.2). For the first time in this chapter, we shall consider special orientation of the
initial slowness vector. We assume that

p20 = 0. (3.3.12)

This means that the initial slowness vector is perpendicular to the x2-axis. Along the whole
ray, the slowness vector is situated in the x1-x3 plane, with p2 = 0. Ray tracing system
(3.1.8) then yields the following equations:

dx1
du

= An/2−1 p1,
dp1
du

= 1

n

∂

∂x1

(
1

V n

)
,

dx3
du

= An/2−1 p3,
dp3
du

= 1

n

∂

∂x3

(
1

V n

)
, (3.3.13)

dT

du
= An/2 = V−n,

with A = p21 + p23 = V−2.
System (3.3.13) is usually called the 2-D ray tracing system. The initial conditions for

the system at initial point O are again given by (3.2.1) with p2 = p20 = 0, x2 = x20. The
components of the slowness vector, p10 and p30, satisfy relation p210 + p230 = 1/V 2

0 , where
V0 = V (xi0),

The 2-D ray tracing system (3.3.13) can again be presented in many alternative forms,
similar to the 3-D ray tracing system (3.1.8); see Section 3.1. If n = 0, parameter u along
the ray equals T . The RHS of (3.3.13) becomes

1

n

∂

∂xi

(
1

V n

)
= − ∂

∂xi
ln V .

See also (3.1.14) and (3.1.19).

4. 1-D MODELS
Ray tracing systems can be simplified even more and solved in terms of closed-form

integrals in 1-D models in which V−n depends on one coordinate only. In this case, two
coordinates are cyclic. For details refer to Section 3.7

3.4 Analytical Ray Tracing

For certain simple types of models, the ray tracing system can be solved analytically. In
this section, we shall give several examples, suitable mainly for 2-D and 3-D computations.
Some additional analytical solutions of the ray tracing system for 1-D structures will be
given in Section 3.7.

The simplest analytical expressions for rays and travel times exist for homogeneous
media and for media with a constant gradient of the square of slowness, 1/V 2. Conse-
quently, we shall deal with them first. We shall then go on to general analytical solutions
for media with a constant gradient of V−n and a constant gradient of ln V . We shall also
discuss models in which the rays and travel times are polynomials in some conveniently
chosen parameter.

Section 3.3.1 showed that ray tracing systems could be solved numerically without
any problem. We also know that the real structure is often rather complicated and can
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hardly be described by simple velocity laws that would allow analytical solution of the
ray tracing system. We are thus faced with the problem whether there is any sense in
seeking analytical solutions at all. Analytical solutions are important for at least three rea-
sons. First, in many applications (such as seismic prospecting), the velocity distributions
within blocks and layers may be effectively described by simple velocity laws. Second,
the analytical solutions are valuable in the cell approach, in which the whole block (layer)
is subdivided into a system of cells with simple velocity distributions within each cell.
For more details on cell ray tracing, refer to Section 3.4.7. Third, the analytical solu-
tions are usually computationally more efficient and flexible than standard numerical ray
tracing.

To come up with analytical solutions of the ray tracing system, we shall mostly use
the ray tracing systems presented in Section 3.1 and the initial conditions given by (3.2.1).
Velocity V at the initial point will again be denoted by V0 and must satisfy the eikonal
equation at that point so that V0 = (pi0 pi0)−1/2.

3.4.1 Homogeneous Media

The ray tracing system for a homogeneous medium yields very simple solutions for any
parameter u along the ray. The most useful system is obtained with arclength s as the
parameter; see (3.1.10) or (3.1.20). The constant velocity in the model is denoted V0.
Under standard initial conditions (3.2.1), the solution now reads

xi (s) = xi0 + V0 pi0(s − s0), pi (s) = pi0,

T (s) = T0 + (s − s0)/V0.
(3.4.1)

Thus, the ray is a straight line.
The great advantage of analytical solution (3.4.1) is not only in the simplicity of the ray

tracing itself but also in the simple determination of the intersection of the straight lines
with the interfaces.

3.4.2 Constant Gradient of the Square of Slowness, V
−2

Among inhomogeneous media, the simplest analytical solutions of the ray tracing system
are obtained if the gradient of V−2 is constant. Assume that V−2 is given by

V−2(xi ) = A0 + A1x1 + A2x2 + A3x3. (3.4.2)

We shall consider only that part of the space inwhichV−2(xi ) = A0 + Ai xi > 0 and assume
that initial point xi0 is also situated in that part so that V−2

0 = A0 + Ai xi0 > 0.
The analytical solution of ray tracing system (3.1.11) is then

xi (σ ) = xi0 + pi0(σ − σ0) + 1
4 Ai (σ − σ0)2,

pi (σ ) = pi0 + 1
2 Ai (σ − σ0), (3.4.3)

T (σ ) = T (σ0) + V−2
0 (σ − σ0) + 1

2 Ai pi0(σ − σ0)2 + 1
12 Ai Ai (σ − σ0)3.

Here the parameter σ along the ray is related to travel time T and to arclength s by
relation dσ = V 2dT = V ds. Thus, the ray is a quadratic parabola; the components of
slowness vector pi are linear in (σ − σ0), and the travel time is a cubic polynomial in
(σ − σ0).
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Although the velocity distribution considered here is a special case of that considered
in the next section, we have given the relevant analytical solutions explicitly because they
are very simple, and important.

As we can see, system (3.4.3) reduces to (3.4.1) for Ai Ai → 0 (i = 1, 2, 3), if we
take into account that σ − σ0 = V0(s − s0) in a homogeneous medium. This is the great
advantageof (3.4.3) in comparisonwith similar relations formodelswith a constant gradient
ofV−n (n �= 2),where thefinal relations are usually indefinite for Ai Ai → 0, and alternative
equations must usually be used if Ai Ai is very small.

3.4.3 Constant Gradient of the n th Power of Slowness, V
−n

We shall consider the velocity distribution given by

V−n = A0 + A1x1 + A2x2 + A3x3. (3.4.4)

Here n is an arbitrary nonvanishing integer, positive or negative. We shall again consider
only the part of space in which V−n = A0 + Ai xi > 0 and assume that initial point xi0 is
situated in that part so that V−n

0 = A0 + Ai xi0 > 0.
We shall seek analytical solutions of ray tracing system (3.1.8). A simple linear solution

is obtained for the components of the slowness vector:

pi (u) = pi0 + n−1Ai (u − u0). (3.4.5)

Here u is a parameter along the ray related to the travel time as follows: dT = V−ndu. Ray
tracing system (3.1.8) may then be solved in closed integral form:

xi (u) = xi0 +
∫ u−u0

0
Xn/2−1(w)

(
pi0 + 1

n
Aiw

)
dw,

T (u) = T0 +
∫ u−u0

0
Xn/2(w)dw,

(3.4.6)

where

X (w) = pi pi = aw2 + bw + c,

a = n−2Ai Ai , b = 2n−1Ai pi0, c = pi0 pi0 = V−2
0 .

(3.4.7)

Integrals (3.4.6) can be evaluated analytically for any n �= 0. The relevant primitive
functions can be found in mathematical handbooks.

3.4.4 Constant Gradient of Logarithmic Velocity, lnV

Simple analytical ray tracing solutions are also obtained if the velocity distribution is given
by

ln V = A0 + A1x1 + A2x2 + A3x3. (3.4.8)

It is then possible to use ray tracing system (3.1.9), obtained from (3.1.8) for n = 0. The
procedure is fully analogous to that in Section 3.4.3. In this case, the most convenient
parameter is travel time T . The ray tracing system yields the solutions

pi (T ) = pi0 − Ai (T − T0),

xi (T ) = xi0 +
∫ T−T0

0
X−1(w)(pi0 − Aiw)dw,

(3.4.9)
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where

X (w) = aw2 + bw + c,

a = Ai Ai , b = −2Ai pi0, c = pi0 pi0 = 1/V 2
0 .

(3.4.10)

3.4.5 Polynomial Rays

As a rule, the simplest computational algorithms are based on polynomial functions. In
Section 3.4.2, we arrived at a polynomial solution of the ray tracing system for the medium
with a constant gradient of the square of slowness, V−2. The ray trajectory is a quadratic
polynomial in terms of (σ − σ0). Here we shall consider more complex velocity distribu-
tions that also yield polynomial rays.

Eikonal equation pi pi = 1/V 2(xi ) may be expressed in an even more general
Hamiltonian form,

H(xi , pi ) = 1
2 {F[pi pi ] − F[1/V 2]} = 0, (3.4.11)

where F[q] is a continuous function of q with continuous first and second derivatives. We
denote F ′[q] = dF[q]/dq and assume that qF ′[q] > 0 in the whole region of our interest.
The physical meaning of the condition qF ′[q] > 0 will be explained later. Ray tracing
system (3.1.3) then reads

dxi
du

= F ′[pk pk]pi ,
dpi
du

= 1

2
F ′[V−2]

∂

∂xi

(
1

V 2

)
,

dT

du
= (pi pi )F

′[pk pk].
(3.4.12)

Ray tracing system (3.4.12) is very general and yieldsmany interesting analytical solutions.
In previous sections, special cases of (3.4.12) with F[q] = 2n−1q

n
2 and F[q] = ln q were

considered. Very simple analytical solutions are obtained if the spatial gradient of F[1/V 2]
is constant,

F[1/V 2] = A0 + A1x1 + A2x2 + A3x3. (3.4.13)

ThenEquations (3.4.12) for dpi/du canbe simplified and readdpi/du = −∂H/∂xi = 1
2 Ai .

Ray tracing system (3.4.12) then has the following solution:

pi (u) = pi0 + 1
2 Ai (u − u0),

xi (u) = xi0 +
∫ u−u0

0
F ′[X ]

(
pi0 + 1

2 Aiw
)
dw, (3.4.14)

T (u) = T0 +
∫ u−u0

0
F ′[X ]Xdw,

where

X = aw2 + bw + c, a = 1
4 Ai Ai , b = pi0Ai , c = pi0 ppi0.

(3.4.15)

Here u is a parameter along the ray, which is related to the travel time as

dT = V−2F ′[V−2]du. (3.4.16)

Since qF ′[q] > 0 in the region of q = 1/V 2 under consideration, parameter u along
the ray is monotonic. For this reason, we assumed qF ′[q] > 0.
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We shall now consider polynomial function F[q], satisfying condition qF ′[q] > 0 in
the region of q = 1/V 2 under consideration,

F[q] = q +
N∑
j=2

c jq
j . (3.4.17)

Then we obtain

F ′[X ] = 1 +
N∑
j=2

jc j (aw
2 + bw + c) j−1 =

2N−2∑
j=0

C jw
j . (3.4.18)

Coefficients C j can be obtained simply from c j . For example, if N = 2,

C0 = 1 + 2c2c, C1 = 2c2b, C2 = 2c2a.

Inserting (3.4.18) into (3.4.14) yields a polynomial of order 2N for xi (u) and a polynomial
of order 2N + 1 for T (u), in terms of (u − u0).

Let us present the complete solution for N = 2. The velocity distribution is given by

V−2 + c2V
−4 = A0 + A1x1 + A2x2 + A3x3, (3.4.19)

where c2 ≥ 0. The solution of the ray tracing system is then

pi (u) = pi0 + 1
2 Ai (u − u0),

xi (u) = xi0 + (1+ 2c2c)pi0(u− u0)+
[
c2bpi0 + 1

4 Ai (1 + 2c2c)
]
(u − u0)

2

+ 1
3 (2c2api0 + Aic2b)(u − u0)

3 + 1
4 Aic2a(u − u0)

4,

T (u) = T0 + c(1 + 2c2c)(u − u0) + 1
2b(1 + 4c2c)(u − u0)

2

+ 1
3 (a + 4c2ca + 2c2b

2)(u − u0)
3 + c2ab(u − u0)

4

+ 2
5c2a

2(u − u0)
5,

(3.4.20)

where a, b, and c are given by (3.4.15).
As expected, we have obtained a polynomial solution of the fourth order for xi (u) and of

the fifth order for travel time T (u) in u − u0 for velocity distribution (3.4.17), with N = 2.
The velocity distribution given by (3.4.17) with (3.4.13) is not the only distribution for

which we can find analytical solutions of the ray tracing system in the form of a power
series in u − u0. The advantage of the solutions presented here is that the power series is
finite (a polynomial). We shall now give one very general and useful velocity distribution,
which leads to analytical solutions of the ray tracing system in the form of an infinite power
series in (σ − σ0). Assume that 1/V 2 is a general polynomial in Cartesian coordinates xi ,

V−2 = A0 + A j x j + A jk x j xk + · · · + A jk...nx j xk . . . xn. (3.4.21)

We can then assume the solution of ray tracing system xi (σ ), pi (σ ), T (σ ) in the form of
a power series in σ − σ0, where the coefficients of this series are as yet unknown. If these
ansatz power series are inserted into the ray tracing system, a recurrent system of equations
is obtained from which all coefficients can successively be determined for j = 0, 1, 2, . . . .

A finite power series in σ − σ0 is obtained only if 1/V 2 is a polynomial of the first
order in (3.4.21). The solution is then the same as (3.4.3). If n ≥ 2, an infinite power series
in σ − σ0 is obtained. For relevant equations and more details, see Červený (1987b).
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3.4.6 More General V−2 Models

The ray tracing system can also be solved for more complicated 1/V 2 models. We shall
give two examples.

1. Consider the 1/V 2 distribution in the form

1/V 2 = A(1)(x1) + A(2)(x2) + A(3)(x3). (3.4.22)

By inserting (3.4.22) into ray tracing system (3.1.23), we obtain three ordinary
differential equations of the second order:

d2xi
dσ 2

− 1

2

∂A(i)

∂xi
= 0, i = 1, 2, 3

(no summation over i). Assume now that A(i)(xi ) is a quadratic polynomial in xi ,

A(i)(xi ) = A + Bxi + Cx2i . (3.4.23)

Then the ordinary differential equation for xi reduces to

d2xi
dσ 2

− Cxi = 1

2
B.

The solutions of this equation are familiar. They correspond to the so-called para-
bolic layer and can be expressed in terms of trigonometric or hyperbolic functions.
See also Section 3.7.2 for the analytical solutions of (3.4.23) and for more details.

2. Now we shall consider the general quadratic distribution of 1/V 2,

1/V 2 = A + Bi xi + Ci j xi x j , (3.4.24)

with Ci j = C ji . The analytical solutions for this distribution were found by Körnig
(1995) using the Laplace transform. The ray tracing system (3.1.23) for distribution
(3.4.24) reads

d2xi
dσ 2

= 1

2
Bi + Ci j x j , (3.4.25)

and the initial conditions are xi = xi0 and pi = pi0 forσ = 0.Wedenote theLaplace
variable corresponding to σ by s and the Laplace transform of xi (σ ) by Xi (s). Then
(3.4.25) yields the system of three equations in the Laplace domain for s:

s2Xi (s) − s xi0 − pi0 = Bi/2s + Ci j X j (s), i = 1, 2, 3 .

If we express it in the following form:

X j (s)(Ci j − s2δi j ) = − Bi + 2s2xi0 + 2pi0s

2s
,

the solution for Xi (σ ) comes out as

Xi (s) = − (Bj + 2s2x j0 + 2p j0s)

2s det(Cnk − s2δnk)
Fi j (s). (3.4.26)

Here Fi j (s) denotes the cofactor of Ci j − s2δi j . In general, (3.4.26) is the ratio
of polynomials of the sixth and seventh order. It is suitable to express det(Ci j −
s2δi j ) in terms of eigenvalues of Ci j , λ1, λ2, and λ3, such that det(Ci j − s2δi j ) =
(λ1 − s2)(λ2 − s2)(λ3 − s2). The expressions for rays, xi (σ ), are obtained from
(3.4.26) by inverse Laplace transform of Xi (s). These expressions can be found
analytically, using partial fraction expansions. There are seven different forms of
solution, depending on the mutual relations between λ1, λ2, and λ3. All these pos-
sible forms are listed and discussed by Körnig (1995) in detail. In addition to a
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polynomial of the second order in σ , these solutions contain the following trigono-
metric and hyperbolic functions:

Cm(σ )= cosh
(|λm|1/2σ ), Sm(σ )= sinh

(|λm|1/2σ )/|λm|1/2
for λm > 0,

= cos
(|λm |1/2σ ), = sin

(|λm|1/2σ )/|λm|1/2
for λm < 0.

Körnig (1995) also gives expressions for slowness vector pi (σ ) = dxi (σ )/dσ and
for the travel time:

T (σ ) = T (0) +
∫ σ

0
pi (σ

′)pi (σ ′)dσ ′.

Note that distributions (3.4.2) and (3.4.23) represent special cases of Körnig’s general
distribution (3.4.24).

3.4.7 Cell Ray Tracing

In the cell approximation, the whole model (or the whole layer or the whole block) is
subdivided into a network of cells. Velocity V , or some other function related to velocity
V , such as slowness 1/V or the square of slowness 1/V 2, can be specified at grid points
of the network, alternatively in the centers of the cells. The velocity distribution within the
individual cells is then approximated by some simple velocity laws.

The simplest case is to consider a constant velocitywithin the individual cells. Fictitious
interfaces of the first order are then introduced at the boundaries of the cells, but the ray
tracing is extremely simple and the intersections of the ray with the interfaces can be
determined very easily. Rectangular box cells with a constant velocity within the cells have
been used in seismology for a long time, for example, in the method of Aki, Christoffersen,
and Husebye (1977); see also Koch (1985). Even though this velocity approximation is
rather crude, it has yielded a number of important results, both in seismology and seismic
prospecting (see Langan, Lerche, and Cutler 1985).

It is, however, not difficult to adopt velocity laws that do not introduce interfaces of
the first order at cell boundaries but that introduce only interfaces of the second order.
The velocity is then continuous across the boundaries of the cells, and only the velocity
gradient is discontinuous. We shall describe one such case, suitable for tetrahedral cells.
The results can easily be simplified for triangular cells in 2-D structures.

In tetrahedral cells, the velocity distribution can be described by analytical distribution
(3.4.4) or (3.4.8). The four constants A0, A1, A2, and A3 can then be determined from
the velocity values at the four apexes of the tetrahedron. The most popular in seismology
and seismic exploration is the case of the constant gradient of velocity V within the cells
(n = −1). The ray in such a cell is a part of a circle, and the travel time along the circular ray
can be expressed in terms of inverse hyperbolic or logarithmic functions. See, for example,
Gebrande (1976), Will (1976), Whittal and Clowes (1979), Marks and Hron (1980), Cassel
(1982), Müller (1984), Chapman (1985), and Weber (1988). The simplest, polynomial
analytical solution for the ray and travel time, however, corresponds to the case of the
constant gradient of the square of slowness V−2 (n = 2); see (3.4.3). The exact equation of
the ray trajectory in such a tetrahedral cell is a quadratic polynomial in (σ − σ0) and a cubic
polynomial in (σ − σ0) for the travel time. The determination of the intersection of the ray
with the plane boundary of the cell leads to the solution of the quadratic equation. Thus, the



136 SEISMIC RAYS AND TRAVEL TIMES

procedure of ray tracing in a tetrahedral cell with a constant gradient of V−2 requires the
solution of four quadratic equations in σ and the computation of some simple polynomial
expressions of a low order. The solution is exact; no computations of trigonometric or
transcendental functions are required. The equations are very simple; they do not require
special treatment for A → 0 (very small gradient). See Červený (1987a) andVirieux, Farra,
and Madariaga (1988).

The analytical ray tracing in a cell with a constant gradient of velocity V is similar,
being slightlymore complicated for programming and numerically less efficient. It requires
the computation of transcendental functions.

In the tetrahedral cells with the analytical distribution (3.4.4) or (3.4.8), the velocity is
continuous across the boundaries of the cells, but its gradient is not. Thus, the boundaries
of cells represent fictitious interfaces of the second order. (They actually do not exist in
the model, but are introduced by the approximation used.) The interfaces of the second
order give, of course, a smoother approximation of the model than the interfaces of the first
order; nevertheless, they cause numerous difficulties in the ray computations. The fictitious
interfaces of the second order yield anomalies in the computation of the ray field in the
vicinity of rays tangent to these interfaces. The ray field changes very drastically in these
regions and often contains loops, caustics, and small shadow zones. Consequently, the cell
computation of geometrical spreading and amplitudes may often be rather chaotic and may
contain zeros and infinities. Sometimes, such computations do not allow the actual trend
of the ray amplitudes to be followed. Thus, removing not only the interfaces of the first
order, but also the fictitious interfaces of the second order would be useful.

In 1-D models, such fictitious interfaces of the second order may be removed using
polynomial rays; see Section 3.7.3. In laterally varying media, however, the attempts to
remove the fictitious interfaces of the second order would be considerably more compli-
cated. The only known proposal that deals with removing the fictitious interfaces of the
second order in the cell approach is by Körnig (1995). In his proposal, Körnig (1995) uses
the general quadratic approximation of 1/V 2 given by (3.4.24).

3.4.8 Semianalytical Ray Tracing in Layered and Block Structures

We consider a general 3-D laterally varying model consisting of thick layers and/or large
blocks, separated by smoothly curved structural interfaces. We assume that the velocity
distributions inside any individual layers and blocks are specified by simple velocity laws
that allow the analytical computation of rays. Such models have been commonly used
is seismic exploration. Layers/blocks of constant velocity, constant velocity gradient, or
constant gradient of the square of slowness are primarily considered here. The rays in these
three velocity distributions are straight lines, circles, or parabolas; see Section 3.7.2. The
only actual problem of ray tracing consists of finding the intersections of straight lines
(circles, parabolas) with the structural interfaces. At these intersections, Snell’s law must,
of course, be applied. It is very important to realize that there are no fictitious interfaces
in the model; all interfaces have a structural meaning. This is the great advantage of this
model in comparison with the cell model. The disadvantage is that the model allows only
rather crude velocity variations inside the individual layers/blocks. See Yacoub, Scott, and
McKeown (1970), Sorrells, Crowley, and Veith (1971), Shah (1973a, 1973b), Hubral and
Krey (1980), Lee and Langston (1983a, 1983b), Langston and Lee (1983). For many other
references see Hubral and Krey (1980).
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3.4.9 Approximate Ray Tracing

In complex 3-D structures, the ray tracing and travel-time computation can be rather time
consuming, particularly if the problem under study requires many rays to be computed. It
may even prove useful to apply some approximate methods to the ray tracing and travel-
time computations. These methods have been broadly used in boundary-value ray tracing,
mainly as ray estimators for further applications of bending methods; see Section 3.11.3.
For completeness, we shall also mention the main principles here.

Two basic approaches have been proposed for approximate ray tracing. The first consists
of computing an exact ray in a laterally averaged structure. The 3-D structure is usually
replaced by a 1-D (vertically inhomogeneous or radially symmetric) layered structure
in which the velocity distribution within the individual layers is laterally averaged. The
structure may also be averaged in many other ways. The second approach consists of
approximate ray computations through an actual, nonaveraged structure. The rays under
consideration, however, satisfy Fermat’s principle only approximately. Various alternatives
to these twomethods are available. For a good reviewof approximate ray tracing approaches,
see Thurber (1986), where many other references can also be found. See also Section 3.7
for ray tracing in 1-D models, Section 3.11 for boundary ray tracing, and Section 3.9 for
perturbation methods.

3.5 Ray Tracing in Curvilinear Coordinates

In the previous sections, we have assumed that the model is specified in Cartesian co-
ordinates. In some applications, however, it may be useful to consider models specified
in some curvilinear coordinate systems, such as spherical, cylindrical, and ellipsoidal. In
global seismology, it is common to use spherical coordinates to describe the model. For this
reason, we shall discuss the ray tracing systems for models specified in various curvilinear
coordinates.

3.5.1 Curvilinear Orthogonal Coordinates

Consider a right-handed curvilinear orthogonal coordinate system ξ1, ξ2, ξ3 with the rel-
evant unit basis vectors 	e1, 	e2, and 	e3, and denote the corresponding scale factors by
h1, h2, and h3. The square of the infinitesimal length element ds2 in the given coordinate
system is

ds2 = h21dξ
2
1 + h22dξ

2
2 + h23dξ

2
3 . (3.5.1)

We are familiar with expressing vectorial differential operators in the orthogonal curvi-
linear coordinate system ξi from vector calculus. In the following, we shall only need the
expression for the gradient:

∇� = 1

h1

∂�

∂ξ1
	e1 + 1

h2

∂�

∂ξ2
	e2 + 1

h3

∂�

∂ξ3
	e3. (3.5.2)

The slowness vector is defined as 	p = ∇T , so

	p = 1

h1

∂T

∂ξ1
	e1 + 1

h2

∂T

∂ξ2
	e2 + 1

h3

∂T

∂ξ3
	e3. (3.5.3)
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Thus, the components of slowness vector 	p in curvilinear orthogonal coordinates ξ1, ξ2,
and ξ3 read

p1 = 1

h1

∂T

∂ξ1
, p2 = 1

h2

∂T

∂ξ2
, p3 = 1

h3

∂T

∂ξ3
. (3.5.4)

As we can see from (3.5.4), we must strictly distinguish between pi and ∂T/∂ξi . Because
we shall often use partial derivatives ∂T/∂ξi , we shall use an abbreviated symbol Ti for
them,

Ti = ∂T/∂ξi . (3.5.5)

3.5.2 The Eikonal Equation in Curvilinear Orthogonal Coordinates

In vector form, the eikonal equation in isotropic media is expressed as ∇T · ∇T = 1/V 2.
In curvilinear orthogonal coordinates, the gradient is given by (3.5.2). The eikonal equation
can thus be expressed in arbitrary curvilinear orthogonal coordinates as follows:

1

h21

(
∂T

∂ξ1

)2

+ 1

h22

(
∂T

∂ξ2

)2

+ 1

h23

(
∂T

∂ξ3

)2

= 1

V 2(ξ1, ξ2, ξ3)
. (3.5.6)

Using notation (3.5.5),

1

h21
T 2
1 + 1

h22
T 2
2 + 1

h23
T 2
3 = 1

V 2(ξ1, ξ2, ξ3)
. (3.5.7)

Eikonal equation (3.5.7) can be expressed as H(ξi , Ti ) = 0; see (3.1.2). We shall again
consider a very general form:

H(ξi , Ti ) = 1

n

{(
1

h21
T 2
1 + 1

h22
T 2
2 + 1

h23
T 2
3

)n/2

− 1

V n

}
= 0. (3.5.8)

This also includes the case of n = 0:

H(ξi , Ti ) = 1

2
ln

(
1

h21
T 2
1 + 1

h22
T 2
2 + 1

h23
T 2
3

)
+ ln V . (3.5.9)

Equations (3.5.8) and (3.5.9) for Hamiltonian H(ξi , Ti ) may be expressed in many al-
ternative forms. For example, if we consider n = 2 in (3.5.8) and multiply it by V 2, we
obtain

H(ξi , Ti ) = 1
2

{
V 2
(
T 2
1 /h

2
1 + T 2

2 /h
2
2 + T 2

3 /h
2
3

)− 1
} = 0. (3.5.10)

This Hamiltonian formally corresponds to (3.1.13) in Cartesian coordinates. The disadvan-
tage of Hamiltonian (3.5.10) is that velocity variations V (ξi ) are mixed with the variations
of scale factors h1(ξi ), h2(ξi ), and h3(ξi ). For this reason, we shall mostly use (3.5.8) and
(3.5.9) in the following discussion. The eikonal equation for the components of slowness
vector pi in standard form reads

p21 + p22 + p23 = 1/V 2(ξ1, ξ2, ξ3). (3.5.11)

It is also possible to introduce the reduced Hamiltonian HR(ξi , TI ) by solving the
eikonal equation (3.5.7) for T1, T2, or T3. Without any loss of generality, we shall solve it
for T3:

T3 = −HR(ξi , TI ), (3.5.12)
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where

HR(ξi , TI ) = −h3
[
V−2(ξ1, ξ2, ξ3) − h−2

1 T 2
1 − h−2

2 T 2
2

]1/2
. (3.5.13)

The HamiltonianH(ξi , Ti ) can then be defined as

H(ξi , Ti ) = T3 +HR(ξi , TI ). (3.5.14)

3.5.3 The Ray Tracing System in Curvilinear Orthogonal Coordinates

The ray tracing system in curvilinear orthogonal coordinates can be derived simply by the
method of characteristics; see (3.1.3). The characteristic system for the general form of the
eikonal equation (3.5.8) is as follows:

dξi
du

= An/2−1 Ti
h2i
,

dTi
du

= 1

n

∂

∂ξi

(
1

V

)n
+ An/2−1

3∑
k=1

T 2
k

h3k

∂hk
∂ξi
,

dT

du
= An/2 = 1

V n
,

(3.5.15)

where

A = 1

h21
T 2
1 + 1

h22
T 2
2 + 1

h23
T 2
3 = V−2.

In the limit for n = 0, parameter u along the ray equals travel time T , and the ray tracing
system reads

dξi
dT

= A−1 Ti
h2i
,

dTi
dT

= −∂ ln V
∂ξi

+ A−1
3∑

k=1

T 2
k

h3k

∂hk
∂ξi
. (3.5.16)

Note that (3.5.16) can also be directly obtained from the Hamiltonian (3.5.10). As in
Cartesian coordinates, parameter u along the ray equals arclength s for n = 1 (ds = V dT ),
and u = σ for n = 2 (dσ = V 2dT ) in (3.5.15).

Ray tracing systems (3.5.15) and (3.5.16) are expressed inHamiltonian form for eikonal
equations (3.5.8) and (3.5.9). We can, however, insert A = V−2 into (3.5.15) and (3.5.16).
Although the ray tracing systems are no longer in Hamiltonian form, they are simpler for
numerical ray tracing. The simplest ray tracing system is again obtained for n = 2.

The initial conditions for (3.5.15) and (3.5.16) at point S situated on the ray are

ξi = ξi0, Ti = Ti0, T = T0. (3.5.17)

Here Ti0 must satisfy the condition

h−2
10 T

2
10 + h−2

20 T
2
20 + h−2

30 T
2
30 = V−2

0 , (3.5.18)

where V0 and hi0 are V and hi at point S.We can again specify the initial direction of the ray
by two take-off angles, i0 and φ0 at S, where 0 ≤ i0 ≤ π and 0 ≤ φ0 ≤ 2π . Let us consider
the basis unit vectors 	e1, 	e2, and 	e3 at S. Then i0 and φ0 can be taken as in Section 3.2.1,
but with respect to the triplet of unit vectors 	e1, 	e2, and 	e3. The components of slowness
vector pi0 = 	p0 · 	ei can be expressed in terms of i0 and φ0. When we determine p10, p20,
and p30, we obtain the required expressions for T10, T20, and T30 as follows:

T10 = h10 p10, T20 = h20 p20, T30 = h30 p30. (3.5.19)

These initial conditions Ti0 automatically satisfy eikonal equation (3.5.18) at S.
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If the ray is incident at curved interface �, the initial conditions for the rays of
reflected/transmitted waves must be determined. In Section 2.4.5, we presented the general
form of Snell’s law (2.4.70) for arbitrary curved interfaces. We shall now express Snell’s
law (2.4.70) in an arbitrary curvilinear orthogonal coordinate system in terms of Ti .

Assume that the interface is given by equation �(ξ1, ξ2, ξ3) = 0. The unit normal 	n to
� at the point of incidence Q is then given by vectorial equation (3.2.5). Due to its vector
character, the equation is also valid in curvilinear orthogonal coordinates so that

ni = ε∗

hi

∂�

∂ξi

/
A, A =

[
3∑

k=1

1

h2k

(
∂�

∂ξk

)2
]1/2

(3.5.20)

(no summation over i). Here ε∗ = ±1 specifies the required orientation of unit normal 	n;
see (3.2.5). Then, (2.4.70) yields Snell’s law in the following form:

T̃ i = Ti − hi
{
B ∓ ε[Ṽ−2 − V−2 + B2]1/2

}
ni ,

B = ε∗
(

3∑
k=1

1

h2k
Tk
∂�

∂ξk

)/
A

(3.5.21)

(no summation over i). Here ε is the orientation index so that ε = sgn B. The upper sign
corresponds to transmitted waves, the lower sign refers to reflected waves. As we can see,
Snell’s law (3.5.21) is expressed fully in terms of Ti , not pi . Quantities T̃ i and Ṽ correspond
to the selected wave reflected/transmitted at Q.

The equations derived in this section are sufficient to perform ray tracing in 3-D in-
homogeneous layered models in arbitrary curvilinear orthogonal coordinates. As soon as
analytical expressions for the scale factors h1, h2, and h3 in an orthogonal coordinate sys-
tem are known, the application of the ray tracing system (3.5.16) is straightforward. The
analytical expressions for the scale factors h1, h2, and h3 for many coordinate systems
can be found in many mathematical textbooks and handbooks; see, for example, Korn
and Korn (1961). For this reason, we shall not present here specific ray tracing systems
for different types of coordinates. The only exceptions are the spherical polar coordinates
because they play a basic role in global seismological studies. See also Yan and Yen (1995)
for the discussion of ray tracing in ellipsoidal coordinates.

Ray tracing systems (3.5.15) and (3.5.16) consist of six ordinary differential equations
of the first order for ξi and Ti . The number of equations in the system can be reduced to
four if we use the reduced Hamiltonian (3.5.13) and choose u = ξ3. Then, the reduced ray
tracing system reads:

dξI
dξ3

= 1

T3

(
h3
hI

)2

TI ,

dTI
dξ3

= T3
h3

∂h3
∂ξI

+ h23
2T3

[
∂V−2

∂ξI
− ∂h−2

1

∂ξI
T 2
1 − ∂h−2

2

∂ξI
T 2
2

]
,

(3.5.22)

with the equation for the travel-time computation along the ray:

dT/dξ3 = h3V
−1
[
1 − V 2

(
h−2
1 T 2

1 + h−2
2 T 2

2

)]−1/2 = h23V
−2T−1

3 . (3.5.23)

Mutatis mutandis, Equations (3.5.12) through (3.5.14) and Equations (3.5.22) and (3.5.23)
can be used even for u = ξ1 or u = ξ2 as a variable along the ray. Equations for initial
conditions at a point S and at a structural interface, derived in this section, can easily be
modified even for the reduced ray tracing system (3.5.22).
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Figure 3.7. The definition of the initial take-off angles i0 and φ0 at point S in spherical coordinates
r, θ, ϕ. The bold continuous line denotes the initial slowness vector 	p0; the dashed bold line represents
the horizontal projection of the initial slowness vector into the plane specified by 	eθ and 	eϕ .

3.5.4 Ray Tracing in Spherical Polar Coordinates

We denote the spherical polar coordinates r, θ , and ϕ such that r is the radial distance, θ is
the colatitude, and ϕ is the longitude, where 0 ≤ θ ≤ π and 0 ≤ ϕ < 2π ; see Figure 3.7.
The spherical coordinates are related to Cartesian coordinates xi as follows:

x1 = r sin θ cosϕ, x2 = r sin θ sinϕ, x3 = r cos θ. (3.5.24)

The square of the infinitesimal length element is

ds2 = dr2 + r 2dθ 2 + r2 sin2 θdϕ2. (3.5.25)

It follows from (3.5.25) that the scale factors are

hr = 1, hθ = r, hϕ = r sin θ. (3.5.26)

The components of the slowness vector can be expressed as

pr = Tr , pθ = r−1Tθ , pϕ = (r sin θ )−1Tϕ, (3.5.27)

with

Tr = ∂T/∂r, Tθ = ∂T/∂θ, Tϕ = ∂T/∂ϕ.

Eikonal equation (3.5.7) can then be expressed as

T 2
r + 1

r2
T 2
θ + 1

r2 sin2 θ
T 2
ϕ = 1

V 2(r, θ, ϕ)
(3.5.28)

or, in a more general form, as

H(r, θ, ϕ, Tr , Tθ , Tϕ)

= 1

n

{(
T 2
r + 1

r2
T 2
θ + 1

r2 sin2 θ
T 2
ϕ

)n/2
− 1

V n(r, θ, ϕ)

}
= 0. (3.5.29)

For n = 0,

H(r, θ, ϕ, Tr , Tθ , Tϕ)

= 1

2
ln

(
T 2
r + 1

r2
T 2
θ + 1

r2 sin2 θ
T 2
ϕ

)
+ ln V (r, θ, ϕ) = 0. (3.5.30)
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The ray tracing system corresponding to eikonal equation (3.5.29) is

dr

du
= An/2−1Tr ,

dTr
du

= 1

n

∂

∂r

(
1

V

)n
+ An/2−1

(
T 2
θ

r3
+ T 2

ϕ

r3 sin2 θ

)
,

dθ

du
= An/2−1 Tθ

r 2
,

dTθ
du

= 1

n

∂

∂θ

(
1

V

)n
+ An/2−1

T 2
ϕ cos θ

r2 sin3 θ
, (3.5.31)

dϕ

du
= An/2−1 Tϕ

r 2 sin2 θ
,

dTϕ
du

= 1

n

∂

∂ϕ

(
1

V

)n
,

with

dT

du
= An/2 = 1

V n
, A = T 2

r + 1

r2
T 2
θ + 1

r2 sin2 θ
T 2
ϕ = 1

V 2
. (3.5.32)

The RHS of the equation for dTr/du can be simplified, as T 2
θ /r

3 + T 2
ϕ /(r

3 sin2 θ ) =
(V−2 − T 2

r )/r , see (3.5.32).
Ray tracing system (3.5.31) can be used for any n. The simplest ray tracing system

is obtained for n = 2 such that An/2−1 = 1. Parameter u along the ray then equals σ
such that dσ = V 2dT . For n = 0, parameter u equals travel time T . If n = 0, expression
n−1∂(V−n)/∂r reads −∂ ln V/∂r , and the two other relevant derivatives can be found
similarly. For n = 1, parameter u equals arclength s along the ray.

The initial conditions at point S for ray tracing system (3.5.31) are

r = r0, θ = θ 0, ϕ = θ 0,

Tr = Tr0, Tθ = Tθ0, Tϕ = Tϕ0, T = T0.
(3.5.33)

Quantities Tr0, Tθ0, and Tϕ0 must satisfy the relation

T 2
r0 + 1

r20
T 2
θ0 + 1

r20 sin
2 θ0

T 2
ϕ0 = 1

V 2
0

. (3.5.34)

We can again introduce take-off angles i0 and φ0 to specify the initial direction of the ray.
In seismology, it is usual to consider initial angles i0 and φ0 in spherical coordinates as
shown in Figure 3.7; see Aki and Richards (1980, p. 724). Then

pr0 = V−1
0 cos i0, pθ0 = V−1

0 sin i0 cosφ0, pϕ0 = V−1
0 sin i0 sinφ0.

Taking into account the scale factors,

Tr0 = V−1
0 cos i0, Tθ0 = V−1

0 r0 sin i0 cosφ0,

Tϕ0 = V−1
0 r0 sin θ0 sin i0 sinφ0.

(3.5.35)

These initial values satisfy eikonal equation (3.5.34) at S automatically.

3.5.5 Modified Ray Tracing Systems in Spherical Polar Coordinates

The ray tracing systems in spherical polar coordinates may be expressed in many alterna-
tive forms. Particularly familiar in seismology is the ray tracing system proposed by Julian
and Gubbins (1977), see also Aki and Richards (1980, pp. 724–5) and Dahlen and Tromp
(1998, Chap. 15). Instead of Tr , Tθ , and Tϕ , Julian and Gubbins use two polar angles, i and
ξ , which are introduced at any point of the ray in much the same way that angles i0 and
φ0, described in Section 3.5.4, were introduced: Tr = V−1 cos i, Tθ = V−1r sin i cos ξ,
and Tϕ = V−1r sin θ sin i sin ξ . The system consists of five equations only, but it is rather
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complicated (it contains trigonometric functions of three angles). The number of equations
in the ray tracing system can even be reduced to four, if we use r or ϕ or θ as the variable
u along the ray. For example, Liu and Tromp (1996) use u = ϕ. Various ray tracing sys-
tems consisting of four equations only may also be obtained by introducing the reduced
Hamiltonian HR; see (3.5.13) and (3.5.22). The relevant reduced ray tracing systems fol-
low immediately from (3.5.22) if we insert (3.5.26) into it. We do not present the final ray
tracing systems here because their derivation is simple. Moreover, the reduced ray tracing
systems do not offer distinct advantages when compared with the full ray tracing system
(3.5.31). For other alternative systems, see Jacob (1970) and Comer (1984).

Here we shall present several particularly simple ray tracing systems, including
2-D ray tracing systems. We shall not give the initial conditions and Snell’s law; they
are straightforward.

Instead of spherical polar coordinates r, θ , and ϕ, we shall introduce new coordinates
z, a, and b:

z = −R ln(r/R), a = Rθ, b = Rϕ. (3.5.36)

Here R is an arbitrary positive number (for example, the radius of the Earth). If r = R, then
z = 0, and if r → 0, then z → ∞. Thus, z is a modified depth coordinate. Consequently,

r = R exp(−z/R), dr/dz = −r/R,
Tz = −r R−1Tr , Ta = R−1Tθ , Tb = R−1Tϕ.

Note that z, a, and b are still curvilinear orthogonal coordinates, with hz = r/R, ha = r/R,
and hb = r sin θ/R. The eikonal equation now becomes

T 2
z + T 2

a + sin−2 θT 2
b = r2/R2V 2. (3.5.37)

Here r and θ should be expressed in terms of z and a. We shall again express the eikonal
equation in a more general form:

H= n−1
{(
T 2
z + T 2

a + sin−2 θT 2
b

)n/2 − ηn}= 0, η= r/RV . (3.5.38)

Using (3.1.3), we obtain the relevant ray tracing system,

dz

du
= An/2−1Tz,

dTz
du

= 1

n

∂ηn

∂z
,

da

du
= An/2−1Ta,

dTa
du

= 1

n

∂ηn

∂a
+ An/2−1 T

2
b cos θ

R sin3 θ
, (3.5.39)

db

du
= An/2−1 Tb

sin2 θ
,

dTb
du

= 1

n

∂ηn

db
,

with

dT/du = An/2 = ηn, A = T 2
z + T 2

a + sin−2 θT 2
b = η2. (3.5.40)

Ray tracing system (3.5.39) is particularly simple for n = 2, since An/2−1 = 1. Parameter
u along the ray is then given by the relation du = η2dT . If n = 0, parameter u along the ray
equals travel time T . Derivative n−1∂ηn/∂z then reads −∂(ln η)/∂z; the two other partial
derivatives are specified similarly.

As we can see from (3.5.39), quantity η−1 = V R/r is used instead of velocity V to
describe themodel. The relation between η and V is unique, and one quantity can be simply
expressed in terms of the other.
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System (3.5.39) is perhaps the simplest 3-D ray tracing system in themodified spherical
coordinates, particularly for n = 2. Let us emphasize that ray tracing system (3.5.39) is
quite general; no approximation has been made in deriving it.

Ray tracing systems (3.5.31) and (3.5.39) require an alternative treatment if the com-
puted ray enters a region of θ close to 0 or to π (that is, for a close to 0 or to Rπ ). These
singularities have a formal meaning and depend on the definition of coordinates θ and ϕ.
The local transformation of coordinates θ, ϕ −→ θ ′, ϕ′ eliminates the problem. For exam-
ple, Liu and Tromp (1996) propose to rotate the Earth’s model so that both the source and
receiver are located on the equator. An alternative treatment is also needed for r → 0.

In the general case, ray tracing system (3.5.39) must be solved as a whole because
all the equations are coupled with one another. There are some exceptions. If n = 2 and
we assume that η(r, θ, ϕ) = η1(r ) + η2(θ, ϕ), that is, η(z, a, b) = η1(z) + η2(a, b), system
(3.5.39) then splits into two subsystems, which are fully separated; they are coupled only
by the initial conditions.

We shall now specify ray tracing system (3.5.39) for two 2-D situations, in which the
system is particularly simple.

First, we consider η independent of ϕ (that is, η is independent of b = Rϕ). We also
assume that the initial conditions are such that pϕ0 = 0, which implies that Tϕ0 = 0. Then
b = b0, Tb = Tb0 = 0 along thewhole ray, and the ray trajectory is situated in planeϕ = ϕ0.
Ray tracing system (3.5.39) then yields

dz

du
= An/2−1Tz,

dTz
du

= 1

n

∂ηn

∂z
,

da

du
= An/2−1Ta,

dTa
du

= 1

n

∂ηn

∂a
,

(3.5.41)

with

dT/du = ηn = An/2, A = T 2
z + T 2

a = η2. (3.5.42)

Second, we consider η independent of r (that is, η is independent of z). We assume
that the initial conditions are such that pz0 = 0, which implies that Tz0 = 0. Then z = z0
(or r = r0) and Tz = Tz0 = 0 along the whole ray. An example is the ray tracing along the
spherical surface of the Earth. It would, of course, be possible to use (3.5.39) again, but we
shall first rewrite the eikonal equation for our case. If we put Tz = 0 and multiply (3.5.38)
by sinn θ = sinn(a/R), we obtain

H = 1

n

{(
T 2
a sin2

a

R
+ T 2

b

)n/2
− κn

}
= 0, κ = r0 sin(a/R)

RV
.

(3.5.43)

Now we introduce a new coordinate c given by the relation (Mercator transformation)

c = R ln tan
θ

2
= R ln tan

a

2R
, Ta = 1

sin(a/R)
Tc,

instead of a. Coordinates c and b are still 2-D orthogonal coordinates, with the same scale
factors:

hc = hb = r0
R
sin

a

R
= 2r0

R

exp(c/R)

1 + exp2(c/R)
. (3.5.44)
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Eikonal equation (3.5.43) then becomes

H = n−1
{(
T 2
c + T 2

b

)n/2 − κn} = 0, (3.5.45)

with the relevant ray-tracing system,

dc

du
= An/2−1Tc,

dTc
du

= 1

n

∂κn

∂c
,

db

du
= An/2−1Tb,

dTb
du

= 1

n

∂κn

∂b
,

(3.5.46)

with

dT

du
= An/2 = κn, A = T 2

c + T 2
b = κ2. (3.5.47)

We have thus obtained two 2-D ray tracing systems, (3.5.41) and (3.5.46), which are fully
equivalent to the 2-D ray tracing system in Cartesian coordinates.

In the first case, ray tracing system (3.5.41) corresponds to ray tracing in a plane of
constant ϕ. The relevant transformation leading to this system is

z = R ln(R/r ), a = Rθ, η = r/RV (r, θ, ϕ0). (3.5.48)

We speak of a 2-D Earth flattening transformation (2-D EFT).
In the second case, ray tracing system (3.5.46) corresponds to ray tracing along a

spherical surface r = r0 = const. The transformation formulae are as follows:

c= R ln tan
(
1
2θ
)
, b= Rϕ, κ = r0 sin θ/RV (r0, θ, ϕ). (3.5.49)

We can speak of a 2-DEarth surface flattening transformation (2-DESFT), or of aMercator
transformation. This transformation was first proposed by Jobert and Jobert (1983) for ray
tracing of surface waves. See also Jobert and Jobert (1987).

Both the 2-D EFT and 2-D ESFT transformations are very important, at least from the
following two points of view.� Any analytical solution of the 2-D ray tracing system in Cartesian coordinates can

be used without change in spherical coordinates r, θ or θ, ϕ, and vice versa.� Computer programs for 2-D ray tracing in Cartesian coordinates can be directly used
for 2-D ray tracing in spherical coordinates r, θ or θ, ϕ by a simple modification of
the input and output data.

3.5.6 Ray Tracing in Curvilinear Nonorthogonal Coordinates

For completeness, we shall give the eikonal equation and ray tracing systems in gen-
eral curvilinear nonorthogonal coordinates. For more details, see Červený, Klimeš, and
Pšenčı́k (1988b) and Hrabě (1994). In nonorthogonal coordinates, it is necessary to dis-
tinguish strictly between covariant and contravariant components of vectors and tensors;
see, for example, Synge and Schild (1952). As usual, we shall write the covariant indices
as subscripts and the contravariant indices as superscripts. As in Section 3.1.3, we denote
the coordinates xi and the covariant components of the metric tensor gi j . The square of the
infinitesimal distance ds2 between two adjacent points is given by relation (3.1.41). The
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contravariant components of the metric tensor, gi j , can be calculated from gi j using the
relations

gi j g
ik = δkj , (3.5.50)

where the mixed covariant and contravariant Kronecker delta δkj equals 1 if k = j and 0
otherwise. The summation in (3.5.50) and in all other equations in this section is over the
same superscripts and subscripts, that is, over i in (3.5.50). Covariant components fi of a
vector 	f may be expressed in terms of contravariant components f i as follows:

fi = gi j f
j , f i = gi j f j . (3.5.51)

The eikonal equation in the general coordinate system for P or S waves propagating in
an inhomogeneous isotropic medium can be expressed in several alternative forms, using
either covariant or contravariant components of slowness vector 	p, pi or pi . Note that the
covariant components of slowness vector pi are ∂T/∂xi . The three forms of the eikonal
equation are

gi j pi p j = V−2(xi ),

gi j p
i p j = V−2(xi ), pi p

i = V−2(xi ).
(3.5.52)

Here V is either α or β depending on the type of wave. All three forms of the eikonal
equation are fully equivalent; see (3.5.51). We shall primarily use the first form of the
eikonal equation, expressed in terms of the covariant components of the slowness vector.

We shall again use a more general form of eikonal equation (3.5.52):

H(xi , pi ) = n−1
{
(gkj pk p j )

n/2 − V −n(xi )
} = 0, (3.5.53)

where n is an arbitrary number.
The ray tracing system can be obtained from (3.5.53) in several alternative forms.

Because pi = ∂T/∂xi , we can again express the characteristic system of (3.5.53) in
Hamiltonian canonical form (3.1.3):

dxi

du
= An/2−1gik pk,

dpi
du

= 1

n

∂

∂xi

(
1

V

)n
− 1

2
An/2−1 pk p j

∂gkj

∂xi
,

(3.5.54)

with

dT

du
= An/2 =

(
1

V

)n
, A = gkj pk p j = 1

V 2(xi )
. (3.5.55)

Here u is a parameter along the ray, related to travel time T by the first equation of
(3.5.55). Equations (3.5.54) represent the final form of the ray tracing system in general
nonorthogonal coordinates.

System (3.5.54) contains the derivatives of the contravariant components of the metric
tensor, ∂gkj/∂xi . They can be replaced by the derivatives of the covariant components of
the metric tensor using the relation

∂gkj/∂xi = −gkmg jn∂gmn/∂xi .
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Christoffel symbols of the second kind are frequently used instead of the derivatives of the
metric tensor:

�ki j = 1

2
gkl
(
∂gil
∂x j

+ ∂g jl
∂xi

− ∂gi j
∂xl

)
. (3.5.56)

After some algebra, we obtain an alternative expression for dpi/du in (3.5.54):

dpi
du

= 1

n

∂

∂xi

(
1

V (xi )

)n
+ An/2−1 pk p j g

km�
j
im. (3.5.57)

As in Sections 3.5.3 through 3.5.5, parameter u along the ray corresponds to travel time T if
n = 0, to arclength s along the ray if n = 1, and to σ (dσ = V 2dT ) if n = 2. A particularly
simple ray tracing system is obtained for n = 2, since An/2−1 = 1. If n = 0, we need to put
n−1∂(V−n)/∂xi = −∂ ln V/∂xi in (3.5.54) and (3.5.57).

Equation (3.5.57) can be formally simplified if we introduce the so-called absolute
derivatives along curve xi = xi (u). The absolute derivative D fr/Du of the covariant com-
ponent of a vector along curve xi = xi (u) is defined as

D fr
Du

= d fr
du

− �mrn fm
dxn

du
; (3.5.58)

see Synge and Schild (1952). Ray tracing system (3.5.57) may then be expressed as

Dpi
Du

= 1

n

∂

∂xi

(
1

V

)n
. (3.5.59)

Note that absolute derivative Dpi/Du is also often denoted as δpi/δu.
In the Riemannian geometry, the concept of parallel transport of a vector along a curve

plays an important role. We say that vector fr is propagated parallel along curve � if it
satisfies the differential equation

D fr
Du

= d fr
du

− �mrn fm
dxn

du
= 0 (3.5.60)

along �. This definition also implies that the length of the vector, given by the expression
(gik fi fk)1/2, remains fixed along �.

3.5.7 Comments on Ray Tracing in Curvilinear Coordinates

Ray tracing in models specified in curvilinear coordinates may be particularly useful in the
case of some symmetries (for example, in radially symmetric media). In such cases, it is
often possible to find suitable analytical solutions; see Section 3.7.4.

In general, however, the ray tracing systems for models specified in curvilinear coor-
dinates are more complex than those in Cartesian coordinates. Moreover, the ray tracing
systems in curvilinear coordinates often fail in some regions. For example, the ray tracing
system in spherical polar coordinates cannot be used for θ close to 0 or to π (polar regions)
and for r close to 0 (close to the center of the Earth); see Section 3.5.5.

It is, however, possible to use an universal approach to ray tracing in curvilinear coor-
dinates, which is quite safe and removes all the singularities introduced by the coordinate
system under consideration. A model specified in curvilinear coordinates may be trans-
formed into a model specified in Cartesian coordinates, using standard transformation
relations, and the ray tracing may be performed in general Cartesian coordinates. After
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this, the results may again be transformed back to the curvilinear coordinates under con-
sideration. If the model is specified in a 3-D mesh, the individual transformations are
straightforward. This approach has some advantages.

1. It may be used for models specified in any coordinate system. The relevant ray
tracing system need not be derived.

2. It removes all the singularities of ray tracing equations, which would be introduced
by the relevant curvilinear coordinate system.

3. Most equations presented in this bookmay be appliedwithout any change, including
dynamic ray tracing in Cartesian or ray-centered coordinates. It is not necessary
to derive new dynamic ray tracing systems for the relevant curvilinear coordinate
system.

To apply this universal approach, we must add some transformation routines to the
general programs for model building and ray tracing that are designed in Cartesian coor-
dinates.

3.6 Ray Tracing in Inhomogeneous Anisotropic Media

In this section, we shall discuss ray tracing and travel-time computations of any of the three
waves propagating in an inhomogeneous anisotropic medium. The ray tracing system is
the same for all three waves propagating in an inhomogeneous anisotropic medium; the
type of elementary wave we wish to compute is specified only by the initial conditions. See
Sections 3.6.2 and 3.6.3.

We remind the reader that the basic role in the ray method in an inhomogeneous
anisotropic medium is played by a 3 × 3 matrix �ik(xi , pi ) = ai jkl p j pl , where ai jkl =
ci jkl/ρ are the density-normalized elastic parameters, and pi are the Cartesian components
of the slowness vector, pi = ∂T/∂xi . We denote the three eigenvalues and eigenvectors of
�ik(xi , pi ) by Gm(xi , pi ) and 	g (m)(xi , pi ), m = 1, 2, 3.

For more details on ray tracing and travel-time computations in inhomogeneous
anisotropic media and for numerical computations, see Babich (1961a), Červený (1972),
Červený and Pšenčı́k (1972), Suchy (1972), Červený, Molotkov, and Pšenčı́k (1977), Jech
(1983), Petrashen and Kashtan (1984), Červený and Firbas (1984), Mochizuki (1987),
Gajewski and Pšenčı́k (1987a, 1990, 1992), Shearer and Chapman (1989), Farra and Le
Bégat (1995), and Mensch and Farra (1999). Here we shall mainly follow Červený (1972).

3.6.1 Eikonal Equation

Let us consider a nondegenerate case of three different eigenvalues of matrix �ik ,

G1(xi , pi ) �= G2(xi , pi ) �= G3(xi , pi ). (3.6.1)

The eikonal equation for any of the three waves then reads

Gm(xi , pi ) = 1, m = 1, 2, 3; (3.6.2)

see Section 2.4.3. Equation (3.6.2) represents a nonlinear partial differential equation of
the first order for T (xi ) and describes the propagation of the wavefront T (xi ) = const. of
the wave under consideration.
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We shall use eikonal equation (3.6.2) in Hamiltonian form:

H(xi , pi ) = 1
2 (Gm(xi , pi ) − 1) = 0, m = 1, 2, 3. (3.6.3)

This formofHamiltonian corresponds to (3.1.13) for isotropicmedia,whereGm = V 2 pk pk .
The index m specifies the type of elementary wave under consideration. Unless other-

wise stated, we shall use m = 1 for the qS1 wave, m = 2 for the qS2 wave, and m = 3 for
the qP wave. Most of the equations we shall derive will, however, be applicable to any m.

Condition (3.6.1) plays an important role particularly in the investigation of qS waves.
Many results derived in this section fail forG1 = G2 aswell as forG1 close toG2. This is the
case of the qS waves in weakly anisotropic medium (close to isotropic). G1 may, however,
be locally close to G2 even in strongly anisotropic media (shear wave singularities). The
qS1 and qS2 waves cannot be treated as two independent waves in these cases because they
are mutually coupled. We speak of qS wave coupling. For a more detailed treatment of the
qS waves if G1

.= G2, see Sections 3.9.4 and 5.4.6. In this section, we shall consider only
the classical ray-theory situation of two well-separated qS waves, propagating in a region
where G1 is not close to G2.

3.6.2 Ray Tracing System

The ray tracing system will be derived here from eikonal equation (3.6.3) in the standard
way using themethod of characteristics.We shall express the characteristics inHamiltonian
canonical form,

dxi
du

= 1

2

∂Gm

∂ pi
,

dpi
du

= −1

2

∂Gm

∂xi
,

dT

du
= 1

2
pi
∂Gm

∂ pi
;

see (3.1.3). Here T is the travel time and u is a parameter along the ray, specified by the
last equation. Applying Euler’s theorem and the eikonal equation, we obtain

dT/du = 1
2 pi ∂Gm/∂ pi = Gm = 1.

Thus, the parameter along the ray, u, equals T , and the ray tracing system reads

dxi
dT

= 1

2

∂Gm

∂ pi
,

dpi
dT

= −1

2

∂Gm

∂xi
. (3.6.4)

Ray tracing system (3.6.4) is the same for all three waves propagating in inhomogeneous
anisotropic media.

Instead of parameter T along the ray, we can also introduce such other parameters as
arclength s along the ray. Since ds2 = dxkdxk , the first equation of (3.6.4) yields(

ds

dT

)2

= dxk
dT

dxk
dT

= 1

4

∂Gm

∂ pk

∂Gm

∂ pk

(no summation over m). Ray tracing system (3.6.4) can then be expressed as

dxi
ds

= A
∂Gm

∂ pi
,

dpi
ds

= −A
∂Gm

∂xi
,

dT

ds
= 2A (3.6.5)

with

A =
(
∂Gm

∂ pk

∂Gm

∂ pk

)−1/2
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(no summation over m). Obviously, system (3.6.5) is more complicated than (3.6.4). Con-
sequently, we shall mainly use ray tracing system (3.6.4) in the following text. Only for
some special types of anisotropic media, such as the factorized anisotropic inhomogeneous
media described in Section 3.6.6, shall we also use some other parameters along the ray
instead of T .

Eigenvalues Gm(xi , pi ) of matrix �i j in ray tracing systems (3.6.4) and (3.6.5) are
the solutions of cubic equation (2.2.28). Thus, the straightforward, but very cumbersome,
approach to expressing the RHS of (3.6.4) or (3.6.5) for a particular anisotropic medium
would be based on the analytical solution of the cubic equation in Gm and on the deter-
mination of partial derivatives ∂Gm/∂ pi and ∂Gm/∂xi from these analytical solutions.
This approach may be used efficiently only for very simple anisotropy symmetries. In a
general case, this “hungry wolf” method is not efficient. Instead, however, we can use
a considerably more efficient method. In the ray tracing systems, we do not require the
eigenvalues Gm themselves to be known; we require knowledge of their partial derivatives
only. These partial derivatives can be determined even without solving the cubic equation
in Gm . The first option is to determine them using the theorem of implicit functions; see
Červený (1972). The other option is to express the derivatives in terms of eigenvectors 	g (m).
Both options are equivalent and lead to the same ray tracing system. Here we shall use the
second option. We express Gm in terms of matrix �i j and the eigenvector components in
the following form:

Gm = � jl g
(m)
j g(m)

l ; (3.6.6)

see (2.2.34). We now take the derivative of Gm with respect to pi ,

∂Gm

∂ pi
= ∂� jl

∂ pi
g(m)
j g(m)

l + 2� jl

∂g(m)
j

∂ pi
g(m)
l

= ∂� jl

∂ pi
g(m)
j g(m)

l + 2Gm

∂g(m)
j

∂ pi
g(m)
j

= ∂� jl

∂ pi
g(m)
j g(m)

l + Gm
∂

∂ pi

(
g(m)
j g(m)

j

)
= ∂� jl

∂ pi
g(m)
j g(m)

l .

The same is true for ∂Gm/∂xi . On aggregate,

∂Gm

∂ pi
= ∂� jl

∂ pi
g(m)
j g(m)

l ,
∂Gm

∂xi
= ∂� jl

∂xi
g(m)
j g(m)

l . (3.6.7)

The ray tracing system then reads

dxi
dT

= 1

2

∂� jl

∂ pi
g(m)
j g(m)

l ,
dpi
dT

= −1

2

∂� jl

∂xi
g(m)
j g(m)

l . (3.6.8)

It is easy to determine the derivatives of � jl = a jkln pk pn:

∂� jl

∂ pi
= (ai jkl + a jkli )pk,

∂� jl

∂xi
= ∂a jkln

∂xi
pk pn. (3.6.9)
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Inserting (3.6.9) into (3.6.8) yields the final form of the ray tracing system for general
inhomogeneous anisotropic media:

dxi
dT

= ai jkl plg
(m)
j g(m)

k ,
dpi
dT

= −1

2

∂a jkln
∂xi

pk png
(m)
j g(m)

l . (3.6.10)

To determine the RHS of ray tracing system (3.6.10), we need to know the density-
normalized elastic parameters ai jkl and their spatial derivatives, the components of slowness
vector 	p, and the components of eigenvector 	g (m). The components of eigenvector 	g (m)

can be obtained as solutions of equations

(� jk − Gmδ jk)g
(m)
k = 0, g(m)

k g(m)
k = 1 (3.6.11)

(no summation over m). Using these equations, components g(m)
1 , g(m)

2 , and g(m)
3 can be

calculated at any point of the ray numerically. We can also find the expressions for g(m)
i and

their products analytically:

g(m)
j g(m)

k = D jk/D, (3.6.12)

where Djk and D are given by relations

D11 = (�22 − Gm)(�33 − Gm) − �2
23,

D22 = (�11 − Gm)(�33 − Gm) − �2
13,

D33 = (�11 − Gm)(�22 − Gm) − �2
12,

D12 = D21 = �13�23 − �12(�33 − Gm),

D13 = D31 = �12�23 − �13(�22 − Gm),

D23 = D32 = �12�31 − �23(�11 − Gm),

D = D11 + D22 + D33.

(3.6.13)

In a more compact form,

Di j = 1
2εiklε jrs(�kr − Gmδkr )(�ls − Gmδls), D = Dii (3.6.14)

(no summation over m). Here εi jk is the Levi-Civitta symbol where

ε123 = ε312 = ε231 = 1, ε321 = ε213 = ε132 = −1,

εi jk = 0 otherwise.

Thus, ray tracing system (3.6.10) may also alternatively be expressed as

dxi
dT

= ai jkl pl D jk/D,
dpi
dT

= − 1
2

∂a jkln
∂xi

pk pnDjl/D. (3.6.15)

Here Djk and D are given by (3.6.13), in which we can put Gm = 1 because the eikonal
equation Gm = 1 is satisfied along the ray.

Ray tracing systems (3.6.8), (3.6.10), and (3.6.15) may fail if the eigenvalue, Gm ,
corresponding to the wave whose ray is being calculated, is equal or close to one of the
remaining eigenvalues. Condition (3.6.1) is not satisfied, and the relevant eigenvectors
in (3.6.8) and (3.6.10) cannot be determined uniquely. This constraint only applies to
quasi-shear qS1 and qS2 waves. Let us denote the eigenvalues of the two quasi-shear
waves G1(xi , pi ) and G2(xi , pi ). Ray tracing systems (3.6.8) and (3.6.10) cannot be used
if G1 = G2 because the relevant eigenvectors 	g (1) and 	g (2) cannot be determined uniquely.
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In the same way, ray tracing system (3.6.15) fails, as in this case Djk/D is an indefinite
expression of the type 0/0.

For the qP waves, the ray tracing systems derived here apply universally and can be
used in both anisotropic and isotropic media. For the qS waves, however, the situation
is more complicated. We shall describe here briefly the possible ways to overcome these
complications.

a. Ray tracing system (3.6.10) can be used even in isotropic media, if 	g(m) is chosen
in the plane perpendicular to known 	g(3). The direction of 	g(m) in this plane may be
chosen arbitrarily.

b. In anisotropic media, ray tracing system (3.6.10) can be used even when the
ray under consideration passes through a singular direction. The ray tracing sys-
tem (3.6.10), however, must be supplemented by an algorithm that controls the
choice of the correct eigenvector after passing the singularity. See more details in
Vavryčuk (2000).

In certain applications, it may be useful to compute a ray of the hypothetical qS wave,
corresponding to an average eigenvalue Gav of both qS waves, Gav = 1

2 (G1 + G2). Using
(3.6.6), we obtain

Gav = 1
2 (G1 + G2) = 1

2� jl

(
g(1)j g

(1)
l + g(2)j g

(2)
l

) = 1
2� jl

(
δ jl − g(3)j g

(3)
l

)
.

Thus, the average eigenvalue Gav does not depend on 	g(1) and 	g(2), but only on the known
	g(3). The ray of the hypothetical qS wave, corresponding to the average eigenvalue Gav,
can be again computed using the ray tracing system (3.6.10), where g(m)

j g(m)
l are replaced

by 1
2 (δ jl − g(3)j g

(3)
l ). The ray tracing system is thenvalid quite universally, both in anisotropic

and isotropic media, including the shear wave singularities and their vicinity in anisotropic
media.

As a result of ray tracing for a selected wave, we obtain the Cartesian coordinates xi
along the ray which define the ray trajectory. At each point on the ray, we determine the
following other important quantities.� The components pi of slowness vector 	p, perpendicular to the wavefront. Compo-

nents pi are obtained automatically at each point on the ray.� The components of phase velocity vector Ci ,
Ci = pi/(pk pk). (3.6.16)� The phase velocity, C = (CkCk)1/2 = (pk pk)−1/2.� The components of the unit normal perpendicular to the wavefront, Ni = C pi . Recall

relation C = Gm(xi , Ni )1/2.� The components of polarization vector g(m)
i corresponding to the wave under con-

sideration. These components are needed in ray tracing system (3.6.10) and must be
computed at each step; see (3.6.11). If we use ray tracing system (3.6.15), we do not
need them, but we can easily calculate them from (3.6.11). They define the direction
of the displacement vector of the wave under consideration.� The components of group velocity vector Ui

Ui = dxi/dT = ai jkl pl g
(m)
j g(m)

k = ai jkl pl D jk/D. (3.6.17)� The group velocity, U = (UkUk)1/2.� The components of the unit vector tangent to the ray, ti ,

ti = dxi/ds = Ui/(UkUk)1/2.
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� Angle γ between the ray and the normal to the wavefront,

cos γ = 	t · 	N = (C/U)( 	p · 	U) = C/U ; (3.6.18)

see (2.4.51).� Angle ξ between the ray and polarization vector 	g (m),

cos ξ = 	t · 	g (m)
.� Angle η between the polarization vector and the normal to the wavefront,

cos η = 	N · 	g (m)
.� The derivative of slowness vector 	p with respect to the travel time along the ray

trajectory, d 	p/dT .

3.6.3 Initial Conditions for a Single Ray in Anisotropic

Inhomogeneous Media

For simplicity, we shall only consider one of the derived ray tracing systems, namely system
(3.6.10).

Ray tracing system (3.6.10) is identical for all three types of waves that can propa-
gate in an anisotropic smoothly inhomogeneous medium (i.e., for one quasi-P and two
quasi-S waves). The type of wave whose ray is to be computed must be specified by
initial conditions. Thus, the initial conditions for the ray tracing system play a more im-
portant role in anisotropic media than in isotropic media. They specify not only the initial
point and the initial direction of the ray but also the type of wave that is to be com-
puted.

The initial conditions for a single ray of one particular selected wave passing through
point S can be most easily expressed by defining the initial direction of slowness vector 	p
at S, and not the initial direction of the ray. (We know that, in an anisotropic medium, the
slowness vector is perpendicular to the wavefront and is not tangent to the ray.)

The initial conditions for ray tracing system (3.6.10) may then be expressed as

At S: xi = xi0, pi = pi0, (3.6.19)

where pi0 satisfy the eikonal equation at S,

Gm(xi0, pi0) = 1, (3.6.20)

corresponding to the particular wave we wish to compute (m = 1, 2, 3). When eikonal
equation (3.6.20) is satisfied at S, ray tracing system (3.6.10) keeps the eikonal equation
satisfied along the whole ray. This means that the type of wave does not change along the
ray in a smooth anisotropic medium; however, it may change at interfaces. In a smooth
anisotropic medium, the only exception is related to the rays of qS1 and qS2 waves passing
through shear-wave singularities. See Section 5.4.6.

As in isotropic media, the components of slowness vector 	p0 (at S), which satisfy
(3.6.20), can be expressed in terms of two take-off angles i0 and φ0 (see Figure 3.3):

p10 = N10/C0, p20 = N20/C0, p30 = N30/C0, (3.6.21)

where

N10 = sin i0 cosφ0, N20 = sin i0 sinφ0, N30 = cos i0, (3.6.22)
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and C0 denotes phase velocity C at point S for direction 	N 0 and for the type of wave whose
ray we wish to compute,

C0 = Gm(xi0, Ni0)
1/2. (3.6.23)

We can easily prove that pi0, given by (3.6.21) through (3.6.23), satisfy (3.6.20).
It should be reemphasized that angles i0 and φ0 do not determine the initial direction

of the ray (that is, the direction of the group velocity vector); instead, they determine the
direction of slowness vector 	p at S. If the slowness vector is known, the direction of the
group velocity vector can be uniquely obtained from (3.6.17). In most applications, we do
not need to know the initial direction of the ray in advance, before we start the ray tracing. A
procedure that would use the take-off angles of the ray as initial parameters would be more
cumbersome and, in fact, not necessary in most applications. It would require p10, p20,
and p30 to be determined from the following set of three equations:

ti0 = Ui0
(Uk0Uk0)1/2 ,

where Ui0 = ai jkl(S)pl0(Djk/D)0, i = 1, 2, 3, (3.6.24)

and where components ti0 of the unit vector tangent to the ray at S are assumed known;
they may be expressed in terms of take-off angles i0 and φ0 by similar relations as Ni0 in
(3.6.22). The system of equations (3.6.24) can be efficiently solved only for exceptionally
simple types of anisotropy. Note that Djk and D (with Gm = 1) are polynomials of the
fourth order in three variables pi0, i = 1, 2, 3.

3.6.4 Rays in Layered and Block Anisotropic Structures

As in isotropic media, the process of reflection/transmission of high-frequency seismic
waves at a curved interface between two inhomogeneous anisotropic media may be treated
locally. It is reduced to the problem of reflection/transmission of plane waves at a plane
interface between two homogeneous media.

To compute rays in a layered or block inhomogeneous anisotropic structure, we need
to determine the initial slowness vectors of the relevant R/T waves generated at points at
which the ray is incident at an interface. In isotropicmedia, the initial slowness vector of the
R/Twave under consideration is given in explicit form by Snell’s law. In anisotropic media,
it must be computed numerically. The appropriate equations are given in Section 2.3.3.

3.6.5 Ray Tracing for Simpler Types of Anisotropic Media

In certain situations, the ray tracing systems simplify considerably, particularly if we con-
sider a simpler anisotropy and/or if the ray is confined to certain planes of symmetry of the
anisotropic medium. For example, considerably simpler ray tracing systems are obtained
for transversely isotropic media.

We shall describe an example of such a simplification in general terms here. Consider
a situation in which

�12 = �23 = 0 (3.6.25)

is satisfied along the whole ray. This case is very important in practical applications. The
equations for the eigenvalues and eigenvectors are then simplified. Eigenvalues Gm satisfy
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the equation

det



�11 − Gm 0 �13

0 �22 − Gm 0

�13 0 �33 − Gm




= (�22 −Gm)
{
G2
m − (�11 +�33)Gm +�11�33 −�2

13

}= 0. (3.6.26)

As we can see, the eigenvalues are given by the relations

G2 =�22, G2
m − (�11 +�33)Gm +�11�33 − �2

13 = 0, m= 1, 3.

(3.6.27)

Thus, eigenvalue G2 equals �22 and the two remaining eigenvalues, G1 and G3, can be
obtained as the solution of a quadratic equation (not cubic). This simplifies the problem
considerably.

For m = 2, Equations (3.6.4) and G2 = �22 yield a very simple ray tracing system:

dxi
dT

= 1

2

∂�22

∂ pi
,

dpi
dT

= −1

2

∂�22

∂xi
. (3.6.28)

Ray tracing system (3.6.28) is quite universal and remains valid even for a degenerate case
of S waves in isotropic media.

Form = 1 andm = 3,we can again use (3.6.4). The partial derivatives ofG1 andG3 can
be simply obtained fromquadratic equation (3.6.27) using the theoremon implicit functions

∂Gm

∂pi
=
[
Gm

∂

∂pi
(�11 +�33)− ∂

∂pi

(
�11�33 −�2

13

)]
/
[2Gm − (�11 +�33)]; (3.6.29)

∂Gm/∂xi can be found similarly. Along the ray, we can put Gm = 1 in (3.6.29). The ray
tracing system then reads:

dxi
dT

= 1
2

[
∂

∂pi

(
�11 + �33 − �11�33 + �2

13

)]
/
[2 − (�11 + �33)],

dpi
dT

= − 1
2

[
∂

∂xi

(
�11 + �33 − �11�33 + �2

13

)]
/
[2 − (�11 + �33)].

(3.6.30)

In ray tracing systems (3.6.28) and (3.6.30), the derivatives of �i j can be calculated using
(3.6.9). Ray tracing system (3.6.30) is again quite universal and remains valid even for a
degenerate case of S waves in isotropic media.

Although ray tracing systems (3.6.28) and (3.6.30) are quite universal for �12 =
�23 = 0, eigenvectors 	g (1) and 	g (2) cannot be determined uniquely for G2 = G1. Eigen-
vectors 	g (m),m = 1, 2, 3, can be determined for �12 = �23 = 0 from the following system
of equations:

(�11 − Gm)g
(m)
1 + �13g

(m)
3 = 0,

(�33 − Gm)g
(m)
3 + �13g

(m)
1 = 0, (3.6.31)

(�22 − Gm)g
(m)
2 = 0,

with the additional condition,

g(m)
i g(m)

i = 1 (3.6.32)
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(no summation over m). System (3.6.31) with (3.6.32) does not give a unique solution
for eigenvectors 	g (1) and 	g (2) if G1 = G2 = �22. Even in this case, however, ray tracing
systems (3.6.28) and (3.6.30) work quite safely.

Equations (3.6.28) and (3.6.30) represent the final ray tracing systems for the three
waves if �12 = �23 = 0 along the whole ray. We shall now discuss situations that lead to
the relations �12 = �23 = 0. Assume a 2-D medium in which the elastic parameters do not
depend on x2 and also assume that p20 = 0. Then, in view of (3.6.10), p2 = 0 along the
whole ray. Because �12 = a1i2 j pi p j and �23 = a2i3 j pi p j , we obtain �12 = �23 = 0, if

a1112 = a1123 = a1213 = a1233 = a1323 = a2333 = 0. (3.6.33)

Many important anisotropic media satisfy relations (3.6.33). They include transversely
isotropic media and hexagonal media. The rays computed by ray tracing system (3.6.28)
are still three-dimensional because dx2/dT �= 0. The system simplifies even more if we
make assumptions in addition to (3.6.33), namely,

a1222 = a2223 = 0;

quantity dx2/dT in ray tracing system (3.6.28) vanishes so that the relevant rays are fully
confined to plane x2 = x20.

Very much the same approach can be used if �12 = �13 = 0 or if �23 = �13 = 0.
We shall not give the explicit ray tracing systems for the individual types of anisotropic

media here because they can be simply obtained from (3.6.28) and (3.6.30).Moreover,many
of them are known from the literature, where numerical examples are also presented. For
2-D transversely isotropic media with a vertical axis of symmetry, see Červený, Molotkov,
and Pšenčı́k (1977); for 2-D transversely isotropic media with an arbitrary orientation of
the axis of symmetry in plane x1-x3, see Jech (1983); and for certain hexagonal systems,
see Červený and Pšenčı́k (1972). See also discussions in Hanyga (1988) and Pratt and
Chapman (1992) among others.

If equations�12 = 0 and�23 = 0 are satisfied and the elastic parameters depend on one
coordinate only (for example, on depth), ray tracing systems (3.6.28) and (3.6.30) can be
solved in terms of closed-form integrals. These integrals for inhomogeneous transversely
isotropic media were first presented by Vlaar (1968) and in a slightly simpler form by
Červený, Molotkov, and Pšenčı́k (1977).

In the computation of rays and travel times in inhomogeneous anisotropic media, per-
turbation methods have often been used; see Section 3.9. In the perturbation method,
ray-theory computations are first performed in some simpler reference model that is close
to the actual model. These computations are then used to obtain analogous solutions in the
perturbed model.

The isotropicmodel has often been used as a referencemodel; see Section 3.9. In certain
cases, it may be better to consider a reference medium with ellipsoidal anisotropy (with an
ellipsoidal slowness surface). For example, the slowness surface of qP waves, propagating
in an ellipsoidally anisotropic medium, is given by relation Gm(xi , pi ) = 1, where

Gm(xi , pi ) = a1111 p
2
1 + a2222 p

2
2 + a3333 p

2
3.

The ray tracing system for ellipsoidally anisotropic media may be obtained simply from
(3.6.4). It is extremely simple and similar to isotropic media. For more details see Mensch
and Farra (1999), where the ellipsoidal anisotropy reference model was used to compute
rays, travel times, and slowness vectors of qP waves in orthorhombic media.
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3.6.6 Ray Tracing in Factorized Anisotropic Media

We shall now introduce an important concept of a special type of anisotropic inhomo-
geneous medium, and call it the factorized anisotropic inhomogeneous (FAI) medium.
In the FAI medium, the density-normalized elastic parameters ai jkl depend on Cartesian
coordinates xi in the following way:

ai jkl(xi ) = f 2(xi )Ai jkl, (3.6.34)

where Ai jkl are constants, independent of Cartesian coordinates, satisfying symmetry re-
lations Ai jkl = A jikl = Ai jlk = Akli j ; see Červený (1989c). Function f (xi ) is an arbitrary
positive continuous function of Cartesian coordinates. Thus, all the density-normalized
elastic parameters ai jkl(xi ) in the FAI medium depend on Cartesian coordinates xi in the
same way; the relative spatial variations of all ai jkl are equal. A special case of a factor-
ized anisotropic medium (3.6.34) was first studied by Shearer and Chapman (1989). As
we can see, relation (3.6.34) in a way separates anisotropy from inhomogeneity; ai jkl are
factorized. This factorization of the density-normalized elastic parameters automatically
factorizes many other important expressions and relations (for example, matrix �i j and its
eigenvalues, the eikonal equation, and phase and group velocities). Phase velocity C and
group velocity U in the FAI medium are given by relations

C(xi , Ni ) = f (xi )C0(Ni ), U(xi , Ni ) = f (xi )U0(Ni ), (3.6.35)

where C0(Ni ) and U0(Ni ) are the position-independent phase and group velocities in a
homogeneous anisotropic medium with elastic parameters Ai jkl .

In the following, we shall consider f (xi ) to be a dimensionless function of Cartesian
coordinates xi . Then, both ai jkl and Ai jkl have dimensions of squared velocity (m2s−2).
Similarly, C, C0, U , and U0 have the dimension of velocity. In a homogeneous anisotropic
medium,we can put f (xi ) = 1, so that ai jkl = Ai jkl . For inhomogeneous anisotropicmedia,
it may be convenient to fix Ai jkl at some selected point xi A as Ai jkl = ai jkl(xi A). Then also
f (xi A) = 1. The variations of f (xi ) with coordinates then express the variations of phase
and group velocities within the model; see (3.6.35).

It would also be possible to interpret (3.6.34) in a different way: to take parameters
Ai jkl as dimensionless. Then, f (xi ) would have the dimension of velocity (km s−1). See
Červený (1989c) and Červený and Simões-Filho (1991) for examples of this interpretation.
Here, however, we shall consider only dimensionless f (xi ).

Using (3.6.34), matrix �ik(xi , pi ) and its eigenvalues can be expressed as

�ik(xi , pi ) = f 2(xi )�
0
ik, where �0

ik = Ai jkl p j pl ,

Gm(xi , pi ) = f 2(xi )G
0
m(pi ).

(3.6.36)

Here G0
m(pi ) are position-independent eigenvalues of �

0
ik(pi ).

In the FAI medium, eikonal equation (3.6.2) takes the form

f 2(xi )G
0
m(pi ) = 1. (3.6.37)

This may appear in a rather general Hamiltonian form,

H(xi , pi ) = n−1
{[
G0
m(pi )

]n/2 − 1/ f n(xi )
}

= 0, (3.6.38)
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where n is an arbitrary real-valued number. Equation (3.6.38) can also be expressed for
n = 0,

H(xi , pi ) = 1
2 lnG

0
m(pi ) + ln f (xi ) = 0. (3.6.39)

The ray tracing system can be obtained from eikonal equations (3.6.38) or (3.6.39),
using Hamiltonian canonical equations (3.1.3). For n �= 0,

dxi
du

= 1

n

∂

∂ pi

(
G0
m

)n/2
,

dpi
du

= 1

n

∂ f −n

∂xi
,

dT

du
= (

G0
m

)n/2 = f −n.

(3.6.40)

Alternatively,

dxi
du

= 1

2

(
G0
m

)n/2−1 ∂G0
m

∂ pi
,

dpi
du

= 1

n

∂ f −n

∂xi
,

dT

du
= (

G0
m

)n/2 = f −n .

(3.6.41)

Similarly, for n = 0,

dxi
dT

= 1

2

∂ lnG0
m

∂ pi
,

dpi
dT

= −∂ ln f
∂xi

. (3.6.42)

Ray tracing systems (3.6.40) through (3.6.42), expressed in Hamiltonian canonical form,
are suitable for finding various analytical or semianalytical solutions and for deriving the
dynamic ray tracing system and ray perturbation equations. However, if we are interested in
ray tracing and travel-time computations only, we can simplify ray tracing systems (3.6.40)
through (3.6.41) slightly, using eikonal equation G0

m = f −2:

dxi
du

= 1

2
f 2−n

∂G0
m

∂ pi
,

dpi
du

= 1

n

∂ f −n

∂xi
,

dT

du
= f −n . (3.6.43)

As in isotropic media, the simplest ray tracing system is obtained for n = 2. Denoting
parameter u by σ in this case, we obtain

dxi
dσ

= 1

2

∂G0
m

∂ pi
,

dpi
dσ

= 1

2

∂ f −2

∂xi
,

dT

dσ
= f −2. (3.6.44)

It is immediately evident that ray tracing systems (3.6.40) through (3.6.44) for the FAI
medium are considerably simpler than for a general inhomogeneous anisotropic medium.
The RHS of the equations for xi do not depend explicitly on xi (with the exception of
(3.6.43)), and the RHS of the equations for pi do not depend explicitly on pi . Instead of
63 first partial spatial derivatives of elastic parameters ai jkl , we only need to determine the
three first partial derivatives of f −n(xi ) at each step of the ray tracing in the FAI medium.

In ray tracing systems (3.6.40) through (3.6.44), we must know ∂G0
m/∂ pi . As in (3.6.7)

and (3.6.9), we easily obtain

∂G0
m

/
∂ pi = 2Ai jkl pl g

(m)
j g(m)

k = 2Ai jkl pl D
0
jk

/
D0. (3.6.45)

Functions D0
jk and D

0 are again given by the same equations as Djk and D; see (3.6.13)
or (3.6.14). Only �ik is replaced with �0

ik , and Gm is replaced with G0
m .

Using ray tracing systems (3.6.40) and (3.6.41), we can obtain some analytical or
semianalytical solutions of the ray tracing systems for FAI models with a constant gradient
of f −n or ln f .
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Assume that the spatial distribution of f −n (for n �= 0) is given as

f −n(xi ) = A0 + A1x1 + A2x2 + A3x3, (3.6.46)

where A0, A1, A2, and A3 are constants. Ray tracing system (3.6.40) then yields analytical
solutions for pi ,

pi (u) = pi (u0) + n−1Ai (u − u0), (3.6.47)

where u is a parameter along the ray, related to the travel time as dT = f −ndu. The
remaining equations of the ray tracing system read

dxi
du

= 1

n

∂

∂ pi

(
G0
m

)n/2
,

dT

du
= (

G0
m

)n/2
. (3.6.48)

As we can see, the RHSs of (3.6.48) do not explicitly depend on xi ; they depend only on pi
(i = 1, 2, 3). From (3.6.47), we know that pi depend explicitly only on u. Thus, Equations
(3.6.48) may be solved by quadratures,

xi (u) = xi (u0) + 1

n

∫ u

u0

∂

∂ pi

(
G0
m

)n/2
du,

T (u) = T (u0) +
∫ u

u0

(
G0
m

)n/2
du.

(3.6.49)

We now assume that function f (xi ) is given by the relations

ln f = A0 + A1x1 + A2x2 + A3x3. (3.6.50)

This yields the solution for n = 0, with parameter u = T along the ray,

pi (T ) = pi (T0) − Ai (T − T0), xi (T ) = xi (T0) + 1

2

∫ T

T0

∂ lnG0
m

∂ pi
dT .

(3.6.51)

The simplest solutions are obtained for (3.6.46) with n = 2. Then, using (3.6.47),
(3.6.49), and (3.6.45), we arrive at

pi (σ ) = pi (σ0) + 1
2 Ai (σ − σ0),

xi (σ ) = xi (σ0) + Ai jkl

∫ σ

σ0

plg
(m)
k g(m)

j dσ, (3.6.52)

T (σ ) = T (σ0) + Ai jkl

∫ σ

σ0

pi pl g
(m)
k g(m)

j dσ.

Parameter σ along the ray is also related to travel time T as follows: dT = f −2dσ .

3.6.7 Energy Considerations

It was shown in Section 3.1.5 that the time-averaged energy of high-frequency elastic waves
in slightly inhomogeneous isotropic media flows along rays. It is not difficult to generalize
this fact even for anisotropic inhomogeneous media.

Aswe can see from (3.6.10), the ray velocity vector components vri = dxi/dT are given
by relations vri = ai jkl pl g

(m)
j g(m)

k , where m specifies the type of wave under consideration
(qP, qS1, or qS2). The same expression Ui = ai jkl pl g

(m)
j g(m)

k was also derived in Section
2.4.4 for the components of group velocity vector 	U ; see (2.4.59). Consequently, 	U = 	vr
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and the time-averaged energy of high-frequency elastic waves flows along rays, even in
inhomogeneous anisotropic media.

3.7 Ray Tracing and Travel-Time Computations in 1-D Models

In this section, we shall consider one-dimensional media in which the velocity depends on
one coordinate only. Thus, the two remaining coordinates are cyclic, and the ray tracing
system for isotropic media, expressed in Cartesian coordinates, can be solved in terms of
closed-form integrals. In certain cases (but not generally), similar closed-form integral so-
lutions can also be found for one-dimensional media in orthogonal curvilinear coordinates.

We shall mainly discuss two seismologically important one-dimensional media. The
first corresponds to the vertically inhomogeneous medium, specified in Cartesian coordi-
nates. The velocity of propagationV depends only on depth in the vertically inhomogeneous
medium. The second corresponds to the radially symmetric medium, specified in spherical
polar coordinates. In the radially symmetric medium, velocity V depends on radial distance
r only.

The computation of rays and travel times in these two types of 1-D models has been
broadly discussed in the seismological literature. Practically any textbook on seismology
and on seismic prospecting discusses these problems, at least for one of the 1-D models.
Let us refer to Savarenskiy and Kirnos (1955), Puzyrev (1959), Bullen (1965), Jeffreys
(1970), Aki and Richards (1980), and Bullen and Bolt (1985). The interested reader is
also referred to general books on wave propagation problems; see, for example, Kline and
Kay (1965), Felsen and Marcuvitz (1973), Pilant (1979), Kravtsov and Orlov (1980), and
Hanyga, Lenartowicz, and Pajchel (1984). In view of these references, we shall be as brief
as possible.

In general orthogonal curvilinear coordinates, the ray tracing system for 1-D media
cannot be solved in terms of closed-form integrals. The reason is that the scale factors hi
also depend on coordinates; see Section 3.5. These solutions are available only in some
special cases.

In 1-D anisotropic media, all density-normalized elastic parameters depend on one
coordinate only. If we use Cartesian coordinates, the ray tracing system can always be
solved in terms of closed-form integrals, as in isotropic media. The integrals, however,
can be rather complicated, particularly if we consider complex anisotropy symmetries. The
numerical evaluation of these integrals may be as time consuming as the direct numerical
solution of the relevant differential equations for rays. For travel-time computations in
anisotropic media, see Gassman (1964).

For 1-D isotropic media, the closed-form integral equations for rays and travel times
can simply be obtained directly, without invoking a general 3-D ray tracing system. The
most common approaches are based either on Fermat’s principle or on Snell’s law. The
relevant simple derivations can be found in seismological textbooks. Here, however, we
shall consider the 1-D medium as a special case of general 3-D inhomogeneous media and
derive all equations from the general 3-D ray tracing system.

3.7.1 Vertically Inhomogeneous Media

We shall consider Cartesian coordinates x1, x2, and x3 and denote them x, y, and z. Sim-
ilarly, the Cartesian components of the slowness vector, p1, p2, and p3, will be denoted
px , py , and pz . We assume that velocity V depends on z only, V = V (z). We also assume
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that the z-axis is vertical and points downward. The origin of the Cartesian coordinate
system is located at zero depth, so that z may be referred to as depth. Axes x and y are
situated in the plane perpendicular to axis z at zero depth.

Let the initial point of the ray S be situated at point x0, y0, z0, and the initial slowness
vector be px0, py0, pz0, satisfying relation p2x0 + p2y0 + p2z0 = 1/V 2(S). Without loss of
generality, we shall assume that

y0 = 0, py0 = 0. (3.7.1)

The ray as a whole is then situated in plane x-z, and y = 0, py = 0 along the whole ray.
Ray tracing system (3.3.13) yields the ray tracing system in the 1-Dmedium (V = V (z))

in the following form:

dx

du
= An/2−1 px ,

dpx
du

= 0,

dz

du
= An/2−1 pz,

dpz
du

= 1

n

∂

∂z

(
1

V n

)
, (3.7.2)

dT

du
= An/2 = V−n,

where A = (p2x + p2z ) = V−2. System (3.7.2) yields px = px0 = const. along the whole
ray. We shall call the constant horizontal component of slowness vector px the parameter
of the ray and denote it p. This is a standard notation in seismology. If the acute angle
between the ray and the vertical line is i ,

px (u) = | 	p| sin i = sin i/V . (3.7.3)

We have thus arrived at the generalized Snell’s law for a vertically inhomogeneousmedium,

p = sin i(z)/V (z). (3.7.4)

The final system of differential equations then reads

dx

du
= An/2−1 p,

dpz
du

= 1

n

∂

∂z

(
1

V n

)
,

dz

du
= An/2−1 pz,

dT

du
= An/2 = V−n,

(3.7.5)

where A = p2 + p2z = V−2.
Equations (3.7.5) can always be solved in terms of closed-form integrals. To find them,

we must express pz not from (3.7.5) but from the eikonal equation p2 + p2z = V−2,

pz = ±(V−2 − p2)1/2. (3.7.6)

The disadvantage of (3.7.6) is that it contains two signs. The plus sign (+) applies to the
downgoing part of the ray (pz positive), and the minus sign (−) refers to the upgoing
part of the ray. As we can see from (3.7.6), pz depends on z only. Using (3.7.6), we can
eliminate parameter u from the ray tracing system and use depth z instead. For simplicity,
we shall consider a wave that propagates in the direction of increasing x . (The modifica-
tion of the resulting equations for waves propagating in the direction of decreasing x is
straightforward.) We then get

dx

dz
= p

pz
= ± p

(V−2 − p2)1/2
,

dT

dz
= A

pz
= ± V−2

(V−2 − p2)1/2
. (3.7.7)
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The solution of (3.7.7) is

x(p, z) = x(p, z0) ±
∫ z

z0

pdz

(V−2 − p2)1/2
,

T (p, z) = T (p, z0) ±
∫ z

z0

V−2dz

(V−2 − p2)1/2
.

(3.7.8)

As we can see, the simplest solution of (3.7.8) will again be obtained for the square-of-
slowness (V−2) models. Of course, (3.7.8) may take many alternative forms. The most
common is

x(p, z) = x(p, z0) ±
∫ z

z0

pV dz

(1 − p2V 2)1/2
,

T (p, z) = T (p, z0) ±
∫ z

z0

dz

V (1 − p2V 2)1/2
.

(3.7.9)

We shall now consider a vertically inhomogeneous layered structure, containing hor-
izontal parallel interfaces of the first or higher order. It is easy to generalize Equations
(3.7.9) for this case. Assume that the ray under consideration has N points of reflec-
tion/transmission at these interfaces, at depths z1, z2, . . . , zN . The wave may propagate
downward or upward along different segments of the ray, but it always propagates in the
direction of increasing x . The equations, alternative to (3.7.9), then read

x(p, z) = x(p, z0) +
N∑
k=1

x(p, zk−1, zk) + x(p, zN , z),

T (p, z) = T (p, z0) +
N∑
k=1

T (p, zk−1, zk) + T (p, zN , z),

(3.7.10)

where

x(p, zi , zi+1) = ±
∫ zi+1

zi

pV dz

(1 − p2V 2)1/2
,

T (p, zi , zi+1) = ±
∫ zi+1

zi

dz

V (1 − p2V 2)1/2
.

(3.7.11)

Here the plus sign is used for zi+1 > zi , the minus sign is used for zi+1 < zi . Thus,
x(p, zi−1, zi ) and T (p, zi−1, zi ) are always positive. (It would be possible to use abso-
lute values in (3.7.11) instead of ±.) Obviously,

x(p, zi , zi+1)= x(p, zi+1, zi ),

T (p, zi , zi+1)= T (p, zi+1, zi ).
(3.7.12)

Equations (3.7.10) are very general and can be used for arbitrary multiply reflected waves,
including converted waves. In the individual layers, V may be either α or β.

If the ray passes through a turning point at depth zM , Equations (3.7.10) must be
modified. The element of the ray with the turning point at zM must be formally divided into
two elements: one going downward and the other going upward. We can, however, again
use (3.7.10), if we formally take zM as one of the interfaces. The depth of turning point zM
can be determined from (3.7.4) with i(zM ) = π/2,

1/V (zM ) = p. (3.7.13)
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For example, let us consider a refracted wave, with the initial and end points of the ray at
depth z = 0 and with x0 = T0 = 0. Then,

x(p) = x(p, 0, zM ) + x(p, zM , 0) = 2
∫ zM

0

pV dz

(1 − p2V 2)1/2
,

T (p) = T (p, 0, zM ) + T (p, zM , 0) = 2
∫ zM

0

dz

V (1 − p2V 2)1/2
.

(3.7.14)

These two equations represent the parametric form of the travel-time curve of the refracted
wave, with parameter p. As in (3.7.10), expressions (3.7.14) can be simply generalized for
any ray multiply reflected/transmitted or refracted in a vertically inhomogeneous layered
structure.

As we can see, the integrands of (3.7.11) grow above all limits for zi = zM or zi+1 =
zM . This may cause some complications, particularly if we wish to determine derivative
dx(p)/dp or dT (p)/dp. These derivatives are needed in evaluating geometrical spreading
and, consequently, in computing amplitudes. It is, however, not difficult to change the form
of the integrals using the integration-by-partsmethod so that the singularity of the integrand
at z = zM is removed.

Function T (p) − px(p) plays an important role in seismology. It is commonly referred
to as the delay time and denoted by τ (p). The integral expression for τ (p, zi , zi+1) reads

τ (p, zi , zi+1) = T (p, zi , zi+1) − px(p, zi , zi+1)

= ±
∫ zi+1

zi

(V−2 − p2)1/2dz. (3.7.15)

Delay time τ (p) is used in the WKBJ (G. Wentzel, H. A. Kramers, L. Brillouin, and H.
Jeffreys) method and in many other applications. It has no singular behavior at turning
point z = zM . Note that the delay time is related to x in the following way:

dτ (p, zi , zi+1)/dp = −x(p, zi , zi+1). (3.7.16)

The closed-form integral solutions given in this section can be computed either numer-
ically or, in simple cases, analytically. Suitable numerical procedures, based on a spline
approximation of the velocity-depth distribution, were proposed by Chapman (1971). The
spline approximation removes all fictitious interfaces of first, second, and third orders and
the relevant anomalies in the amplitude-distance curves. In the same way as in the cell ap-
proach, an alternative option is to divide the whole structure (or the whole layer) into formal
fictitious sublayers and to specify a simple velocity-depth distribution within each sublayer.
An example is the piecewise linear velocity approximation. The velocity-depth distribu-
tion in each sublayer is chosen to provide simple analytical expressions for x(p, zi , zi+1),
T (p, zi , zi+1), and τ (p, zi , zi+1). For a more detailed discussion refer to the next section.

3.7.2 Analytical Solutions for Vertically Inhomogeneous Media

For simple velocity-depth distributionsV = V (z), the rays and travel times canbe expressed
analytically. There are two types of analytical solutions for vertically inhomogeneous me-
dia. The first involves a monotonic parameter along the ray (arclength s, travel time T ,
parameter σ , and so on). The turning points do not cause any problem in these equations;
the monotonic parameter passes quite smoothly through them. The analytical solutions of
the second type do not involve a monotonic parameter along the ray, but are expressed
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in terms of depth. As shown in Section 3.7.1, very simple closed-form integrals can be
used in this case for any velocity distribution. The analytical solutions of these integrals
exist in certain simple cases. Wemust be careful to take the proper signs for the descending
and ascending parts of the ray. Some complications in these solutions may be caused by
turning points.

We again use Cartesian coordinates x, y, and z, with the initial point of the ray situated
at point S(x0, y0, z0), and with the initial slowness vector, px0, py0, and pz0, satisfying the
relation p2x0 + p2y0 + p2z0 = 1/V 2(S). We assume that (3.7.1) holds so that

y = 0, py = 0 (3.7.17)

is satisfied along the whole ray, and the whole ray is situated in the plane y = 0. Slowness
vector component px is constant along the whole ray, px = p, so that the eikonal equation
reads p2 + p2z = 1/V 2.

We shall consider the models in which the vertical gradient of V−n(z) or ln V (z) is
constant:

V−n(z) = a + bz, ln V (z) = a + bz. (3.7.18)

Here n may be any integer, n �= 0. Velocity-depth distributions (3.7.18) are special cases of
the 3-D velocity distributions discussed in Sections 3.4.2 through 3.4.4; therefore, we can
use the solutions derived there. We only need to put A1 = A2 = 0, A0 = a, and A3 = b;
see (3.4.4) and (3.4.8). All these solutions are expressed in terms of a monotonic parameter
along the ray (s, T, σ, and so on).

The expressions in terms of depth z can be obtained directly from (3.7.8) or (3.7.9).
Alternatively, they can also be obtained from the monotonic parameter expressions, if we
use the eikonal equation to determine monotonic parameter u and to eliminate it from other
expressions. We can use (3.4.5), (3.4.9), and (3.7.6) to obtain

u − u0 = ±nb−1
[
(V−2 − p2)1/2 − (

V−2
0 − p2

)1/2]
for n �= 0,

T − T0 = ±b−1
[
(V−2 − p2)1/2 − (

V−2
0 − p2

)1/2]
for n = 0.

Here the sign must be such that u − u0 (or T − T0) is positive in the direction of wave
propagation.

The disadvantage of the models with a constant vertical gradient of V−n(z) or ln V (z)
is that they cannot properly simulate smooth maxima or minima of velocity, low-velocity
channels, and the like, without introducing interfaces of first or higher orders. For this rea-
son,we shall also briefly discuss the parabolic velocity-depth distribution,which overcomes
these difficulties.

We shall present the analytical solutions explicitly for five special velocity-depth dis-
tributions:

1. A homogeneous medium V = const.
2. A constant gradient of the square of slowness V−2(z)
3. A constant gradient of the logarithmic velocity, ln V (z)
4. A constant gradient of velocity V (z)
5. A quadratic depth distribution of V−2(z), V−2(z) = a + bz + cz2.

The simplest expressions are again obtained for homogeneous media and for the constant
gradient of the square of slowness, V−2(z). In all cases, with the exception of the first
and the last case, we shall give three sets of expressions: (a) in terms of a monotonic
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parameter along the ray; (b) in terms of depth z, for the ray segment without a turning
point; and (c) in terms of depth, for the ray segment with a turning point. In the last case,
zi+1 = zi .

To simplify the equations expressed in terms of depth z, we shall use the following
notations:

Vi = V (zi ), Vi+1 = V (zi+1),

wi = [
V−2
i − p2

]1/2
, wi+1 = [

V−2
i+1 − p2

]1/2
,

ci = Viwi = [
1 − p2V 2

i

]1/2
, ci+1 = Vi+1wi+1 = [

1 − p2V 2
i+1

]1/2
.

The sign convention remains the same as in Section 3.7.1: the upper sign corresponds to
the downgoing part of the ray, and the lower sign refers to the upgoing part of the ray. Note
that ck can also be expressed as cos i(zk), where i(zk) is the acute angle between the ray
and the vertical at depth zk .

1. HOMOGENEOUS LAYER, V (z) = Vi = CONST.
We know that the ray in a homogeneous medium is a straight line and that the travel

time is a linear function of arclength s along the ray, or alternatively, of depth z. We shall
only give the relevant expressions in terms of depth z. In this case, equations (3.7.11) and
(3.7.15) yield

x(p, zi , zi+1) = pVid/ci , T (p, zi , zi+1) = d/Vici ,

τ (p, zi , zi+1) = wid, d = |zi+1 − zi |
(no summation over i). These equations have a very simple geometric interpretation, since
pVi = sin i and ci = [1 − p2V 2

i ]
1/2 = cos i , where i is the acute angle between the ray and

the vertical in the layer under consideration.

2. CONSTANT GRADIENT OF THE SQUARE OF SLOWNESS, V −2(z)
This is the second simplest case, corresponding to n = 2. We assume the velocity

distribution as follows:

1/V 2(z) = a + bz, that is, V (z) = 1/[a + bz]1/2.

The suitable monotonic parameter along the ray is σ such that dσ = V 2dT . Simple poly-
nomial equations are obtained:

pz(σ ) = pz(σ 0) + 1
2b(σ − σ 0),

z(σ ) = z(σ 0) + pz(σ 0)(σ − σ 0) + 1
4b(σ − σ 0)

2,

x(σ ) = x(σ 0) + p(σ − σ 0),

T (σ ) = T (σ 0) + (a + bz(σ 0))(σ − σ 0)

+ 1
2bpz(σ 0)(σ − σ 0)

2 + 1
12b

2(σ − σ 0)
3.

Alternative expressions in terms of depth z, for the ray segment without a turning point,
are

x(p, zi , zi+1) = ±2pb−1(wi+1 − wi ),

T (p, zi , zi+1) = ±[2p2b−1(wi+1 − wi ) + 2
3b

−1
(
w3
i+1 − w3

i

)]
,

τ (p, zi , zi+1) = ± 2
3b

−1
(
w3
i+1 − w3

i

)
.
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For the ray segment with a turning point, we obtain

x(p, zi , zi+1 = zi ) = 4pwi/|b|,
T (p, zi , zi+1 = zi ) = 4wi

(
p2 + 1

3w
2
i

)/|b|,
τ (p, zi , zi+1 = zi ) = 4

3w
3
i

/|b|.
It can easily be shown that the ray is parabolic in the model considered. The equations

for z(σ ) and x(σ ) yield the following expression for the ray trajectory:

z = zS + pzS p
−1(x − xS) − 1

4 Bp
−2(x − xS)

2.

Here xS and zS are coordinates of the initial point S, B = −b, and pzS = ±wS =
±[V−2(zS) − p2]1/2 is the z-component of the initial slowness vector at S. An alterna-
tive expression for the ray trajectory is

B(x − xS − 2B−1 pzS p)
2 = 4p2(zS + B−1 p2zS − z).

For pzS > 0, the ray has a minimum at point M[xM , zM ] with coordinates xM = xS +
2pzS pB−1 and zM = zS + p2zS B

−1.
The preceding ray equation can be solved for p. We shall consider two points, S[xS, zS]

and R[xR, zR], situated in half-space −∞ < z < a/B. (For z = a/B, the velocity is in-
finite, and for z > a/B, it is complex-valued.) We also denote uS = 1/V (S) and uR =
1/V (R). Then the ray parameter p of the ray passing through S and R is

p21,2 = 1
4 x

2r−2
[
u2R + u2S ±

√(
u2R + u2S

)2 − B2r2
]
,

where x = xR − xS, r = [x2 + (zR − zS)2]1/2. Thus, we have obtained two ray param-
eters p1 and p2 and two rays �1 and �2 connecting points S and R, assuming that
Br < (u2R + u2S).

The result is very interesting. No ray arrives from S at point R for which r > B−1(u2R +
u2S). Boundary surface r = B−1(u2R + u2S) can also be expressed in the following form:

B2x2 = 4(a − Bz)(a − BzS).

The boundary surface represents a caustic surface and has the form of a paraboloid of
revolution. If point R is situated inside the caustic surface, two rays �1 and �2 connect it
with S.

The multiplicity of rays is unpleasant in practical computations. We can, however,
remove it by decreasing the size of the model. Assume that both S and R are situated at the
samedepth zS .Wecan then consider themodel−∞ < z < zS + 1

2 B
−1u2S = 1

2 (zS + aB−1).
Because one of the two rays arriving at R always has a minimum at depth zM > zS +
1
2 B

−1u2S, the multiplicity of rays is fully removed.
The two-point travel times T (R, S) can easily be calculated for any points S and R

situated inside the caustic paraboloid of revolution. We can use any of the two expressions
given above; for example,

T (R, S) = p−1|x |(u2S + 1
12 p

−2B2x2
)− 1

2 BpzS p
−2x2.

In general, we obtain two travel times. One arrival may again be eliminated by decreasing
the size of the model.
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In applications, itmay be suitable to replace half-space−∞ < z < 0 by a homogeneous
half-space, inwhich velocity V = 1/

√
a is constant. Even though the velocity is continuous

across plane z = 0, the form of the caustics becomes considerably complicated. For a
detailed discussion, see Kravtsov and Orlov (1980, Section 3.3.5).

3. CONSTANT GRADIENT OF LOGARITHMIC VELOCITY, lnV

The ray expressions for this model (corresponding to n = 0) contain a logarithmic
function and an inverse trigonometric function, arctan. The assumed velocity distribution
is

ln V (z) = a + bz, that is, V (z) = exp(a + bz).

The suitable monotonic parameter along the ray is travel time T ; hence,

pz(T ) = pz(T0) − b(T − T0),

z(T ) = z(T0) − 1
2b

−1 ln
(
V 2
0 X
)
,

x(T ) = x(T0) + 1

b

(
arctan

b(T − T0) − pz0
p

− arctan

(
− pz0

p

))
,

where

pz0 = pz(T0),

X = b2(T − T0)
2 − 2bpz0(T − T0) + V−2

0 , V0 = V (T0).

Because travel time T is the parameter along the ray, we do not require an equation for it.
Alternative expressions in terms of depth z, for the ray segment without a turning point,
are

x(p, zi , zi+1) = ∓1

b

(
arctan

wi+1

p
− arctan

wi

p

)
,

T (p, zi , zi+1) = ∓1

b
(wi+1 − wi ),

τ (p, zi , zi+1) = ∓1

b

{
wi+1 − wi − p

(
arctan

wi+1

p
− arctan

wi

p

)}
.

For the ray segment with a turning point, we obtain

x(p, zi , zi+1 = zi ) = 2 arctan(wi/p)/|b|,
T (p, zi , zi+1 = zi ) = 2wi/|b|,
τ (p, zi , zi+1 = zi ) = 2[wi − p arctan(wi/p)]/|b|.

4. CONSTANT GRADIENT OF VELOCITY, V ( z )
This is a model often used in seismology. It corresponds to n = −1. The velocity

distribution is assumed in the following form:

V (z) = a + bz.



168 SEISMIC RAYS AND TRAVEL TIMES

The suitable parameter along the ray is ξ such that dξ = V−1dT ; hence,

pz(ξ ) = pz(ξ 0) − b(ξ − ξ 0),

z(ξ ) = z(ξ 0) + 1

b
(X−1/2 − V0),

x(ξ ) = x(ξ 0) + 1

pX 1/2

(
ξ − ξ0 − 1

b
pz0

)
+ V0 pz0

bp
,

T (ξ ) = T (ξ0) + 1

|b| ln
εX 1/2 − b(ξ − ξ 0) + pz0

εV−1
0 + pz0

,

where ε = sgn(−b) and
pz0 = pz(ξ 0),

X = b2(ξ − ξ 0)2 − 2bpz0(ξ − ξ 0) + V−2
0 , V0 = V (ξ 0).

Alternative expressions in terms of depth z for the ray segment without a turning point are

x(p, zi , zi+1) = ∓ 1

pb
(ci+1 − ci ),

T (p, zi , zi+1) = ±1

b
ln
Vi+1(1 + ci )

Vi (1 + ci+1)
,

τ (p, zi , zi+1) = ±1

b

(
ci+1 − ci + ln

Vi+1(1 + ci )

Vi (1 + ci+1)

)
.

For the ray segment with a turning point, we obtain

x(p, zi , zi+1 = zi ) = 2ci/p|b|,
T (p, zi , zi+1 = zi ) = 2 ln[(1 + ci )/pVi ]/|b|,
τ (p, zi , zi+1 = zi ) = 2[ln((1 + ci )/pVi ) − ci ]/|b|.

It is not difficult to prove that the ray trajectory in the model with a constant velocity
gradient is circular. Eliminating (ξ − ξ0) from the relations for z(ξ ) and x(ξ ) yields[

x − x0 − pz0V0
bp

]2
+
[
z − z0 + V0

b

]2
= 1

p2b2
.

Here x0 and z0 are the coordinates of the initial point, V0 = V (z0), pz0 = (V−2
0 − p2)1/2.

Thus, the radius of the circle is (pb)−1 and the center of the circle is situated at point[
x0 + (bp)−1 pz0V0; z0 − V0/b

]
.

Similarly, eliminating (ξ − ξ 0) and p from the expressions for T (ξ ), x(ξ ), and z(ξ ), we
can also prove that the wavefront for a point source at (x0, z0) is a circle:

[x − x0]
2 + [z − z0 + V0b

−1(1 − cosh(b(T − T0)))]
2

= V 2
0 b

−2 sinh2(b(T − T0)).

For fixed T , the radius of the wavefront circle is b−1V0 sinh(b(T − T0)), and the coordinates
of the center are x0; z0 − V0b−1(1 − cosh(b(T − T0))). Circular rays and wavefronts in the
model with constant velocity gradient have often been used in seismological applications.
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The preceding equation for the wavefront can be used to derive simple equations for
the two-point travel time T (R, S) from any point S to any other point R in the model with
the constant gradient of velocity b. Denote by r the distance between S and R. Then

T (R, S) = |b−1 arccosh[1 + b2r2/2VRVS]|
= b−1 arcsinh

[
br (VRVS)

−1/2(1 + b2r2/4VSVR)
1/2
]
.

Here VS is the velocity at S, and VR is the velocity at R. The expressions for T (R, S) given
here can take many other alternative forms.

5. PARABOLIC LAYER
The distribution of the square of slowness V−2(z) is assumed to be quadratic in z,

V−2(z) = a + bz + cz2.

This velocity distribution is very suitable for investigatingwave propagation in smooth low-
velocity channels and in models with smooth velocity maxima and minima. For a more de-
tailed discussion of ray fields, turning points, and caustics and of variouswaveguide and bar-
rier effects in a parabolic layer, see Kravtsov and Orlov (1980) and other references therein.

We shall again use σ such that dσ = V 2dT as the suitable monotonic parameter along
the ray. Ray tracing system (3.7.2) then reads

dx

dσ
= p,

dpz
dσ

= 1
2b + cz,

dz

dσ
= pz,

dT

dσ
= A = V−2,

where A = (p2 + p2z ). The two ordinary differential equations of the first order in z and
pz can be combined into one ordinary differential equation of the second order:

d2z/dσ 2 − cz = 1
2b.

The two linearly independent solutions of this differential equation are sin(
√−c (σ − σ 0))

and cos(
√−c(σ − σ 0)) for c < 0 and exp(

√
c(σ − σ 0)) and exp(−

√
c (σ − σ 0)) for c > 0.

Taking into account the proper initial conditions, the solution is

z(σ ) = 1
2 (A + B) exp[

√
c(σ − σ 0)] + 1

2 (A − B) exp[−√
c(σ − σ 0)]

− 1
2c

−1b, for c > 0,

z(σ ) = A cos[
√−c(σ − σ 0)] + C sin[

√−c(σ − σ 0)]

− 1
2c

−1b, for c < 0.

Here z0 = z(σ 0), pz0 = pz(σ 0), A = z0 + 1
2 bc

−1, B = pz0/
√
c, andC = pz0/

√−c. The
solution for x(σ ) is simple: x(σ ) = x0 + p(σ − σ 0). As we can see, x(σ ) is a monotonic
function of σ so that σ − σ 0 may be replaced by p−1(x − x0) in the expressions for z(σ ).
Hence,

z(x) = 1
2 (A + B) exp[

√
cp−1(x − x0)]

+ 1
2 (A − B) exp[−√

cp−1(x − x0)] − 1
2c

−1b, for c > 0,

z(x) = A cos[
√−cp−1(x − x0)]

+C sin[
√−cp−1(x − x0)] − 1

2c
−1b, for c < 0.

Here we have used the notation x0 = x(σ 0).
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For c < 0, the velocity distribution represents a smooth low-velocity layer (wave-guide),
and rays z = z(x) oscillate within the layer. In the opposite case of c > 0, the velocity dis-
tribution represents a smooth high-velocity layer (antiwaveguide), with a smooth velocity
maximum at some depth. The rays then have an exponential character.

It is simple to derive the expressions for pz(σ ) = dz/dσ from those for z(σ ). Travel time
T (σ ) can then be determined by integrating (p2 + p2z ) with respect to σ , or, alternatively,
by integrating V−2(z) = a + bz + cz2. The relevant equations are left to the reader as
homework.

6. OTHER SIMPLE VELOCITY DISTRIBUTIONS
Analytical solutions for the ray trajectory and for the travel time can be computed for

various other velocity-depth distributions. Many such analytical solutions can be found
in the seismological literature. Suitable analytical solutions can be found even for various
velocity-depth distributions specified by relations z = F[1/V 2], where F is some simple
function. Particularly simple analytical expressions for rays are obtained if function F
is a polynomial; see Section 3.7.3. Moreover, even the velocity-depth distribution z =
a + bV + cV 2 + · · · yields suitable analytical solutions (although not as simple as the
velocity-depth distribution z = a + b/V 2 + c/V 4 + . . . ). These analytical solutions can
be found in Puzyrev (1959) and Červený and Pretlová (1977).

7. TIME-DEPTH RELATIONSHIPS
In seismic exploration, considerable attention has been devoted to the so-called time-

depth relationships (that is, to the analytical relations between depth and travel time, mea-
sured along the vertical in a vertically inhomogeneous medium). As an example, consider a
linear velocity-depth distributionV (z) = V0 + kz. Then, dT/dz = (V0 + kz)−1 andT (z) =
k−1 ln(1+ kz/V0). This gives the well-known time-depth relation z= k−1V0(exp[kT ]− 1).
Similar analytical time-depth relations are known for many other velocity-depth distribu-
tions. Let us name several of them: V−n(z) = a + bz, V (z) = a + bz1/n (where n is an arbi-
trary integer), V (z) = a exp(bz), V (z) = a − b exp(−cz), V (z) = c tanh(a + bz), V (z) =
a − b/(c + zd), V−2(z) = a − b/(c + zd), V (z) = 1/(a0 + a1z + · · · + amzm), and
V (z) = a(1 + b2z2)1/2 among others. For a detailed discussion of time-depth relations for
these and other velocity-depth distributions see, for example, Kaufman (1953), Puzyrev
(1959), and Al-Chalabi (1997a, 1997b). The last reference, Al-Chalabi (1997b), also offers
time-depth relations for vertically inhomogeneous layered structures.

3.7.3 Polynomial Rays in Vertically Inhomogeneous Media

It was shown in Section 3.4.5 that the ray tracing system yields polynomial rays if the
velocity distribution is specified by the relation F[1/V 2] = A0 + Ai xi , where F is a poly-
nomial function in 1/V 2. These polynomial rays also play an important role in vertically
inhomogeneous media, where F[1/V 2] = a + bz. Here we shall use the velocity-depth
distribution in a slightly different form:

z = f [1/V 2]. (3.7.19)

We shall first consider the general function f in (3.7.19) and only discuss the polyno-
mial functions f later on. In all these cases, however, we only consider functions f that
are monotonic in the range of 1/V 2 being considered. In other words, there is a unique
correspondence between z and 1/V 2.
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From the eikonal equation, we obtain (3.7.6), so that ray tracing system (3.7.2) for
n = 2 yields

dz/dσ = ±(V−2 − p2)1/2. (3.7.20)

Then

dσ = ±(V−2 − p2)−1/2dz = ±(V−2 − p2)−1/2 f ′[V−2]d(V−2), (3.7.21)

where f ′[V−2] = d f [q]/dq with q = V−2. This equation can simply be integrated to give

σ − σ 0 = ±
∫ (1/V )2

(1/V0)2
f ′[V−2](V−2 − p2)−1/2dV−2.

If we change the variable under the integral by substituting

w2 = V−2 − p2,

we get

σ − σ 0 = ±2
∫ w

w0

f ′[w2 + p2]dw, (3.7.22)

where

w = (V−2 − p2)1/2, w0 = (V−2
0 − p2)1/2. (3.7.23)

Finally, using (3.7.5) with u = σ (n = 2) for x and T , we arrive at

x = x0 + 2p
∫ w

w0

f ′[w2 + p2]dw,

T = T0 + 2
∫ w

w0

(w2 + p2) f ′[w2 + p2]dw .

(3.7.24)

In (3.7.22) and (3.7.24), expression f ′[w 2 + p2] denotes d f [q]/dq for q = w 2 + p2.
Integrals (3.7.22) and (3.7.24) are very simple indeed. They offer a large amount

of simple analytical solutions. We shall only discuss one particularly simple solution,
corresponding to polynomial function f [q], in more detail. Let us assume that function
f [q] is given by the polynomial relation

f [q] =
N∑
n=0

anq
n, that is, z =

N∑
n=0

anV
−2n . (3.7.25)

Hence,

f ′[p2 + w 2] =
N∑
n=1

nan(w
2 + p2)n−1.

The final expressions for x and T then read

x(w) = x(w0) + 2p
∫ w

w0

(
N∑
n=1

nan(w
2 + p2)n−1

)
dw,

T (w) = T (w0) + 2
∫ w

w0

(w 2 + p2)

(
N∑
n=1

nan(w
2 + p2)n−1

)
dw .

(3.7.26)

As we can see, the integrands are polynomials in w so that x(w) and T (w) are also
polynomials in w .
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Note that expressions (3.7.26) with N = 3 were used to compile very efficient algo-
rithms and fast computer programs for ray tracing and travel-time computations in an
arbitrary, 1-D, vertically inhomogeneous, layered model; see Červený (1980) and Červený
and Janský (1985). The advantage of these algorithms is that they do not introduce fictitious
interfaces of the second and third order. Such interfaces could produce fictitious anomalies
in the amplitude-distance curves. We shall describe the algorithm briefly.

The velocity in the model is specified at n grid points zi , i = 1, 2, . . . , n. Grid point
z = z1 = 0 corresponds to the surface of the Earth; z = zn corresponds to the bottom of the
model. At any grid point, the velocity is either discontinuous (interface of the first order),
continuous with a discontinuous first derivative (interface of the second order), or continu-
ous. If the velocity is discontinuous at z = zi , two velocities must be specified at that point,
one just above the interface and the second immediately below it. We shall formally call
the region between the two consecutive grid points zi and zi+1 the i th subinterval of depths.
The standard term layer will be used to denote the region between two physical interfaces
of the first order. Thus, any layer may be composed of several subintervals of depths.

The velocity distribution between the individual grid points is approximated by the
function

z = ai + biV
−2 + ci V

−4 + diV
−6, (3.7.27)

where ai , bi , ci , and di are constants. These constants can be determined for the whole
group of subintervals between the individual interfaces (of the first and second order) by
a smoothed spline algorithm (see, for example, Reinsch 1967; Pretlová 1976) or by some
other spline algorithms (see, for example, Cline 1981). The velocity-depth distribution
between the two interfaces is then smooth together with the first and second derivatives of
velocity, and function V = V (z) does not oscillate there. The smoothed spline algorithm
might slightly change quantities zi , but this does not cause any complications. The depths zi ,
corresponding to physical interfaces, are, of course, fixed. The degree of smoothing of the
velocity-depth distribution can be controlled by a special parameter. Even a slight smooth-
ing, which does not change the velocity-depth function visually, increases the stability of
the results considerably.

Let us now assume that the source is situated at depth zs and the receiver is at zr . Assume
that the ray of the wave under consideration is composed of N + 1 elements, each of which
is completelywithin one subinterval of depths, inwhich the velocity is specifiedbyEquation
(3.7.27). The end points of the elements are situated either on the boundaries between the
subintervals, at the source, at the receiver, or at the turning points of the ray. We denote the
end points of the elements successively such that Q0 ≡ S (source) Q1, Q2, ..., QN+1 ≡ R
(receiver). Note that the same subinterval of depth may be encountered several times,
depending on the number of times the wave passes through it.

The equations for the total epicentral distance x(p, zs, zr ), total travel time T (p, zs, zr ),
and total delay time τ (p, zs, zr ) can simply be obtained from (3.7.26):

x(p, zs, zr ) =
N+1∑
i=1

xi (p, z(Qi−1), z(Qi )),

T (p, zs, zr ) =
N+1∑
i=1

Ti (p, z(Qi−1), z(Qi )),

τ (p, zs, zr ) =
N+1∑
i=1

τi (p, z(Qi−1), z(Qi )),

(3.7.28)
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where xi (p, z(Qi−1), z(Qi )), Ti (p, z(Qi−1), z(Qi )) and τi (p, z(Qi−1), z(Qi )) are given by
the relations

xi (p, z(Qi−1), z(Qi )) = ±{(2bi p + 4ci p
3 + 6di p

5)(wi − wi−1)

+ (
4
3ci p + 4di p

3
)(
w 3
i − w 3

i−1

)
+ 6

5di p
(
w 5
i − w 5

i−1

)}
,

Ti (p, z(Qi−1), z(Qi )) = ±{(2bi p2 + 4ci p
4 + 6di p

6)(wi − wi−1)

+ (
2
3bi + 8

3ci p
2 + 6di p

4
)(
w3
i − w3

i−1

)
+ (

4
5ci + 18

5 di p
2
)(
w5
i − w5

i−1

)
+ 6

7di
(
w 7
i − w 7

i−1

)}
,

τi (p, z(Qi−1), z(Qi )) = ±{( 23bi + 4
3ci p

2 + 2di p
4
)(
w 3
i − w 3

i−1

)
+ (

4
5ci + 12

5 di p
2
)(
w5
i − w5

i−1

)
+ 6

7di
(
w 7
i − w 7

i−1

)}
.

Quantities wi have a standard meaning, wi = (V−2(Qi ) − p2)1/2. The upper signs corre-
spond to the descending part of the ray (z(Qi ) > z(Qi−1)), and the lower signs correspond
to the ascending part of the ray (z(Qi ) < z(Qi−1)). For the ray element with a turning point,
we insert wi = 0 and multiply the result by two.

As we can see, the algorithm only requires one square root wi and some simple poly-
nomials to be computed for each subinterval of depth; transcendental functions are not
needed at all.

The proposed algorithm has two limitations:

a. It cannot simulate a velocity distribution with smooth local maxima and minima in
the velocity-depth distribution. Interfaces of the second order must be allowed at
the points of maxima and minima.

b. If the gradient of velocity changes abruptly in some region with a slowly varying
velocity, the depth-velocity relation z = z[V−2] given by (3.7.27) may oscillate at
the relevant depths. The oscillations have no physicalmeaning andmust be removed.
This can be done, for example, by introducing an artificial interface of the second
order. Such oscillations, however, should appear only exceptionally.

If we allow the existence of second-order interfaces, we can just put ci = di = 0 in
(3.7.27) and determine ai and bi from the velocities at grid points Qi−1 and Qi . The
following relations are then obtained for xi , Ti and τi

xi (p, z(Qi−1), z(Qi )) = ±2bi p(wi − wi−1),

Ti (p, z(Qi−1), z(Qi )) = ±[2bi p2(wi − wi−1) + 2
3bi
(
w3
i − w3

i−1

)]
,

τi (p, z(Qi−1), z(Qi )) = ± 2
3bi
(
w 3
i − w 3

i−1

)
,

with bi = (z(Qi ) − z(Qi−1))/(V (Qi )−2 − V (Qi−1)−2). For the ray element with a turn-
ing point, we obtain xi = 4|bi |pwi−1, Ti = 4|bi |wi−1(p2 + 1

3w
2
i−1), τi = 4

3 |bi |w3
i−1. These

equations are more efficient in computation and simpler to program than a piecewise linear
approximation of the velocity-depth function. They are also optionally used in the present
algorithms of the WKBJ method; see Chapman, Chu, and Lyness (1988).
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3.7.4 Radially Symmetric Media

The basic equations of the ray method for radially symmetric media can be derived in
several ways. The first option is to derive them directly, by applying Fermat’s principle. This
approach has mostly been used in the seismological literature; see Savarenskiy and Kirnos
(1955), Bullen (1965), Pilant (1979), Aki and Richards (1980), and Bullen and Bolt (1985)
among others. The second option is to start with general ray tracing systems derived in
spherical coordinates (see Section 3.5.4) and to specify them for radially symmetric media.
A similar approach for vertically inhomogeneous media was used in Section 3.7.1. Finally,
it is possible to use the Earth flattening approximation (EFA) derived and discussed for
2-D media in Section 3.5.5. Using EFA, we can transform any result derived for vertically
inhomogeneousmedia to that appropriate for radially symmetricmedia and vice versa.Note
that the Earth flattening approximation has also been successfully used in the reflectivity
method; see Müller (1985). The synthetic seismograms for radially symmetric media can
be computed by the application of EFA to the reflectivity synthetic seismograms computed
for the corresponding vertically inhomogeneous model.

Becausewe have derivedmany useful analytical solutions for vertically inhomogeneous
media in Sections 3.7.1–3.7.3, we shall only describe the way in which these results can
be transformed for radially symmetric media. However, we shall first give several general
equations for the radially symmetric media.

We shall use spherical coordinates r, θ , and ϕ and assume that the velocity does not
depend on θ and ϕ. Without loss of generality, we may adopt initial conditions (3.5.33)
with

ϕ = ϕ0, Tϕ = Tϕ0 = 0. (3.7.29)

A similar situation was discussed in Section 3.5.5. The ray as a whole is then situated
in plane ϕ = ϕ0, and pϕ = Tϕ = 0 along the whole ray. We can now express ray tracing
system (3.5.31) in the following form:

dr

du
= An/2−1Tr ,

dTr
du

= 1

n

∂

∂r

(
1

V

)n
+ An/2−1T 2

θ r
−3,

dθ

du
= An/2−1Tθr

−2,
dTθ
du

= 0,

(3.7.30)

with

dT

du
= An/2 = V−n, A = T 2

r + r−2T 2
θ = V−2.

Thus, Tθ is constant along the whole ray. If the acute angle between the ray and the vertical
line is denoted i(r ),

Tθ (r ) = rpθ (r ) = r sin i(r )

V (r )
= const.

In seismology, this constant is usually called the ray parameter and denoted p, as in
vertically inhomogeneous models. Hence,

r sin i(r )

V (r )
= p. (3.7.31)

This is the generalized Snell’s law for a radially symmetric medium.
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Equations (3.7.30) can always be solved in terms of closed-form integrals. Quantity Tr
can be expressed from the eikonal equation, T 2

r + r−2T 2
θ = V−2,

Tr = ±(V−2 − r−2 p2)1/2. (3.7.32)

Here the plus sign corresponds to the upgoing part of the ray, and theminus sign corresponds
to the downgoing part of the ray (decreasing r ). Equation (3.7.30) then yields

dθ

dr
= Tθ
r2Tr

= ± pV

r (r2 − V 2 p2)1/2
,

dT

dr
= A

Tr
= ± r

V (r 2 − V 2 p2)1/2
.

(3.7.33)

The solution of (3.7.33) is

θ (p, r ) = θ (p, r0) ±
∫ r

r0

pV dr

r (r2 − V 2 p2)1/2
,

T (p, r ) = T (p, r0) ±
∫ r

r0

rdr

V (r2 − V 2 p2)1/2
.

(3.7.34)

These equations can be expressed in several alternative forms; see Bullen and Bolt (1985).
For a radially symmetricmedium containing structural interfaces of the first order along

spherical surfaces r = const., the equations for θ and T may again be expressed as sums
of elements corresponding to the individual layers, as in (3.7.10). The layer contributions
are given by relations

θ (p, ri , ri+1) = ±
∫ ri+1

ri

pV dr

r (r2 − V 2 p2)1/2
,

T (p, ri , ri+1) = ±
∫ ri+1

ri

rdr

V (r2 − V 2 p2)1/2
.

(3.7.35)

The plus sign refers to ri+1 > ri , and the minus sign refers to ri+1 < ri .
As in vertically inhomogeneous media, the element of the ray passing through a turning

point must be formally divided into two elements, one going downward and the other going
upward. We denote the coordinate r of the turning point rM . It satisfies the relation

rM/V (rM ) = p; (3.7.36)

see (3.7.31) with i(r ) = 1
2π . For example, if a direct (refracted) wave with a source and

receiver close to the Earth’s surface is involved, with θ 0 = T0 = 0,

θ (p) = 2p
∫ R

rM

V dr

r (r2 − V 2 p2)1/2
,

T (p) = 2
∫ R

rM

rdr

V (r 2 − V 2 p2)1/2
.

(3.7.37)

At turning point r = rM , the integrands of (3.7.37) are infinite. This fact causes some
complications in calculating integrals (3.7.37), particularly if we wish to compute dθ/dp
or dT/dp. As in vertically inhomogeneous media, however, the problem can be solved
using the integration-by-parts method. The relevant final equations can be found in Bullen
and Bolt (1985).
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In radially symmetric media, delay time τ (p, ri , ri+1) is defined in a way similar to that
in (3.7.15):

τ (p, ri , ri+1) = T (p, ri , ri+1) − pθ (p, ri , ri+1)

= ±
∫ ri+1

ri

(r2 − V 2 p2)1/2

rV
dr. (3.7.38)

Function τ (p, ri , ri+1) has broadly been used in various seismological applications. It
satisfies the relation

dτ (p, ri , ri+1)/dp = −θ (p, ri , ri+1). (3.7.39)

The ray integrals presented in this section can be calculated numerically using methods
similar to those used in Section 3.7.1 for vertically inhomogeneous media.

Analytical solutions for radially symmetricmedia can be obtained directly from (3.7.35)
and (3.7.38). They can, however, also be obtained in a simpler way from the analytical
solutions for vertically inhomogeneous media, using the EFA. Because we do not wish
to cause confusion, we shall denote, in the remaining part of this section, the velocity
distribution and the ray parameter in the radially symmetric media VR and pR , respectively.
For vertically inhomogeneous media, we shall still use the standard notation V and p. Any
analytical solution for a velocity-depth distribution V (z) in a vertically inhomogeneous
medium can then be transformed to a radially symmetric model by making the following
substitution:

V −→ RVR/r, z−→ R ln(R/r ). (3.7.40)

In the final expressions, we only have to put

x −→ Rθ, p−→ R−1 pR. (3.7.41)

Any analytical solution of the ray tracing system, presented in Section 3.7.2 or 3.7.3, can
thus be modified to satisfy a radially symmetric medium.

We shall give two examples that play an important role in seismological applications.
The first example presents the simplest solution for an inhomogeneous radially symmetric
medium, and the second corresponds to the classical Mohorovičić velocity law. We shall
follow this with a brief discussion of polynomial rays. In all these cases, we shall only
give the expressions in terms of radius r as a parameter. The upper sign corresponds to the
upgoing part of the ray; the lower sign refers to the downgoing part of the ray.

1. SIMPLEST SOLUTIONS FOR INHOMOGENEOUS RADIALLY
SYMMETRIC MEDIA
It is not surprising that the simplest analytical solutions are again obtained for the

velocity distribution corresponding to V−2(z) = a + bz. The relevant velocity distribution
in the radially symmetric model is as follows:

(
RVR
r

)−2

= a + bR ln
R

r
, that is,

VR(r ) = r

R

(
a + bR ln

R

r

)−1/2

.

(3.7.42)
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Very simple analytical solutions can be obtained for this velocity distribution; see Section
3.7.2, §2. If we use (3.7.41),

θ (pR, ri , ri+1) = ∓2pR
bR3

(wi+1 − wi ),

T (pR, ri , ri+1) = ∓2p2R
bR3

(wi+1 − wi ) ∓ 2

3bR3

(
w 3
i+1 − w 3

i

)
, (3.7.43)

τ (pR, ri , ri+1) = ∓ 2

3bR3

(
w3
i+1 − w3

i

)
,

where

wk = [
(rk/VR(rk))

2 − p2R
]1/2
.

Thus, the computation of rays and travel times requires the calculation of simple square
roots only; no transcendental functions are necessary. For the ray element with a turning
point, (3.7.43) yields θ = 4pRwi/|b|R3, T = 4wi (p2R + 1

3w
2
i )/|b|R3, and τ = 4

3w
3
i /|b|R3.

2. MOHOROVI Č I Ć VELOCITY DISTRIBUTION
We shall now use EFT to transform the analytical solutions for the constant gradient of

the logarithmic velocity, ln V (z) = a + bz, from a vertically inhomogeneous to a radially
symmetric model. The corresponding velocity is

VR(r ) = A (r/R)1−k , with A = exp(a), k = bR. (3.7.44)

Velocity distribution (3.7.44) is known as the Mohorovičić velocity law (see Bullen and
Bolt 1985) or also as Bullen’s velocity law. The analytical solutions are again obtained
simply from those given in Section 3.7.2, §3, if we insert x = Rθ , p = R−1 pR , b = k/R:

θ (pR, ri , ri+1) = ±1

k

(
arctan

wi+1

pR
− arctan

wi

pR

)
,

T (pR, ri , ri+1) = ±1

k
(wi+1 − wi ), (3.7.45)

τ (pR, ri , ri+1) = ±1

k

{
wi+1 − wi − pR

(
arctan

wi+1

pR
− arctan

wi

pR

)}
,

where

wk = [
(rk/VR(rk))

2 − p2R
]1/2
.

For the ray element with a turning point, (3.7.45) yields θ = 2 arctan(wi/pR)/|k|, T =
2wi/|k|, and τ = 2(wi − pR arctan(wi/pR))/|k|.

3. POLYNOMIAL RAYS IN RADIALLY SYMMETRIC MEDIA
For vertically inhomogeneous media, simple polynomial analytical solutions of the ray

tracing systems were found in Section 3.7.3. These polynomial solutions can also be found
for radially symmetric media. In fact, solution (3.7.43) is a special simple example of
these solutions. We shall apply the Earth flattening approximation to the velocity-depth
distribution (3.7.25). The corresponding velocity distribution for a radially symmetric
model is

R ln
R

r
=

N∑
n=0

an

(
r

RVR

)2n

. (3.7.46)
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The analytical solutions are then obtained simply from (3.7.26), or for N = 3 from (3.7.28)
and subsequent equations. If constants an in (3.7.46) are slightly modified, we can also
discuss the velocity distribution

ln r =
N∑
n=0

bn (r/VR)
2n . (3.7.47)

Complete analytical solutions for velocity distribution (3.7.47) can be found in Červený
and Janský (1983), with examples of computations in Janský and Červený (1981) and
Zednı́k, Janský, and Červený (1993).

Many other analytical solutions for radially symmetric media can be obtained from
those for vertically inhomogeneous media presented in Sections 3.7.2 and 3.7.3. We shall
not give them here, although some of them may be of interest. For example, velocity
distribution V (r ) = a − br2 yields circular ray trajectories; see Bullen and Bolt (1985).

3.8 Direct Computation of Travel Times and/or Wavefronts

In the previous sections of this chapter, we have discussed the computation of rays and ray-
theory travel times of selected elementary waves. The ray-theory travel times are calculated
as a by-product of ray tracing. Using several nearby rays, it is also simple to construct
wavefronts, with a specified travel-time step �T . See Section 3.3.3.

The travel times are usually a more important result of ray tracing than the rays them-
selves. Consequently, it is not surprising that a great effort in seismological applications
has also been devoted to the direct computation of travel times and wavefronts, without
invoking ray tracing at all.

Analytical computation of two-point travel times is possible only exceptionally, for
very simple models. They include homogeneous models, models with a constant gradient
of velocity andmodels with a constant gradient of the square of slowness. See Section 3.7.2
for the relevant equations.

Classicalmethods of computingwavefrontswithout invoking rays are based on the local
application of theHuygens principle. The current wavefront for travel time T = T0 + k�T
is calculated from the previous wavefront T = T0 + (k − 1)�T as an envelope surface of
spheres, with their centers distributed along the previous wavefront and with radii V�T ,
where V is the local velocity at the center of the sphere. Velocity V may vary laterally along
thewavefront butmust be smooth; themodel is considered to be locally homogeneous in the
region of each sphere. Themethod has found broad applications in the solution of direct and
inverse seismic structural problems in 2-D laterally varying layered isotropic structures. It
has been based mainly on a graphical construction of Huygens circles using a pair of com-
passes. Various alternatives of this method have been developed, for example themethod of
wavefronts (Thornburgh 1930; Rockwell 1967), and themethod of time fields (Riznichenko
1946, 1985). Themethod is very stable, but its accuracy depends strongly on the accuracy of
used graphical construction, on travel-time step�T , and on the smoothness of themedium.

The preceding methods are very simple in 2-D models, if the graphical construction
is used. Unfortunately, the computer realization of the method is rather complicated, par-
ticularly in 3-D layered structures. Recent computer methods of wavefront construction
are based on different principles: on a hybrid combination with standard ray tracing. The
current wavefront in the wavefront construction method is computed from the previous
wavefront by ray tracing of short ray elements. For more details, refer to Section 3.8.5.
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Several other important methods have been proposed to compute first arrival travel
times in rectangular, 2-D, and 3-D grid models. See Section 3.8.3, which is devoted to
network shortest-path ray tracing, and Section 3.8.4, which is devoted to finite-difference
methods. The accuracy of the computation of the first-arrival travel times in grid models
depends, as a rule, on the grid step, h.

In all travel-time computations, it is very important whether we evaluate the ray-theory
travel times or first-arrival travel times. The ray-theory travel times and first-arrival travel
times concepts were briefly explained in the introduction to Chapter 3. Because these
concepts play a very important role both in the ray theory and in seismological applications,
we shall summarize the main properties of both types of travel times and the differences
between them in Section 3.8.1.

Note that the wavefronts, or some surfaces close to them, are also the “corner stones”
of some asymptotic methods of computing seismic wavefields in complex laterally varying
structures. See the phase-frontmethod byHaines (1983, 1984a, 1984b) and other references
given there.

The methods to compute travel times and/or wavefronts of seismic body waves in 2-D
and 3-D models are developing very fast. In the future, we can expect the appearance of
new powerful methods that will surpass the methods discussed here in speed, accuracy,
and stability of computations. Recently, a new method of computing the first-arrival travel
times in 3-D models has been proposed by Sethian and Popovici (1999); they call it the
fast marching method. In the fast marching method, the problem of computing first-arrival
travel times is treated as the problem of tracking evolving interfaces, the solution of which
was developed by J. A. Sethian in a number of publications and used by him and by others
in various problems. The method can be applied to models with arbitrarily large gradients
of velocity. For more details and references, see Sethian and Popovici (1999).

Finally, it should be mentioned that the high-energy travel times can also be measured
from complete synthetic seismograms, which are computed, for example, by finite dif-
ferences. The complete synthetic seismograms allow us to pick up the high-energy travel
times in the frequency band we need in interpretations. See Loewenthal and Hu (1991).
This procedure is, however, time consuming because it requires full wavefield modeling.
An alternative, considerably faster approach to calculating high-frequency travel times in
the frequency band under consideration was proposed by Nichols (1996). In the method, it
is sufficient to solve the Helmholtz equation for a very small number of frequencies in the
frequency band under consideration. From these computations, it is possible to appreciate
the travel times and relevant Green functions in the specified frequency band. See also
Audebert et al. (1997).

3.8.1 Ray Theory Travel Times and First-Arrival Travel Times

In this section, we shall define the ray-theory travel times and first-arrival travel times and
explain the main differences between them.

1. RAY-THEORY TRAVEL TIMES
Ray-theory travel times are being introduced as the travel times of individual elementary

waves, calculated along the rays of these waves. This definition is closely related to the
high-frequency asymptotic solutions of the elastodynamic equation and to the eikonal
equation. The calculation of ray-theory travel times along the relevant raymaybe numerical,
analytical, semianalytical, and the like.
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Let us now discuss the preceding definition and the properties of the ray-theory travel
times in greater detail.

a. The ray-theory travel times are defined separately for the individual elementary
waves. Thus, the ray-theory travel time is not a global property of the wavefield, but
the property of a selected elementary wave. For example, we have ray-theory travel
times of direct waves, reflected waves, converted waves, and multiply-reflected
waves. The ray-theory travel time is not only a function of position but also of the
ray code of the elementary seismic body wave.

b. The ray-theory travel time of a selected elementarywave is, in general, amultivalued
function of coordinates of the receiver, even in a smoothmediumwithout interfaces.
This is due to multipathing.

c. In certain regions of the model, the ray-theory travel times of the elementary waves
under consideration are not defined. Such regions are partly due to the specification
of the ray code (for example, reflected waves exist only on one side of the interface)
and partly due to the shadow zones of the elementary wave under consideration. For
different elementary waves, the shadow zones are, in general, situated in different
regions of the model.

d. The ray-theory travel times may correspond to the first-arrival travel times. Mostly,
however, they correspond to later arrivals and may carry a considerable amount of
energy.

e. The definition of the ray-theory travel times is fully based on ray concepts. They
do not have an exact, but only asymptotic (high-frequency) meaning.

f. In addition to computing ray-theory travel times, it is usually possible to calculate
the relevant ray amplitudes of the elementary wave under consideration also.

A very important subclass of the ray-theory travel times are zeroth-order ray-theory
travel times. They correspond to the elementary waves of the zeroth-order ray approxima-
tion; see Sections 2.4, 5.6, and 5.7. In recent applications of the ray method in seismology
and seismic exploration, mostly the elementary waves corresponding to the zeroth-order
ray approximation (zeroth-order elementary waves) have been used. The definition of the
zeroth-order ray-theory travel times does not include such elementary waves as higher-
order elementary waves (head waves) and diffracted waves (edge waves, tip waves, sliding
waves) among others.

The zeroth-order ray-theory travel times satisfy all the properties listed earlier. Re-
garding item c, even if we consider all possible zeroth-order elementary waves for a given
source, there may be some regions where no zeroth-order elementary wave arrives for
a specified position of the source. We shall call them the absolute shadow zones (in the
zeroth-order ray approximation of the ray method).

2. FIRST-ARRIVAL TRAVEL TIMES
They are related to the exact solution of the elastodynamic equation, with proper initial

and boundary conditions. The first-arrival travel time corresponds to the first arrival of the
complete wavefield at a specified receiver position. The surface of constant first-arrival
travel time t0 separates the illuminated and nonilluminated regions of the model at t =
t0. Two suitable methods of calculating first-arrival travel times are briefly outlined in
Sections 3.8.3 and 3.8.4.
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Let us now discuss certain properties of the first-arrival travel times.

a. The first-arrival travel times are not related to a (somewhat ambiguous) decompo-
sition of the complete wavefield into elementary waves; see Section 3.2.2. They are
properties of the complete wavefield.

b. The first-arrival travel time is a function of position only, not of the type of wave to
arrive first.

c. The first-arrival travel time is a unique function of position. It is defined at any point
of the model. There are no shadow zones. Moreover, the first-arrival travel time is
a continuous function of coordinates. The first spatial derivatives of the first-arrival
travel time, however, may be discontinuous. They may be discontinuous even at
points where the velocities are continuous. (Example of such discontinuity include
the intersection of the wavefronts of direct and head waves.)

d. The first-arrival travel times have an exact meaning because they are based on the
solution of the elastodynamic equation. They have no direct connection with ray
concepts, but the Fermat’s minimum time principle may be applied.

e. The concept of the first-arrival travel times is not related, in any way, to the ampli-
tudes of the wavefield. It is not a simple theoretical problem to assign an amplitude
to the evaluated first-arrival travel times. Only in those regionswhere the first-arrival
travel time coincides with the zeroth-order ray-theory travel times, may the ampli-
tudes be calculated by standard ray concepts (transport equation and geometrical
spreading).

The concept of first-arrival travel time may also be extended to certain later arrivals
imposing some constraints on the algorithms used in the computations of first-arrival travel
times. This is the way the first-arrival travel times of waves reflected at structural interfaces
can be introduced. These first-arrival travel times of reflected waves, however, again have
a different meaning from the ray-theory travel times of reflected waves. They are a unique
function of position, without possible triplications and shadows. At postcritical distances,
theymay correspond to elementary travel times of headwaves, or to zeroth-order ray-theory
travel times of postcritical reflection, depending on the constraints imposed. If the structural
interface has edges, the first-arrival travel times of reflected waves may correspond to travel
times of diffracted (edge) waves in certain regions.

3. SEVERAL REMARKS ON BOTH CONCEPTS
It is obvious that both ray-theory travel times and first-arrival travel times have the same

meaning in certain situations. This applies, for example, to the homogeneous medium with
a point source of P waves. The ray-theory travel time of the direct P wave then corresponds
exactly to the first-arrival travel time. The same also applies to a halfspace in which the
velocity increases linearly with depth.

In models with structural interfaces, however, both terms often have a different mean-
ing. Due to velocity variations, shadow zones and caustics may be formed. The ray-theory
travel times of direct waves in shadow zones are not defined, but the first-arrival travel times
are well defined at any point of the shadow zone. On the contrary, the ray-theory travel
time of a direct wave beyond the caustics is multivalued, but the first-arrival travel time is
single-valued even there. It corresponds to the ray-theory travel time of the fastest branch
of the direct wave.

In seismic applications, it may be very important to distinguish carefully between ray-
theory travel times and first-arrival travel times. For example, a wave connected with the



182 SEISMIC RAYS AND TRAVEL TIMES

first arrival may be very weak, whereas a considerable amount of energy may be carried
by an elementary wave. A seismologist picking up first-arrival travel times may prefer the
first-arrival travel times, whereas, in seismic prospecting, the migrated image could be
distorted if the first-arrival travel times were used to back-propagate the energy in recorded
seismic sections; see Geoltrain and Brac (1993) and Gray and May (1994).

3.8.2 Solution of the Eikonal Equation by Separation of Variables

The method of separation of variables can be used to solve directly the eikonal equation
for certain simple classes of models, including laterally varying ones. We shall not discuss
here the method of separation of variables from a general point of view, but only explain
it on two simple but important examples. For a more general treatment, see Kravtsov and
Orlov (1980), where many other references can be found.

Let us consider Cartesian coordinates and assume that the velocity distribution in the
model is specified by the relation:

1/V 2(xi ) = ε1(x1) + ε2(x2) + ε3(x3). (3.8.1)

We shall seek the solution of the eikonal equation in the form T (x1, x2, x3) = T1(x1) +
T2(x2) + T3(x3). Inserting the expressions for T (xi ) and 1/V 2(xi ) into the eikonal equation
(3.1.1), we obtain[(

∂T1
∂x1

)2

− ε1(x1)
]

+
[(
∂T2
∂x2

)2

− ε2(x2)
]

+
[(
∂T3
∂x3

)2

− ε3(x3)
]

= 0.

(3.8.2)

The equation (3.8.2) must be satisfied identically for any x1, x2, and x3. Because the first
term in (3.8.2) is a function of x1 only, and the two other terms are functions of x2 and x3
only, the first term must be constant. The same is valid even for the second and third terms.
Consequently, we obtain three separated equations:

(∂T1/∂x1)
2 − ε1(x1) = α1, (∂T2/∂x2)

2 − ε2(x2) = α2,

(∂T3/∂x3)
2 − ε3(x3) = −α1 − α2.

(3.8.3)

Here α1 and α2 are arbitrary constants. All three equations can be solved by quadratures:

T1(x1) = ±
∫ x1

x10

[ε1(x1) + α1]1/2dx1,

T2(x2) = ±
∫ x2

x20

[ε2(x2) + α2]1/2dx2,

T3(x3) = ±
∫ x3

x30

[ε3(x3) − α1 − α2]1/2dx3.

The complete solution of the eikonal equation (3.1.1) for the velocity distribution (3.8.1)
in Cartesian coordinates xi is then

T1(x1, x2, x3)= ±
∫ x1

x10

[ε1(x1) + α1]1/2dx1 ±
∫ x2

x20

[ε2(x2) + α2]1/2dx2

±
∫ x3

x30

[ε3(x3) − α1 − α2]1/2dx3 + α3. (3.8.4)
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Because the eikonal equation contains only partial derivatives of Ti (xi ), not Ti (xi ) them-
selves, we have added an additional constant α3.

A similar proceduremay be used even to find a complete solution of the eikonal equation
for various curvilinear coordinate systems. Consider eikonal equation (3.5.6) in orthogonal
curvilinear coordinates ξi , with scale factors hi , and assume that the velocity distribution
is specified by the relation

1/V 2(ξi ) = h−2
1 ε1(ξ1) + h−2

2 ε2(ξ2) + h−2
3 ε3(ξ3). (3.8.5)

We shall seek the solution of the eikonal equation (3.5.6) in the form T (ξi ) = T1(ξ1) +
T2(ξ2) + T3(ξ3). Then, (3.5.6) with (3.8.5) yields

h−2
1

[
(∂T1/∂ξ1)

2 − ε1
]+ h−2

2

[
(∂T2/∂ξ2)

2 − ε2
]

+ h−2
3 [(∂T3/∂ξ3)

2 − ε3] = 0. (3.8.6)

This equation, however, cannot be always directly separated because h1, h2, and h3 are,
in general, functions of all three coordinates ξi . In many important curvilinear orthogonal
coordinate systems, however, (3.8.6) can be simply modified to yield a separable equation.
This may be achieved, for example, by suitable multiplications.

As an example, we shall consider spherical polar coordinates ξ1 = r, ξ2 = θ, and ξ3 =
ϕ; seeSection3.5.4.Then,h1 = 1, h2 = r , andh3 = r sin θ . Expressing (3.8.6) in spherical
polar coordinates and multiplying it by r2, we obtain

r 2
[(
∂Tr
∂r

)2

− ε1(r )
]

+
[(
∂Tθ
∂θ

)2

− ε2(θ )
]

+ 1

sin2 θ

[(
∂Tϕ
∂ϕ

)2

− ε3(ϕ)
]

= 0. (3.8.7)

The first term is a function of r only, and the two next terms are functions of θ and ϕ only.
Thus,

r 2
[(
∂Tr
∂r

)2

− ε1(r )
]

= −α1,
[(
∂Tθ
∂θ

)2

− ε2(θ )
]

+ 1

sin2 θ

[(
∂Tϕ
∂ϕ

)2

− ε3(ϕ)
]

= α1.

Here α1 is an arbitrary constant. Multiplying the second equation by sin2 θ , we obtain three
separated equations:(

∂Tr
∂r

)2

− ε1(r ) = −α1
r2
,

(
∂Tϕ
∂ϕ

)2

− ε3(ϕ) = α2,(
∂Tθ
∂θ

)2

− ε2(θ ) = α1 − α2

sin2 θ
.

The complete solution of the eikonal equation in spherical polar coordinates r, θ , and ϕ is
then as follows:

T (r, θ, ϕ)= ±
∫ r

r0

[ε1(r ) − α1/r 2]1/2dr ±
∫ ϕ

ϕ0

[ε3(ϕ) + α2]1/2dϕ

±
∫ θ

θ0

[ε2(θ ) + α1 − α2/sin2 θ ]1/2dθ + α3. (3.8.8)
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In a similar way, we can construct the complete solutions of the eikonal equation in many
other orthogonal curvilinear coordinate systems ξi , for which the velocity distribution is
specified by (3.8.5).

As soon as the complete solution T (ξi ) in the curvilinear orthogonal coordinates ξi is
known in the form analogous to (3.8.8), we can compute the components of the slowness
vector by equations (3.5.4). Similarly, we can obtain the ray equations from the complete
solution of the eikonal equation. Without a derivation, we shall present here the final ray
equations:

∂T (ξ1, ξ2, ξ3, α1, α2)/∂α1 = β1,

∂T (ξ1, ξ2, ξ3, α1, α2)/∂α2 = β2.
(3.8.9)

The ray equations (3.8.9) contain two new constants, β1 and β2. If (3.8.9) are resolved for
ξ2 and ξ3, the ray equations can be expressed in explicit form:

ξ2 = ξ2(ξ1, α1, α2, β1, β2), ξ3 = ξ3(ξ1, α1, α2, β1, β2). (3.8.10)

There are four free parameters in ray equations (3.8.10), so that the complete system of
rays is four-parameteric. See more details on systems of rays in Section 3.10.

Assume now that one coordinate, say x2, is cyclic, so that ε2(x2) = 0. Then, T2(x2) =
(x2 − x20)p2, where p2 = ±√

α2. From (3.8.4), we obtain

T (x1, x2, x3)= p2x2 ±
∫ x1

x10

[ε1(x1) + α1]1/2dx1

±
∫ x3

x30

[
ε3(x3) − α1 − p22

]1/2
dx3 + α3. (3.8.11)

Similarly, for two cyclic coordinates, x1 and x2, we have ε1(x1) = ε2(x2) = 0, and the
complete solution of the eikonal equation is

T (x1, x2, x3)= p1x1 + p2x2 ±
∫ x3

x30

[
ε3(x3) − p21 − p22

]1/2
dx3 + α3.

(3.8.12)

Let us now consider the simplest case of a 1-D, vertically inhomogeneous medium. If we
put p2 = 0, and α3 = 0, (3.8.12) exactly coincides with (3.7.15), derived in a different
way. Note that the integral on the RHS of (3.8.12) represents the delay time τ in this
case. Consequently, the delay times for various coordinate systems for one or two cyclic
coordinates can be simply constructed from the complete solution of the eikonal equation.

Instead of the complete separation of variables, we can also perform an incomplete
separation. The incomplete separation of variables reduces the number of independent
variables in the eikonal equation. This may be useful particularly if one coordinate, say x2,
is cyclic. Then, the eikonal equationmay be applied to the travel-time function T (x1, x2, x3)
given by

T (x1, x2, x3) = p2x2 + T̃ (x1, x3). (3.8.13)

An analogous equation can often be used even in curvilinear coordinates.
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3.8.3 Network Shortest-Path Ray Tracing

Let us consider point source S and receiver R and construct various curves connecting S
and R. According to Fermat’s minimum-time principle, the first-arrival travel time is the
minimum time over all possible paths connecting S and R.

Efficient ways of finding the minimum travel time from S to R and the relevant tra-
jectories on a discrete grid of points are based on the theory of graphs. The trajectory
corresponding to the minimum time is usually called the shortest path, where “shortest”
means the minimum travel time. For this reason, the methods described in this section are
also called the shortest-path methods.

Themodel is represented by a discrete grid of points atwhich the velocities are specified.
By graph, we understand the mathematical object, composed of grid points (representing
nodes) and their connections (called edges or arcs). The graph becomes a network when
weights are assigned to the connections. In our case, the weights are taken to be equal to
the travel times between two connected points. The shortest path in the network may then
be interpreted as an approximation to the seismic ray due to Fermat’s principle. We also
speak of network rays and call the whole procedure network ray tracing.

Each node of the network may be connected only with a limited number of nodes in the
neighborhood, but not with the nodes that lie farther away. To specify these connections,
a very important concept of the forward star has been introduced. The forward star corre-
sponding to an arbitrarily selected node of the network is the set of other nodes with which
the node is connected. The forward star may be constructed in various ways, depending on
the problem under consideration and on other conditions. The forward stars corresponding
to different nodes may be different. They should be small in regions of fast changes of
velocities, and in regions close to interfaces. In regions of smooth velocity changes, they
may be larger.

In the theory of graphs, a very efficient algorithm to determine the shortest path in
networks was proposed by Dijkstra (1959). Various modifications of this algorithm have
been used broadly in network ray tracing.

The first references related to network ray tracing are probably those of Nakanishi and
Yamaguchi (1986), Moser (1991, 1992), and Saito (1989). The proposed algorithms have
been further developed and generalized and/or modified, for example, in papers byMandal
(1992), Asakawa and Kawanaka (1993), Cao and Greenhalgh (1993), Fischer and Lees
(1993), Klimeš and Kvasnička (1994), and Cheng and House (1996).

A very detailed and tutorial treatment can be found in Moser (1992), which is rec-
ommended for further reading. The same reference also discusses, in great detail, many
applications of network ray tracing in seismology and in seismic exploration. See also
Nolet and Moser (1993) for applications.

In large 3-Dmodels, the network ray tracingmay be rather time-consuming. It would be
suitable to decrease the size of the model. If the first estimate of the ray� connecting points
S and R is known, it may be useful to consider a Fresnel volume-like model connected
with the ray estimate and to perform network ray tracing computations only in it. The exact
size and shape of the model is not too decisive; it is only required that the model be chosen
sufficiently broad to include the ray update.

In network ray tracing, it is very important to determine estimates of the maximum error
in computing the first-arrival travel times. A detailed analysis of this error is given inKlimeš
and Kvasnička (1994). The authors propose a suitable way to estimate the maximum error
of computations in network ray tracing and to minimize the error by optimizing the sizes
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of the forward star. Their computer programs also yield, in addition to first-arrival travel
times and network rays, estimates of these errors.

Note that the method of network ray tracing can also be generalized for 3-D inhomo-
geneous anisotropic media.

3.8.4 Finite-Difference Method

In fact, the finite-difference method described here has nothing in common with the finite-
difference method of solving linear partial differential equations, such as the acoustic wave
equation or the elastodynamic equation. It is usually specified in the seismological literature
as the finite-difference solver of the eikonal equation. This, however, does not mean that the
classical finite-difference method is applied to the eikonal equation. We must remember
that the eikonal equation is a nonlinear equation, and that its direct finite-difference solution
is not simple. The finite-difference method discussed here uses certain important conse-
quences of the eikonal equation, as well as of the consequences of some other concepts
(such as the Huygens principle). The direct numerical solution of the eikonal equation has
been used only exceptionally; see Pilipenko (1979, 1983) for details, a description of the
algorithm, and numerical examples of applications.

The method of finite differences for computing the first-arrival travel times along
an expanding square (in 2-D) and along an expanding cube (in 3-D) was proposed by
Vidale (1988, 1989, 1990). In the method, the first-arrival travel times at points situated
on the expanded square (cube) are computed from the first-arrival travel times known at
points situated on the original squares (cubes). The expansion equations are different, de-
pending on the position of the point on the square, and on its distance from the source.
At large distances from the source, the expansion is performed by a local plane-wave
approximation.

The main principles of the finite-difference computation of first-arrival travel times
can be very simply demonstrated on the case of an expanding halfspace. Reshef and
Kosloff (1986) were the first to propose this algorithm, mainly for applications in seis-
mic exploration reflection methods. They consider only one-way propagation (forward
continuation). In 2-D, the eikonal equation (T,x )2 + (T,z)2 = V−2 is expressed in explicit
form:

T,z = +[1/V 2 − (T,x )
2
]1/2
. (3.8.14)

The plus sign corresponds to the forward continuation, so that the algorithm yields first-
arrival travel times. The algorithm to solve (3.8.14) follows:

a. The derivative T,x = ∂T (x, z)/∂x along level z = const. is evaluated by finite dif-
ferences, assuming T (x, z) along this level is known.

b. The depth continuation (along z) is realized from one level to another by the Runge-
Kutta method of the fourth order.

The initial values of T for z = 0 have the form T (x, z = 0) = T 0(x) (the initial travel-time
curves or the source). Function T 0(x) may be obtained by standard ray tracing in the known
model.

The same algorithm can also be used for the backward continuation (decreasing time).
In this case, it would be necessary to use the minus sign in (3.8.14). The method was
extended to 3-D by Reshef (1991). The assumption of one-way propagation automatically
eliminates the waves propagating in the opposite direction.
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The next “finite-difference (FD)” method, mentioned earlier, was proposed by Vidale
(1988, 1989, 1990) for 2-D and 3-D models with an arbitrarily situated point source. The
first-arrival travel times are computed along a discrete expanding square (in 2-D) or along
an expanding cube (in 3-D). For FD computations along expanding circles or spheres (in
polar coordinates), see Schneider (1995).

The expanding-square procedure has certain drawbacks. For example, it does not give
sufficiently accurate results in regions of higher velocity contrast. It does not yield any
estimate of the error of computations. The approximations used are not sufficiently accurate
in situations inwhich thewavefront is strongly curved (for example, in the vicinity of a point
source). To eliminate these problems, the algorithms proposed byVidale have recently been
generalized and extended in many ways. Similar algorithms have also been proposed for
anisotropic media. We shall not give any details but only refer to published papers. See Qin
et al. (1992, 1993), van Trier and Symes (1991), Podvin and Lecomte (1991),Matsuoka and
Ezaka (1992), Schneider et al. (1992), Lecomte (1993), Eaton (1993), Li andUlrych (1993a,
1993b), Cao and Greenhalgh (1994), Faria and Stoffa (1994), Riahi and Juhlin (1994),
Schneider (1995), Hole and Zelt (1995), and Klimeš (1996). Among all these extensions
and modifications, the algorithms proposed by Podvin and Lecomte (1991) should be
particularly emphasized. The algorithmsworkwell even in regions containing large velocity
contrasts on structural interfaces of arbitrary shape. Instead of finite differences, the finite
elements also were used; see Daley, Marfurt, and McCarron (1999).

In the method described, only the first-arrival travel times, not the rays, are calculated.
If the rays are needed for some other purpose, they must be calculated a posteriori from
known travel times. It should, however, bementioned that themethod yields rays of different
elementary waves in different regions of the model.

The main drawback of the FD eikonal solver is that only the first-arrival times are
computed. Recently, some new hybrid extensions of the FD solver have been proposed;
they can also be used in multivalued travel-time computations. These extensions combine
global standard ray tracing with the local FD solution of the eikonal equation. See the “big
ray tracing” of Benamou (1996) and Abgrall and Benamou (1999).

In conclusion, we can say that the finite-difference method is the fastest method of
computing the first-arrival travel times. The accuracy of most present algorithms, how-
ever, is lower than the accuracy of recent versions of the network ray tracing algorithm,
particularly in 3-D structures. See Klimeš and Kvasnička (1994).

3.8.5 Wavefront Construction Method

The purpose of the wavefront construction method is to compute successively the wave-
fronts of an elementary wave under consideration for travel times T = T0 + k�T , k =
1, 2, . . . , starting from the initial wavefront T = T0. The current kth wavefront T =
T0 + k�T is constructed from the previous (k − 1)th wavefront T = T0 + (k − 1)�T
using short elements of rays calculated by ray tracing. The number of rays in the method is
not fixed but is adjusted at each wavefront (for each k). The new rays at a current wavefront
are introduced as soon as some imposed criteria are not satisfied. The criteria may include
a too large distance between neighboring rays, or a large difference in the directions of two
neighboring rays. The initial conditions for new rays at the wavefront are determined from
neighboring rays using some sort of interpolation. The wavefront construction method has
been proposed and successfully applied to 3-D laterally varying layered structures with a
smooth velocity distribution in individual layers byVinje et al. (1992, 1993, 1996), Coultrip
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(1993), Ettrich and Gajewski (1996), Lucio, Lambaré, and Hanyga (1996), and Lambaré,
Lucio, and Hanyga (1996). It may, however, be easily applied even to grid models. The
travel times at grid points in the individual small cells between succeeding wavefronts and
neighboring rays are determined by interpolation.

There is a basic difference between the wavefront construction method, described here,
and the classical time-field method, described at the beginning of Section 3.8. In the wave-
front construction method, the current wavefront is obtained from the previous wavefront
by ray tracing short ray elements. In the time-fieldmethod, the currentwavefront is obtained
from the previous one by using Huygens principle, that is, by constructing the envelope
surface to spheres with the centers distributed along the previous wavefront. The time-field
method can easily be realized graphically in 2-D models, using a pair of compasses. Its
computer realization, however, is difficult, particularly in 3-D models. Consequently, the
wavefront construction method is considerably more suitable for computer treatment than
the time-field method.

Thus, the wavefront construction method is based on a computation of rays and wave-
fronts. It differs both from standard ray tracing and from direct travel-time computation.
Consequently, it is to some extent questionable whether it should be included in the section
devoted to the direct computation of travel times because it uses short ray segments to
construct the wavefronts successively. See also a brief discussion and comparison of the
wavefront construction method with the controlled shooting method in Section 3.11.2.

3.8.6 Concluding Remarks

In Sections 3.8.3 and 3.8.4, we have described the grid computations of first-arrival travel
times. It is, however, necessary to emphasize that even the ray-theory travel times of selected
elementarywaves can be evaluated in gridmodels. As shown in Section 3.8.5, thewavefront
construction method is suitable for this purpose. Several other methods suitable for such
computations are described in Section 3.11.2. Let us name, among others, the controlled
ray tracing supplemented by ray paraxial approximation or by weighting of ray paraxial
approximations.

As discussed in Sections 3.8.3 and 3.8.4, the methods of finite differences and of
shortest-path ray tracing are suitable for computing first-arrival travel times in grid models.
They are, however, not as suitable if we also wish to compute geometrical spreading and
amplitudes; see Section 3.10. These quantities are usually computed along rays, but the
rays are not known in the first-arrival travel-time grid computations. There are two options
in treating this problem:

a. To compute the rays a posteriori from travel times and to calculate the geometrical
spreading and ray amplitudes along these rays.

b. To calculate the geometrical spreading and ray amplitudes directly from the travel-
time field.

Theoretically, it is possible to calculate the geometrical spreading from the travel-time
field of a specified elementary wave. Two such methods are described in Section 4.10.5;
another is discussed in Vidale and Houston (1990). It is also possible to solve the transport
equation by finite differences; see Buske (1996). All these direct methods, however, require
the knowledge of the second spatial derivatives of the travel-time field, which must be
determined numerically from known travel times at grid points. Because the accuracy of
the travel times is usually not high, the numerical determination of the second derivatives
of travel times may be rather problematic, particularly in 3-D models. Moreover, there may
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be additional problems with reflection/transmission coefficients at structural interfaces in
case of layered and block models.

There is, however, another great danger in calculating amplitudes from grid computa-
tions of first-arrival travel times. Usually, the zeroth-order ray approximation is used for
calculation, but the waves arriving first are not necessarily zeroth-order elementary waves,
at least in certain regions. Simple examples are head waves and diffracted waves penetrat-
ing into shadow zones. Thus, we would apply the zeroth-order approximation equations to
compute amplitudes of waves that are not zeroth-order elementary waves. This, of course,
could yield unpredictable errors.

The preceding problems play an important role only in first-arrival travel time com-
putations such as finite differences and network ray tracing. In the method of wavefront
construction (see Section 3.8.5), the geometrical spreading and ray amplitudes can be
calculated quite safely along the rays of the elementary wave under consideration.

3.9 Perturbation Methods for Travel Times

The methods of ray tracing and travel-time computations described in this chapter are
simple and straightforward in principle and can be used to solve direct kinematic problems
in any laterally inhomogeneous, three-dimensional, isotropic or anisotropic, layered and
block structures. It would, however, be rather time-consuming and cumbersome to use the
methods to solve inverse kinematic problems by numerical modeling.

A simple procedure to solve both direct and inverse kinematic problems in inhomo-
geneous, isotropic or anisotropic structures is based on perturbation theory. Perturbation
methods can be used to solve even more complex problems of seismic wave fields, not
just the problem of computing travel times; see Sections 2.6.2 and 4.7.4. In this section,
however, we shall discuss only the first-order travel-time perturbations. The application of
perturbationmethods to travel times is particularly attractive in the solution of the kinematic
inverse problem.

There are threemain approaches to deriving first-order perturbation equations for travel
times.The first approach, most common in the seismological literature, is based on Fermat’s
principle. It exploits the fact that the ray is a curve that renders Fermat’s functional station-
ary. Thus, in the first-order perturbation theory for travel times, the ray-path changes can be
ignored because they are of the second order. See, for example, Aki and Richards (1980, p.
797) andNolet (1987) for isotropicmedia andChapmanandPratt (1992) for anisotropicme-
dia. The second approach is based directly on the eikonal equation and does not exploit Fer-
mat’s principle at all. See Romanov (1972, 1978) for isotropic media and Červený (1982a),
Červený and Jech (1982), Hanyga (1982b), and Jech and Pšenčı́k (1989) for anisotropic
media. The procedure becomes particularly simple if the eikonal equation is expressed
in Hamiltonian form, and the problem is solved in terms of canonical coordinates xi , pi
in 6-D phase space. See Farra and Madariaga (1987), Nowack and Lutter (1988), Farra,
Virieux, andMadariaga (1989), Farra and Le Bégat (1995), and Farra (1999). The third ap-
proach is based on a Lagrangian formulation. As a starting point, it uses the Euler-Lagrange
equation of rays, (3.1.37) or (3.1.40), expressed in terms of xi and x ′

i = dxi/du. For a good
description, see Snieder and Sambridge (1992), Sambridge and Snieder (1993), Snieder and
Spencer (1993), Snieder andAldridge (1995), and Snieder and Lomax (1996). Note that the
second and third approaches can be used more broadly in the ray perturbation theory, not
just in the derivation of first-order perturbation equations for travel times; see Section 4.7.4.

The derivation of the first-order perturbation equations for travel times presented in
this section is based mainly on the eikonal equation, expressed in Hamiltonian form
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H(xi , pi )= 0. The results may be applied both to isotropic and anisotropic media, includ-
ing the singular directions in anisotropic media. They also consider nonfixed end points
of the ray and perturbations of structural interfaces. The derivation, close to that given by
Farra and Le Bégat (1995), is very general, objective, and straightforward.

3.9.1 First-Order Perturbation Equations for Travel Times

in Smooth Media

Let us consider an elementary wave propagating in a smooth reference medium M0,
characterized by HamiltonianH0. Similarly, as in Section 2.6.2, reference mediumM0 is
also called the background or nonperturbed medium. The mediumM0 may be isotropic or
anisotropic, and the elementary wave may be P or S in an isotropic medium or qP, qS1, or
qS2 in an anisotropic medium. The results will be generalized for layered media containing
structural interfaces in Section 3.9.5.

We further consider reference ray �0 in M0, connecting two points S and R. We
introduce monotonic parameter u along �0 and denote by x0i (u) and p0i (u) the Cartesian
coordinates of points and Cartesian components of the slowness vector along reference ray
�0. Monotonic parameter u along �0 cannot be chosen arbitrarily; it is determined by the
form of the HamiltonianH0 under consideration. At points S and R, monotonic parameter
u takes the values uS and uR . Then travel time T 0(x0i (uR), x

0
i (uS)) from S to R along �0

in reference mediumM0 is given by the integral

T 0
(
x0i (uR), x

0
i (uS)

) =
∫ uR

uS

p0i
(
∂H0

/
∂p0i

)
du =

∫ uR

uS

p0i ẋ
0
i du; (3.9.1)

see (3.1.3). Here ẋ0i = dx0i /du.
Now we shall consider perturbed modelM, which differs only slightly from reference

modelM0, and denote the relevant HamiltonianH. We introduce the model perturbations
�H of the Hamiltonian by relationH = H0 +�H. Consider ray � in perturbed medium
M, which deviates only slightly from reference ray �0 in background mediumM0. See
Figure 3.8. We define ray � by parameteric equation xi (u) = x0i (u) +�xi (u), where u is

S

Ω

R

un

S

R

Ω

Ω

0

0

perturbed
medium

perturbed
medium

Figure 3.8. Ray �0 from S to R in
the unperturbed (background) medium,
and the relevant ray � from S to R in
the perturbed medium. The first-order
travel-time perturbations �T (R, S) due
to perturbations of Hamiltonian�H can
be calculated in terms of quadratures of
−�H along the reference ray�0 from S
to R. It is not necessary to determine ray
�.
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the monotonic parameter introduced along reference ray �0. We allow �xi (uS) �= 0 and
�xi (uR) �= 0, so that end points S′ and R′ of perturbed ray � may be different from end
points S and R of reference ray�0. Similarly, the components of the slowness vector along
� are given by relations pi (u) = p0i (u) +�pi (u). We also introduce �ẋi (u) with relation
ẋi (u) = ẋ0i (u) +�ẋi (u). Considering only the first-order perturbations, we can express
travel time T (xi (uR), xi (uS)) along perturbed ray � in perturbed mediumM as follows:

T (xi (uR), xi (uS))=
∫ uR

uS

pi ẋidu

.=
∫ uR

uS

(
p0i ẋ

0
i + p0i�ẋi + ẋ0i �pi

)
du. (3.9.2)

We shall now express ẋ0i �pi in (3.9.2) in terms of �H(x0i , p
0
i ). We use the expansion

H(xi , pi )=H0(xi , pi ) +�H(xi , pi )

=H0
(
x0i , p

0
i

)+ (
∂H0

/
∂x0i

)
�xi

+ (
∂H0

/
∂p0i

)
�pi +�H

(
x0i , p

0
i

)
=H0

(
x0i , p

0
i

)− ṗ0i�xi + ẋ0i �pi +�H(x0i , p0i ).
Here we have used�H(xi , pi )

.= �H(x0i , p
0
i ) because we are considering only first-order

perturbations. Also, ṗ0i (u) = dp0i /du. If we insert H(xi , pi ) = 0 and H0(x0i , p
0
i ) = 0, we

obtain

ẋ0i �pi = ṗ0i�xi −�H(x0i , p0i ),
pi ẋi = p0i ẋ

0
i −�H(x0i , p0i )+ d

(
p0i�xi

)/
du.

Using these relations in (3.9.2) yields

T (xi (uR), xi (uS))= T 0
(
x0i (uR), x

0
i (uS)

)
−
∫ uR

uS

�H(x0i , p0i )du +�T e(uR, uS), (3.9.3)

where �T e(uR, uS) = �T e(R, S) is the end-point travel-time contribution, given by the
relation

�T e(R, S) = p0i (R)�xi (R) − p0i (S)�xi (S). (3.9.4)

For fixed end points S and R, we have �xi (R) = 0 and �xi (S) = 0, and �T e(R, S)
vanishes. �T e(R, S) will be discussed in more detail later.

For fixed points S and R, travel-time perturbation �T (R, S) is introduced as follows:

�T (R, S) = T (xi (uR), xi (uS)) − T 0
(
x0i (uR), x

0
i (uS)

)
. (3.9.5)

In the first-order perturbation theory, �T (R, S) is given by the relation

�T (R, S) = −
∫
�0(R,S)

�H(x0i , p0i )du; (3.9.6)

see (3.9.3). This is the final relation, valid both for isotropic and anisotropic media. The
integration is taken along reference ray�0(R, S) in nonperturbed mediumM0, from point
S to R. The relation remains valid even in layeredmedia with fixed, nonperturbed structural
interfaces; see Section 3.9.5. If the structural interfaces are also perturbed, it is necessary
to add an additional term to (3.9.6). See Section 3.9.5 for its derivation.



192 SEISMIC RAYS AND TRAVEL TIMES

One thing should be emphasized at this point. In the derivation of �T (R, S), we have
used perturbations �xi and �pi , specifying perturbed ray � and slowness vector 	p along
it. The final result (3.9.6), however, does not depend at all on�xi and�pi ; the integration is
performed along reference ray�0 in unperturbed mediumM0. To calculate�T (R, S), the
only quantity that should be known along �0 is the structural perturbation of Hamiltonian
�H(x0i , p

0
i ), for x

0
i and p0i fixed along �0. The derivation of �xi and �pi themselves is

more complex and requires dynamic ray tracing. See Section 4.7.4.
Let us now briefly explain the end-point travel-time contribution �T e(R, S), given by

(3.9.4). It does not depend on medium perturbations and merely expresses the change of
the travel time if the end points of ray �0 are slightly shifted. Consider two points, S′ and
R′, situated close to S and R. Expression�T e(R, S) can then be used to calculate the travel
time from S′ to R′, if the travel time from S to R is known:

T (R ′, S′) .= T (R, S) +�T e(R, S)

= T (R, S) + p0i (R)�xi (R) − p0i (S)�xi (S). (3.9.7)

Here �xi (R) and �xi (S) express the shifts from R to R′ and from S to S′, respectively.
Consequently, it is not necessary to perform new ray tracing from S′ to R′ if we wish to
determine T (R′, S′). Equation (3.9.7) is, however, valid only up to linear terms�xi (S) and
�xi (R). A more general expression for T (R′, S′), quadratic in �xi (R) and �xi (S), will
be derived in Section 4.9.2. It will, however, require dynamic ray tracing along �0 and
computing the ray propagator matrix.

Equation (3.9.7) can be used both for isotropic and anisotropic media. We shall not
discuss it anymore and consider only fixed end points S and R of �0 in the next sections.

3.9.2 Smooth Isotropic Medium

In isotropic media, it is common to consider the arclength s as an independent variable u
along reference ray�0 in background modelM0. The relevant Hamiltonian is given by the
relation H(xi , pi ) = √

pi pi − 1/V ; see (3.1.6) for n = 1. The perturbation �H(x0i , p
0
i )

of Hamiltonian is then given by the relation

�H(x0i , p0i ) = −�(1/V ). (3.9.8)

The first-order travel-time perturbation is as follows:

�T (R, S) =
∫
�0(R,S)

�(1/V )ds; (3.9.9)

see (3.9.6). This is a famous relation, well known from most seismological textbooks. It is
valid both for P waves (with V = α) and for S waves (V = β). Its alternative derivation,
based on Fermat’s principle, is elementary. Considering T (R, S) = ∫ R

S (1/V )ds, where the
integration is performed along the ray�0, and taking into account that the ray-path changes
can be ignored, we immediately obtain (3.9.9) for �T (R, S).

Relation (3.9.9) is valid even in layered isotropic media, when the position of the
interfaces is fixed. See Firbas (1984) and Section 3.9.5. An additional term to (3.9.9) for
layered medium with perturbed interfaces will be derived in Section 3.9.5.

Equation (3.9.9) plays a very important role in the solution of inverse kinematic prob-
lems of isotropic laterally varyingmedia, particularly in tomographicmethods. Its attractive
feature is that it gives a linear relationship between�T and�(1/V ). Consequently, it can
be used to determine the slowness perturbations �(1/V ) from the measured travel-time
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perturbations.Wemust, however, remember that (3.9.9) is only approximate, based on first-
order perturbation theory. Therefore, it should be used iteratively in practical applications.
Actually, the relation between�T (R, S) and�(1/V ) is nonlinear. For this reason, (3.9.9)
is also often called the linearized travel-time equation.

3.9.3 Smooth Anisotropic Medium

We shall consider the anisotropic Hamiltonian (3.6.3)

H(xi , pi ) = 1
2 [Gm(xi , pi ) − 1]. (3.9.10)

Here Gm(xi , pi ) is an eigenvalue of the Christoffel matrix �ik = ai jkl p j pl , and 	g (m) is
the relevant eigenvector. The index m specifies the type of the elementary wave under
consideration: m = 1 for qS1 wave, m = 2 for qS2 wave, and m = 3 for qP wave. We
assume that the eigenvalueGm(xi , pi ) under consideration is not equal or close to any other
eigenvalueGk(xi , pi ), k �= m, at any point of the ray�0. Hamiltonian (3.9.10) corresponds
to monotonic parameter u = T along ray �0. Equation (3.9.10) yields

�H(x0i , p0i ) = 1
2�Gm

(
x0i , p

0
i

)
. (3.9.11)

To determine�Gm(x0i , p
0
i ), we shall exploit equation (� jk − Gmδ jk)g

(m)
k = 0. Taking first-

order perturbation, we obtain the basic equation for �Gm :

(� jk − Gmδ jk)�g
(m)
k + (�� jk −�Gmδ jk)g

(m)
k = 0. (3.9.12)

To simplify the notation, we shall not use zeros in superscripts to emphasize that the
quantities are taken at �0. We must, however, remember that all quantities in (3.9.12) and
in the following equations are taken at �0. Consequently, we also have

�� jk = �ai jkl p j pl . (3.9.13)

Multiplying (3.9.12) by g(m)
j yields

(�� jk −�Gmδ jk)g
(m)
k g(m)

j = 0,

as (� jk − Gmδ jk)g
(m)
j = 0. Since 	g (m) is a unit vector, g (m)

k g (m)
k = 1; hence,

�Gm(xi , pi ) = �� jk g
(m)
k g (m)

j = �ai jkl pi plg
(m)
j g (m)

k . (3.9.14)

Consequently,

�T (R, S) = − 1
2

∫
�0(R,S)

�ai jkl pi plg
(m)
j g(m)

k dT . (3.9.15)

The integration is performed along reference ray�0 inM0 from S to R, and all quantities
in (3.9.15) are taken along �0. Integration variable dT can be expressed in terms of
ds, dT = ds/U , where s is the arclength along �0 and U is the group velocity. Thus,
the alternative form of (3.9.15) is as follows:

�T (R, S) = − 1
2

∫
�0(R,S)

�ai jkl pi plg
(m)
j g(m)

k U−1ds. (3.9.16)

Equation (3.9.15) was first derived (in a slightly different form than given here) from
the eikonal equation by Červený (1982a), using Romanov’s ideas (Romanov 1972, 1978).
An alternative derivation was given by Hanyga (1982b). For a very detailed discussion
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of (3.9.15) and for its specification for many special anisotropic situations, see Červený
and Jech (1982). Numerical examples can be found in Červený and Firbas (1984) and
in Firbas (1984). An independent derivation, based on Fermat’s principle, was given by
Chapman and Pratt (1992). It will be also derived in Section 5.4.6 using the quasi-isotropic
approximation.

It is straightforward to derive from (3.9.15) and (3.9.16) expressions for the perturba-
tions of the phase and group velocities at any point of the ray. Note that the expressions for
the perturbation of phase velocity in a homogeneous anisotropic mediumwere first derived
as early as in 1960s in a classical paper by Backus (1965).

In (3.9.15) and (3.9.16), both reference mediumM0 and perturbed mediumM are, in
general, anisotropic. For qP waves (m = 3), the equations may be used quite universally,
even for reference medium M0 isotropic and perturbed medium M anisotropic (weak
anisotropy). For both M0 and M isotropic, (3.9.16) yields (3.9.9) for qP waves. For qS
waves, however, equations (3.9.15) and (3.9.16) fail if the two eigenvalues G1 and G2 of
the two qS waves are equal or very close to each other along some part of reference ray
�0 or along the whole ray�0 in unperturbed mediumM0. The reason is that eigenvectors
	g (1) and 	g (2) cannot be defined uniquely for G1 = G2. See the detailed treatment of this
case in the next section.

As we can see in (3.9.15) and (3.9.16), the relation between travel-time perturbation
�T (R, S) and perturbations of density-normalized elastic parameters�ai jkl is linear even
in anisotropicmedia. For this reason, (3.9.15) and (3.9.16) again represent linearized travel-
time equations. The equations can be suitably used in the solution of inverse kinematic
problems of anisotropic media, particularly in tomographic studies. See Chapman and
Pratt (1992), Jech and Pšenčı́k (1992), and Pratt and Chapman (1992).

3.9.4 Degenerate Case of qS Waves in Anisotropic Media

If the eigenvalues G1 and G2 of the two qS waves are equal or very close to each other
along the whole ray�0, or along some part of it in unperturbed mediumM0, the linearized
travel-time equations for�T (R, S), derived in Section 3.9.3, fail. There are two important
situations when such difficulties appear in practical applications. Globally, G1 equals G2

along the whole ray �0 if reference mediumM0 is isotropic. We then speak of the quasi-
isotropic case. Locally,G1 equalsG2, or is close to it when the direction of slowness vector
	p at some part of �0 is close to the shear wave singular direction. We then speak of the
quasi-degenerate case. See Section 2.2.8 and 2.2.9 for more details. This terminology was
introduced byKravtsov andOrlov (1980).We shall distinguish both cases only if necessary;
otherwise, we shall speak of the degenerate case of qS waves.

The equations for the travel-time perturbations in the degenerate case of qS waves
were first derived and discussed by Jech and Pšenčı́k (1989); see also Nowack and Pšenčı́k
(1991). For the solution of similar problems in quantum physics, see Landau and Lifschitz
(1974), and for the solution of similar problems in the theory of electromagnetic waves,
see Kravtsov (1968), Kravtsov and Orlov (1980). The last reference also gives an extensive
bibliography on this subject. See also Section 5.4.6.

We shall consider reference ray �0 situated in unperturbed medium M0, with pi (u)
known along �0. Consider a point u = u0 of reference ray �0 at which G1(u0) = G2(u0),
with G3(u0) �= G1(u0), for the relevant slowness vector 	p(u0). In the following, we shall
consider point u = u0 of �0, but we shall not write u0 as the argument of the individual
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quantities. Only eigenvector 	g (3), not 	g (1) and 	g (2), can be uniquely determined at that point.
We only know that 	g (1) and 	g (2) are mutually perpendicular and that they are situated in
a plane perpendicular to 	g (3). We select two arbitrary, mutually perpendicular unit vectors
	e (1) and 	e (2) in a plane perpendicular to 	g (3). We number unit vectors 	e (1) and 	e (2) so
that triplet 	e (1), 	e (2)

, 	g (3) is right-handed. We define two new, mutually perpendicular, unit
vectors 	g (1)

, 	g (2) in a plane perpendicular to 	g (3) as follows:

g(M)
k = a(M)

J e(J )k , (3.9.17)

with the summation over J = 1, 2. We choose them so that triplet 	g (1)
, 	g (2)

, 	g (3) is
right-handed. Then a(2)1 = −a(1)2 , a

(2)
2 = a(1)1 , a

(1)2
1 + a(1)22 = 1. We can also denote a(1)1 =

cosϕ, a(1)2 = sinϕ where ϕ is the angle between 	g (1) and 	e (1), cosϕ = 	g (1) · 	e (1), and
sinϕ = 	g (1) · 	e (2).

Using (3.9.12) for m = M (with M = 1, 2), we obtain

(� jk − GMδ jk)�g
(M)
k + (�� jk −�GMδ jk)g

(M)
k = 0 (3.9.18)

(no summation over M). Inserting (3.9.17) into (3.9.18) and multiplying the result by e(M)
j ,

we obtain

(BIK −�GMδIK)a
(M)
I = 0, (3.9.19)

where

BIK = �� jke
(I )
j e

(K )
k = �ai jkl pi ple

(I )
j e

(K )
k . (3.9.20)

The 2 × 2 matrix B is usually called the weak-anisotropy matrix. In the derivation of
(3.9.19) from (3.9.18), we have taken into account that (� jk − GMδ jk)e

(M)
j = 0 for any

vector 	e (M) perpendicular to 	g (3). We have also used e(I )j e
(K )
j = δIK.

Thus, the problemof determining�GM is reduced to the solution of eigenvalue problem
(3.9.19) for a 2 × 2weak-anisotropymatrixBgiven by (3.9.20). It is easy tofind eigenvalues
�GM and the relevant eigenvectors 	a (M) (M = 1, 2):

�G1,2 = 1
2 [(B11 + B22) ± D], (3.9.21)

a(1)1 = a(2)2 = 1√
2

(
1 + B11 − B22

D

)1/2

,

a(1)2 = −a(2)1 = sgn B12√
2

(
1 − B11 − B22

D

)1/2

,

(3.9.22)

with

D = [
(B11 − B22)

2 + 4B2
12

]1/2
. (3.9.23)

Note that the 2-D eigenvectors 	a (1) and 	a (2) of the 2 × 2 weak-anisotropy matrix B are
specifiedwith respect to the frame given by 	e (1) and 	e (2) in a plane perpendicular to 	g (3); see
(3.9.17). To calculate actual 3-D vectors 	g (1) and 	g (2) from 	a (1) and 	a (2) given by (3.9.22),
we must use (3.9.17).

The result (3.9.22) is very interesting. The two eigenvectors 	g (1) and 	g (2), given by
(3.9.17) with (3.9.22), can be determined uniquely even if the background model is de-
generate (for example, isotropic medium). Eigenvectors 	g (1) and 	g (2), however, depend on
the properties of the perturbed medium, specifically on perturbations �ai jkl . For different
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�ai jkl , different eigenvectors 	g (1) and 	g (2) are obtained. Thus, the perturbation eliminates
degeneration (Landau and Lifschitz 1974; Jech and Pšenčı́k, 1989). In the degenerate case
of qS waves, 	g (1) and 	g (2) have a double function:

1. In 3-D, they represent the eigenvectors of the 3 × 3 Christoffel matrix �ik , corre-
sponding to eigenvalues G1 = G2.

2. In the plane perpendicular to 	g (3), they represent the eigenvectors of the 2 × 2
matrix BIK, corresponding to eigenvalues �G1 and �G2.

Nowweshall discuss the travel-timeperturbations for qSwaves in theweakly anisotropic
media, with the isotropic background mediumM0. In this case, 	g (3) is tangent to the refer-
ence ray, and 	e (1) and 	e (2) are perpendicular to it. Along reference ray �0, we choose unit
vectors 	e (1) and 	e (2), which vary smoothly (but arbitrarily) along �0. They may represent
unit normal 	n and unit binormal 	b, the basis vectors of the ray-centered coordinate system
	e1, 	e2 (see Section 4.1.1), and so on. Inserting (3.9.21) into (3.9.11) and (3.9.6), we
immediately obtain expressions for the travel-time perturbations �T1,2(R, S):

�T1,2(R, S) = − 1
4

∫
�0(R,S)

[(B11 + B22) ± D]dT . (3.9.24)

All quantities in (3.9.24) are taken along reference ray �0 in the background isotropic
medium M0. We can also use dT = ds/β, where s is the arclength along �0. The two
signs in (3.9.24) correspond to the two qS waves polarized along 	g (1) and 	g (2). The plus
sign stands for the faster qS wave, and the minus sign stands for the slower qS wave. As we
can see from (3.9.24), (3.9.23), and (3.9.20), the relation between �T1,2(R, S) and �ai jkl
is nonlinear in the degenerate case of qS waves.

Unit vectors 	e (1) and 	e (2) may also represent the eigenvectors 	g (1) and 	g (2), given by
(3.9.17) with (3.9.22). We denote the weak-anisotropy matrix B corresponding to 	e (1) =
	g (1) and 	e (2) = 	g (2) by Bg ,

Bg
IJ = �ai jkl pi plg

(I )
j g

(J )
k . (3.9.25)

It is simple to see that Bg is a diagonal 2 × 2 matrix, related to B as follows:

Bg = ATBA, A =
(
a(1)1 −a(1)2

a(1)2 a(1)1

)
. (3.9.26)

Consequently,

Bg
11 = 1

2 [(B11 + B22) + D] = �G1,

Bg
22 = 1

2 [(B11 + B22) − D] = �G2, Bg
12 = 0 ;

(3.9.27)

see (3.9.21). Let us emphasize that Bg
IJ, given by (3.9.25), are not linear functions of�ai jkl

because 	a (1) and 	a (2) also depend on �ai jkl ; see (3.9.22).
Let us now consider three consequences of perturbation equation (3.9.24).

a. Average qS-wave travel-time perturbation. This is given by the relation

�T a = 1
2 [�T1(R, S) +�T2(R, S)] = − 1

4

∫
�0(R,S)

(B11 + B22)dT .

(3.9.28)
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The average qS-wave travel-time perturbation �T a is linear in �ai jkl . Relation (3.9.28)
was first derived by Červený and Jech (1982).

b. The time delay between the two split qS waves. This is given by the relation

�T s = �T2(R, S) −�T1(R, S) = 1
2

∫
�0(R,S)

DdT, (3.9.29)

where D is given by (3.9.23). As we can see, �T s is again nonlinear in �ai jkl .

c. Separation of isotropic and anisotropic perturbations. The perturbations of the
density-normalized elastic parameters �ai jkl include both isotropic and anisotropic per-
turbations: We shall express �ai jkl(xi ) as follows:

�ai jkl(xi ) = �A0
i jkl(xi ) +�Ai jkl(xi ), (3.9.30)

where �A0
i jkl(xi ) represents the isotropic perturbation, and �Ai jkl(xi ) represents the

anisotropic perturbation. The weak-anisotropy matrix B then reads

BIJ = pl p j e
(I )
i e(J )k

(
�A0

i jkl +�Ai jkl
) = 2β−1�βδIJ + CIJ, (3.9.31)

where

CIJ = p j ple
(I )
i e(J )k �Ai jkl ; (3.9.32)

see (3.9.20). Inserting (3.9.31) into (3.9.24) yields

�T1,2 = −
∫
�0(R,S)

β−1�βdT − 1
4

∫
�0(R,S)

(C11 + C22)dT

∓ 1
4

∫
�0(R,S)

[
(C11 − C22)

2 + 4C2
12

]1/2
dT . (3.9.33)

Consequently, the average qS-wave travel-time perturbation �T a is

�T a = −
∫
�0(R,S)

β−1�βdT − 1
4

∫
�0(R,S)

(C11 + C22)dT, (3.9.34)

and the time delay �T s between the two split qS waves is

�T s = 1
2

∫
�0(R,S)

[
(C11 − C22)

2 + 4C2
12

]1/2
dT . (3.9.35)

As we can see, the time delay �T s does not depend on isotropic perturbations �β, but
depends only on anisotropy perturbations �Ai jkl . This makes the inversion of the time
delay between two split qS waves very attractive. As expected, the relation between �T s

and �Ai jkl is nonlinear.
The foregoing relation for�T s can also be obtained considering factorized anisotropic

media; then,�Ai jkl are constant in the region under interest. Formore details and numerical
examples related to �T s in factorized anisotropic media, see Červený and Simões-Filho
(1991).

The results of this section can be generalized considering a reference common ray
�0(R, S) different from the ray of S wave in the background isotropic medium. For ex-
ample, it may be useful to consider the ray of the hypothetical qS wave corresponding to
the average eigenvalue Gav of both qS waves as the reference ray. Such a ray can be safely
computed even in weakly anisotropic media; see Section 3.6.2. In this way, we can obtain
more accurate expressions even for �T a and �T s .
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3.9.5 Travel-Time Perturbations in Layered Media

In this section, we shall mostly follow the approach proposed by Farra and Le Bégat (1995).
Consider the reference ray�0(R, S) of an arbitrary elementary multiply reflected (possibly
converted) wave propagating in a 3-D laterally varying layered structure M0, passing
throughfixedpoints S and R.We further consider N points of reflection/transmission on�0,
between S and R, and denote successively the points of incidence on structural interfaces
�1, �2, . . . , �N by Q1, Q2, . . . , QN ; see Figure 3.5.Wecan then apply successively (3.9.3)
with (3.9.4) to each segment of the ray between two R/T points and obtain

T (xi (uR); xi (uS))=
∫ uR

uS

p0i ẋ
0
i du

−
∫ uR

uS

�H(x0i , p0i )du +�T i (R, S), (3.9.36)

where �T i (R, S) is given by the relation

�T i (R, S) = −
N∑
k=1

[
p̃0i (Qk) − p0i (Qk)

]
�xi (Qk). (3.9.37)

Here p0i (Qk) are components of the slowness vector corresponding to the incident wave
at Qk inM0, and p̃0i (Qk) correspond to the R/T wave at Qk inM0. Because �0 must be
continuous across the interface,�xi (Qk) should be the same for incident andR/T segments
at Qk .

Equation (3.9.36) implies, for fixed end points S and R,

�T (R, S) = −
∫
�0(R,S)

�H(x0i , p0i )du +�T i (R, S). (3.9.38)

We shall now specify �T i (R, S) for the case of perturbed structural interfaces. Let us
consider interface �k and the point of incidence Qk . Because the procedure is the same
for any interface, we shall leave out subscript k in the symbol for the interface �k and
speak simply of interface �. Assume that the interface is specified by equation �(xi ) = 0
in the perturbed model and by �0(xi ) = 0 in the background model. We introduce the
perturbations of interface��(xi ) by the relation�(xi ) = �0(xi ) +��(xi ). Then�xi (Qk)
in (3.9.37) should be taken so as to represent the shift between the point of incidence of
�0 on �0 and the point of incidence of � on �. Consequently, if point xi (Qk) represents
the point of incidence of �0 on �0, xi (Qk) +�xi (Qk) represents the point of incidence
of � on �. Hence,

�(xi +�xi )=�0(xi +�xi ) +��(xi +�xi )
.=�0(xi ) + (∂�0/∂xk)�xk +��(xi ).

Here we have considered only the first-order perturbations, so that ��(xi +�xi ) .=
��(xi ). Because point xi is situated on �0 and point xi +�xi falls on �, we also have
�0(xi ) = 0, �(xi +�xi ) = 0. This yields

�0
,i (Qk)�xi (Qk) = −��(Qk). (3.9.39)

Here �0
,i = ∂�0/∂xi .

Now we shall modify p̃0i (Qk) − p0i (Qk) in (3.9.37). As the tangential components of
	̃p 0
(Qk) and 	p 0(Qk) are the same, vector 	̃p 0

(Qk) − 	p 0(Qk) has the direction of the normal
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to �0 at Qk . If we use (3.2.5) with ε∗ = 1 for the normal, we obtain

p̃0i (Qk) − p0i (Qk)=
[(
p̃0l (Qk) − p0l (Qk)

)
�0
,l(Qk)

]
×�0

,i (Qk)
/(
�0
,n(Qk)�

0
,n(Qk)

)
.

Taking into account this relation with (3.9.39) in (3.9.37) finally yields

�T i (R, S) =
N∑
k=1

[
( p̃0l (Qk) − p0l (Qk))�0

,l(Qk)
]

�0
,n(Qk)�0

,n(Qk)
��(Qk). (3.9.40)

This is the final expression for the travel-time perturbation due to perturbations of structural
interfaces. It is valid both for isotropic and anisotropic media. For isotropic media, it
was first derived by Farra, Virieux, and Madariaga (1989). Later on, Farra and Le Bégat
(1995) proved that (3.9.40) is also valid for anisotropic media. Note that expressions
�0
,l(Qk), p0l (Qk), and p̃0l (Qk) in (3.9.40) are known from ray tracing of reference ray
�0 so that the numerical realization of (3.9.40) is elementary and fast. Equation (3.9.40)
also implies that �T i (R, S) = 0 if interfaces �1, �2, . . . , �N are fixed. This was proved
earlier by Firbas (1984).

3.10 Ray Fields

In the preceding sections, we mostly considered an individual single ray, specified by
the proper initial conditions. The exception was Section 3.8, where the computation of
travel times was discussed. In this section, we shall consider the whole system of rays,
corresponding to a system ofwavefronts of a selectedwave, propagating in themodel under
consideration. We call this system of rays that corresponds to the system of wavefronts of
the wave under consideration the orthonomic system of rays or the normal congruency of
rays.

In this section, we shall briefly discuss certain important concepts and properties of
the ray field, such as ray coordinates, the Jacobians, the ray tube, geometrical spreading,
caustics, and shadow zones. Some properties of the ray field, expressed in terms of the ray
Jacobian or geometrical spreading, are very important in solving the transport equation
and in computing amplitudes.

3.10.1 Ray Parameters. Ray Coordinates

In 3-Dmedia, each ray of the orthonomic system of rays can be specified by two parameters.
We shall denote them γ1 and γ2 and call them ray parameters. We shall present several
examples.

a. RAY PARAMETERS FOR A POINT SOURCE
If the point source is situated at S, the ray parameters can be introduced in several

ways. The most common way is to introduce them as two take-off angles i0 and φ0 at the
source. They are also called radiation angles. These angles specify the direction of the
initial slowness vector 	p0 at the point source, see Figure 3.3.

Instead of the take-off angles, it would be possible to consider any other two parameters
that specify the initial direction of the ray as the ray parameters. For example, it is possible
to consider two components of the slowness vector at the source, say p01 and p02. The
third component of the slowness vector, p03, can then be calculated from p01 and p02 using
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the existence condition p201 + p202 + p203 = 1/V 2
0 , where V0 is the relevant velocity at the

source. It is, however, necessary to specify the sign of p03.
In isotropic media, the initial slowness vector 	p0 also specifies the initial direction of

the ray because the slowness vector is tangent to the ray. Thus, in this case, i0 and φ0
represent the initial direction of the ray. In anisotropic media, the initial direction of the
ray is different from the direction of the initial slowness vector 	p0. The initial direction of
the ray is given by group velocity 	U . If, however, the initial slowness vector 	p0 and the
elastic tensor at S are known, group velocity vector 	U can be uniquely determined from
them. Thus, i0 and φ0 can be used as ray parameters even in anisotropic media, although
they do not represent the initial direction of the ray, but rather the directions of the initial
slowness vector.

Take-off angles i0 and φ0 can also represent the ray parameters in other cases, not just
in the case of a point source. For example, the ray field of rays diffracted at a vertex can
also be parametrized by two take-off angles at the vertex.

b. RAY PARAMETERS AT A WAVEFRONT. RAY FIELD OF NORMAL RAYS
Let us consider wavefront T (xi ) = T 0 and introduce curvilinear coordinates ξ1 and ξ2

along it. In isotropic media, the rays are perpendicular to the wavefront. Ray parameters
γ1 and γ2 of any ray can then be chosen as the coordinates ξ1 and ξ2 of the initial point of
the ray on the wavefront.

Similarly, the parameters of the normal rays generated at initial surface �0 can be
chosen in the same way. For example, this applies to the ray parameters of rays with the
initial points along an “exploding reflector.” See Figure 3.9(a).

In anisotropic media, the rays are not perpendicular to wavefronts. Nevertheless, the
curvilinear coordinates ξ1 and ξ2 of the initial point of the ray on the wavefront may be
taken as the ray parameters of the ray under consideration.

c. RAY PARAMETERS ALONG AN INITIAL SURFACE
At the initial surface�0, along which the distribution of initial time T 0 is not constant,

the rays are not perpendicular to the wavefront, even in isotropic media. Notwithstanding,
the angle between surface �0 and the ray can be calculated at each point of �0 from the

Figure 3.9. The initial parameters of a ray at initial surface�0. Ray parameters γ1 and γ2 can be chosen
as curvilinear coordinates ξ1 and ξ2 introduced along initial surface �0. (a) If initial travel time T 0 is
constant along �0, the rays are perpendicular to �0. (b) If initial travel time T 0 varies along �0, the
rays are not perpendicular to �0.
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known geometry of �0, from the distribution of initial time T 0 along �0, and from the
elastic parameters in the medium surrounding�0. The curvilinear coordinates along initial
surface �0 can then again be regarded as ray parameters γ1 and γ2. See Figure 3.9(b).

d. RAY PARAMETERS FOR A LINE SOURCE
First assume a line source C0, along which the distribution of the initial travel time T 0

is constant. In isotropic media, the rays are perpendicular to line C0, and any ray generated
by a line source can be specified by two parameters:

1. By γ2, specifying the position of initial point S of the ray on line C0 (for example,
the arclength of initial point S from some reference point on line C0).

2. By γ1 = i0, the initial radiation angle in the plane perpendicular to C0 at initial
point S.

Now consider a line source, situated in an isotropic medium, along which the distri-
bution of initial travel time T 0 is not constant. At any point S of C0, the tangents to the
generated rays form a radiation cone. The apex of the radiation cone is situated at S, and
the axis of the radiation cone is tangent to C0 at S. The apex angle can be determined from
the local derivative of the initial travel time T 0 along C0 at S, from the geometry of C0

at S, and from the elastic parameters in the medium surrounding C0 at S. Thus, any ray
generated by line source C0 can be specified by two ray parameters: By γ2, similarly as in
the case of T 0 = const. along C0, and by γ1 = i0, the angle that determines the position
of the tangent of the selected ray at S on the radiation cone. In an anisotropic medium, the
situation is similar, but we must again distinguish between the initial direction of rays and
the direction of slowness vectors.

We now introduce the ray coordinates,

(γ1, γ2, γ3), (3.10.1)

where γ1 and γ2 are the ray parameters that specify the ray and γ3 = u is a monotonic
parameter along the ray. The ray coordinates simplify the solution of many problems in the
ray theory considerably. The following monotonic parameters γ3 = u are most common:
arclength s along the ray, travel time T along the ray, or parameter σ , related to the travel
time by the relation dT = dσ/V 2.

Let us now consider the parameteric equation,

	x = 	x(γ1, γ2, T ). (3.10.2)

If γ1 and γ2 are fixed and T varies, Equation (3.10.2) represents the parameteric equation
of the ray specified by ray parameters γ1 and γ2. For fixed travel time T and γ1 and γ2
varying, this equation becomes the equation of the wavefront.

Similarly, we can write the parameteric equations,

	x = 	x(γ1, γ2, s), 	x = 	x(γ1, γ2, σ ), 	x = 	x(γ1, γ2, u). (3.10.3)

For fixed s, σ , or u, Equations (3.10.3) are the parameteric equations of some surfaces. In
general, these equations do not correspond to the wavefronts, they differ from them both
in shape and position. Formally, the surface

	x = 	x(γ1, γ2, γ3), (3.10.4)

with γ3 = γ30 = const., will be called the surface of constant γ3. It corresponds to the
wavefront if γ3 = T .
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Ray coordinates γ1, γ2, and γ3 are general curvilinear coordinates. Only in some spe-
cial situations may they be orthogonal, but in inhomogeneous media they are, as a rule,
nonorthogonal. It would be possible to introduce the relevant metric tensor and to apply
the well-developed methods of Riemannian geometry; see Section 3.5.6. This would really
lead to shorter derivations and simpler final expressions in certain situations. We shall not,
however, use the methods of Riemannian geometry here. We believe that our explanations
and derivations will be quite simple and straightforward even without the application of
Riemannian geometry.

Let us now introduce the 3 × 3 transformation matrix Q̂(x) from ray coordinates γ1, γ2,
and γ3 to general Cartesian coordinates x1, x2, and x3 and denote its elements Q(x)

i j , i, j =
1, 2, 3,

Q(x)
i j = ∂xi/∂γ j . (3.10.5)

We are using symbol Q̂(x) because we shall later introduce another alternative transfor-
mation matrix from ray coordinates to ray-centered coordinates and denote it simply Q̂.
Thus, superscript (x) specifies that the transformation is performed from ray coordinates
to general Cartesian coordinates xi .

The knowledge of the transformation matrix Q̂(x) is very useful in various applications.
We can write

dxi = (∂xi/∂γ j )dγ j = Q(x)
i j dγ j , (3.10.6)

If we introduce 3 × 1 column matrices dx̂ and dγ̂ , we can express (3.10.6) in matrix form,

dx̂ = Q̂(x)dγ̂ , dγ̂ = (Q̂(x))−1dx̂. (3.10.7)

The importance of these relations is obvious.
Transformation matrix Q̂(x) can be calculated along a known ray using the procedure

called dynamic ray tracing; see Chapter 4, particularly Sections 4.2 and 4.7. It, of course,
depends on the choice of ray coordinate γ3, which may equal any monotonic parameter
along the ray such as s, T , or σ .

3.10.2 Jacobians of Transformations

In some regions, the behavior of the ray field may be complicated. There are some regions
into which the rays do not penetrate at all (shadow zones). On the contrary, two or more
rays may pass through each point in other regions. Such situations are well known in
seismology, particularly the shadow zones and the regions of loops in the travel-time
curves. The transformation from ray coordinates to general Cartesian coordinates is not
regular in such cases. The fundamental role in the investigation of such situations is played
by the Jacobian J (u) (the Jacobian of the transformation from ray coordinates γ1, γ2, γ3 ≡ u
to general Cartesian coordinates x1, x2, x3)

J (u) = ∂(x1, x2, x3)/∂(γ1, γ2, u) = det Q̂(x). (3.10.8)

Here transformation matrix Q̂(x) is taken for γ3 = u.
If Jacobian J (u) is defined and does not vanish at any point of region D, the ray field is

called regular in the region. On the other hand, the ray field is called singular at any point
where J (u) is not defined or where it vanishes.

Jacobian J (u) does not depend solely on ray parameters γ1 and γ2; it also relies on the
third ray coordinate γ3 = u, which represents a monotonic parameter along the ray; see
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(3.10.1). We can use any monotonic parameter along the ray to define the appropriate Jaco-
bian of transformation (u = T, s, σ ). We denote the relevant Jacobians of transformation
J (T ), J (s), and J (σ ). Thus,

J (s) = ∂(x1, x2, x3)/∂(γ1, γ2, s),

J (T ) = ∂(x1, x2, x3)/∂(γ1, γ2, T ), (3.10.9)

J (σ ) = ∂(x1, x2, x3)/∂(γ1, γ2, σ ).

We shall mostly consider Jacobians J (T ) or J (s). The relations between various Jacobians
of transformation (3.10.9) will be given in the next section.

The last column of transformation matrix Q̂(x) represents the Cartesian components of
the following vector:

(∂	x/∂u)γ1,γ2 = (d	x/du)along the ray = g−1
u 	t,

where gu is given by the relation

gu = (du/ds)along the ray, (3.10.10)

and 	t is the unit vector tangent to the ray. We can now give a useful expression for Jacobian
J (u),

J (u) = 1

gu
det


 (∂x1/∂γ1)u (∂x1/∂γ2)u t1
(∂x2/∂γ1)u (∂x2/∂γ2)u t2
(∂x3/∂γ1)u (∂x3/∂γ2)u t3


 = 1

gu
	�(u) · 	t, (3.10.11)

where

	�(u) = (∂	x/∂γ1 × ∂	x/∂γ2)u . (3.10.12)

Subscripts u again emphasize the fact that the expressions are taken for constant u; the
symbol × denotes the cross product.

3.10.3 Elementary Ray Tube. Geometrical Spreading

Jacobians J (u) are closely connected with certain geometrical properties of the ray field,
particularly with the density of the ray field. The density of the ray field can be expressed
in terms of the cross-sectional area of the ray tube. In this section, we shall introduce
the relevant terminology related to the ray tube and discuss its relation to Jacobians. The
relations derived in this section are valid both for isotropic and anisotropic media.

By the elementary ray tube, we understand the family of rays, the parameters of which
are within the limits (γ1; γ1 + dγ1) and (γ2; γ2 + dγ2); see Figure 3.10. The elementary ray
tube is also called simply the ray tube.

An important role in the ray method is played by the vectorial surface element d 	�(u),
which is cut out of the surface of constant γ3 = u by the ray tube. The vectorial surface
element d 	�(u) is given by the relation, well known from the vector calculus,

d 	�(u) = (∂	x/∂γ1 × ∂	x/∂γ2)udγ1dγ2 = 	�(u)dγ1dγ2, (3.10.13)

where × denotes the cross product and 	�(u) is given by (3.10.12); see Jeffreys and Jeffreys
(1966). Because vectors (∂	x/∂γ1)u and (∂	x/∂γ2)u are tangent to the surface of constant
γ3 = u, the vectorial surface element d 	�(u) is alwaysperpendicular to the surfaceof constant
u. It is obvious that surface elements d 	�(s), d 	�(T ), and d 	�(σ ) do not, in general, have the
same direction. See Figure 3.11.
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Figure 3.10. Elementary ray tube. Ray
A0A corresponds to ray parameters γ1
and γ2, ray B0B corresponds to γ1 + dγ1
and γ2, ray C0C corresponds to γ1 +
dγ1 and γ2 + dγ2, and ray D0D corre-
sponds to ray parameters γ1 and γ2 +
dγ2. Quantities d�⊥

0 and d�⊥ denote the
cross-sectional areas of the ray tube. In
isotropic media, d�⊥ equals d�T , an
area cut out by the ray tube from the
wavefront. In anisotropic media, the rays
are not perpendicular to the wavefront
and d�⊥ �= d�(T ).

The vectorial surface element d 	�(u) has a simple and clear physical meaning for u = T .
In this case, d 	�(T ) represents the vectorial surface element cut out of thewavefront by the ray
tube. d 	�(T ) has the direction of ± 	N , where 	N is the unit vector normal to the wavefront,
oriented in the direction of the propagation of the wavefront. We shall now introduce
d�(T ), the scalar surface element cut out of the wavefront of the ray tube, by any of the two
alternative relations:

d 	�(T ) = d�(T ) 	N , d�(T ) = d 	�(T ) · 	N . (3.10.14)

The scalar surface element d�(T ) may be positive, negative, or zero.
Quantities d 	�(T ) and d�(T ) are infinitesimal because they contain factor dγ1dγ2. We

can, however, express them in terms of noninfinitesimal quantities 	�(T ) and�(T ) as follows:

	�(T ) = d 	�(T )/dγ1dγ2,

�(T ) = 	�(T ) · 	N = d�(T )/dγ1dγ2 = (d 	�(T ) · 	N )/dγ1dγ2.
(3.10.15)

see (3.10.13) and (3.10.14). Thus, 	�(T ) and �(T ) represent the vectorial and scalar surface
elements cut out of the wavefront by the ray tube, normalized with respect to dγ1dγ2.
They are usually more suitable for analytical treatment, applications, and computation
than infinitesimal quantities d 	�(T ) and d�(T ).

Let us again return to the general parameter u along the ray. We shall briefly discuss
the scalar product of 	�(u) with 	t , the unit vector tangent to the ray, oriented positively in
the direction of propagation of the wave under consideration. We introduce quantity J by

Figure 3.11. Scalar surface element
d�(γ3) represents the area A′B ′C ′D′ cut
out from the surface of constant γ3 by
the ray tube. In general, the scalar sur-
face element d�(γ3) differs from the
cross-sectional area d�⊥ of the ray tube,
ABCD. In anisotropic media, for γ3 =
T , surface A′B ′C ′D′ corresponds to the
wavefront, but d�(T ) differs from d�⊥.
Only in isotropic media for γ3 = T is the
surface of constant γ3 = T (wavefront)
perpendicular to rays and A′B ′C ′D′ ≡
ABCD. Unit vector 	t is perpendicular
to ABCD; unit vector 	N γ3 is perpendic-
ular to A′B ′C ′D′.
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the relation

J = (∂	x/∂γ1 × ∂	x/∂γ2)u · 	t . (3.10.16)

Quantity J vanishes when the cross product vanishes. Such points are called caustic points;
see Section 3.10.5. Otherwise, J may be either positive or negative, depending on the
mutual orientation of both vectors. Using (3.10.11) and (3.10.13), we can express J in
three different ways:

J = 	t · 	�(u) = 	t · d 	�(u)/dγ1dγ2 = gu J
(u). (3.10.17)

Mixed product 	t · d 	�(u) represents the projection of vectorial surface element d 	�(u) into a
plane perpendicular to the ray. We introduce d�⊥ by the relation

d�⊥ = 	t · d 	�(u) = Jdγ1dγ2 = J (u)gudγ1dγ2. (3.10.18)

The quantity d�⊥ represents the cross-sectional area of the ray tube, that is, the area cut
out from the plane perpendicular to the ray by the ray tube. See Figures 3.10 and 3.11.
Equation (3.10.18) shows that J also represents the cross-sectional area of the ray tube,
normalized with respect to dγ1dγ2. It also yields

J (u) = d�⊥/gudγ1dγ2. (3.10.19)

Equation (3.10.18) also indicates that gu J (u) is the same for arbitrary parameter u so that

J = d�⊥/dγ1dγ2 = gu J
(u) = J (s) = gT J

(T ) = gσ J
(σ ) = · · · . (3.10.20)

Here we have used the obvious relation gs = 1; see (3.10.10).
As we can see from (3.10.18), quantity J given by (3.10.16), related to the cross-

sectional area of ray tube d�⊥ by (3.10.18), equals J (s), the Jacobian of transformation
from ray coordinates γ1, γ2, γ3 = s to Cartesian coordinates x1, x2, x3. Thus, J (s) in some
way plays an exceptional role among the other Jacobians J (u). For this reason, we shall call
it the ray Jacobian.

Equation (3.10.20) can be used to recalculate mutually the individual Jacobians J ≡
J (s), J (σ ), J (T ), and so on. The very important Jacobian J (T ) related to γ3 = T can be
expressed in terms of J as follows:

J (T ) = U J, (3.10.21)

where U is the group velocity (gT = 1/U). This relation is also valid in anisotropic media.
Quantities J and J (T ) can also be suitably expressed in terms of �(T ); see (3.10.15).

Using (3.10.14), (3.10.15), (3.10.17), and (3.6.18), we obtain

J = (	t · d 	�(T ))/dγ1dγ2 = (	t · 	N )d�(T )/dγ1dγ2 = CU−1�(T ). (3.10.22)

Thus, the final relations between J, J (T ) and �(T ) are

J (T ) = U J = C�(T ). (3.10.23)

All three quantities J (T ), J , and �(T ) have been broadly used in the seismic ray method,
particularly in computing amplitudes of high-frequency seismic body waves propagating
in complex structures. All three quantities J (T ), J , and �(T ) are mutually different in
anisotropic medium, where U �= C. We summarize the physical meaning of J (T ), J , and
�(T ). J (T ) represents the Jacobian of transformation from ray coordinates γ1, γ2, γ3 = T to
general Cartesian coordinates x1, x2, x3. J ≡ J (s) is the Jacobian of transformation from
ray coordinates γ1, γ2, γ3 = s to general Cartesian coordinates x1, x2, x3. At the same time,



206 SEISMIC RAYS AND TRAVEL TIMES

J represents the cross-sectional area of ray tube d�⊥ (perpendicular to the ray), normalized
with respect to dγ1dγ2. Finally, �(T ) represents the scalar surface element cut out of the
wavefront by the ray tube and normalized with respect to dγ1dγ2. In an isotropic medium,
J equals �(T ) because U = C there. Thus, J = �(T ) = J (T )/C.

Ray Jacobian J , other related Jacobians J (u), and �(T ) play a fundamental role in the
calculation of amplitudes; see Section 3.10.6. The amplitudes are inversely proportional
to |J |1/2. Thus, the amplitudes are high in regions in which the density of rays is high
(small d�⊥ and, consequently, small J ). In regions in which the density of rays is small
(high d�⊥, and, consequently, high J ) these amplitudes are low. This implies that the ray
diagrams, together with the travel-time curves, provide the possibility of estimating not
only the kinematic properties but also the ray amplitudes of seismic body waves under
consideration.

Function |J |1/2 is often called geometrical spreading in the literature devoted to the
seismic raymethod.However, the terminology is not uniform in the seismological literature.

3.10.4 Properties and Computation of the Ray Jacobian J

Ray Jacobian J represents the Jacobian of transformation J (s) from ray coordinates γ 1, γ 2,

γ 3 = s to Cartesian coordinates x1, x2, x3. It measures the cross-sectional area of ray tube
d�⊥; see (3.10.18). Relation (3.10.18) is valid not only in isotropic media but also in
anisotropic media. In this section, we shall discuss several other properties of ray Jacobian
J and outline some possibilities of its computation. All the derived equationsmay be simply
expressed in terms of any other Jacobian J (u), using relations J = gu J (u); see (3.10.20).

1. RELATION OF J TO THE DIVERGENCE OF THE GROUP
VELOCITY VECTOR, ∇ · �U
We shall derive the relation between ∇ · 	U and J , which plays an important role in

the solution of the transport equations; see Section 3.10.6. The relation is valid both for
isotropic and anisotropic media.

We shall consider an elementary ray tube (γ 1, γ 1 + dγ 1) and (γ 2, γ 2 + dγ 2) and denote
by � the ray specified by ray parameters γ 1 and γ 2. We construct two wavefronts at the
points of� corresponding to travel times T and T + dT ; see Figure 3.12. We shall discuss
the body cut out from the elementary tube by these two wavefronts. The lateral walls of
the body are formed by rays, the front and back surfaces by the wavefronts. We denote the
volume of the body by A, its surface by S, and any inner point of volume A, situated on
�, by M . We can then use the well-known expression for the divergence,

∇ · 	U = lim
A→M

1

A

∫∫
S

	U · d 	S,

where d 	S denotes an elementary vectorial element of surface S. As regards volume A,

A = J (T )dγ 1dγ 2dT, J (T ) = ∂(x1, x2, x3)/∂(γ1, γ2, T ).

Here J (T ) is the Jacobian of the transformation from ray coordinates γ1, γ2, T to Cartesian
coordinates x1, x2, x3.

Because the lateral walls of the body are formed by rays and 	U is parallel to the rays,
	U · d 	S = 0 along these walls. Using (3.10.18) along the wavefront sections, we can also
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Figure 3.12. Computation of the diver-
gence of the group velocity vector∇ · 	U .
The figure shows bodyAcut out from the
elementary ray tube by two wavefronts,
corresponding to travel times γ3 = T
(see A′B ′C ′D′) and γ3 = T + dT (see
A′′B ′′C ′′D′′).

write 	U · d 	S = U 	t · d 	�(T ) = Ud�⊥ = U Jdγ1dγ2 = J (T )dγ1dγ2. Thus,

∇ · 	U = lim
A→M

1

J (T )dγ 1dγ 2dT
{(d�⊥U)T+dT − (d�⊥U)T }

= lim
A→M

1

J (T )dT

{(
J (T )

)
T+dT

− (
J (T )

)
T

}
.

This yields the final equation,

∇ · 	U = 1

J (T )
dJ (T )

dT
. (3.10.24)

Using (3.10.21), we express ∇ · 	U in terms of J and �(T ),

∇ · 	U = 1

J

d

ds
(U J ) = 1

C�(T )

d

dT

(C�(T )
)
. (3.10.25)

Similarly, for general γ 3 = u, we obtain

∇ · 	U = 1

J (u)
d

du

(
guU J (u)

)
. (3.10.26)

Equations (3.10.24) through (3.10.26) can be expressed in many alternative forms. They
are valid both for isotropic and anisotropic media.

Relation (3.10.24) can also be derived directly from the ray tracing system using
Smirnov’s lemma (Smirnov 1964; Thomson and Chapman 1985). Assume that we have
a system of differential equations d	x/dT = 	F(	x). Smirnov’s lemma yields a differential
equation for the Jacobian of transformation J (T ) = D(x1, x2, x3)/D(γ 1, γ 2, T ):

d
(
ln J (T )

)
/dT = ∇ · 	F . (3.10.27)

We can readily see that (3.10.27) immediately yields (3.10.24), as in our case 	F = 	U .

2. RELATION OF J TO ∇2T
In isotropic media, the transport equation is expressed in terms of∇2T . We shall derive

an expression for ∇2T in terms of Jacobian J , valid in isotropic inhomogeneous media,
using the relation

∇2T = ∇ · ∇T = ∇ · 	p, (3.10.28)
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where 	p is the slowness vector. In deriving the expression, it would be possible to use the
same approach as in deriving the expression for ∇ · 	U . It is, however, simpler to employ
(3.10.24). As U = V in isotropic media, where V = c, α, or β, we can put 	p = V−2 	U .
We then obtain

∇2T = − 2

V 3
∇V · 	U + 1

V 2
∇ · 	U = − 2

V 2
	t · ∇V + 1

V 2

d ln J (T )

dT
.

Since

− 2

V 2
	t · ∇V = − 2

V 3

dV

dT
= 1

V 2

d ln V−2

dT
,

we finally obtain

∇2T = 1

V 2

d

dT
ln
(
V−2 J (T )

) = 1

J (T )
d

dT

(
J (T )

V 2

)
. (3.10.29)

There are again several alternative forms of (3.10.29); for example,

∇2T = 1

V J

d

dT

(
J

V

)
= 1

J

d

ds

(
J

V

)
= 1

J (σ )
dJ (σ )

dσ
. (3.10.30)

3. APPROXIMATE FINITE-DIFFERENCE COMPUTATION OF RAY JACOBIAN
J ALONG THE RAY
The ray Jacobian can be computed approximately by direct numerical measurement

of the cross-sectional area of the ray tube d�⊥, J = d�⊥/dγ 1dγ 2. If we replace the
differentials by finite differences, we obtain

J
.= ��⊥/�γ 1�γ 2. (3.10.31)

This relation is valid both for isotropic and anisotropic media.
In anisotropic media, the wavefront is not perpendicular to the ray. It is then more usual

to use scalar surface element d�(T ) cut out of wavefront T = const. by the ray tube; see
(3.10.14). Using (3.10.23) and (3.10.15), we finally obtain

J = d�⊥/dγ 1dγ 2 = Cd�(T )/Udγ 1dγ 2. (3.10.32)

If we replace the differentials by finite differences, we obtain

J
.= C��(T )

U�γ 1�γ 2
. (3.10.33)

The procedure is as follows; see Figure 3.11. We compute the three rays specified by
close ray parameters. For example, we compute one “central” ray A0A specified by two
parameters γ 1 and γ 2 and two “supporting” rays B0B and D0D, specified by ray parameters
γ 1 +�γ 1, γ 2 and γ 1, γ 2 +�γ 2. We shall use travel time T as the third ray coordinate
γ 3 along these rays. We now wish to compute ray Jacobian J at a given point of the ray,
A ≡ A′; see Figure 3.11. The coordinates of points A′, B ′, D′ are known from ray tracing,
so that we can simply compute the area S of triangle A′B ′D′. The scalar surface element
��(T ) is then given by relation ��(T ) .= 2S. Because �γ 1, �γ 2, U , and C are known, J
can be determined from (3.10.33). The procedure can be used even for anisotropic media.
For isotropic media, of course, B ′ ≡ B, C ′ ≡ C , D′ ≡ D, and U = C.

We can also compute the fourth ray C0C specified by ray parameters γ 1 +�γ 1 and
γ 2 +�γ 2. This provides the possibility of estimating the accuracy of the computations.
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This procedure determines the absolute value of J , but not its sign. The sign of J can
be determined using (3.10.16). We construct two vectors 	A′B ′ and 	A′D′ and cross product

	A′B ′ × 	A′D′. If ( 	A′B′ × 	A′D′) · 	t > 0, the sign of J is ‘+’. If ( 	A′B ′ × 	A′D′) · 	t < 0, the
sign of J is ‘−’. Note that a caustic point is situated at A′ if ( 	A′B′ × 	A′D′) · 	t = 0.

In 2-D media, the procedure reduces to the calculation of the length of one straight line
element, connecting two points situated on two close rays. The way to determine the sign
of J is then obvious.

4. COMPUTATION OF THE RAY JACOBIAN BY DYNAMIC RAY TRACING
The procedure of computing the ray Jacobian outlined in Section 3.10.4.3 requires the

calculation of at least three near rays in 3-D media, or two near rays in 2-D media. The
ray Jacobian, however, can be computed along one ray only using the procedure that is
now usually called dynamic ray tracing. It involves solving an additional system of linear
ordinary differential equations of the first or second order. In the system, quantities ∂xi/∂γ 1

and ∂xi/∂γ 2 are calculated (i = 1, 2, 3). The additional system of ordinary differential
equations can be solved simultaneously with the ray tracing system or after it, along a
known ray. The results of ray tracing, supplemented by the results of the dynamic ray
tracing, allow us to compute the ray Jacobian and the geometrical spreading analytically.
Dynamic ray tracing will be described in more detail in Chapter 4. It plays a very important
role not only in computing the ray Jacobian and geometrical spreading but also in many
other seismological applications. In Chapter 4, a special ray-centered coordinate system
will be used. That makes the dynamic ray tracing particularly simple. Dynamic ray tracing,
however, can also be performed in general Cartesian coordinates in which the required
partial derivatives are computed directly. Dynamic ray tracing in Cartesian coordinates
can be useful in certain applications. For more details on dynamic ray tracing in Cartesian
coordinates, see Sections 4.2 and 4.7.

5. RAY JACOBIAN ACROSS A STRUCTURAL INTERFACE
Let us consider ray � of a reflected/transmitted wave and denote the point of inci-

dence Q. We also denote J (Q) and J̃ (Q) the ray Jacobians of the incident and selected
reflected/transmitted wave at Q. If we interpret J in terms of the cross-sectional area of ray
tube d�⊥, see (3.10.18), we can easily prove that J (Q) and J̃ (Q) are related as follows:

J (Q)/ J̃ (Q)= ti (Q)ni (Q)/t̃k(Q)nk(Q)= ±cos i(Q)/cos ĩ(Q). (3.10.34)

The individual symbols in (3.10.34) have a standard meaning: 	t is the unit vector tan-
gent to �, 	n the unit normal to the interface, and the tilde corresponds to the selected
R/T wave. Consequently, i(Q) is the angle of incidence, and ĩ(Q) is the angle of re-
flection/transmission; the plus sign corresponds to the transmitted wave, and the minus
sign corresponds to the reflected wave. Equation (3.10.34) is valid both for isotropic and
anisotropic media.

6. RAY JACOBIAN IN ORTHOGONAL CURVILINEAR COORDINATES ξ1 , ξ2 , ξ3

Using (3.10.9), we obtain

J (T ) = ∂(x1, x2, x3)

∂(γ1, γ2, T )
= ∂(x1, x2, x3)

∂(ξ1, ξ2, ξ3)

∂(ξ1, ξ2, ξ3)

∂(γ1, γ2, T )
.
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In an isotropic medium, the last column in the determinant D(ξ1, ξ2, ξ3)/D(γ1, γ2, T ) can
be expressed using the ray tracing system (3.5.16):

(∂ξi/∂T )ξI = (dξi/dT )along the ray = V 2 pi/hi = V ti/hi ,

where hi are scale factors and pi = h−1
i ∂T/∂ξi (no summation over i); see (3.5.4). If we use

relations ∂(x1, x2, x3)/∂(ξ1, ξ2, ξ3) = h1h2h3 and J (T ) = VJ, we obtain the final expression
for the ray Jacobian in orthogonal curvilinear coordinates:

J = det


 h1(∂ξ1/∂γ1)T h1(∂ξ1/∂γ2)T t1
h2(∂ξ2/∂γ1)T h2(∂ξ2/∂γ2)T t2
h3(∂ξ3/∂γ1)T h3(∂ξ3/∂γ2)T t3


 . (3.10.35)

This equation is simple to understand from the geometrical point of view.

7. ANALYTICAL COMPUTATION OF THE RAY JACOBIAN
IN HOMOGENEOUS MEDIA
In homogeneous media, the rays are straight lines, and the Jacobians can be calculated

analytically. We shall give three examples for the central ray field (point source ray field).� Isotropic medium, the ray parameters correspond to take-off angles: γ 1 = i0, γ 2 =
φ0. Then

x1 = l sin i0 cosφ0, x2 = l sin i0 sinφ0, x3 = l cos i0,

where l is the distance from the source. Taking derivatives ∂xi/∂γJ and computing
the determinant, we obtain

J = l2 sin i0. (3.10.36)� Isotropic medium, the ray parameters correspond to slowness vector components p10
and p20 at the source: γ 1 = p10, γ 2 = p20. Then

x1 = V p10l, x2 = V p20l, x3 = [
1 − V 2

(
p210 + p220

)]1/2
l,

where l is again the distance from the source. Taking derivatives ∂xi/∂γJ , determinant
J yields

J = V 2l2
/[

1 − V 2
(
p210 + p220

)]1/2
. (3.10.37)

Here V is acoustic velocity c, P wave velocity α or S wave velocity β, depending on
the wave under consideration.� Anisotropic medium, arbitrary ray parameters γ 1 and γ 2. We shall use travel time T
as the monotonic parameter along the ray, and compute J (T ). We can put

x1 = TU1, x2 = TU2, x3 = TU3,

where Ui are components of the group velocity, T = r/U . We then obtain

J (T ) = T 2 det


 ∂U1/∂γ 1 ∂U1/∂γ 2 U1

∂U2/∂γ 1 ∂U2/∂γ 2 U2

∂U3/∂γ 1 ∂U3/∂γ 2 U3


 . (3.10.38)

Jacobian J (T ) can be expressed in various alternative forms (for example, in terms
of the curvature of the slowness surface). Analytically, the elements of Jacobian J (T )

can be computed using relation

Ui = 1

2

∂Gm

∂ pi
,

∂Ui
∂γJ

= 1

2

∂2Gm

∂ pi∂ pk

∂ pk
∂γJ

. (3.10.39)
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8. RAY JACOBIAN IN ONE-DIMENSIONAL ISOTROPIC MEDIA
We shall consider a point source situated at S in a model specified in orthogonal

curvilinear coordinates ξ1, ξ2, ξ3 with scale factors h1, h2, h3. We make three assumptions:

a. Velocity V depends on ξ3 only, V = V (ξ3).
b. Scale factors h1 and h3 depend on ξ3 only, h1 = h1(ξ3), h3 = h3(ξ3). Scale factor

h2 may also depend on ξ1, h2 = h2(ξ1, ξ3), but not on ξ2.
c. Component p2 of slowness vector 	p vanishes at initial point S of ray �, p20 = 0.

Ray tracing system (3.5.16) then shows that p2 = 0 along the whole ray� and that
ray � is completely situated on surface ξ2 = ξ20.

We choose ray parameters γ1 and γ2 as follows: γ2 = ξ20, γ1 = i0, where i0 is the angle
between ray � and coordinate line ξ3 at S. Then (∂ξ2/∂γ1)T = 0, (∂ξ2/∂γ2)T = 1, and
(3.10.35) yields

J = h2 det

(
h1(∂ξ1/∂i0)T t1
h3(∂ξ3/∂i0)T t3

)
. (3.10.40)

Alternative forms of (3.10.40) can be obtained if we replace the derivatives taken along
wavefront T = const. by derivatives taken for ξ3 = const. or for ξ1 = const. Geometrical
considerations yield det (· · ·) = h1(cos i)(∂ξ1/∂i0)ξ3 = −h3(sin i)(∂ξ3/∂i0)ξ1 , and

J = h1h2(cos i)(∂ξ1/∂i0)ξ3 = −h2h3(sin i)(∂ξ3/∂i0)ξ1 . (3.10.41)

Instead of (∂ξ1/∂i0)ξ3 and (dξ3/∂i0)ξ1 , we can also consider derivatives of the travel-time
curve T = T (ξi ) along lines ξ3 = const.,

J = Vh2(cotan i)(∂T/∂i0)ξ3 . (3.10.42)

Expressions (3.10.41) and (3.10.42) can also be expressed in several alternative forms
using other ray parameters γ1 than i0. We shall employ a particularly useful parameter
γ1 broadly used in seismological applications. Ray tracing system (3.5.16) shows that the
quantity h1 p1 is constant along the whole ray �. We denote this constant by p:

p = h1 p1 = h1(ξ3)(sin i(ξ3))/V (ξ3) = h10(sin i0)/V0. (3.10.43)

Equation p = const. along the ray represents the generalized Snell’s law for a 1-D isotropic
medium in orthogonal curvilinear coordinates ξ1, ξ2, and ξ3. Equation (3.10.43) implies

(∂ξ1/∂i0)ξ3 = h10V
−1
0 (cos i0)(∂ξ1/∂p)ξ3 .

The relevant relations for J computed along profiles ξ3 = const. are

J = h1h2h10V
−1
0 (cos i0)(cos i)(∂ξ1/∂p)ξ3,

J = Vh2h10V
−1
0 (cos i0)(cotan i)(∂T/∂p)ξ3,

(3.10.44)

where p is given by (3.10.43). The relations computed along profiles ξ1 = const. are
analogous. Let us emphasize again that J , given by (3.10.41), (3.10.42) and (3.10.44),
corresponds to the ray parameters γ1 = i0 and γ2 = ξ20, even though we have also used the
parameter p given by (3.10.43) in (3.10.44).

We shall now specify expressions (3.10.40) through (3.10.44) in two important orthog-
onal curvilinear coordinate systems.
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a. Cylindrical coordinates. This system of coordinates has often been used to study
the point-source solutions in vertically inhomogeneous media. We choose ξ1 = η, ξ2 = ϕ,

and ξ3 = z, where z is the depth and η is the distance from the cylindrical axis. Then, h1 =
h3 = 1 and h2 = η. Quantity p = (sin i0)/V0 = (sin i(z))/V (z) represents the standard
seismological ray parameter p for vertically inhomogeneous media, see (3.7.4). Equations
(3.10.41), (3.10.42), and (3.10.44) then yield four alternative expressions for J , calculated
for γ1 = i0 and γ2 = ϕ0 along horizontal profiles z = const.:

J = η (cos i)(∂η/∂i0)z
= V−1

0 η (cos i0)(cos i)(∂η/∂p)z
= V (z)η (cotan i)(∂T/∂i0)z
= V−1

0 V (z)η (cos i0)(cotan i)(∂T/∂p)z . (3.10.45)

Expressions (3.10.45) can be applied to analytical ray equations x = x(p) and T = T (p)
derived in Sections 3.7.1 through 3.7.3 for vertically inhomogeneousmedia. (Note that x(p)
is equivalent to η(p) in our notation.) The first equation of (3.10.45) has been well known
in seismology for a long time. Its simple geometrical derivation can be found in Červený
and Ravindra (1971). The same reference also gives many examples of its application.
Similar equations can also be easily obtained along profiles η = const. (VSP, cross-hole):
J = −η (sin i) (∂z/∂i0)η.

b. Spherical coordinates. Spherical coordinates are suitable for studying seismic
wave propagation in radially symmetric media. We choose ξ1 = θ, ξ2 = ϕ, ξ3 = r , where
r , ϕ, and θ have the same meaning as in Section 3.7.4. The scale factors are h1 = r, h2 =
r sin θ , and h3 = 1. Quantity p = r0(sin i0)/V0 = r (sin i(r ))/V (r ) represents the standard
seismological ray parameter p for a radially symmetric medium; see (3.7.31). Four alter-
native expressions for J in radially symmetric media are

J = r2(sin θ )(cos i)(∂θ/∂i0)r
= r 2r0V

−1
0 (sin θ )(cos i0)(cos i)(∂θ/∂p)r

= rV (r )(sin θ )(cotan i)(∂T/∂i0)r
= rV (r )r0V

−1
0 (sin θ )(cos i0)(cotan i)(∂T/∂p)r . (3.10.46)

The relations (3.10.46) can be applied to analytical ray equations θ = θ (p) and T = T (p)
derived in Section 3.7.4 for radially symmetric media. They correspond to the ray param-
eters γ1 = i0 and γ2 = ϕ0.

9. RAY JACOBIAN IN TERMS OF THE CURVATURE OF THE WAVEFRONT
Apopular method of computing ray Jacobian J is based on curvatures of the wavefront.

For general inhomogeneous media, the appropriate relations will be derived in detail in
Section 4.10.3; see (4.10.30). Here we shall only present an important classical equation,
valid for homogeneous isotropic media. In this equation, ray Jacobian J is expressed in
terms of the Gaussian curvature of wavefront K :

J (R)/J (S) = K (S)/K (R). (3.10.47)

As we can see, the larger the Gaussian curvature of the wavefront is the smaller the ray
Jacobian becomes. The relation is intuitively simple to understand, if we realize that the
rays are straight lines in homogeneous media and that the main curvature directions do not
rotate about a planar ray in a homogeneous medium.
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The simple relation (3.10.47) can, of course, be expressed in many other alternative
forms; for example, it can be expressed in terms of the two main curvatures or main radii
of curvature of the wavefront.

The method based on curvatures of the wavefront has also been used in 2-D and 3-D
models composed of homogeneous layers separated by curved structural interfaces. The
rays can be computed semianalytically in this case; see Section 3.4.8. However, (3.10.47)
can be applied only to elements of the ray between the individual interfaces, but not across
the interfaces. The procedure must be supplemented by other equations for the change
of curvature of the wavefront across a structural interface. Such an equation for a curved
interface between two inhomogeneous media was first derived by Gel’chinskiy (1961);
see also Červený and Ravindra (1971). Special cases of the general Gel’chinskiy equation,
valid for a curved interface between two homogeneousmediawerewell known even earlier;
see references in Červený and Ravindra (1971). The general equations will also be derived
in detail in Section 4.6.3, see particularly (4.6.21).

For many other details and applications, and for specific equations related to layered
models, see, for example, Alekseyev and Gel’chinskiy (1959), Červený and Ravindra
(1971), Deschamps (1972), Shah (1973b), Hubral (1979, 1980), Goldin (1979), Hubral
and Krey (1980), Červený and Hron (1980), Ursin (1982a, 1982b), Lee and Langston
(1983a), and Gjøystdal, Reinhardsen, and Ursin (1984).

3.10.5 Caustics. Classification of Caustics

The points of the ray, at which the ray Jacobian vanishes (J = 0) are called caustic points.
At these points, the cross-sectional area of the ray tube shrinks to zero.

Obviously the determinant of a 3 × 3 matrix Ŵ vanishes if the rank of Ŵ is less than 3.
Thus, we have two types of caustic points along the ray. We shall call them caustic points
of the first and second order.

A caustic point of the first order is a point on the ray at which the following relation
holds:

rank
(
Q̂(x)

) = 2. (3.10.48)

At a caustic point of the first order, the ray tube shrinks to an elementary arc, perpendicular
to the direction of propagation. See Figure 3.13(a).

A caustic point of the second order, also called the focus point, is a point on the ray, at
which the following relation holds:

rank
(
Q̂(x)

) = 1. (3.10.49)

At a caustic point of the second order, the ray tube shrinks to a point. See Figure 3.13b.
In computing the displacement vector along the ray, we need to know ray Jacobian

J = det Q̂(x) because the displacement vector is proportional to J−1/2. In passing through
the caustic point of the first order, ray Jacobian J changes sign, and the argument of J 1/2

takes the phase term ±π/2. Similarly, in passing through the caustic point of the second
order, the phase term is ±π . The phase shift at caustic points plays an important role in
computing the vectorial complex-valued amplitudes of seismic body waves.

The phase shift due to caustics is cummulative. If we pass through several caustic points
along the ray, the total phase shift is the sum of the individual phase shifts. Consider ray�
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Figure 3.13. Two types of caustic points
along the ray. (a) At a caustic point of the
first order, the ray tube shrinks into an ele-
mentary arc, perpendicular to the direction of
propagation. (b) At a caustic point of the sec-
ond order (also called the focus or the double
caustic point), the ray tube shrinks to a point.

from S to R. The phase shift due to caustics along � from S to R is then

T c(R, S) = ± 1
2πk(R, S). (3.10.50)

Here k(S, R) is called the index of ray trajectory � from S to R, or also the KMAH index.
In isotropic media, it equals the number of caustic points along ray trajectory � from S to
R, caustic points of the second order being counted twice. The choice of sign in (3.10.50)
will be discussed in Sections 3.10.6, 4.12, and 5.8.8. For anisotropic media, see Sections
4.14.13 and 5.8.8.

The term “index of the ray trajectory” for k(R, S) is used, for example, by Kravtsov
and Orlov (1980). The alternative term, the KMAH index, was introduced by Ziolkowski
and Deschamps (1980), acknowledging the work by Keller (1958), Maslov (1965), Arnold
(1967), and Hörmander (1971) on this problem. See also the discussion in Chapman and
Drummond (1982).

In space, caustic points of the first order are not isolated, they form caustic surfaces.
From a physical point of view, these surfaces are envelopes of rays. There aremany possible
forms of caustic surfaces. They can, however, be grouped into several basic types. A
detailed classification of caustic surfaces can be found in Kravtsov and Orlov (1980). The
classification is very close and takes its terminology from the theory of catastrophes; see,
for example, Thom (1972), Arnold (1974), Gilmore (1981), Brown and Tappert (1987). In
Gilmore (1981), the interested reader will find a whole chapter devoted to the catastrophe
theory in relation to the eikonal equation.

3.10.6 Solution of the Transport Equation in Terms of the Ray Jacobian

Transport equations can be suitably solved along rays in terms of the ray Jacobian. Let us
first consider the acoustic casewith variable density ρ. The transport equation is then given
by (2.4.11). Along the ray, ∇T = c−1	t , where c is the acoustic velocity and 	t is the unit
vector tangent to the ray. We can put 	t · ∇(P/

√
ρ) = d(P/

√
ρ)/ds. The transport equation

then reads

d

ds

(
P√
ρ

)
+ c

2

P√
ρ

∇2T = 0. (3.10.51)
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Inserting (3.10.30) for ∇2T , we obtain

d

ds
ln

{
P(s)

√
J (s)

ρ(s)c(s)

}
= 0.

The solution of this equation is

P(s) =  (γ 1, γ 2)(ρ(s)c(s)/J (s))
1/2. (3.10.52)

Here  (γ 1, γ 2) is constant along the ray. It may, of course, vary from one ray to another.
The solution can also be given another form:

P(s) =
[
ρ(s)c(s)J (s0)

ρ(s0)c(s0)J (s)

]1/2
P(s0). (3.10.53)

Equation (3.10.53) can be used to determine the amplitude P(s) along the whole ray when
P(s0) is known at some reference point s = s0 of the ray.

Equations (3.10.52) and (3.10.53) represent two final forms of the solution of the
acoustic transport equation. They can, of course, be expressed in many alternative forms.
For example, instead of the ray Jacobian, we use general Jacobian J (u) and relation J =
gu J (u). For example, if u = T , we have gu = c−1 and (3.10.53) becomes

P(T ) =
[
ρ(T )c2(T )J (T )(T0)

ρ(T0)c2(T0)J (T )(T )

]1/2
P(T0). (3.10.54)

If we use u = σ , gu = c and the velocity factors are eliminated from (3.10.53).
In a similar way, we can solve the transport equations for elastic P and S waves. For P

waves, the transport equation for amplitude factor A is given by (2.4.32), and its solution
reads

A(s) =  (γ 1, γ 2)

[ρ(s)α(s)J (s)]1/2
(3.10.55)

or, alternatively,

A(s) =
[
ρ(s0)α(s0)J (s0)

ρ(s)α(s)J (s)

]1/2
A(s0). (3.10.56)

If we prefer some other Jacobian, we can again use J = gu J (u).
For S waves, the form of the transport equations depends on the choice of unit vectors

	e1 and 	e2. If they satisfy (2.4.36), the transport equations for B(s) and C(s) are decoupled
and have exactly the same form as the transport equation for P waves, only velocity α is
replaced by β. Their solutions are

B(s) =  1(γ 1, γ 2)

[ρ(s)β(s)J (s)]1/2
, C(s) =  2(γ 1, γ 2)

[ρ(s)β(s)J (s)]1/2
(3.10.57)

or, alternatively,

B(s) =
[
ρ(s0)β(s0)J (s0)

ρ(s)β(s)J (s)

]1/2
B(s0),

C(s) =
[
ρ(s0)β(s0)J (s0)

ρ(s)β(s)J (s)

]1/2
C(s0).

(3.10.58)
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If (2.4.36) is not satisfied, 	e1 and 	e2 do not represent polarization vectors of S waves, and
the transport equations for B and C are coupled. It is not difficult to find the solution of
these transport equations, but we do not present them here. For 	e1 = 	n and 	e2 = 	b, where
	n is the unit normal and 	b is the unit binormal to the ray, the solutions of the coupled
transport equations may be found, for example, in Červený and Ravindra (1971).

Finally, for anisotropic media, the transport equation is given by (2.4.49). Along the
ray,

d

ds
(
√
ρA) + 1

2U
√
ρA∇ · 	U = 0, (3.10.59)

where 	U is the group velocity vector. Taking into account relation (3.10.25) for ∇ · 	U , we
obtain

A(s) =  (γ 1, γ 2)

[ρ(s)U(s)J (s)]1/2 . (3.10.60)

An alternative form reads

A(s) =
[
ρ(s0)U(s0)J (s0)
ρ(s)U(s)J (s)

]1/2
A(s0). (3.10.61)

Instead of J (s), we can again use J = gu J (u). In anisotropic media, it is most usual to use
u = T , where T is the travel time along the ray. As gT = 1/U , (3.10.61) and (3.10.23)
yield

A(T ) =
[
ρ(T0)J (T )(T0)

ρ(T )J (T )(T )

]1/2
A(T0) =

[
ρ(T0)C(T0)�(T )(T0)

ρ(T )C(T )�(T )(T )

]1/2
A(T0)

=
[
ρ(T0)U(T0)J (T0)
ρ(T )U(T )J (T )

]1/2
A(T0). (3.10.62)

This equation also holds for P and S waves in isotropic media; see (3.10.56) and (3.10.58)
for u = T , with J = J (T )/α or J = J (T )/β. However, it does not hold for the pressure
amplitudes in acoustic waves; see (3.10.54).

Thus, we have obtained three different expressions for amplitudes of seismic body
waves in anisotropic media. They contain different quantities J, J (T ), and�(T ), describing
the divergence of rays. These three expressions also depend in a different way on phase and
group velocities. One of them contains the group velocity U , one phase velocity C, and one
does not contain a velocity at all; see (3.10.62). These differences have been a source of
confusion in the computation of amplitudes of seismic body waves in anisotropic media.
Consequently, we need to specify precisely which of the three quantities (J, J (T ), or �(T ))
we wish to use to describe the divergence of rays, if we use expressions for amplitudes
of seismic body waves in anisotropic media. According to the chosen quantity J, J (T ), or
�(T ), we have to use the proper equation.

All the equations derived in this section have a very simple physical meaning. As we
know, the energy of HF seismic body waves flows along rays. There is no energy flux
through the walls of the ray tube according to the zeroth-order approximation of the ray
method. In other words, the energy flux through d�⊥ must be the same along the whole ray,
independently of s. We denote the energy flux through d�⊥ by E⊥. For an inhomogeneous
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anisotropic medium, we then obtain

E⊥ = ρU AA∗ fcd�⊥ = ρU J AA∗ fcdγ 1dγ 2 = const.;

see Section 2.4.4. Because fcdγ 1dγ 2 is constant along �, we obtain ρUJAA∗ = const.
along the whole ray. This is in full agreement with (3.10.61).

Because the ray Jacobian may be negative, it is useful to determine strictly the sign
of J 1/2 in the equation derived. This can be done using the phase shift due to caustics
T c(s0, s), which was discussed in the previous section. We shall consider only one of the
derived equations, (3.10.61), corresponding to general anisotropic media. This equation
can take the following form:

A(s) =
[
ρ(s0)U(s0)|J (s0)|
ρ(s)U(s)|J (s)|

]1/2
A(s0) exp[iT

c(s, s0)], (3.10.63)

where the phase shift due to caustics is given by (3.10.50).
The correct sign of the phase shift due to caustics T c(s, s0) in (3.10.50) has been

discussed in the wave propagation literature for a long time. For the analytical signal given
by (2.2.9), with the plus sign in the definition equation F(ζ ) = x(ζ ) + ig(ζ ), the correct
sign in (3.10.50) is minus (−) so that

T c(s, s0) = − 1
2πk(s, s0), (3.10.64)

where k(s0, s) is the KMAH index. Equation (3.10.64) is, of course, also valid for time-
harmonic waves with time factor exp[−iω(t − T )]. For a proof, see Section 5.8.8.

The analytical signal with the minus sign in the definition equation, F(ζ ) = x(ζ ) −
ig(ζ ), is also commonly used. In this case, the sign in (3.10.64) would be plus (+) instead
of minus (−). This also applies to time-harmonic waves with time factor exp[+iω(t − T )].

3.11 Boundary-Value Ray Tracing

Boundary-value ray tracing plays a considerably more important role in seismology and
in seismic exploration than initial-value ray tracing. On the other hand, it is also more
complex and time-consuming.

Many different procedures of boundary-value ray tracing have been proposed. It is
not simple to classify these procedures and to separate them into certain groups. This
classification may always be applied in different ways. The classification given here is
far from complete. Moreover, we shall consider only the ray tracing methods suitable
for computing ray-theory travel times. The grid methods of computing the first-arrival
travel times are described in Section 3.8. They represent automatically the solution of the
boundary-value travel-time problem.

Before we discuss the methods of solving the boundary-value ray tracing problems in
Sections 3.11.2 through 3.11.4, we shall briefly review various types of these problems and
demonstrate themon simple examples. For completeness, we shall also include initial-value
ray tracing problems.
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Figure 3.14. Initial-value ray tracing.
(a) Ray� is specified by the coordinates
of initial point S and by the initial direc-
tion of the ray at S (the direction of initial
slowness vector 	p0). (b) There may be
two or more rays leaving S in different
directions but that pass through the same
point R (multiple rays from S to R).

3.11.1 Initial-Value and Boundary-Value Ray Tracing: A Review

1. INITIAL-VALUE RAY TRACING
The initial conditions for a single raywere discussed in Section 3.2.1. At an initial point,

the initial direction may be specified by two take-off angles i0 and φ0; see Figures 3.14(a)
and 3.3. The components of the slowness vector at the initial point are then obtained from
(3.2.3). Once the initial conditions are known, the ray can be easily computed by solving
the relevant ray tracing system. When we start computing the ray, we do not know through
which points the ray will pass.

If we also wish to determine the travel time along the ray, we must specify the initial
travel time, that is, the travel time at the initial point of the ray.

In a smooth medium without interfaces, the ray is uniquely defined by its initial condi-
tions. In layered and block structures, the ray is defined not only by the initial conditions
but also by the ray code of the elementary wave under consideration.

Note that various rays of the same elementary wave may intersect so that there may
be two or more rays leaving point S in different directions and passing through the same
point R �= S. See Figure 3.14(b). We shall call the rays of the same elementary wave that
intersect at point R multiple rays at R. The multiplicity of rays depends, of course, on the
position of point R. Often, there will be only one ray; in other cases, there will be two or
more rays that connect S with R. If several multiple rays connect S and R, the travel times
are also multivalued.

In certain applications, the initial direction of the ray at point S is not given, but it can
be calculated from some other data. This applies mainly to such problems in which the
initial travel time is given along the initial surface, �0. The initial direction of the ray can
then be calculated at any point S of initial surface �0, assuming that the geometry of �0,
the distribution of the initial travel time along �0, and the propagation velocity are known
in the vicinity of point S. More details will be given in Section 4.5.

The simplest initial-surface ray tracing problems correspond to the ray tracing of nor-
mal rays. If the travel-time distribution along initial surface �0 is constant, all rays are
perpendicular to �0; see Figure 3.9a. Initial surface �0 then behaves like a wavefront.
The initial direction of any ray can be simply determined using (3.2.5) as it corresponds
to the direction of the unit normal to �0. For this reason, we often speak of normal rays.
The initial components of slowness vector pk(S) are obtained from nk(S) determined by
(3.2.5) using relation pk = nk/V , where V is the relevant propagation velocity at S.

Ray tracing of normal rays has important applications in seismic prospecting. In the
“exploding reflector” algorithm in seismic reflectionmethods, it is assumed that the reflector
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Figure 3.15. Boundary-value ray tracing. (a) In two-point ray tracing, we seek the ray that passes
through two fixed points S and R. (b, c) In initial surface-fixed point ray tracing, we seek the rays that
leave initial surface �0 and pass through point R. The ray is perpendicular to �0 if the initial time T 0

is constant along �0; see (b). The position of initial point S on initial surface �0 is not known a priori.

explodes at some specified time. Thus, the reflector behaves like a wavefront and all rays
are perpendicular to it.

If the initial travel time is not constant along �0, the rays are not perpendicular to �0,
and the initial surface does not behave like a wavefront; see Figure 3.9b. Nevertheless,
the initial direction of rays may simply be computed at any point of �0. The procedure of
determining the initial direction of the ray in this case is described in Section 4.5.

2. BOUNDARY-VALUE RAY TRACING
Asmentioned earlier, the ray is not specified by the initial conditions, but by some other

conditions, related to different points of the ray in boundary-value ray tracing.
The most important case of boundary-value ray tracing is two-point ray tracing. In two-

point ray tracing, we seek the ray that connects two fixed points S and R; see Figure 3.15(a).
The initial directions of the ray at S and R are not known in this case. In fact, the problem
of two-point ray tracing corresponds to the definition of the ray by Fermat’s principle.

As we can see in Figure 3.14(b), the solution of two-point ray tracing is not necessarily
unique; sometimes we can find two or more multiple rays that connect S with R. The
travel time along one of them corresponds to the absolute minimum. The travel times
calculated along other rays are larger, but they still render Fermat’s functional stationary.
Such situations are very common in applications, especially in the case of refracted waves,
waves reflected from interfaces of the syncline form, and the waveguide propagation.

There are numerous examples in seismology and in seismic prospecting where two-
point ray tracing is needed. Let us name, among others, the location of earthquake hypocen-
ters, construction of synthetic seismograms, particle ground-motion diagrams, and solution
of many inverse problems (including tomography and migration).

The next example of boundary-value ray tracing is initial surface-fixed point ray tracing.
In this case, the distribution of the initial travel-time field T 0 is given along initial surface
�0, and we wish to find the relevant ray passing through a fixed point R; see Figure 3.15(c).
We know neither the initial direction of the ray at R nor the position of the initial point S
of the ray at �0. As in two-point ray tracing, initial surface-fixed point ray tracing is not
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unique; several rays starting from different points along�0 may arrive at R. We shall again
speak of multiple rays and multivalued travel times.

Special cases of initial surface-fixed point ray tracing are exploding reflector-fixed point
ray tracing and wavefront-fixed point ray tracing. In these cases, we seek the rays that are
perpendicular to initial surface�0 (exploding reflector or wavefront) and that pass through
fixed point R; see Figure 3.15(b). We can also speak of boundary-value normal ray tracing,
as opposed to initial-value normal ray tracing.

In three-dimensional media, all these examples of boundary-value ray tracing require
two initial parameters of the ray to be determined (for example, the two take-off angles i0
and φ0 at S or R) so that a two-parameter boundary-value ray tracing problem needs to be
solved. In two-dimensional media, boundary-value ray tracing reduces to one-parameter
boundary-value ray tracing. Figures 3.14 and 3.15 are shown only in 2-D, but imagining
the relevant 3-D situations with two free parameters is simple.

Literature devoted to boundary-value ray tracing is very extensive. Let us list only a few
important references: Wesson (1970, 1971), Chander (1975), Julian and Gubbins (1977),
Pereyra, Lee, and Keller (1980), Thurber and Ellsworth (1980), Lee and Stewart (1981),
Keller and Perozzi (1983), Docherty (1985), Um and Thurber (1987), Waltham (1988),
Hanyga (1988), Obolentseva and Grechka (1988), Pereyra (1988, 1992, 1996), Prothero,
Taylor, and Eickemeyer (1988), Virieux, Farra, and Madariaga (1988), Farra, Virieux,
and Madariaga (1989), Sambridge and Kennett (1990), Virieux and Farra (1991), Farra
(1992), Moser, Nolet, and Snieder (1992), Hanyga and Pajchel (1995), Passier and Snieder
(1995),Wang andHouseman (1995), Bulant (1996, 1999),Grechka andMcMechan (1996),
Guiziou, Mallet, and Madariaga (1996), Clarke and Jannaud (1996), Hanyga (1996b), Liu
and Tromp (1996), Mao and Stuart (1997), and Koketsu and Sekine (1998). For a point-
to-curve ray tracing, see Hanyga and Pajchel (1995) and Hanyga (1996b).

3.11.2 Shooting Methods

The shooting method is an iterative procedure that uses standard initial-value ray tracing
to solve a boundary-value ray tracing problem.

Initial-value ray tracing, however, may be applied in different ways. We shall describe
two of them.

1. Standard shooting method. In the standard shooting method, the initial-value ray
tracing procedure is put within an iterative loop to find the ray passing through receiver R.
Standard shooting is usually applied to the selected elementary wave under consideration,
but it may also be applied to a group of elementary waves, the travel times of which are
in some way connected. For simplicity, we shall consider one elementary wave in the
following. The loop, however, should be organized very carefully because the ray field
corresponding to the elementary wave may be very complicated. There may be shadow
regions where no rays of the elementary wave under consideration arrive. Similarly, there
may be regions of overlapping, where two or more rays of the same elementary wave
arrive at the same receiver point R (multipathing). It is useful to find boundaries between
the individual regions of the same ray history of the elementary wave under consideration.
The greatest danger in the standard shooting method is represented by elementary waves,
the ray field of which corresponds to a very narrow range of ray parameters but that covers
a large part of the region of the model of interest. Typical representatives of such waves
are slightly refracted waves, similar to head waves, in refraction studies.
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Figure 3.16. Solution of boundary-
value ray tracing by the shootingmethod.
(a) Two-point ray tracing. We wish to
find the ray from S that passes through
R. Three trial rays are shown. (b) Initial
surface-fixed point ray tracing. We wish
to find the ray from initial surface�0 that
passes through R. The ray must satisfy
the relevant conditions at S on�0. Three
trial rays are shown. The loops may also
be organized in the opposite directions,
by shooting from R.

We shall now present several simple examples. We shall first consider a two-point ray
tracing problem. We wish to find the ray that connects points S and R in Figure 3.16(a).
We take one of the two points as the initial point, for example, point S. We then shoot the
rays from S under different take-off angles i0 and φ0 in the direction of point R. Each ray
is computed by standard initial-value ray tracing. An iterative loop is used to find the ray
that passes through the other point, R. In this way, the shooting method resembles a gun
firing from S at a target at R. See Figure 3.16(a) for a 2-D situation.

Various methods can be used to accelerate the convergence of the iterations. For exam-
ple, considerable acceleration can be achieved by applying one of the recent sophisticated
methods, such as the method of paraxial ray approximation. See Section 4.9.

An alternative shooting procedure can also be applied in initial-surface to fixed-point
ray tracing. Here we wish to find a ray shot from initial surface �0 that passes through
point R; see Figure 3.16(b). We successively shoot rays from different points Si on �0. At
any point Si , the initial direction of the ray is fully determined by the geometry of �0, the
distribution of the initial travel time along�0, and the propagation velocity at Si . Thus, the
initial direction of the ray at any point Si is fixed and cannot be changed, but the ray from
Si does not, in general, pass through R. An iterative loop must be used to find point S on
�0 from which the ray passes through R. Alternatively, we can also shoot rays from R to
�0 and minimize iteratively the differences between the directions of these and computed
initial directions along �0.

The shooting method has been successfully used mainly in 2-D models, in situations
in which we need to find rays shot from a point source to a series of receivers distributed
regularly or irregularly in some region along the surface of the Earth. We start shooting
rays that hit the Earth’s surface outside the region with receivers. We then regularly vary
the take-off angle to come closer to the receiver region. As soon as we overshoot a receiver,
we return and determine the ray passing through the point using standard numerical in-
terpolation techniques. Traditionally, the regula falsi, halving of intervals, or one of their
combinations has been used. The method of halving of intervals is slower, but safer. We
then continue to shoot new rays at regular steps in the take-off angles. In the modification
of this procedure, special care is devoted to the boundaries of ray fields with different ray
histories, particularly to the boundaries of shadow zones, to critical rays, tomultiple arrivals
of the individual waves, and to the search for waves that may easily be overlooked (such
as slightly refracted waves). If the loop is properly organized, the shooting method safely
determines most of the rays of all the elementary waves under consideration arriving at
the receiver positions. If an elementary wave has several branches, the modification of the
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shooting method determines all relevant multiple arrivals of the elementary waves. This
modified shooting method has been found useful in the construction of 2-D ray synthetic
seismograms; see Červený and Pšenčı́k (1984b).

A similar approach can be used if the sources and/or receivers are distributed in a
borehole (VSP and/or cross-hole profiles) in a 2-D structure. It can also be used in other
types of 2-D boundary-value ray tracing, such as boundary normal ray tracing. Boundary
normal ray tracing has found applications in the construction of synthetic time sections in
seismic explorations using the “normal ray” algorithm.

Let us now briefly discuss the main principles of the shooting method in a general 3-D
layered and block model. For simplicity, we shall discuss only the two-point ray tracing
problem. The algorithm described here is, however, applicable even to other boundary-
value ray tracing problems. We shall consider a point source at S, situated arbitrarily in
the model, and a system of receivers Ri , i = 1, 2, . . . , n, distributed along some reference
surface �R inside the model or on its boundary. Surface �R may represent the Earth’s
surface, a structural interface, or merely a formal surface inside the model, which may,
for example, contain borehole(s) with receivers. Reference surface �R may be finite. We
shall seek the rays of a selected elementary wave generated by a point source situated at S,
specified by a proper ray code.We call any ray of the elementary wave under consideration,
with the initial point at S and with the terminal point at �R , the successful ray. The
ray parameters of rays of the elementary wave under consideration with the initial point
at S form a 2-D ray-parameter domain. The size of the ray-parameter domain may be
specified by input data, but it must cover ray parameters of all two-point rays connecting
S with Ri , i = 1, 2, . . . , n. Because these rays are not known a priori, it is useful to
consider greater ray-parameter domains.Not all ray parameters in the ray-parameter domain
represent successful rays; some of the rays may be terminated inside the model or on its
boundaries. Moreover, the ray histories of the individual successful rays may be different.
The basic problem of two-point ray tracing resides in the accurate decomposition of the
2-D ray-parameter domain into homogeneous subdomains, containing the ray parameters
of rays with the same histories, and in the determination of demarcation belts between
homogeneous subdomains. Two-point ray tracing may be done by means of sophisticated
triangularization of the ray domain. A proposal of the algorithm of such triangularization
is described in detail by Bulant (1996, 1999), where many numerical examples can also be
found.

The triangularization of any homogenous subdomain corresponding to successful rays
in the ray-parameter domain is mapped by rays into a triangularization of some region of
reference surface �R . As soon as the receiver Rk is situated in any homogeneous triangle
on �R , the relevant two-point ray from S to Rk can be found by routine interpolation
methods; see Bulant and Klimeš (1999). Alternatively, the paraxial ray approximation
from the closest apex point, or weighting of the paraxial ray approximation from all three
apex points, may also be used. See Section 4.9.

It should be emphasized that the decomposition of the ray-parameter domain into
homogeneous subdomains is the most important step of the procedure. The routine inter-
polation methods and/or the paraxial ray approximation methods can be used only inside
homogeneous subdomains. They usually fail if they are applied across boundaries of the
homogeneous subdomains because the rays in different homogeneous subdomains have
different histories. Moreover, the decomposition is also a crucial step in the search for all
multiple rays of the elementary wave under consideration arriving at the receiver.
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2. Controlled initial-value ray tracing. The controlled initial-value ray tracing does
not require rays passing through specified receivers to be found, but it does require that
the model (or some target region of the model) be covered by a sufficiently dense sys-
tem of rays of some elementary wave specified by the ray code. The decomposition of
the ray-parameter domain into homogeneous subdomains, and the triangularization of ho-
mogeneous subdomains corresponding to rays of equal ray history again represents the
key part of the algorithm. We shall introduce a ray tube corresponding to a homogeneous
triangle of the ray-parameter domain and call it the homogeneous ray tube. The homoge-
neous ray tube can then be decomposed into ray cells, separated by consecutive wavefronts
T = T1, T2, . . . , Tm . Inside each ray cell, the travel times, Green function amplitudes, and
other ray-theory quantities may be calculated by routine interpolation, the paraxial ray
method, or weighting of paraxial ray approximations. Similarly as in the case of a two-
point ray tracing described earlier, this interpolation would be questionable between rays
of different ray histories. For this reason, it is necessary to interpolate only within homo-
geneous ray tubes. See Bulant (1999) and Bulant and Klimeš (1999).

The controlled ray tracing may be very efficient if we need to calculate the ray-theory
quantities at grid points in a target region of a model represented by a discrete grid of
points. For example, it may play an important role in the migration of seismic data in
seismic exploration for oil.

It should be noted that certain extensions of the ray method (like the Maslov-Chapman
method or the method of summation of Gaussian beams) do not require that the ray passing
exactly through the receiver to be known to compute the wavefield at the receiver; it is
sufficient to know the rays at some neighboring points. Using these methods, it would be
sufficient to cover a target region by a sufficiently dense system of ray points to compute
the wavefield at any point of the target region. And this may be performed by controlled
ray tracing.

The main principles of the controlled ray tracing method are very similar to the wave-
front constructionmethod described in Section 3.8.4. There are, however, several important
differences. The main difference follows. In the controlled ray tracing method, all rays are
computed directly from the source (or from the initial surface). Sufficient density of the ray
field in the target region is ensured by triangularization of the ray-parameter domain. In the
wavefront construction method, the rays are used to compute the wavefronts successively.
At each wavefront, the number of rays is adjusted according to the local behavior of the ray
field. Consequently, the ray field in the wavefront constructionmethod is always sufficiently
dense, and the succeeding interpolations are sufficiently accurate. Moreover, the computed
rays are shorter because they are not computed directly from the source but rather from the
individual wavefronts.

The preceding two shooting methods may also be used in anisotropic inhomogeneous
media.

3.11.3 Bending Methods

The next method used to solve boundary-value ray tracing problems is called the bending
method. The method does not use standard initial-value ray tracing. In the bending method,
an initial ray path is guessed and then perturbed iteratively so as to find the relevant
boundary-value ray. Note that the guessed trajectory need not, in general, correspond to
any actual ray, it may just be an auxiliary reference curve connecting points S and R;



224 SEISMIC RAYS AND TRAVEL TIMES

S

R

ray

initial
guess

Figure 3.17. The solution of two-point ray tracing
by the bending method. The initial guess ray path is
guessed and then perturbed iteratively. The final ray
is shown as the bold line.

see Figure 3.17. For example, in a layered medium, it does not need to satisfy Fermat’s
principle in smoothly varying medium and Snell’s law at structural interfaces. If the initial
guess is far from the actual ray connecting points S and R, the method may diverge.

Thus, bending methods do not represent a complete solution of the boundary-value ray
tracing problem and of the subsequent determination of ray-theory travel times. First, an
independent algorithm to estimate the guessed trajectories must be used. We can call this
algorithm the ray estimator. After the ray estimator has been applied and has generated
preliminary ray trajectory guesses for all sources and receivers, the bending method may
be applied as a postprocessor, correcting the preliminary trajectories. This correction pro-
cedure is also known as bending the rays. However, the number and nature of the finally
determined boundary-value rays depends on the ray estimator used.

On the one hand, the bending method is usually faster than the shooting method. On
the other hand, it requires reasonable ray estimators; otherwise, many rays and relevant
travel times may be lost.

The bending method may be very useful in combination with other methods. For ex-
ample, it may be useful in combination with the shooting method, where it may be used
to determine rays difficult for shooting such as slightly refracted waves. Indeed, these rays
may easily be computed by bending. However, the shooting method may be used to find the
guess reference curve to initiate the bending procedure. The reference curve need not be
calculated with high accuracy because it serves only as a first guess (Pereyra, 1996). It may
also be useful to combine the bending method with shortest-path ray tracing (see Section
3.8.3), taking the network rays as preliminary ray estimates. The postprocessing by the
bending method may increase the accuracy of network ray tracing considerably. However,
it would also be more time-consuming. See Moser, Nolet, and Snieder (1992).

We shall discuss only the calculation of one selected ray, corresponding to specified
positions of the source and receiver, assuming that the guessed reference curve is known.
In practical applications in seismic exploration for oil, a whole system of closely spaced
receivers is often considered. In this case, the receiver continuation strategy (Pereyra,
1996) can be used to accelerate the computations for the whole system of receivers. In
this strategy, a known ray for one source and receiver position may be used as a reference
guess curve to initiate the bending procedure for the same source and neighboring receiver
positions. The same, of course, also applies to the source continuation strategy for closely
spaced point sources. Note that paraxial ray methods can also be successfully applied in
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this case; see Section 4.9. In paraxial ray methods, the ray passing through points S′ and
R′ situated close to S and R can be approximately found analytically, if the ray propagator
matrix along the reference ray from S to R is known. This matrix can be simply determined
by dynamic ray tracing along a reference ray from S to R.

In the following, we shall discuss the three most common groups of bending post-
processing methods. In all three groups, the structure of the model is assumed to be fixed.
For the methods based on structural perturbations, see the Section 3.11.4.

1. METHODS BASED ON FITTING RAY TRACING EQUATIONS
The basic idea regarding the solution of the two-point ray tracing problem using these

methods consists in determining such a curve connecting fixed points S and R, along
which the ray tracing system is satisfied. It is assumed that a guessed reference curve �0

connecting points S and R is known. To demonstrate the method, we shall consider the ray
tracing system (3.1.22), consisting of three ordinary differential equations of the second
order for n = 1,

d(V −1dxi/ds)/ds − ∂(1/V )/∂xi = 0, i = 1, 2, 3, (3.11.1)

where s is the arclength along the ray. If the reference curve �0 represents a ray, the LHSs
of (3.11.1) vanish at all points along �0. If, however, it differs from a ray, the LHSs of
(3.11.1) are, in general, different from zero, at least at some points along �0. The bending
procedure involves determining the curve � in the vicinity of�0, with vanishing LHSs of
(3.11.1) at all points along�. For this purpose, (3.11.1) is discretized, and the derivatives at
nodal points are replaced by finite differences. The resulting system of nonlinear algebraic
equations is then linearized and solved iteratively for displacements of nodal points, for
which (3.11.1) is satisfied. The size of the resulting linear algebraic system is related to
the number of finite difference nodes and may be rather large. See, for example, Julian and
Gubbins (1977), Pereyra, Lee, andKeller (1980), Lee andStewart (1981), andThomson and
Gubbins (1982). The approach may be applied to ray tracing systems expressed in both
Lagrangian and Hamiltonian forms. The Lagrangian approach uses the Euler-Lagrange
ordinary differential equations of the second order in xi and x ′

i = dxi/ds; see, for example,
(3.11.1). A detailed and tutorial treatment can be found in Snieder and Spencer (1993); see
also Snieder and Sambridge (1992) and Pulliam and Snieder (1996). In the Hamiltonian
approach, the standard ray tracing system of ordinary differential equations of the first order
in xi and pi is applied; see, for example, Pereyra (1996). Pereyra (1996) also shows how the
structural discontinuities are handled in the procedure and how the additional computations
such as 3-D geometrical spreading, sensitivity studies, and travel-time inversion may be
included.

2. METHODS BASED ON PARAXIAL RAY APPROXIMATION
If the reference curve represents a true ray, the paraxial ray approximation can be used

to compute any paraxial ray in the quadratic vicinity of the true ray and to solve an arbitrary
boundary-value problem for the paraxial rays. An important role in these computations is
played by the ray propagator matrix, which can be determined by dynamic ray tracing along
the reference ray. The computations may be performed in ray-centered coordinates (see
Sections 4.3.1 through 4.3.6 for 4 × 4 ray propagator matrices), or in Cartesian coordinates
(see Sections 4.3.7 and 4.7.2 for 6 × 6 ray propagator matrices). Once the ray propagator
matrix is known along the reference ray, the paraxial rays and slowness vectors along these
rays may be calculated analytically.
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The paraxial ray approximation yields only approximate results. Thus, the computation
should be iterative. The complication is that paraxial rays are not exact so that they must
be considered only as guess reference curves in iterations (not rays). This creates a new
problem, namely the construction of rays in the vicinity of an arbitrary reference curve,
which does not represent a ray.

In the Hamiltonian formalism, such a problem was first solved by Farra (1992). The
formalism leads to dynamic ray tracing along the reference curve. The dynamic ray tracing
system, however, is not homogeneous in this case but contains a “source term.” (The source
term vanishes if the reference curve is a true ray.) Using the propagator technique, the
solution of the dynamic ray tracing systemwith a source term can be expressed analytically
in terms of the propagator matrix of the homogeneous dynamic ray tracing system. Only
one additional integration along the reference curve is required.

A complete treatment of the Hamiltonian approach to the construction of rays situated
close to an arbitrary reference curve in a laterally varying layered structure (including
interfaces) is given by Farra (1992). The treatment is applicable to any Hamiltonian so that
it can be applied both to isotropic and anisotropic media. Note that the solution of the same
problem in anisotropic media using Lagrangian formulation would be considerably more
complicated. Farra (1992) also solves the relevant boundary-value problem and shows that
it may be reduced to several linear algebraic equations. Thus, it is not necessary to solve a
large system of linear equations. Note that theHamiltonian approach to the bendingmethod
proposed by Farra (1992) may also be easily combined with structural perturbations; see
Section 3.11.4.

3. METHODS BASED ON MINIMIZING THE TRAVEL TIME
Let us consider an elementary wave propagating in a layered/block model and estimate

a guessed trajectory �0 connecting the source and receiver and satisfying the ray code of
the elementary wave. The optimization procedure is then used to find the curve with the
minimum travel time among the curves situated in the vicinity of the guessed trajectory
and corresponding to the same ray code. The guessed reference curve �0 is discretized
and solved iteratively for such displacements of the nodal points, for which the travel time
along the curvewould beminimized. Themethodwas proposed byUmandThurber (1987);
see also Prothero, Taylor, and Eickemeyer (1988), Moser, Nolet, and Snieder (1992), and
Koketsu and Sekine (1998). The method is also often called the pseudo-bending method.
Various methods of linear programming (such as the simplex method, see Prothero et
al., 1988) or even nonlinear programming have been applied (Schneider et al. 1992). The
method has been broadly used in seismic exploration formodels consisting of homogeneous
layers and blocks. In this case, the ray elements between interfaces are straight lines, and the
ray of any elementary wave may be fully specified by the coordinates of points of contact
with the individual structural interfaces. In the optimization procedures, the coordinates of
the points of contact of the ray trajectory with structural interfaces are sought. The guessed
ray trajectories do not need to satisfy Snell’s law at structural interfaces, but the optimization
principles yield it. In other words, the final rays obtained by bending postprocessing satisfy
Snell’s law at any point of contact of the ray with a structural interface. Note that the
procedure does not seek the general first-arrival travel times and corresponding rays but
seeks instead the ray-theory travel times corresponding to selected elementary waves. If
multiplicity occurs, however, the procedure is not safe; it may yield any of the arrivals
corresponding to the selected elementary wave. Often, only one arrival of the elementary
wave is obtained; the others are lost. The method is very popular in seismic exploration
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because it is very fast. It has also been applied to more complex structures than described
here; see Guiziou and Haas (1988), Guiziou (1989), and Vesnaver (1996a, 1996b).

3.11.4 Methods Based on Structural Perturbations

In both the shooting and bending methods, the structure of the medium is fixed. Other
methods of boundary-value ray tracing are based on structural perturbations.

We shall first describe the method, which has been called the continuation method,
and which was proposed by Keller and Perozzi (1983). In the continuation method, the
structure is gradually deformed. The method has mostly been applied to ray tracing in
layered 2-D models with constant velocity within the individual layers, a buried source,
and the receivers distributed along the surface. In the procedure, a model (also called the
background model), which is simpler than the actual model being considered, is used first.
For example, the method starts with a horizontally layered model only. In the background
model, the ray from the source to the receiver, situated on the surface exactly above it, is
merely a vertical straight line. The interfaces are then gradually deformed until the desired
model is achieved. At each deformation step, the ray equations are solved, and the ray
from the source to the receiver, situated vertically above it, is found. Source continuation
is then applied by moving the source in a grid within the region of interest. At each source
position, the rays to other receivers are found using the continuation of the receiver location.
See Keller and Perozzi (1983) and Docherty (1985). The continuation method can also be
efficiently combinedwith the shootingmethod and/orwith the bendingmethod; seeHanyga
(1988).

Let us now consider the basic problem of the ray perturbation theory for an arbitrary
3-D laterally varying layered and block structure. We assume that the ray �0 connecting
two points S and R in a reference background medium M0 is known, and we wish to
determine the ray � situated in a perturbed medium M, connecting the same points S
and R. We also assume that perturbed mediumM differs only weakly from background
medium M0. An analogous problem for travel-time perturbations was solved in Section
3.9; here we are interested in the perturbation of the ray itself. The problem of the ray
perturbation will be treated in more detail in Section 4.7.4; here we shall only qualitatively
explain its application to two-point ray tracing. Note that ray �0 plays the role of the ray
estimate in the bending method. Often, ray estimate�0 may be found analytically, if model
M0 is simple enough, or it may at least be found in a simpler way than ray �.

Similarly as in Section 3.9, we can again use the Hamiltonian or the Lagrangian for-
malism in the ray perturbation theory.

The Hamiltonian approach is based on the Hamiltonian formalism and solves the
problem in the xi -pi -phase space. The Hamiltonian approach was used in the seismic
ray perturbation problem in a series of papers by Farra, Madariaga, and Virieux; see, for
example, Farra andMadariaga (1987), Farra,Virieux, andMadariaga (1989),Virieux (1989,
1991), Virieux, Farra, and Madariaga (1988), Virieux and Farra (1991), Farra (1989, 1990,
1992, 1993), Farra and Le Bégat (1995), and Farra (1999). The procedure is analogous
to the construction of a true ray in the vicinity of a reference curve, described briefly in
Section 3.11.3.2. It requires the inhomogeneous dynamic ray tracing system with a source
term to be solved along�0. The source term depends on the spatial derivatives of structural
perturbations�H of HamiltonianH in this case. The solution can be expressed in terms of
the propagator matrix of the homogeneous dynamic ray tracing system; see Section 4.3.8.
Only one additional integration along reference ray �0 is required. The approach may be
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applied to any form of Hamiltonian, to a layered medium, to isotropic and anisotropic
media. The positions of endpoints S and R can be perturbed simultaneously with the
structure. The solution of any boundary value ray tracing problem for ray� is not difficult;
it only requires the solution of a few linear algebraic equations, containing theminors of the
ray propagator matrix. Consequently, the Hamiltonian approach can also be applied if we
wish to find ray� inM connecting points S′ and R′, where S′ and R′ do not coincide with
S and R but are close to them. In a similar way, we can also solve any other boundary-value
ray tracing problem for ray �.

The Lagrangian approach exploits the Euler-Lagrange ray tracing equations, expressed
in terms of xi and dxi/du. For a detailed description with many references, see Snieder and
Sambridge (1992, 1993), Snieder and Spencer (1993), and Pulliam and Snieder (1996). The
Lagrangian approach leads to a system of linear algebraic equations that are tridiagonal.
Using this approach, the second-order perturbation of travel time can also be determined by
integration along reference ray �0 in the background medium. The Lagrangian approach
has so far been applied only to isotropic media; its application to general anisotropic media
would be more involved.

In both Hamiltonian and Lagrangian approaches, the methods based on structural per-
turbations do not yield ray� inM exactly, but only approximately. Ifwewish to increase the
accuracy of �, it is possible to apply standard bending methods in the perturbed medium
M such as the methods based on the paraxial ray approximation, described in Section
3.11.3.2. In fact, in any of these two approaches, we can use a unified formulation that
includes ray bending, structural perturbations, and paraxial ray tracing.

3.12 Surface-Wave Ray Tracing

In seismology, ray tracing has been applied not only to high-frequency seismic body waves
propagating in laterally varying layered structures but also to surface waves propagating
along a surface of a laterally varying elastic layered structure. Although this book is devoted
primarily to the ray method for high-frequency seismic body waves, we shall also briefly
describe the main principles of surface-wave ray tracing. The most important difference
between high-frequency seismic body waves and surface waves is that the phase velocities
of surface waves depend distinctly on frequencyω (even in nondissipative media), whereas
the phase velocities of high-frequency seismic body waves in such media do not depend
on ω. The rays of surface waves along a surface of the model are computed for a fixed
frequency. For different frequencies, different rays are obtained.

The theory of seismic surface waves propagating along a flat surface of a one-
dimensional (vertically inhomogeneous) layered structure has been well described in many
seismological textbooks and papers. Two surface waves can propagate in such models: the
slower Rayleigh wave, polarized in a vertical plane containing the direction of propagation,
and the faster Love wave, polarized perpendicularly to this plane. The amplitudes of both
waves are effectively concentrated close to the surface, in a layer the effective thickness of
which is greater for lower frequencies ω. Both Rayleigh and Love waves consist of modes
(m = 0, 1, . . .). The most important are the lower modes, particularly the fundamental
mode (m = 0). The higher modes are restricted to higher frequencies. The phase veloci-
ties of surface waves depend on frequency ω. The velocity dispersion is controlled by the
so-called dispersion relation. The dispersion relations of different modes are different.

The dispersion relations can be expressed in various forms. For isotropic models, it is
usual to specify them by the relation C = C(ω), where C is the phase velocity along the
surface. An alternative form of dispersion relation, which will be used here, is ω = ω(k),



3.12 SURFACE-WAVE RAY TRACING 229

where k is the wavenumber, k = ω/C(ω). The determination of dispersion relations for a
vertically inhomogeneous layered structure with a flat surface� is now a well-understood
seismological problem. Propagator techniques for 1-D models and various matrix methods
are mostly used to determine them. These methods are described in many seismological
textbooks andpapers; see, for example,Aki andRichards (1980,Chap. 7),wheremanyother
references can be found. At present, safe procedures and computer programs to calculate
the dispersion relation for 1-D anisotropic layered structures with a flat surface are also
well known; see Thomson (1996a, 1996b, 1997b) and Martin and Thomson (1997). Also
in anisotropic models, the dispersion relations can be derived and computed by applying
propagator techniques and matrix methods. In this case, the dispersion relation reads ω =
�(k1, k2), where k1 and k2 are two components of the wave vector at the surface. In both the
isotropic and anisotropic case, the dispersion relations can be computed for arbitrary local
realistic models of vertically inhomogeneous layered structures, with material parameters
strongly varying with depth.

3.12.1 Surface Waves Along a Surface of a Laterally Varying Structure

Now we shall assume that the structure described here varies slowly laterally. Also the sur-
face may be smoothly curved. Thus, the material parameters may vary strongly with depth,
but the lateral variations should be slight. Often such models are called the “almost layered
models.” Because we shall consider a curved surface � of the model, it is useful to intro-
duce 2-D curvilinear coordinates x I (I = 1, 2) along the surface. They may be represented
by Gaussian coordinates, for example. Coordinates x1 and x2 may be nonorthogonal. We
denote the covariant components of the relevant 2-Dmetric tensor by gIJ; see Section 3.5.6.

The main idea of the investigation of surface wave propagation in almost layered
models of the Earth is a different treatment of the surface wave wavefield in the “horizontal
direction” (along the surface �), and in the “vertical direction” (along normal to �). In
a vertical direction, the wavefield is expressed locally by the normal mode theory, while
the propagation along a surface is treated approximately, in much the same way as in the
ray method. The theoretical treatment involves the stretching of horizontal coordinates and
time, using a small parameter ε. In ocean acoustics, the method is called the method of
two-scale expansion or themethod of horizontal rays and vertical modes; see Burridge and
Weinberg (1977) and Brekhovskikh and Godin (1989).

We shall select arbitrarily one mode of a surface wave and describe it by the ansatz
relation:

	u(x I , n, t) = 	A(x I , n, t) exp[iθ (x I , t)], (3.12.1)

where x1 and x2 are the coordinates introduced along the surface�, n is the distance from
�, measured along normal 	n to surface �, and t is time. The vectorial amplitude 	A is
assumed to depend both on x I and n, and the phase function θ is assumed to depend on x I ,
but not on n. Moreover, it is assumed that 	A is a slowly varying function and θ a rapidly
varying function of x I and t . Thus, (3.12.1) represents some sort of space-time ray theory
ansatz; see Section 2.4.6, especially Equation (2.4.72).

We define frequency ω and the covariant components of the wave vector kI by the
relations

ω = −∂θ/∂t, kI = ∂θ/∂x I . (3.12.2)

Quantities 	A, kI , andω and the structure may vary smoothly laterally. (The variation of the
structure in the normal direction may, however, be strong.) It is then possible to prove that
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	A(x I , n, t) must be an eigenfunction of the local eigenvalue problem for the 1-D vertically
inhomogeneous layered structure, for the relevant x I . At different x I , the eigenfunctions
will be different.

In the following, we shall not try to solve completely the problem of surface waves
propagating along surface� of a laterally varying structure. We shall not discuss the deter-
mination of 	A(x I , n, t), but only the surface-wave ray tracing along surface� of the model
and the computation of θ along these rays. For a more detailed treatment, see Woodhouse
(1974, 1996),Gjevik (1973, 1974),Gregersen (1974), Babich,Chikhachev, andYanovskaya
(1976), Jobert and Jobert (1983, 1987), Levshin et al. (1987), Yomogida (1988), Virieux
(1989), Virieux and Ekström (1991), Martin and Thomson (1997), Thomson (1997b), and
Dahlen and Tromp (1998). For an analogous treatment of waves propagating in slowly vary-
ing waveguides, see Bretherton (1968), Burridge and Weinberg (1977), and Brekhovskikh
and Godin (1989), among others. Various aspects of surface waves propagating in later-
ally varying media are also discussed by Woodhouse and Wong (1986), Yomogida (1985),
Yomogida and Aki (1985), Tanimoto (1987), Kennett (1995), Wang and Dahlen (1995),
Montagner (1996), Snieder (1996), and Ben-Hador and Buchen (1999).

3.12.2 Dispersion Relations and Surface-Wave Ray Tracing

For a generally curved surface and laterally varying structure, the local dispersion relation
is different at different points x I of the surface. Thus, we must add x I to the arguments of
the dispersion relation

ω = �(kI , x
I ). (3.12.3)

Actually, an analogous dispersion relation may also be used for moving media; it would
only be necessary to add t to the arguments of the dispersion relation. These dispersion
relations play an important role in the propagation of waves in fluid media, but not in elastic
models. For this reason, we shall use the dispersion relation in the time-independent form
(3.12.3). Dispersion relation (3.12.3) is applicable both to isotropic and anisotropic media.

Inserting (3.12.2) into (3.12.3), we obtain

∂θ/∂t +�(∂θ/∂x I , x I ) = 0. (3.12.4)

This is a nonlinear partial differential equation of the first order in phase θ . It belongs
to the class of Hamilton-Jacobi equations and may be solved in terms of characteristics.
Thus, in the theory of surface-wave ray tracing, the dispersion relation plays the same role
as the eikonal equation in seismic body wave ray tracing. The four Hamilton’s canonical
equations of (3.12.4), representing the surface-wave ray tracing system, read

dx I/dt = ∂�/∂kI , dkI/dt = −∂�/∂x I ; (3.12.5)

see (3.1.26). In addition, we also obtain equations for the phase θ (see (3.1.27)) and
frequency ω:

dθ/dt = −ω + kI ∂x
I/dt, (3.12.6)

dω/dt = (∂�/∂x I )(dx I /dt) + (∂�/∂kI )(dkI/dt) = 0. (3.12.7)

System (3.12.5) represents the surface-wave ray tracing system, corresponding to the dis-
persion relation (3.12.4). Equation (3.12.7) shows that the frequency ω is constant along
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the whole ray. Note that the first equation of (3.12.5) defines the contravariant components
of the group velocity vector along the ray,

U I = dx I/dt = ∂�/∂kI . (3.12.8)

The group velocity U is then given by the expression

U = (gIJU IU J )1/2. (3.12.9)

Finally, Equation (3.12.6) can be solved along the ray to give phase θ :

θ (t) = −ωt +
∫
kI (dx

I/dt)dt = −ωt +
∫
kIU Idt. (3.12.10)

The integral is taken along the ray.
The initial conditions for the surface-wave ray tracing system (3.12.5) for a specified

frequency ω are

At t = 0: x I = x I0 , kI = kI0. (3.12.11)

The quantities kI0, however, cannot be chosen arbitrarily at x I0 . They must satisfy the local
dispersion relation at x I = x I0 , for the frequency ω under consideration:

ω = �
(
kI0, x

I
0

)
. (3.12.12)

The surface-wave ray tracing system (3.12.5), with (3.12.6) through (3.12.12), is valid
quite universally. It may be used for both isotropic and anisotropic media as well as for
any smooth surface �. The curved surface � may be specified in arbitrary curvilinear
coordinates, including nonorthogonal. To perform the computations, we need to know the
local dispersion relations ω = �(kI , x I ) along �. These local dispersion relations can be
obtained for locally 1-D media using propagator techniques and matrix methods.

For anisotropic media, a very detailed treatment of the surface-wave ray theory can
be found in Martin and Thomson (1997), including the computation of amplitudes and
complete wave forms. The authors also present useful relations to alternative approaches,
and many references. They discuss the computation of local dispersion relations and give
numerical examples of surface-wave rays along aflat surface of laterally varying anisotropic
structures. Considerable attention is devoted to numerical problems encountered in surface-
wave ray tracing.

3.12.3 Surface-Wave Ray Tracing Along a Surface

of an Isotropic Structure

In this section, we shall simplify the surface-wave ray tracing system (3.12.5) for the
isotropic medium. Consider an arbitrary, smoothly curved surface �, with the position-
dependent metric tensor gIJ. The material parameters (λ,µ, ρ) may vary strongly with
distance from �, but only smoothly laterally.

In isotropic models, it is useful to introduce the wavenumber k by the relation k2 =
gIJkI kJ along �, where gIJ are the contravariant components of the metric tensor. This
yields useful relations:

∂k/∂kM = k−1gMJkJ = k−1kM , (3.12.13)

∂k/∂xM |kN = (2k)−1(∂gIJ/∂xM )kI kJ . (3.12.14)
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The symbol |kN indicates that the derivative is taken for constant k1 and k2. We further
modify the general dispersion relation (3.12.3) for isotropic media as follows:

ω = �(kI , x
I ) = ω̄(k, x I ). (3.12.15)

Thus, ω depends on k only, not on k1 and k2. Then

∂�/∂kI = (∂ω̄/∂k)(∂k/∂kI ) = (∂ω̄/∂k)(k I/k). (3.12.16)

Quantity ∂ω̄/∂k has an important seismological interpretation. To explain it, we introduce
ds, the arclength element along the ray. Using the first equation of (3.12.5) and (3.12.16),
we obtain

ds2 = gIJdx
Idx J =

(
gIJ

dx I

dt

dx J

dt

)
dt2

= (
gIJk

I k J
)
k−2

(
dω̄

dk

)2

dt2 =
(
dω̄

dk

)2

dt2.

This yields

ds/dt = dω̄/dk = U, (3.12.17)

where U is the group velocity. This corresponds to the well-known definition of group
velocity in isotropic media. Finally, we find an important relation for ∂ω̄/∂x I . Because ω
is constant along the ray, we obtain

∂ω̄/∂x I = −(∂ω̄/∂k)(∂k/∂x I ). (3.12.18)

Using relations (3.12.13) through (3.12.18), it is easy to simplify the surface-wave ray
tracing system (3.12.5) for isotropic media. Equation (3.12.16) can be used to express the
first equation of (3.12.5) as follows:

dxM/dt = ∂�/∂kI = (∂ω̄/∂k)kM/k.

Using (3.12.8), (3.12.14), and (3.12.15) in the second equation of (3.12.5) yields

dkM
dt

= − ∂�

∂xM

∣∣∣∣
kN

= − ∂ω̄

∂xM
− ∂ω̄

∂k

∂k

∂xM

∣∣∣∣
kN

= ∂ω̄

∂k

(
∂k

∂xM
− 1

2k

∂gIJ

∂xM
kI kJ

)
.

Now we use (3.12.17) and obtain the final form of the surface-wave ray tracing system for
isotropic media as follows:

dxM

ds
= gMJkJ

k
,

dkM
ds

= ∂k

∂xM
− 1

2k

∂gIJ

∂xM
kI kJ . (3.12.19)

The surface-wave ray tracing system (3.12.19) does not use the dispersion relation ω =
ω̄(k, x I ) explicitly, but rather uses the alternative dispersion relation k = k(ω, x I ). System
(3.12.19) can be used for any smoothly curved surface�, with a position-dependent metric
tensor gIJ. It can, of course, also be applied to orthogonal curvilinear coordinates (spherical,
ellipsoidal, and the like).

We can compute phase θ along the ray using (3.12.10) and (3.12.19),

θ (t) = −ωt +
∫
kI
dx I

ds
ds = −ωt +

∫
kds = −ω

(
t −

∫
ds/C

)
.

(3.12.20)
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Here we have used kI gIJkJ = k2 and k = ω/C. The integral is taken along the ray.
The initial conditions for a specified frequencyω at point S(x I0 ) situated on� for system

(3.12.19) are as follows:

At S: x I = x I0 , kI = kI0. (3.12.21)

Here kI0 = kI (ω, x I0 ) must satisfy the local dispersion relation for the frequency ω under
consideration.

Indeed, system (3.12.19) is fully analogous to the ray tracing system (3.5.54), derived
for seismic body waves propagating in a model specified by nonorthogonal coordinates x i .
We specify surface � by relation x3 = const. and use arclength s as the variable along the
ray. Then n = 1, An/2−1 = V , and system (3.5.54) reads

dx I/ds = VgIK pK , dpI /ds = ∂(1/V )/∂x I − 1
2V pK pJ ∂g

KJ/∂x I .

(3.12.22)

System (3.12.22) is alternative to (3.12.19). This is simple to see if we use k = ω/C(ω),
kM = ωpM (ω), and V = C(ω) in (3.12.19), for ω = const. Thus, standard ray tracing sys-
tems derived for seismic bodywaves can also be used in surface-wave ray tracing. However,
wemust remember that phase velocity C and p1 and p2 depend on frequency. The frequency
itself remains fixed along the whole ray, and the rays computed for different frequencies
are different.

As an important example, we shall present the surface-wave ray tracing system along
spherical surface � given by relation r = R in spherical polar coordinates r, ϑ , and ϕ.
(Here we use ϑ instead of standard θ because we have already used the symbol θ for
the phase function.) In this case, x 1 = ϑ, x2 = ϕ, g11 = R−2, g22 = R−2(sinϑ)−2, and
g12 = g21 = 0. Inserting this into (3.12.19), we obtain the surface-wave ray tracing system
in the following form:

dϑ

ds
= 1

kR2
kϑ,

dkϑ
ds

= ∂k

∂ϑ
+ k2ϕ cosϑ

kR2 sin3 ϑ
,

dϕ

ds
= 1

kR2 sin2 ϑ
kϕ,

dkϕ
ds

= ∂k

∂ϕ
,

(3.12.23)

where kϑ = ∂θ/∂ϑ and kϕ = ∂θ/∂ϕ. If we put k = ω/C, kϑ = ωTϑ , and kϕ = ωTϕ , we
can again see that (3.12.23) is fully equivalent to (3.5.31) with n = 1, An/2−1 = V , V = C,
and r = R.

We remind the reader that the spherical surface in the ray tracing system (3.5.31) can be
transformed into a flat surface using the Earth’s surface flattening transformation (Mercator
transformation); see (3.5.49). The application of the Mercator transformation in surface-
wave ray tracing along a spherical surface was first proposed by Jobert and Jobert (1983,
1987). Consequently, we can also apply standard 2-D ray tracing computer routines in
Cartesian coordinates to surface-wave ray tracing along a spherical surface of the Earth. It
is only necessary to modify the input and output data slightly.

For surface-wave ray tracing systems along an ellipsoidal surface �, see Jobert (1976)
and Mochizuki (1989).



CHAPTER FOUR

Dynamic Ray Tracing.
Paraxial Ray Methods

Dynamic ray tracing is a powerful procedure that has recently found broad appli-
cations in the evaluation of high-frequency seismic wavefields in laterally inho-
mogeneous layered structures and in the solution of inverse seismic problems. It

consists of solving a system of several ordinary differential equations along a known ray�
and yields the first derivatives of phase space coordinates of points on � (position, slow-
ness vector components) with respect to initial phase space coordinates or ray parameters.
Although the dynamic ray tracing system is very simple and can be integrated without
any larger additional numerical effort, in contrast with standard ray tracing, it extends the
possibilities of the standard ray method considerably.

The dynamic ray tracing system can be expressed in many forms and in various coordi-
nate systems. Certain versions of the system have been known for a long time. For example,
dynamic ray tracing was used by Belonosova, Tadzhimukhamedova, and Alekseyev (1967)
to calculate geometrical spreading in 2-D laterally varying isotropic structures. The dy-
namic ray tracing system for 3-D laterally varying anisotropic media in general Cartesian
coordinates was first proposed and applied to the computation of geometrical spreading
by Červený (1972). A similar procedure of calculating geometrical spreading in a 3-D
laterally varying isotropic layered structure was discussed in detail by Červený, Langer,
and Pšenčı́k (1974). The reference also gives the relations for dynamic ray tracing across
a structural interface. For dynamic ray tracing in general nonorthogonal coordinates in
isotropic layered and blocked structures, see Červený, Klimeš, and Pšenčı́k (1988b). For
spherical coordinates, see Liu and Tromp (1996) and Dahlen and Tromp (1998).

The simplest form of the dynamic ray tracing system in isotropic media is obtained
in ray-centered coordinates connected with ray �. The ray-centered coordinate system q1,
q2, and q3 connected with ray � is a curvilinear orthogonal coordinate system, introduced
in such a way that the ray � represents the q3-axis of the system. Coordinate lines q1 and
q2 for any fixed point q3 on � are formed by two mutually perpendicular straight lines
intersecting at �, situated in a plane perpendicular to � at q3. Thus, the coordinate plane
q3 = const. is tangent to the wavefront, and the ray� is specified by equations q1 = q2 = 0.
For more details on the ray-centered coordinate system and on the computation of its basis
vectors, see Sections 4.1.1 through 4.1.3.

In ray-centered coordinates, the eikonal equation can be used to derive a simple approx-
imate system of linear ordinary differential equations of the first order for rays, situated
in the vicinity of central ray �. Such rays are called the paraxial rays, and the relevant
system is called the paraxial ray tracing system; see Červený, Klimeš, and Pšenčı́k (1984)
and Beydoun and Keho (1987). The term paraxial is taken from optics; it represents the

234
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vicinity of the axis of the optical system. In our case, it represents the vicinity of the
central ray � (that is, the vicinity of the q3-axis). The paraxial rays represent curves in a
four-dimensional phase space, with phase-space coordinates q1, q2, p

(q)
1 = ∂T/∂q1, and

p(q)2 = ∂T/∂q2. Note that the paraxial rays computed in this way are not exact outside ray
�; they are only approximate. Their accuracy decreases with the increasing distance from
�. See Section 4.1.6. The paraxial ray tracing system also represents the dynamic ray trac-
ing system for partial derivatives ∂qI /∂γ and ∂p(q)I /∂γ along �, where γ is an arbitrarily
selected initial parameter of the system. The dynamic ray tracing system again consists of
four linear ordinary differential equations of the first order. In fact, the system matrices of
both systems are the same, only the computed quantities have a different physical meaning.
The paraxial ray tracing system computes approximately the phase-space coordinates qI
and p(q)I along paraxial rays, and the dynamic ray tracing system computes exactly the
partial derivatives ∂qI/∂γ and ∂p(q)I /∂γ along the central ray �. See Section 4.1.7.

Ifwe consider a two-parameteric orthonomic systemof rays, specified by ray parameters
γ1 and γ2, we can use the dynamic ray tracing system to compute the 2 × 2 matricesQ and
P, with elements QIJ = ∂qI /∂γJ and PIJ = ∂p(q)I /∂γJ along �. The dynamic ray tracing
system then consists of two matrix equations for Q and P. Note that matrix Q represents
the transformation matrix from ray coordinates γ1 and γ2 to the ray-centered coordinates
q1 and q2 and can be used to compute geometrical spreading. Matrices Q and P can also
be used to compute the 2 × 2 matrix M of the second derivative of the travel-time field
with respect to q1 and q2,M = PQ−1. The knowledge ofM is quite sufficient to determine
the distribution of paraxial travel times, which are quadratic in q1 and q2. It can also be
used to compute paraxial wavefronts, the surfaces along which the paraxial travel times are
constant. Note that the paraxial rays can be also defined as orthogonal trajectories to the
system of paraxial wavefronts. Matrix M itself satisfies a nonlinear ordinary differential
equation of the first order of the Riccati type. See Sections 4.1.7 and 4.1.8.

An alternative approach to the derivation of the dynamic ray tracing system is possible.
It consists of the derivation of the Riccati equation for M from the eikonal equation in
ray-centered coordinates and the transformation of the Riccati equation into the dynamic
ray tracing system for Q and P.

The dynamic ray tracing system in ray-centered coordinates for 2 × 2 matrices Q and
P was first proposed for computing geometrical spreading along the central ray by Popov
and Pšenčı́k (1978a, 1978b); see also Červený and Pšenčı́k (1979) and Pšenčı́k (1979). The
derivation was based on the transformation of the Riccati equation forM into the dynamic
ray tracing system forQ and P. Later, it was shown how the system can be used to compute
curvatures of thewavefront along the central ray; seeHubral (1979, 1980), Hubral andKrey
(1980), and Červený and Hron (1980). Because of the importance of geometrical spreading
and of the curvatures of wavefronts in evaluating the dynamic properties of seismic waves
(ray amplitudes), Červený and Hron (1980) suggested that the procedure be called dynamic
ray tracing. We shall continue to call the procedure dynamic ray tracing, although its
applications are now much broader than just calculating the geometrical spreading and
amplitudes along ray �.

Because the dynamic ray tracing system in ray-centered coordinates consists of four
scalar linear ordinary differential equations of the first order, it has four linearly independent
solutions. The 4 × 4 fundamental matrix, which is an identity matrix at some point S on
ray �, is called the propagator matrix of the dynamic ray tracing system from S. We shall
also speak of the ray propagator matrix from S. After the ray propagator matrix from S
has been found along �, the solution of the dynamic ray tracing system for any initial
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conditions at S is obtained merely by multiplying the ray propagator matrix by the matrix
of the initial conditions, without any additional dynamic ray tracing. Moreover, when the
propagator matrix is known from S to R, it is also simple to find analytically the inverse
matrix, which represents the ray propagator matrix from R to S. The ray propagator matrix
is symplectic and may be chained along central ray �. It has also other useful properties
that can be conveniently used in various seismological applications.

For isotropicmedia, the dynamic ray tracing system in ray-centered coordinates, derived
in Section 4.1, and the relevant 4 × 4 ray propagator matrix will be used as the basic system
of equations in the whole of Chapter 4. In Section 4.4, it will be generalized to isotropic lay-
ered media containing curved structural interfaces. The initial conditions for the dynamic
ray tracing system in ray-centered coordinates, corresponding to a smooth initial curved
surface, to a smooth initial line, and to a point source, situated in an isotropic medium, are
derived in Section 4.5. Paraxial travel-time fields and slowness vectors and the matrices of
curvature of the wavefront are discussed in detail in Section 4.6. Section 4.8 presents some
analytical solutions of the dynamic ray tracing system for simple structures. In Section 4.9,
it is shown that the boundary-value problems for paraxial rays can be solved analytically,
once the relevant propagator matrix is known. This applies particularly to two-point parax-
ial ray tracing and to the computation of the two-point eikonal. The important problem of
determining geometrical spreading along the central ray in a layered medium is treated in
Section 4.10. The application of dynamic ray tracing in ray-centered coordinates to the com-
putation of Fresnel volumes and Fresnel zones is described in Section 4.11, and it is applied
to the computation of the KMAH index along � in Section 4.12. All previous results are
specified for planar rays and for 2-Dmodels in Section 4.13. It should be noted that dynamic
ray tracing is a basic procedure in many extensions of the ray method such as the Maslov-
Chapman method and the Gaussian beam summation procedures (see Section 5.8), in ray
perturbation methods, and in the investigation of chaotic behavior of rays, among others.

General dynamic ray tracing systems can also be derived using the Hamiltonian for-
malism, without specifying the actual specific form of the Hamiltonian; see Sections 4.2
and 4.7. Consequently, the results can be used for both isotropic and anisotropic media
and for an arbitrary curvilinear coordinate system (including the Cartesian coordinate sys-
tem). The 3-D dynamic ray tracing system derived in this way consists of six scalar linear
ordinary differential equations of the first order. The system, however, must satisfy one
constraint relation, which follows from the eikonal equation. In actual computations, the
initial conditions for the dynamic ray tracing system cannot be chosen arbitrarily but must
satisfy the constraint relation at the initial point. After the constraint relation is satisfied at
the initial point, it is satisfied along the whole ray �. The numerical noise, however, may
cause deviations from the constraint relation and decrease the stability of computations.
It is useful to normalize the results at any step of the ray so that the constraint relation is
satisfied. The situation is analogous to the standard ray tracing system, where the initial
components of the slowness vector must satisfy the eikonal equation pi pi − 1/V 2 = 0 at
the initial point; see (3.2.2). Because the general dynamic ray tracing system consists of
six linear ordinary differential equations of the first order, it has six linearly independent
solutions. It will be shown in Section 4.2 that two of these linearly independent solutions,
here referred to as the ray-tangent solutions and the noneikonal solutions, can be found
analytically along a known ray. Consequently, the number of equations of the dynamic ray
tracing system can always be reduced from six to four. See examples of such reduction in
Sections 4.2.2 and 4.2.4.1. The RHSs of the system consisting of four equations become,
however, usually more complex than the RHSs of the system consisting of six equations.
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The 6 × 6 propagator matrices corresponding to dynamic ray tracing systems consisting
of six equations are introduced in Section 4.3.7. These 6 × 6 propagator matrices always
contain the ray-tangent and noneikonal solutions, which are automatically removed in the
4 × 4 propagator matrices. Consequently, the application of the 4 × 4 propagator matrices
in the solution of various seismological problems related to orthonomic systems of rays
is usually more transparent and physically more appealing than the application of 6 × 6
propagator matrices.

The 6 × 6 propagatormatrices have been broadly applied in the ray perturbation theory;
see Farra and Le Bégat (1995) and Farra (1999) where many other references can be found.
For this reason, Sections 4.7.4 and 4.7.5 give only a brief exposition of the ray perturbation
theory in terms of 6 × 6 propagator matrices. The basic equations of these sections are very
general, valid for both isotropic and anisotropic media and for any coordinate system. Of
course, it is possible to find alternative equations for isotropic media and for ray-centered
coordinates.

In Section 4.2.4.2, it is shown how the dynamic ray tracing system consisting of six
equations can be transformed from one coordinate system to another. A similar transfor-
mation of the 6 × 6 propagator matrix is described in Section 4.7.3. Consequently, the
dynamic ray tracing can be performed in any coordinate system such as the Cartesian and
transformed to any other coordinate system, without changing the Hamiltonian.

The Hamiltonian formalism, used in Sections 4.2, 4.3.7, and 4.7, is applicable both to
isotropic and anisotropicmedia. Thewhole of Section 4.14, however, is devoted exclusively
to the anisotropic inhomogeneousmedia. In anisotropicmedia, theHamiltonian has the sim-
plest form in Cartesian coordinates. The relevant dynamic ray tracing system in Cartesian
coordinates, consisting of six linear ordinary differential equations of the first order, is dis-
cussed in detail in Section 4.14.1. The dynamic ray tracing system in Cartesian coordinates
can, however, be transformed to any other coordinate system, keeping the Hamiltonian ex-
pressed in Cartesian coordinates. As an alternative to the ray-centered coordinates used in
isotropic media, it is convenient to introduce the so-called wavefront orthonormal coordi-
nates y1, y2, and y3 along the ray in anisotropic media. In this system, the y3-axis is oriented
along the slowness vector, not along the ray. If anisotropy vanishes, the wavefront orthonor-
mal coordinates yield the local Cartesian ray-centered coordinates; see Section 4.14.2. We
can also construct the 4 × 4 propagator matrix in these coordinates (see Section 4.14.3)
and use it in applications analogous to the 4 × 4 ray-centered propagator matrix.

4.1 Dynamic Ray Tracing in Ray-Centered Coordinates

In principle, it is not necessary to introduce ray-centered coordinates if we wish to perform
dynamic ray tracing. Dynamic ray tracing may be performed in general Cartesian coor-
dinates, or in any other orthogonal or nonorthogonal coordinates. However, the simplest
version of dynamic ray tracing in isotropic media is obtained in ray-centered coordinates.
We shall, therefore, explain the ray-centered coordinate system in detail in this section. In
Section 4.2, we shall show how to derive alternative versions of dynamic ray tracing in
Cartesian and other coordinate systems and how to transform one version into another.

4.1.1 Ray-Centered Coordinates: Definition, Orthogonality

For any selected ray �, we shall introduce a ray-centered coordinate system q1, q2, and
q3, connected with � in the following way. One coordinate, say q3, corresponds to any
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Figure 4.1. Basis vectors 	e1, 	e2, and 	e3 of the
ray-centered coordinate system qi connected
with ray �. Ray � is the q3-axis of the system.
At any point on the ray (q3 fixed), unit vector 	e3
equals 	t , the unit tangent to �. Unit vectors 	e1
and 	e2 are situated in plane �⊥, perpendicular
to� at a given q3, and are mutually perpendic-
ular. The triplet 	e1, 	e2, 	e3 is right-handed.

monotonic parameter u along the ray. For simplicity, we shall mostly consider u = s,
where s is the arclength of ray�, specified at an arbitrary reference point by s = s0, where
s0 is given. Coordinates q1 and q2 form a 2-D Cartesian coordinate system in plane �⊥

perpendicular to � at q3 = s, with the origin at �. Thus, ray � is one of the coordinate
axes of the ray-centered coordinate system. Coordinates q1 and q2 in�⊥ may be chosen in
many ways.We shall choose them so that the ray-centered coordinate system is orthogonal.
This condition determines the ray-centered coordinate system q1 and q2 uniquely along the
whole ray�, when the 2-D Cartesian system q1 and q2 has been specified at any reference
point of the ray. The vector basis of the ray-centered coordinate system connected with
� is formed at an arbitrary point corresponding to the arclength q3 = s of ray � by a
right-handed triplet of unit vectors 	e1(s), 	e2(s), and 	e3(s), where 	e3(s) = 	t(s) is the unit
tangent to ray � and vectors 	e1(s), 	e2(s) are perpendicular to �; see Fig. 4.1.

We shall now show that the unit vectors 	eI (s) can be computed along ray � by solving
the vectorial differential equations of the first order:

d	eI (s)/ds = aI (s) 	p(s), I = 1, 2. (4.1.1)

Here 	p(s) is the slowness vector, known from ray tracing, and aI (s) are some continuous
functions of s along�, which are not yet determined.We shall determine them in such away
as to keep 	eI (s) perpendicular to�, 	eI (s) · 	p(s) = 0. Taking the derivative of 	eI (s) · 	p(s) =
0 with respect to s along �, we obtain

d	eI (s)/ds · 	p(s) + 	eI (s) · d 	p(s)/ds = 0, I = 1, 2.

Now we multiply (4.1.1) by 	p(s) and use the previous equation. This yields

aI (s) = ( 	p · 	p)−1d	eI /ds · 	p = −( 	p · 	p)−1	eI (s) · d 	p/ds, I = 1, 2.

(4.1.2)

Equations (4.1.1) with (4.1.2) yield

d	eI/ds = −( 	p · 	p)−1(	eI · d 	p/ds) 	p, I = 1, 2. (4.1.3)

We can also insert the eikonal equation 	p · 	p = 1/V 2 such that

d	eI/ds = −V 2(	eI · d 	p/ds) 	p, I = 1, 2. (4.1.4)

Finally, we can insert d 	p/ds = ∇(1/V ) = −V−2∇V and obtain

d	eI/ds = (	eI · ∇V ) 	p, I = 1, 2; (4.1.5)
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see (3.1.10). Any of the three systems (4.1.3) through (4.1.5) can be used alternatively to
compute 	e1(s) and 	e2(s) along ray�. In the following text, we shall consider mainly (4.1.5).

Assume that 	e1(s0) and 	e2(s0) satisfy the following three conditions at an initial point
s = s0 of ray �:

a. 	eI (s0) · 	p(s0) = 0, I = 1, 2;
b. 	e1(s0) · 	e2(s0) = 0;
c. 	e1(s0) · 	e1(s0) = 1, 	e2(s0) · 	e2(s0) = 1.

It is not difficult to prove that the solutions of (4.1.5) then satisfy the same conditions along
the whole ray � (for any s). More specifically, 	e1(s) and 	e2(s) satisfy the following three
conditions:

a. 	eI (s) · 	p(s) = 0, I = 1, 2 (both 	e1(s) and 	e2(s) are perpendicular to 	p(s), that is,
they are perpendicular to ray �).

b. 	e1(s) · 	e2(s) = 0 (	e1(s) is perpendicular to 	e2(s)).
c. 	e1(s) · 	e1(s) = 1, 	e2(s) · 	e2(s) = 1 (	e1(s) and 	e2(s) are unit vectors).

In other words, when 	e1(s0), 	e2(s0), and 	e3(s0) = 	t(s0) form amutually perpendicular triplet
of unit vector at an initial point s = s0 of ray �, with 	t(s0) tangent to �, then 	e1(s), 	e2(s),
and 	e3(s) = 	t(s) form a mutually perpendicular triplet of unit vectors at any point s of ray
�, with 	t(s) tangent to �.

The arclength s in (4.1.3) through (4.1.5) can be easily replaced by any other monotonic
parameter u along �, for example, by travel time T , ds = V dT .

We shall now describe the determination of the ray-centered coordinates q1, q2, and
q3 = s of any point R′ situated close to ray �, R ′ = R′[q1, q2, q3], in greater detail. First,
we construct plane �⊥ perpendicular to ray � and passing through R′. We then find the
point of intersection of�⊥ with� and denote it by R. Plane�⊥ is tangent to the wavefront
at R. It represents the q1q2-plane. See Figure 4.2. Because point R is situated at �, its
ray-centered coordinates are q1 = q2 = 0, q3 = s, so that R = R[0, 0, s]. Note that the q3
coordinates of points R and R′ are the same so that this construction also yields the q3 = s
coordinate of point R′. Coordinates q1(R′) and q2(R′) are then easily obtained in plane�⊥

using the known basis vectors 	e1(s) and 	e2(s). Radius vector 	r of point R ′ can be expressed
in ray-centered coordinates as follows:

	r (q1, q2, s) = 	r (0, 0, s) + q1	e1(s) + q2	e2(s). (4.1.6)

Figure 4.2. Ray-centered coordinates
q1, q2, and q3 of point R′ situated in
the vicinity of ray �. Point R ′ is sit-
uated in plane �⊥ perpendicular to �
and crossing � at point R. The position
of point R determines q3(R′) because
q3(R′) = q3(R). Then, q1(R′) and q2(R′)
are determined as Cartesian coordinates
of R′ in plane �⊥, with basis vectors 	e1
and 	e2.



240 DYNAMIC RAY TRACING. PARAXIAL RAY METHODS

Consequently, 	r (0, 0, s) is the radius-vector of point R situated on �. The equation 	r =
	r (0, 0, s) is a parameteric equation of ray �, with parameter s. Equation (4.1.6) defines
the ray-centered coordinates q1, q2, and s of point R′, assuming that 	r (0, 0, s), 	e1(s), and
	e2(s) are known.

The ray-centered coordinates q1, q2, and s of point R′ connected with ray � are in-
troduced uniquely if only one plane �⊥ perpendicular to ray � passing through R′ can
be constructed. For points R′ situated far from ray �, this requirement is sometimes not
satisfied. We shall concentrate our attention only on points R′, which are not situated far
from� and at which the ray-centered coordinates connected with ray�may be introduced
uniquely. Such region of validity of the ray-centered coordinate system actually depends
on the curvature of ray �. The region of validity is broad along slightly curved rays, but it
may be narrow along rays with a high curvature.

It is not difficult to show that the ray-centered coordinate system introduced here is
orthogonal. Remember that length element dl in a general coordinate system qi satisfies
relation (dl)2 = d	r · d	r = gikdqidqk , where gik are elements of the relevant metric tensor.
The coordinate system qi is called orthogonal if metric tensor gi j is diagonal, that is, if
gi j = 0 for i �= j .

In our case, (4.1.6) and (4.1.5) yield

d	r = [d	r (0, 0, s)/ds + q1d	e1/ds + q2d	e2/ds]ds + 	e1dq1 + 	e2dq2
= [1 + V−1(	e1 · ∇V )q1 + V−1(	e2 · ∇V )q2]	tds + 	e1dq1 + 	e2dq2
= [1 + (V−1∂V/∂q1)q1=q2=0q1

+ (V−1∂V/∂q2)q1=q2=0q2]	tds + 	e1dq1 + 	e2dq2
= h	tds + 	e1dq1 + 	e2dq2, (4.1.7)

where

h = 1 + (V−1∂V/∂qI )q1=q2=0qI . (4.1.8)

This yields

(dl)2 = d	r · d	r = dq2
1 + dq22 + h2ds2. (4.1.9)

From (4.1.9), we can see that the components of metric tensor gi j of the ray-centered
coordinate system are given by relations

g11 = g22 = 1, g33 = h2, gi j = 0 for i �= j. (4.1.10)

This shows that the ray-centered coordinate system q1, q2, and q3 is orthogonal because
only diagonal elements g11, g22, and g33 are nonvanishing.

In an orthogonal coordinate system, we usually use scale factors h1, h2, and h3 instead
of metric tensor gi j ; h21 = g11, h22 = g22, h23 = g33. In the ray-centered coordinate system,
the scale factors are

h1 = h2 = 1, h3 = h, (4.1.11)

where h is given by (4.1.8); see (4.1.10). Scale factors (4.1.11) are sufficient to transform
any vectorial equation known in Cartesian coordinates into ray-centered coordinates.

It should be emphasized that the orthogonality of the ray-centered coordinate system
means more than mutual perpendicularity of 	e1, 	e2, and 	e3 ≡ 	t at any point of ray �.
Three mutually perpendicular unit vectors 	e1, 	e2, and 	e3 may be constructed in many
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ways at different points of ray �, but the relevant coordinate systems are not, in general,
orthogonal. It is not difficult to see that an orthogonal coordinate system is obtained only if
the expression for d	r (4.1.7) consists only of three terms with factors 	tds, 	e1dq1, and 	e2dq2
in the individual terms, but with no mixed factors 	tdq1, 	tdq2, 	e1ds, 	e1dq2, 	e2dq1, and 	e2ds.
This requirement is satisfied only if d	e1/ds and d	e2/ds are parallel to 	t ; see (4.1.1). For
this reason, we have defined 	e1 and 	e2 using (4.1.1).

We shall number unit vectors 	e1(s) and 	e2(s) to render the triplet 	e1, 	e2, 	t right-handed:
	e1 × 	e2 = 	t, 	e2 × 	t = 	e1, 	t × 	e1 = 	e2. (4.1.12)

Equations (4.1.12) have an important consequence.As 	t is known from ray tracing, 	t = V 	p,
it is sufficient to compute only one of the two vectors 	e1 or 	e2 using the differential equations
derived earlier. The second vector can be calculated using (4.1.12).

Let us emphasize the difference between basis vectors 	e1, 	e2, and 	e3 ≡ 	t , defined by
(4.1.5), and vectors 	n, 	b, and 	t , where 	n is the unit normal, 	b is the unit binormal, and 	t
is the unit tangent to �. Only 	t are the same in both triplets, but 	e1 and 	e2 are, in general,
different from 	n and 	b. Unit vectors 	n, 	b, and 	t can be determined uniquely at any point R
of curve � (with the exception of 	n and 	b along a straight line) from the local geometrical
properties of curve � in the vicinity of R; see Section 3.2.4. They depend only on these
local properties at R, and not on the behavior of curve� at points distant from R. No initial
conditions are required to determine 	n(s), 	b(s), and 	t(s). Basis unit vectors 	e1(s) and 	e2(s),
however, depend on the initial conditions 	e1(s0) and 	e2(s0). At the initial point s0, 	t(s0)
must be tangent to�, and 	e1(s0), 	e2(s0), and 	t(s0) must form a right-handed system of unit
vectors; see (4.1.12). Otherwise, 	e1(s0) and 	e2(s0) may be chosen arbitrarily; for example,
	e1(s0) = 	n(s0) and 	e2(s0) = 	b(s0). Differential equations (4.1.5) then yield uniquely the
ray-centered basis vectors 	e1(s) and 	e2(s) along the whole ray �, which are, in general,
different from 	n(s) and 	b(s). See Figure 4.3.

The next difference between 	e1 and 	e2 and 	n and 	b is that unit vectors 	n and 	b do not form
an orthogonal coordinate system connected with curve �. The derivatives d	n/ds, d	b/ds,
and d	t/ds along� are given by well-known Frenet’s formulas (3.2.8). As we can see from
(3.2.8), d	n/ds and d	b/ds are not parallel to 	t . The consequence is that 	n, 	b, and 	t do not
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Figure 4.3. Difference between basis vectors 	e1, 	e2, and 	e3 = 	t and unit vectors 	n, 	b, and 	t , where 	n is
the unit normal, 	b is the unit binormal, and 	t is the unit tangent to ray �. Unit vectors 	n(R) and 	b(R)
depend only on the local properties of ray� at R and not on 	n(S) and 	b(S). Unit vectors 	e1(R) and 	e2(R)
depend on initial conditions 	e1(S) and 	e2(S). Thus, even for 	e1(S) = 	n(S) and 	e2(S) = 	b(S), 	e1(R) and
	e2(R) may be different from 	n(R) and 	b(R). The ray-centered coordinate system connected with basis
vectors 	e1, 	e2, and 	e3 is orthogonal along the whole ray �, but the coordinate system connected with
	n, 	b, and 	t is not, in general, orthogonal.
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perpendicular to ray �.

form the basis vectors of an orthogonal coordinate system, but rather form the basis vectors
of a coordinate system which is, in general, nonorthogonal.

It would, however, be possible to use the known 	n and 	b along � and to compute
	e1(s) and 	e2(s) in terms of them. Following the suggestions of Popov and Pšenčı́k (1978a,
1978b), we can use equations

	e1 = 	n cos θ − 	b sin θ, 	e2 = 	n sin θ + 	b cos θ ; (4.1.13)

see Fig. 4.4. Angle θ varies along curve � and is known as the Rytov angle. It can be
calculated along � using the equation

dθ/ds = T (s), (4.1.14)

where T (s) is the torsion of �. For details see Popov and Pšenčı́k (1978a, 1978b). This
approach of calculating basis vectors 	e1 and 	e2 of the orthogonal coordinate system con-
nected with curve � can be used for any 3-D curve �; its use is not limited to a ray. In
this case, the scale factors are h1 = h2 = 1 and h3 = 1 − K (q1 cos θ + q2 sin θ ), where K
is the curvature of the curve. For rays, it yields the same results as (4.1.3), (4.1.4), (4.1.5),
and (4.1.8).

If 	e1(s) and 	e2(s) satisfy (4.1.13) and (4.1.14) along curve �, we say that the vectors
	e1(s) and 	e2(s) are transported parallelly along�. Consequently, we can say that the triplet
of basis vectors of the ray-centered coordinate system 	e1, 	e2, and 	e3 = 	t , connected with
ray�, is transported parallelly along ray�. Numerically, differential equations (4.1.5) are
usually more efficient than (4.1.13) with (4.1.14).

It is very important to understand correctly the difference between ray-centered coor-
dinates q1, q2, q3 of point R′, connected with ray �, and ray coordinates γ1, γ2, γ3 of the
same point R′ (see Section 3.10.1 for ray coordinates). Let us consider, for simplicity, a
point-source ray field, with the point source situated at S; see Figure 4.5.

a. The ray coordinates γ1, γ2, γ3 of point R ′ are related to the complete ray field. To
find them, we must first determine ray parameters γ1 and γ2 (for example, take-off
angles i0 and φ0) of ray �′, passing through S and R′ (two-point ray tracing). See
Figure 4.5(a) in 2-D (for γ2 = 0). Then, we determine γ3 = s, the arclength from
S to R′ along �′. Note that ray coordinates γ1, γ2, γ3 are mostly nonorthogonal.

b. The ray-centered coordinates q1, q2, q3 of the same point R′ are connected with a
specified reference ray passing through S, say �. Ray �′ passing through S and
R′ does not play any important role in determining q1, q2, q3. The ray-centered
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Figure 4.5. Differences between ray coordinates γ1, γ2, γ3 and ray-centered coordinates q1, q2, q3. The
central ray field frompoint S is considered. (a) To determine ray coordinates γi of point R′, it is necessary
to find the ray�′ passing through S and R′. Ray parameters γ1 and γ2 of�′ then represent ray coordinates
γ1 and γ2 of R′, and γ3 is the arclength along�′ from S to R′ (or any other alternative parameter along
�′ from S to R′). (b) To determine the ray-centered coordinates qi of point R′, connected with an
arbitrarily chosen ray �, it is not necessary to know ray �′ passing through S and R′. We construct
plane�⊥, passing through R′ and perpendicular to�. The intersection of�⊥ with� determines point
R, and q3 is the arclength along � from S to R (or any other alternative parameter along � from S
to R). The remaining coordinates q1 and q2 are determined as Cartesian coordinates of R′ in �⊥, in a
frame specified by basis vectors 	e1 and 	e2.

coordinates q1, q2, q3 of point R′ depend on the position of R′ and on the spec-
ified reference ray �. For different rays �, different ray-centered coordinates are
obtained. For a given ray�, q1(R′), q2(R′), q3(R′) are constructed as follows. First,
we construct plane �⊥, passing through R ′ and perpendicular to �, and determine
point R, at which �⊥ intersects �. See Figure 4.5(b), again in 2-D (for q2 = 0).
Then we determine q3(R), the arclength from S to R along � (not along ray �′

passing through R′). By definition, q3(R′) ≡ q3(R). Coordinates q1(R′) and q2(R′)
determine the Cartesian coordinates of R′ in plane �⊥, with the origin at R and
with axes oriented along 	e1 and 	e2. The reference ray � represents the coordinate
axis in the ray-centered coordinate system. Note that q3(R′) and γ3(R′) are different,
even if both measure arclength. γ3(R′) measures arclength SR′ along �′ (passing
through S and R′), and q3(R′) ≡ q3(R) measures arclength SR along the reference
ray �. Note that the ray-centered coordinates q1, q2, q3 are always orthogonal.

4.1.2 Ray-Centered Basis Vectors as Polarization Vectors

Unit vectors 	ei (s) play an important role in all high-frequency asymptotic methods used
to investigate seismic wavefields in inhomogeneous isotropic media. Among others, they
determine the direction of the displacement vectors of high-frequency seismic body waves
propagating in laterally varying isotropic structures. Unit vector 	e3 = 	t determines the
direction of the displacement vector of P waves, which is always linearly polarized. Es-
pecially important are unit vectors 	e1 and 	e2 because they determine the polarization of
S waves. In a smooth medium without interfaces, the displacement vector of an S wave
propagating along � is polarized in the direction of 	e1(R) at point R of � if it is polarized
along 	e1(S) at any reference point S of �. The same applies to the S wave polarized along
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	e2. The direction of the complex-valued displacement vector of the S wave remains fixed
with respect to 	e1 and 	e2 as the wave progresses along � in a smooth medium, although
it rotates with respect to unit normal 	n and unit binormal 	b to the ray. In general, we
can say that the displacement vector of the S wave is transported parallel along ray �.
Note that the ray-centered basis vectors 	e1 and 	e2 were first used by Luneburg (1964) to
study the polarization of electromagnetic waves and by Cormier (1984) to study seismic S
waves.

The fact that basis vectors 	e1 and 	e2 represent the polarization vectors of S waves
in smooth media can be proved readily, using Equations. (2.4.36), which guarantee the
decoupling of the transport equations of S waves. Along ray T,i e1 j,i equals V−1de1 j/ds,
where T denotes the travel time, and the first equation of (2.4.36) reads

V−1d	e1/ds = a∇T .
Multiplying this equation by 	p and taking into account that 	p · 	p = 1/V 2 and 	e1 · 	p = 0,
we obtain a = V 	p · d	e1/ds = −V 	e1 · d 	p/ds, in a manner similar to that in (4.1.2). This
yields

d	e1/ds = −V 2 (	e1 · d 	p/ds) 	p,
and the same equation for 	e2. But these equations are exactly the same as (4.1.4). We
conclude that the transport equations of S waves are decoupled if unit vectors 	e1 and 	e2
are chosen to satisfy (4.1.4).

It is not difficult to explain simply and objectively (and to derive directly) Equations
(4.1.4) using Snell’s law. We shall use the same approach as in Section 3.1.4, where we
derived the ray tracing systems from Snell’s law. Let us consider a plane S wave incident
at a plane interface between two homogeneous media. As we know from Section 2.3, the
displacement vector of the transmitted S wave is polarized in the plane of incidence if
the displacement vector of the incident S wave is also polarized in the plane of incidence.
Similarly, the displacement vector of the transmitted S wave is perpendicular to the plane
of incidence if the displacement vector of the incident S wave is perpendicular to the plane
of incidence. This also applies approximately to high-frequency S waves incident at a
slightly curved interface; see Section 2.4.5. We can exploit this fact to find the differential
equation for the polarization vector of an S wave propagating in a smoothly inhomoge-
neous medium. As in Section 3.1.4, we shall simulate a smooth medium by a system of
thin homogeneous layers, with interfaces along isovelocity surfaces (that is, along surfaces
of constant velocity). Normal 	n to the interface at any point of incidence is perpendicu-
lar to the isovelocity surface so that 	n = ±∇V/|∇V |. See Figure 3.1. We wish to keep
polarization vector 	e1 in the planes of incidence along thewhole ray�. Given that the polar-
ization vectors of the incident and transmitted S wave are situated in the plane of incidence,
vector d	e1/ds must also be situated in the plane of incidence close to the point of inci-
dence. The plane of incidence is specified by vectors 	p and 	n so that d	e1/ds = A 	p + B	n,
where A and B remain to be determined. Multiplying this relation by 	e1, we obtain
	e1 · d	e1/ds = A 	p · 	e1 + B	n · 	e1. Because 	e1 · 	e1 = 1, we have 	e1 · d	e1/ds = 0. Moreover,
	p · 	e1 = 0because 	e1 is perpendicular to the ray. This yields B = 0 and, thus, d	e1/ds = A 	p.
From thiswe obtain the ordinary differential equation (4.1.4) in the sameway as determined
earlier.

As we know, the basis vectors of the ray-centered coordinate system 	e1, 	e2 can be cho-
sen arbitrarily at the initial point S of the ray. Similarly, if ray � is incident at an interface,
the basis vectors of the ray-centered coordinate system of reflected/transmitted waves can
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be taken arbitrarily at the point of reflection/transmission. Some options may, however,
be more convenient. In this book, we systematically use the standard option, as given by
Equation (2.3.45). In general, however, the basis vectors of the ray-centered coordinate sys-
tem of reflected/transmitted waves at the reflection/transmission point do not necessarily
represent the polarization vectors of reflected/transmitted waves at that point. The reason
is that the actual polarization of reflected/transmitted S waves is also affected by the reflec-
tion/transmission coefficients at the interface. An incident S wave, linearly polarized at the
point of incidence, can generate quasi-elliptically polarized reflected/transmitted S waves
at the point of reflection/transmission. Even in this case, however, basis vectors 	e1 and 	e2
represent a suitable frame in which the polarization properties of reflected/transmitted S
waves can be expressed. In Section 6.4, we shall give the exact rules for calculating the
polarization properties of S waves propagating in a layered medium in terms of basis vec-
tors 	e1 and 	e2. For this reason, we shall continue to refer to vectors 	e1 and 	e2 alternatively
as basis and polarization vectors, even in a layered medium.

4.1.3 Computation of Ray-Centered Basis Vectors Along Ray Ω

This section is devoted to the computation of ray-centered basis vectors 	e1(s), 	e2(s), and
	e3(s) = 	t(s) along ray �. As 	t(s) = V 	p(s) is known from ray tracing, it is sufficient to
compute 	e1(s) and 	e2(s) only. Moreover, due to (4.1.12), we can only compute 	e2(s) and
determine 	e1(s) using the relation 	e1(s) = 	e2(s) × 	t(s) (or, alternatively, only compute 	e1(s)
and use 	e2(s) = 	t(s) × 	e1(s)). For simplicity, we shall discuss the computation of 	e2(s) only.
After simple modifications, the conclusions also apply to 	e1(s).

The ray-centered unit vector 	e2(s) can be calculated along ray � in four ways:

1. Direct numerical solution of differential equation (4.1.5) for�e2. The method is
quite general andmay be used along any 3-D ray�. The relevant differential equation for 	e2
may be solved togetherwith ray tracing, or after it (along a known ray�). Vector 	e2(s0) at the
initial point s0 must be chosen to satisfy relations 	e2(s0) · 	e2(s0) = 1 and 	e2(s0) · 	p(s0) = 0.
This guarantees that 	e2(s0) is a unit vector perpendicular to ray� at s = s0. A consequence
of the differential equation used is that 	e2(s) · 	e2(s) = 1 and 	e2(s) · 	p(s) = 0 along thewhole
ray, that is, 	e2(s) is a unit vector perpendicular to the ray along the whole ray �, and that
	e1(s), 	e2(s), and 	e3(s) = 	t(s) form a right-handed triplet along the whole ray�. Equations
	e2(s) · 	e2(s) = 1 and 	e2(s) · 	p(s) = 0 can be used to check the accuracy of computations if
	p(s) and 	e2(s) are determined numerically.

2. Computation in terms of �n and �b, where 	n and 	b are the unit normal and unit
binormal to�; see (4.1.13). This method requires not only the computation of 	n and 	b, but
also the computation of the curvature and torsion of ray�; see Section 3.2.4. By computing
torsion T (s) and the quadratures of (4.1.14) along ray �, we obtain the Rytov angle θ (s)
and can use (4.1.13). The method is usually numerically less efficient than the previous
method.

3. Computation in terms of an auxiliary vector �A. Let us consider an auxiliary unit
vector 	A, which may be constant or variable in space. We can then express 	e2 in terms of
	A and 	t as follows:

	e2 = [(	t × 	A) sin�+ (	t × 	t × 	A) cos�]/|	t × 	A|. (4.1.15)

The differential equations (4.1.3), (4.1.4), or (4.1.5) for 	e2 then yield a closed-form integral
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for angle � along ray �:

�(s) = �(s0) +
∫ s

s0

(	t × 	A) · [V −1(	t · 	A)∇V + d 	A/ds]
(	t × 	A)2 ds. (4.1.16)

Vector 	A may be chosen in different ways, for example, as a constant arbitrarily oriented
unit vector or as a unit vector oriented locally along a gradient of velocity, ∇V/V . The
derivation of Equations (4.1.15) and (4.1.16) and a more detailed discussion of various
choices of 	A can be found in Popov and Pšenčı́k (1978b), Pšenčı́k (1979), Červený and
Hron (1980), and Červený (1987b). The disadvantage of the method is that (4.1.16) fails
if the direction of � is close to 	A, that is, for small |	t × 	A|2. It is then necessary to jump
to another vector 	A.

4. Analytic solution. In certain simple situations, 	e2(s) may be calculated analytically
along the ray. As a very important example, which has a number of applications, we can
name a planar ray �. If ray � is situated in plane �‖, we can choose 	e2(s0) perpendicular
to �‖ at the initial point s0. The second equation of (4.1.3) then guarantees that 	e2(s)
equals 	e2(s0) along the whole ray �. The complete triplet 	e1(u), 	e2(u), 	e3(u), where u is
any monotonic parameter along ray �, is then given analytically by

	e1(u) = −V (u)( 	p(u) × 	e2(u0)), 	e2(u) = 	e2(u0),
	e3(u) = 	t(u) = V (u) 	p(u). (4.1.17)

Slowness vector 	p(u) is known from ray tracing.
As an example of the velocity distribution that yields the analytical solution for 	e1(u),

	e2(u), and 	t(u), we shall consider a model in which the nth power of slowness, V−n , is a
linear function of coordinates,

V−n = A0 + A1x1 + A2x2 + A3x3. (4.1.18)

In this case, we obtain an analytical expression for 	p(u)
	p(u) = 	p(u0) + 	A(u − u0)/n,

where 	A is a vector with components A1, A2, and A3; see Section 3.4.3. The whole ray is
planar, with plane �‖ specified by 	p(u0) and 	A. We again choose 	e2(u0) perpendicular to
�‖ that is, 	e2(u0) = ( 	p(u0) × 	A)/| 	p(u0) × 	A| and obtain

	e2(u) = 	e2(u0), 	e1(u) = −V (u)[( 	p(u0) + 	A(u − u0)/n) × 	e2(u0)].
(4.1.19)

from (4.1.17). Here V (u) = (A0 + Ai xi (u))−1/n , where xi (u) are given by (3.4.6). The
relations for xi (u) reduce to a quadratic polynomial for n = 2, that is, for u = σ ; see
(3.4.3).

Similar analytical expressions for 	e1(u) and 	e2(u) can also be found for a model in
which velocity V is given by relation ln V = A0 + Ai xi , as well as for some other models.

4.1.4 Local Ray-Centered Cartesian Coordinate System

It is often useful to introduce a local Cartesian coordinate system with its origin at a
specified point R on ray � and with basis vectors 	j1, 	j2, and 	j3, given by the relations

	j1 = 	e1(R), 	j2 = 	e2(R), 	j3 = 	e3(R) = 	t(R). (4.1.20)



4.1 DYNAMIC RAY TRACING IN RAY-CENTERED COORDINATES 247

ray ΩΩ

e = j

e = j

e = j

y = q

y = q

q = s

plane ΣΣ

tangent to ray ΩΩ  at R

R

1 1

1 1

2 2

2 2

3 3

3

y3

Figure 4.6. Local ray-centered Cartesian
coordinate system y1, y2, y3 at R on ray�.
The basis vectors 	j1, 	j2, and 	j3 of the ray-
centered Cartesian coordinate system at
R coincide with 	e1(R), 	e2(R), and 	e3(R).
The q3-axis of the ray-centered coordinate
system coincides with ray �, but the y3-
axis of the local Cartesian coordinate sys-
tem constructed at R coincides with the
tangent to ray � at R.

Thus, the basis vectors 	j1, 	j2, and 	j3 of the local ray-centered Cartesian coordinate system
at R coincide with the basis vectors of the ray-centered coordinate system at the same
point. Away from point R, however, the basis vectors of both systems differ. Basis vectors
	j1, 	j2, and 	j3 are constant throughout the space (the coordinate system is Cartesian), but
basis vectors 	e1, 	e2, and 	e3 vary from place to place.

We denote the local Cartesian ray-centered coordinate by y1, y2, and y3. A simple
sketch to compare both types of coordinates in the 2-D case is shown in Figure 4.6.

Note the difference between the ray-centered coordinate q3 = s and the local Cartesian
ray-centered coordinate y3. Coordinate q3 is measured along ray�, whereas coordinate y3
is measured along the tangent to � at R; see Figure 4.6. Hence,

ds = h−1dy3, (4.1.21)

where h is the scale factor given by (4.1.8). Approximately, in the vicinity of R,

s − s0
.= h−1y3. (4.1.22)

4.1.5 Transformation Matrices

In this section, we shall introduce several important 3 × 3 transformation matrices that
are related to the ray-centered coordinate system and some others that will be needed in
this chapter. In the whole section, we shall denote the general Cartesian coordinates as
x1, x2, x3 and the basis vectors of the general Cartesian coordinate system as 	i1,	i2, and 	i3.

a. Transformationmatrix Ĥ(y) from the local ray-centered Cartesian coordinate sys-
tem y1, y2, y3 to the general Cartesian coordinate system x1, x2, x3.

Let us consider a local ray-centered Cartesian coordinate system y1, y2, y3, with its
origin at a selected point R of ray �. The transformation relations are

dxk = H (y)
kl dyl or dx̂ = Ĥ(y)dŷ, (4.1.23)

where dx̂ = (dx1, dx2, dx3)T and dŷ = (dy1, dy2, dy3)T . Matrix Ĥ(y) is orthonormal,

Ĥ(y)−1 = Ĥ(y)T , det Ĥ(y) = 1, (4.1.24)



248 DYNAMIC RAY TRACING. PARAXIAL RAY METHODS

so that

dyk = H (y)
lk dxl or dŷ = Ĥ(y)Tdx̂. (4.1.25)

The elements of transformation matrix Ĥ(y) are

H (y)
kl = 	ik · 	jl = ∂xk/∂yl = ∂yl/∂xk . (4.1.26)

Here 	j1, 	j2, and 	j3 are the basis vectors of the local ray-centered Cartesian coordinate
system. As is obvious from (4.1.26), H (y)

kl represents the cosine of the angle between the kth
axis of the general Cartesian coordinate system and the lth axis of the local ray-centered
Cartesian coordinate system. The first column of matrix Ĥ(y) is formed by the general
Cartesian components of unit basis vector 	j1. Similarly, the second and third columns
correspond to 	j2 and 	j3.

b. Transformation matrix Ĥ from the ray-centered coordinate system q1, q2, q3 = s
to the general Cartesian coordinate system x1, x2, x3. The transformation relations are

dxk = Hkldql or dx̂ = Ĥdq̂. (4.1.27)

Because the ray-centered coordinates are not Cartesian, matrix Ĥ is not as simple as
transformation matrix Ĥ(y). In general, it is orthogonal but not orthonormal.

We will mostly work with transformation matrix Ĥ on central ray�, that is, for qI = 0.
Along central ray�, the properties of Ĥ are simple.Wewill give several of these properties.
Let us emphasize, however, that these relations are valid only along central ray �. Let us
select point R on ray � and use (4.1.20). Then

Ĥ(R) = Ĥ(y)(R). (4.1.28)

Thus, matrix Ĥ(R) is orthonormal along �,

Ĥ−1(R) = ĤT (R), det Ĥ(R) = 1. (4.1.29)

The elements of matrix Ĥ(R) are given by relations

Hkl(R) = 	ik · 	el(R) = (∂xk/∂ql)R = (∂ql/∂xk)R. (4.1.30)

The first column of Ĥ represents the Cartesian components of basis vector 	e1, the second
column represents the Cartesian components of 	e2, and the third column represents the
Cartesian components of 	e3 ≡ 	t . Hence,

dx̂ = Ĥ(R)dq̂(R), dq̂(R) = ĤT (R)dx̂, (4.1.31)

where dq̂(R) = (dq1(R), dq2(R), dq3(R))T . Because the i th column of Ĥ is represented by
the Cartesian components of 	ei along �, the determination of Ĥ along � is equivalent to
the determination of 	e1, 	e2, and 	e3 along �.

c. Transformation matrix Q̂ from ray coordinates γ1, γ2, γ3 to ray-centered coordi-
nates q1, q2, q3. The transformation relations are

dqk = Qkldγl or dq̂ = Q̂dγ̂, (4.1.32)

where dγ̂ = (dγ1, dγ2, dγ3)T . The properties of Q̂ away from ray � are not simple; we
shall again consider Q̂ only along central ray �. Let us select an arbitrary point R on ray
�. Then

Qi j (R) = (∂qi/∂γ j )R. (4.1.33)
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Along ray �, q1 = q2 = 0. This yields

Q13(R) = (∂q1/∂γ3)R = 0, Q23(R) = (∂q2/∂γ3)R = 0,

so that

Q̂(R) =

Q11(R) Q12(R) 0
Q21(R) Q22(R) 0
Q31(R) Q32(R) Q33(R)


 . (4.1.34)

Equation (4.1.34) immediately yields

det Q̂(R) = Q33(R) detQ(R) = (∂q3/∂γ3)R detQ(R). (4.1.35)

If we take q3 = γ3 along �, we obtain

det Q̂(R) = detQ(R). (4.1.36)

d. Transformation matrix Q̂(x) from ray coordinates γ1, γ2, γ3 to Cartesian coordi-
nates x1, x2, x3. Matrix Q̂(x) was introduced in Section 3.10.1. It is defined as

dxk = Q(x)
kl dγl , dx̂ = Q̂(x)dγ̂. (4.1.37)

We shall again consider matrix Q̂(x) only along central ray �. At point R, the elements of
matrix Q̂(x) are given by relations

Q(x)
kl (R) = (∂xk/∂γl)R. (4.1.38)

It is simple to see from (4.1.27), (4.1.32), and (4.1.37) that

Q̂(x)(R) = Ĥ(R)Q̂(R). (4.1.39)

e. Transformationmatrix P̂ from ray coordinates γ1, γ2, γ3 to covariant ray-centered
components of slowness vector p(q)1 , p

(q)
2 , and p(q)3 . We denote the covariant ray-centered

components of slowness vector 	p by p(q)i , i = 1, 2, 3. They are given by relations

p(q)i = ∂T/∂qi , i = 1, 2, 3.

Let us emphasize that the covariant components p(q)i = ∂T/∂qi are not physical compo-
nents of the slowness vector. The difference resides in scale factors hi . In ray-centered
coordinates, the physical components of the slowness vector equal ∂T/∂q1, ∂T/∂q2, and
h−1∂T/∂q3. See more details in Section 3.5.

In the following text,we shall call p(q)i = ∂T/∂qi simply ray-centered components of the
slowness vector.We shall use theword covariant only in case of possiblemisunderstanding.
The transformation relations are

dp(q)k = Pkldγl or dp̂(q) = P̂dγ̂. (4.1.40)

We shall use this matrix only along central ray �. At any point R of the central ray,

Pkl(R) = (
∂p(q)k

/
∂γl
)
R

= (
∂2T

/
∂γl∂qk

)
R
. (4.1.41)

Then

dp̂(q)(R) = P̂(R)dγ̂, dγ̂ = P̂−1(R)dp̂(q)(R), (4.1.42)

where dp̂(q)(R) ≡ (
dp(q)1 (R), dp(q)2 (R), dp(q)3 (R)

)T
.
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f. Transformation matrix P̂(x) from ray coordinates γ1, γ2, γ3 to Cartesian compo-
nents of the slowness vector p1, p2, and p3. Matrix P̂(x) is defined by the relation

dpk = P (x)
kl dγl or dp̂ = P̂(x)dγ̂. (4.1.43)

Here pk = ∂T/∂xk are the Cartesian components of the slowness vector. At any point R
on ray �, P̂(x)(R) can be simply expressed in terms of matrices Ĥ(R) and P̂(R),

P̂(x)(R) = Ĥ(R)P̂(R). (4.1.44)

Transformation matrices Q̂, Q̂(x), P̂, and P̂(x) depend on the choice of ray coordinate γ3,
corresponding to the monotonic parameter along the ray.

4.1.6 Ray Tracing in Ray-Centered Coordinates.

Paraxial Ray Tracing System

The basis vectors 	e1, 	e2, and 	e3 may be introduced along any 3-D curve C , not only along
a ray �; see (4.1.13) and (4.1.14). Let us consider the orthogonal ray-centered coordinate
system q1, q2, q3 connected with a curveC , with scale factors h1 = h2 = 1 and h3 = h and
basis vectors 	e1, 	e2, and 	e3 = 	t . The gradient of any function T (q1, q2, q3) is then given by
the relation

∇T = ∂T

∂q1
	e1 + ∂T

∂q2
	e2 + 1

h

∂T

∂q3
	e3;

see (3.5.2). The eikonal equation (∇T )2 = V−2 reads(
∂T

∂q1

)2

+
(
∂T

∂q2

)2

+ 1

h2

(
∂T

∂q3

)2

= 1

V 2(q1, q2, q3)
. (4.1.45)

To express the ray-tracing system in ray-centered coordinates q1, q2, q3, we shall use the
general form of the ray-tracing systems in orthogonal coordinates (3.5.15). We denote

T1 = ∂T/∂q1, T2 = ∂T/∂q2, T3 = ∂T/∂q3. (4.1.46)

Let us emphasize that Ti are covariant ray-centered components of the slowness vector,
p(q)i = Ti . The physical ray-centered components of the slowness vector are given by ex-
pressions T1, T2, and h−1T3.

Variable q3 along curve C is chosen to increase monotonically with travel time T so
that ∂T/∂q3 > 0 is automatically satisfied. In the following discussion, we shall consider
a vicinity of C in which ∂T/∂q3 > 0 is also satisfied. In other words, we do not consider
paraxial rays, which have a turning point with respect to q3. We can then solve the eikonal
equation (4.1.45) for T3 = ∂T/∂q3 and express it in terms of the reduced Hamiltonian
HR(qi , TI ) as follows:

T3 = −HR(qi , TI ), HR(qi , TI ) = −h[V−2(qi ) − T 2
1 − T 2

2

]1/2
.

(4.1.47)

Using (3.5.22), we obtain from (4.1.47) the ray tracing system in ray-centered coordinates:

dq1
dq3

= h2

T3
T1,

dT1
dq3

= h2

T3

[
1

2

∂

∂q1

(
1

V 2

)
+ 1

h3
T 2
3

∂h

∂q1

]
,

(4.1.48)
dq2
dq3

= h2

T3
T2,

dT2
dq3

= h2

T3

[
1

2

∂

∂q2

(
1

V 2

)
+ 1

h3
T 2
3

∂h

∂q2

]
.
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Here T3 is given by the relation following from (4.1.47)

T3 = h
[
V−2 − T 2

1 − T 2
2

]1/2
. (4.1.49)

The number of equations in the ray tracing system connected with the curve C (4.1.48)
is reduced to four. The advantage of the system (4.1.48) is that there are no problems with
turning points if the curve C is situated close to a ray �, and if the paraxial rays situated
close toC are studied. Otherwise, the system has no distinct advantages over the ray tracing
system expressed in general Cartesian coordinates. It is nonlinear and algebraically more
complicated. We are interested mainly in ray tracing in the vicinity of central ray � for
small q1 and q2. ForC ≡ � and for q1, q2 → 0, the RHSs of equations (4.1.48) for dTI/dq
vanish. Unfortunately, they are expressed as differences of two terms, which remain finite
even on central ray �. This fact increases the inaccuracies in computations. It will be
shown, however, that this complication may be removed in the quadratic vicinity of�. The
system may be simplified approximately and becomes linear.

The ray tracing system in ray-centered coordinates connected with a ray � was first
derived by Červený and Pšenčı́k (1979), in a slightly different form than here. To find a
convenient approximation for eikonal equation (4.1.45) and for ray tracing system (4.1.48)
in the close vicinity of central ray �, we shall use the Taylor expansions of the travel-time
field, velocities, and the like on central ray�. To distinguish between the quantities defined
in the whole space and only along central ray�, we shall use a special notation for certain
quantities defined only along �. This notation will be particularly useful for the velocity
and its derivatives:

v(s) = [V (q1, q2, s)]q1=q2=0,

v,i (s) = [∂V (q1, q2, s)/∂qi ]q1=q2=0, (4.1.50)

v,i j (s) = [
∂2V (q1, q2, s)/∂qi∂q j

]
q1,q2=0

.

For example, the abbreviated notation for scale factor h is

h = 1 + v−1v,I qI ; (4.1.51)

see (4.1.8). We shall use this notation only should the standard notation with V cause
confusion, or where it would make the equations too long.

We shall now find an approximate expression for the reduced Hamiltonian HR(qi , TI )
given by (4.1.47), in the paraxial vicinity of ray�, that is, for small q1 and q2. Note that we
use q3 = s, the arclength along�. For small q1 and q2, T1 and T2 are also small. Using the
Taylor expansion up to the second-order terms in q1 and q2, we obtain V

.= v + v,I qI +
1
2v,IJqI qJ . Hence

h/V
.= v−1

(
1 − 1

2v−1v,K LqKqL
)
. (4.1.52)

Here we have also used (4.1.51). The approximate expression for the reduced Hamiltonian
in the paraxial vicinity of � is then

HR(q1, q2, s, T1, T2)
.= −v−1

[
1 − 1

2v−1v,K LqKqL − 1
2v2
(
T 2
1 + T 2

2

)]
.

(4.1.53)

For small qI and TI , this yields

∂HR/∂TI
.= vTI , ∂HR/∂qI

.= v−2v,IJqJ ,
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and the paraxial ray tracing system in ray-centered coordinates reads

dqI /ds = vTI , dTI/ds = −v−2v,IJqJ . (4.1.54)

We saw in (4.1.46) that TI represent the ray-centered covariant components of slowness
vector p(q)I (which are also the physical components). Thus, (4.1.54) can be expressed as

dqI /ds = vp(q)I , dp(q)I
/
ds = −v−2v,IJqJ . (4.1.55)

This is the final form of the paraxial ray tracing system in ray-centered coordinates.
In the paraxial ray tracing system (4.1.55), the variable s along ray � represents the

arclength. Instead of it, we can use any other monotonic variable along � such as travel
time T . Taking into account ds = vdT , we obtain the paraxial ray tracing system (4.1.55)
in the following form:

dqI /dT = v2 p(q)I , dp(q)I
/
dT = −v−1v,IJqJ . (4.1.56)

The paraxial ray tracing system (4.1.56) can be expressed in a more compact form. We
introduce the 4 × 1 column matrix

W(T ) = (
q1, q2, p

(q)
1 , p

(q)
2

)T
(4.1.57)

and express (4.1.56) as

dW(T )/dT = SW. (4.1.58)

Here S is a 4 × 4 system matrix,

S =
(

0 v2I
−v−1V 0

)
, (4.1.59)

where 0 is a 2 × 2 null matrix, I is a 2 × 2 identity matrix, and V is the 2 × 2 matrix of the
second derivatives of velocity V with respect to qI , whose elements are

VIJ = v,IJ = (
∂2V (q1, q2, s)/∂qI∂qJ

)
q1=q2=0

. (4.1.60)

The advantages of the paraxial ray tracing systems (4.1.56) or (4.1.58) over the standard
ray tracing systems follow:� The paraxial ray tracing system consists of four equations only. Remember that the

standard ray tracing system consists of six equations.� The paraxial ray tracing system is linear. This is a great advantage over the standard
ray tracing system.� Because the paraxial ray tracing system is linear, we can compute the propagator
matrix of the system. This propagator matrix will be determined in Section 4.3,
where its properties will also be studied.

Paraxial ray tracing systems (4.1.56) or (4.1.58) play a fundamental role in the paraxial
seismic ray method. Many important applications of paraxial ray tracing will be described
in this chapter. The disadvantage of paraxial ray tracing systems (4.1.56) and (4.1.58) is
that they are only approximate. The systems can be used only if the paraxial ray does not
deviate considerably from central ray �.

Let us now briefly discuss the initial conditions for the paraxial ray tracing system
(4.1.56). Let us consider the central ray �, specified by initial conditions (3.2.1) at point
S. The initial conditions give the Cartesian coordinates of point S, xi (S), and the Cartesian
components of the initial slowness vector 	p(S) at S. Components pi (S) are not arbitrary;
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they must satisfy the relation p21(S) + p22(S) + p23(S) = 1/V 2(S) at S. Along �, we con-
struct polarization vectors 	e1 and 	e2 using (4.1.5). At initial point S, 	e1(S) and 	e2(S) may be
chosen arbitrarily; the only requirement is that 	e1(S), 	e2(S), and 	e3(S) = 	t(S) form a triplet
of orthogonal, mutually perpendicular unit vectors. Using 	e1(S) and 	e2(S), we construct
the ray-centered coordinate system q1, q2 in plane �⊥, perpendicular to � at S.

Consider point S′ situated in plane �⊥, close to S, and denote its ray-centered co-
ordinates by qI (S′). The slowness vector of any paraxial ray passing through S′ may be
specified by the ray-centered components of slowness vector p(q)1 (S′) and p(q)2 (S′). The
third component is again not required; it can be determined using the eikonal equation.

Thus, the initial conditions for paraxial ray tracing system (4.1.56) at point S′ situated
in plane �⊥, perpendicular to ray � at S, are

At S′: qI = qI (S
′), p(q)I = p(q)I (S′). (4.1.61)

The four-parameter system of rays specified by initial conditions (4.1.61) is complete,
including all possible rays situated close to �.

Let us emphasize that v,I and v,IJ denote the derivatives of the velocity with respect to
the ray-centered coordinates q1 and/or q2 at the central ray. Using transformation matrix
Ĥ, we can relate these derivatives to the derivatives of velocity with respect to Cartesian
coordinates as

v,I (R) = HkI (R)(∂V/∂xk)R,
(4.1.62)

v,IJ(R) = HkI (R)HlJ (R)
(
∂2V/∂xk∂xl

)
R
.

4.1.7 Dynamic Ray Tracing System in Ray-Centered Coordinates

The purpose of dynamic ray tracing is to determine the first partial derivatives of phase
space coordinates (coordinates, slowness vector components) with respect to the initial
parameters of ray �, along a known ray �. The initial parameters of ray � may represent
the phase space coordinates at the initial point of �, ray parameters γ1 and γ2 introduced
in Section 3.10.1, or any other parameters specifying the initial conditions of paraxial
rays. Such partial derivatives are needed in many seismological applications, including
the computation of transformation matrices Q and P, the ray Jacobian J , and the paraxial
travel times. Because we are considering ray-centered coordinates, we wish to find the
partial derivatives of qI and p

(q)
I with respect to γ , where γ is an arbitrarily selected initial

parameter of�. Partial derivatives ∂qI /∂γ and ∂p(q)I /∂γ are taken on the central ray� for
other initial parameter(s) fixed. As partial derivative ∂/∂γ commutes with d/ds, we obtain
the dynamic ray tracing system from the paraxial ray tracing system (4.1.55):

d

ds

(
∂qI
∂γ

)
= v

∂p(q)I
∂γ

,
d

ds

(
∂p(q)I
∂γ

)
= −v−2v,IJ

∂qJ
∂γ
. (4.1.63)

This system of four linear ordinary differential equations of the first order for ∂qI /∂γ and
∂p(q)I /∂γ (I = 1, 2) is knownas thedynamic ray tracing system in ray-centered coordinates.

If we compare paraxial ray tracing system (4.1.55) with dynamic ray tracing system
(4.1.63),we can see that the systems are the same; only the computedquantities are different.
Paraxial ray tracing system (4.1.55) computes approximately the phase space coordinates qI
and p(q)I along paraxial rays, and dynamic ray tracing system (4.1.63) computes exactly the
partial derivatives ∂qI/∂γ, ∂p

(q)
I /∂γ along the central ray. If only parameterγ varies and the
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other initial parameters are fixed, we obtain dqI = (∂qI/∂γ )�dγ , dp
(q)
I = (∂p(q)I /∂γ )�dγ .

Thus, paraxial ray tracing system (4.1.55) is obtained from dynamic ray tracing system
(4.1.63) by multiplying the latter by dγ . In the following discussion, we shall mostly
consider the dynamic ray tracing system, but we shall remember that it also represents the
paraxial ray tracing system.

In the seismological literature, there is no unity in the use of the terms paraxial ray
tracing and dynamic ray tracing. Often, these two terms are not distinguished at all. Some
authors prefer to speak of paraxial ray tracing, and some others of dynamic ray tracing,
although they have the same in mind. There is, however, no danger in these terminological
differences because both the paraxial and dynamic ray tracing systems are the same; only
their physical interpretation is different.

Dynamic ray tracing system (4.1.63) can be solved four times, for γ = q10, q20, p
(q)
10 ,

and p(q)20 , representing the initial values of qI and p
(q)
I ; see (4.1.61). The 16 solutions then

correspond to a complete system of paraxial rays. We shall, however, mostly consider only
a two-parameter orthonomic system of rays, specified by ray parameters γ1 and γ2; see
Section 3.10.1. Then, (4.1.63) can be used to compute the 2 × 2 transformation matrices
QIJ = (∂qI/∂γJ )q1=q2=0 and PIJ = (∂p(q)I /∂γJ )q1=q2=0; see Sections 4.1.5.c and 4.1.5.e.
Using (4.1.63), we obtain the following dynamic ray tracing system for matrices Q and P:

dQ/ds = vP, dP/ds = −v−2VQ. (4.1.64)

This system is one of the most important forms of dynamic ray tracing systems used in
seismological applications. It was first derived and used to compute geometrical spreading
(related to Q) by Popov and Pšenčı́k (1978a, 1978b).

In dynamic ray tracing systems (4.1.63) and (4.1.64), variable s along ray� represents
the arclength. Similarly as in paraxial ray tracing system (4.1.56), we can use travel time
T instead of arclength s, ds = vdT . Dynamic ray tracing system (4.1.64) then reads

dQ/dT = v2P, dP/dT = −v−1VQ. (4.1.65)

Dynamic ray tracing system (4.1.65) can be expressed in a more compact form. If we
introduce a 4 × 1 column matrixW given by relation

W = (
∂q1/∂γ, ∂q2/∂γ, ∂p

(q)
1

/
∂γ, ∂p(q)2

/
∂γ
)T
, (4.1.66)

dynamic ray tracing system (4.1.65) becomes

dW

dT
= SW, where S =

(
0 v2I

−v−1V 0

)
. (4.1.67)

The 4 × 4 matrix S will be referred to as the system matrix of the dynamic ray tracing
system in isotropic media in ray-centered coordinates. It is the same as the system matrix
of the paraxial ray tracing system; see (4.1.59). A more compact form of the dynamic ray
tracing system (4.1.65) is

dX/dT = SX, where X =
(
Q
P

)
, (4.1.68)

andwhereS is given by (4.1.67).An important property ofmatrixS is that trS = 0.Equation
(4.1.68) is equivalent to (4.1.67), but (4.1.67) should be solved twice with different initial
condition to obtain all eight elements of matrix X. Alternatively, we can say that system
(4.1.68) consists of eight equations (Popov and Pšenčı́k 1978a, 1978b).
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Dynamic ray tracing system (4.1.64) can also be expressed in the form of one linear
ordinary differential equation of the second order for Q. Taking the derivative of the first
equation in (4.1.64) with respect to s and inserting the second equation yields

v
d2Q

ds2
− ∂v
∂s

dQ

ds
+ VQ = 0. (4.1.69)

If we use σ instead of s as the variable along� such that dσ = vds, we obtain the simplest
dynamic ray tracing equation

d2Q/dσ 2 + v−3VQ = 0. (4.1.70)

Similarly, we obtain dynamic ray tracing systems for any other variable u along �, for
example, for u = T .

UsingQ andP, many other important quantitiesmay also be computed, and the relevant
ordinary differential equations for these quantities may be derived. This applies to the 2 × 2
matrix of the curvature of wavefront K(s), to the 2 × 2 matrix of radii of the curvature of
wavefront R(s), to the ray Jacobian J (s) and geometrical spreading L(s), and to the 2 × 2
matrix M(s) of the second derivatives of the travel-time fields with respect to qI , among
others. Here we shall discuss briefly matrixM(s) with elements

MIJ(s) = (∂2T/∂qI∂qJ )q1=q2=0. (4.1.71)

Because ∂2T/∂qI∂qJ = (∂2T/∂qI∂γK )(∂γK /∂qJ ), we obtain

M = PQ−1. (4.1.72)

Consequently, matrix M can be calculated along � by dynamic ray tracing (4.1.64). A
differential equation for matrixM itself can also be derived:

dM

ds
= dP

ds
Q−1 + P

dQ−1

ds
= dP

ds
Q−1 − PQ−1 dQ

ds
Q−1,

because dQ−1/ds = −Q−1(dQ/ds)Q−1. This yields

dM/ds + vM2 + v−2V = 0. (4.1.73)

This is a nonlinear ordinary differential equation of the first order of the Riccati type, ex-
pressed in matrix form. In general, this equation cannot be solved by elementary analytical
methods. Equations of the Riccati type similar to (4.1.73) have been known for some time
in the literature devoted to wave propagation problems. The matrix Riccati equation forM
in the simple form of (4.1.73) was first derived by Červený and Hron (1980).

Dynamic ray tracing system (4.1.64) for Q and P can be solved only if the initial
conditions for Q and P are specified at some initial point, say, at point S of ray �. Let us
denote by Q(R) and P(R) the solutions of dynamic ray tracing system (4.1.64) at point R
of ray �, corresponding to the initial conditionsQ(S) and P(S). For a fixed point R,Q(R)
and P(R) do not depend on the integration parameter u used to solve the dynamic ray
tracing system along the ray � from S to R (T, s, and the like). If Q(S) and P(S) are
chosen so that P(S)Q−1(S) = M(S) is the matrix of second derivatives of the travel-time
fields with respect to ray-centered coordinates q1 and q2, then M(R) = P(R)Q−1(R) also
has the meaning of the matrix of second derivatives of the travel-time field with respect
to q1 and q2 at R. Moreover, if Q(S) and P(S) are chosen to represent the transformation
matrices from ray to ray-centered coordinates and from ray to the ray-centered slowness
vector components at S, they then also represent the same at point R.
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Note that the parameterization of the ray fields by ray parameters γ1 and γ2 affects
both Q and P, but notM. Just for the purpose of this section, we will introduce new 2 × 2
matrices Q̄ and P̄, related to matrices Q and P as

Q̄ = QC, P̄ = PC. (4.1.74)

HereP andQ satisfy dynamic ray tracing system (4.1.64), andC is an arbitrary nonsingular
constant 2 × 2 matrix. It is simple to see that P̄Q̄−1 = PQ−1 so that matrix M is not
influenced by C.

Matrix C is related to the parametrization of the ray field. IfQ and P correspond to ray
parameters γ1 and γ2, and if Q̄ and P̄ correspond to ray parameters γ̄1 and γ̄2, elements CIJ

of matrix C are then given by relation

CIJ = ∂γI/∂γ̄J . (4.1.75)

It is easy to derive the dynamic ray tracing system for P̄ and Q̄, using (4.1.64) which reads

dQ̄/ds = vP̄, dP̄/ds = −v−2VQ̄. (4.1.76)

The dynamic ray tracing system (4.1.76) for Q̄ and P̄ remains exactly the same as the
dynamic ray tracing system (4.1.64) for Q and P.

The conclusions follow. Assume that initial conditions Q(S) and P(S) correspond to
some intrinsic choice of the parametrization of ray field γ1 and γ2 at S. For this intrinsic
choice of initial conditions, the solution of the dynamic ray tracing system at point R of the
ray is Q(R) and P(R). For a different user’s choice of the parameterization of ray field γ̄1
and γ̄2 at S, the solutions at point R are Q̄(R) = Q(R)C and P̄(R) = P(R)C, where matrix
C is given by (4.1.75).

4.1.8 Paraxial Travel Times

In Section 4.1.7, we explained how the 2 × 2 matrix M(s) can be computed in terms of
2 × 2matricesQ(s) andP(s) and howmatricesQ(s) andP(s) can be calculated by dynamic
ray tracing. We shall now assume that matrixM(s) is known along �. A simple quadratic
expansion of travel time T (q1, q2, s) in ray-centered coordinates q1 and q2 is then

T (q1, q2, s) = T (s) + 1
2q

TM(s)q, q = (q1, q2)
T . (4.1.77)

Here T (s) = T (0, 0, s). Note that the linear terms are missing in (4.1.77) because the
wavefront is perpendicular to �. Equation (4.1.77) determines the paraxial travel times.

A terminological note. In the paraxial vicinity of central ray �, we can, of course,
calculate the travel times, wavefronts, and rays either exactly (by standard ray tracing) or
approximately (using the Taylor expansion). For this reason, it would be convenient to
speak of exact and approximate paraxial travel times, exact and approximate paraxial rays,
and exact and approximate paraxial wavefronts. This section is, however, devoted mostly
to approximate (Taylor expansion) computations. To simplify the terminology, we shall
call the approximate paraxial travel times (rays, wavefronts) simply paraxial travel times
(rays, wavefronts). Thus, paraxial travel times are not exact away from ray �, they only
approximately simulate the actual travel times in the vicinity of�. We shall, however, treat
them fully as actual travel times. We can obtain paraxial wavefronts as surfaces of constant
paraxial travel times, and paraxial rays as orthogonal trajectories to the family of paraxial
wavefronts.
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ray ΩΩ

plane ΣΣ

R

R'

R''

Figure 4.7. Definition of points R, R′, and
R′′. Point R is situated arbitrarily on ray
�, R′ is situated close to R, possibly outside
�. Point R′′ is situated at the intersection of
ray�with plane�⊥, passing through R′ and
perpendicular to �.

Equation (4.1.77) for the paraxial travel times can be modified in two ways.

1. Aconsiderablymore flexible and efficient expressionwould be obtained if we found
a quadratic expansion of T (q1, q2, q3) not only in q1 and q2 but also in q3.

2. It would be useful to express expansion (4.1.77) also in local ray-centered Cartesian
coordinates yi (see Section 4.1.4) and in general Cartesian coordinates xi .

In the following discussion, we will discuss both modifications.
Let us consider point R situated on central ray � and point R′ situated in a close

vicinity of R, but not necessarily in a plane perpendicular to � at R; see Figure 4.7.
We introduce point R

′′
at which plane �⊥, perpendicular to � and passing through R′,

intersects ray �. The ray-centered coordinates of these three points follow: R ≡ [0, 0, s0],
R

′′ ≡ [0, 0, s], and R′ ≡ [q1, q2, s]. We can then express the Taylor expansion for T (R
′′
),

up to the second-order terms in (s − s0), as

T (R
′′
)
.= T (R) + (∂T/∂s)s=s0 (s − s0) + 1

2 (∂
2T/∂s2)s=s0 (s − s0)

2.

The first and second derivatives of T with respect to s along � can be calculated simply,

(dT/ds)s=s0 = v−1(R), (∂2T/∂s2)s=s0 = −(v−2∂v/∂s)R.

Inserting these expressions into (4.1.77), we obtain the final Taylor expansion for the
paraxial travel time T (q1, q2, q3 = s) in ray-centered coordinates q1, q2, q3 = s, up to the
second-order terms in q1, q2, and s − s0,

T (R′) .= T (R) + v−1(R)(s − s0)

− 1
2v−2(R)(∂v/∂s)R(s − s0)

2 + 1
2qI qJ MIJ(R). (4.1.78)

Now we shall express Equation (4.1.78) in the local ray-centered Cartesian coordinate
system y1, y2, y3, with its origin at point R; see Section 4.1.4. We remind the reader that
the y1- and y2-axes are fully equivalent to the q1- and q2-axes at R. In local Cartesian
ray-centered coordinates, R ≡ R(0, 0, 0) and R′ ≡ R′(y1, y2, y3). Because ds = h−1dy3,

s − s0
.= h−1y3

.= y3(1 − v−1v,I yI ), (s − s0)
2 .= y23 ;

see (4.1.22) and (4.1.51). Inserting these relations into (4.1.78) yields

T (R′) .= T (R) + v−1(R)y3 − 1
2v−2(R)v,3(R)y23

− v−2(R)v,I (R)yI y3 + 1
2 yI yJ MIJ(R). (4.1.79)
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Finally,

T (R′) .= T (R) + v−1(R)y3 + 1
2 yi y j Mi j (R), (4.1.80)

where

Mi j (R) =

 M11(R) M12(R) −(v−2v,1)R

M12(R) M22(R) −(v−2v,2)R
−(v−2v,1)R −(v−2v,2)R −(v−2v,3)R


 , (4.1.81)

and

v,I (R)= (∂V/∂yI )R = (∂V/∂qI )R , v,3(R)= (∂V/∂y3)R = (∂V/∂s)R ;

(4.1.82)

see (4.1.50). In matrix form, (4.1.80) reads

T (R′) .= T (R) + ŷT p̂(y)(R) + 1
2 ŷ

T M̂(R)ŷ. (4.1.83)

Here

ŷ =

y1y2
y3


 , p̂(y)(R) =


p

(y)
1 (R)
p(y)2 (R)
p(y)3 (R)


 =


 0

0
1/v(R)


 . (4.1.84)

p(y)i (R) denote the components of the slowness vector in local Cartesian ray-centered
coordinates yi at point R. At R, only one of these components is nonvanishing.

Equations (4.1.80) and (4.1.83) require the construction of the local ray-centered Carte-
sian coordinate system at point R and the determination of coordinates y1, y2, y3 of point
R′ in that system. It would be convenient to specify both points R and R′ in the general
Cartesian coordinate system.

We denote the general Cartesian coordinates of R and R′ by xi (R) and xi (R′). We now
introduce the 3 × 1 column matrix

x̂(R′, R) =

x1(R′, R)
x2(R′, R)
x3(R′, R)


 =


x1(R′) − x1(R)
x2(R′) − x2(R)
x3(R′) − x3(R)


 . (4.1.85)

Of course, we assume that elements xi (R′, R) are small.
Equation (4.1.83) can be simply transformed from the local Cartesian ray-centered

coordinates yi to general Cartesian coordinates xi using transformation matrix Ĥ(y); see
Section 4.1.5. Because we apply this matrix only along central ray�, we can use Ĥ instead
of Ĥ(y); see (4.1.28). For small ŷ(R′) and x̂(R′, R),

ŷ(R′) = ĤT (R)x̂(R′, R), p̂(y)(R) = ĤT (R)p̂(x)(R),

where p̂(x) = (p(x)1 , p
(x)
2 , p

(x)
3 )T , p(x)i being the generalCartesian components of the slowness

vector. This yields ŷT (R′)p̂(y)(R) = x̂T (R′, R)Ĥ(R)ĤT (R)p̂(x)(R), and Equation (4.1.83)
yields

T (R′) .= T (R) + x̂T (R′, R)p̂(x)(R)+ 1
2 x̂

T (R′, R)Ĥ(R)M̂(R)ĤT (R)x̂(R′, R).

(4.1.86)
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a b

ray ΩΩ ray ΩΩ

R

Figure 4.8. Validity of paraxial travel-
time expansions in ray-centered coordi-
nates along � and in Cartesian coordi-
nates at point R on �. (a) The paraxial
expansion in ray-centered coordinates is
valid along the whole ray �, and (b) the
paraxial expansion in Cartesian coordi-
nates is valid only in the vicinity of point
R on �.

We now introduce the 3 × 3 matrix

M̂(x)(R) = Ĥ(R)M̂(R)ĤT (R). (4.1.87)

It is simple to see that the elements of matrix M̂(x), M (x)
i j , represent the second derivatives

of the travel-time field with respect to the general Cartesian coordinates,

M (x)
i j (R) = (∂2T (x1, x2, x3)/∂xi∂x j )R. (4.1.88)

Matrix M̂(x) is symmetric,

M (x)
i j (R) = M (x)

j i (R). (4.1.89)

Using notation (4.1.87), Equation (4.1.86) can be expressed in a simpler form,

T (R′) .= T (R) + x̂T (R′, R)p̂(x)(R) + 1
2 x̂

T (R′, R)M̂(x)(R)x̂(R′, R),

(4.1.90)

or, in component form,

T (R′) .= T (R) + xi (R
′, R)p(x)i (R) + 1

2 xi (R
′, R)x j (R′, R)M (x)

i j (R).

(4.1.91)

Let us again emphasize the difference between expansions (4.1.77) and (4.1.90). Parax-
ial expansion (4.1.77) is expressed in ray-centered coordinates and can be used at any point
situated in the paraxial vicinity of ray�; see Figure 4.8(a). On the contrary, paraxial expan-
sion (4.1.90) has a local character and is valid only in the close vicinity of point R situated
on ray�; see Fig. 4.8(b). It is, however, very flexible and numerically very efficient because
both points R and R ′ are specified in general Cartesian coordinates. The travel time given
by (4.1.77) is exact along the whole ray �, but expansion (4.1.90) is exact only at one
point – point R on ray�. At other points on ray�, expansion (4.1.90) is only approximate.
Even for points R′ situated along ray�, the accuracy of (4.1.90) decreases with increasing
distance of R′ from R.

4.2 Hamiltonian Approach to Dynamic Ray Tracing

In Section 4.1, we derived the dynamic ray tracing system for isotropic inhomogeneous
media in ray-centered coordinates. The dynamic ray tracing system in ray-centered coor-
dinates consists of four scalar linear ordinary differential equations of the first order only,
which should be integrated along the central ray �.
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A similar approach can also be used in an anisotropic inhomogeneousmedium and in an
arbitrary coordinate system (Cartesian, curvilinear orthogonal, curvilinear nonorthogonal).
To derive general dynamic ray tracing systems applicable to these cases, it is useful to apply
the Hamiltonian formalism. The derivation of dynamic ray tracing systems, based on the
Hamiltonian formalism, is presented in this section.

It is common to perform dynamic ray tracing in Cartesian coordinates xi , particu-
larly in anisotropic media. For this reason, we start with the derivation of the dynamic
ray tracing system in Cartesian rectangular coordinates xi in Section 4.2.1. The derived
dynamic ray tracing system consists of six scalar linear ordinary differential equations
of the first order, which should be integrated along central ray �. It is shown that the
solutions of the dynamic ray tracing system must satisfy one constraint equation, fol-
lowing from the eikonal equation. In the actual computations, the initial conditions must
be chosen in such a way to satisfy the constraint equation. When the constraint equa-
tion is satisfied at the initial point S of ray �, it is satisfied along the whole ray �.
Because the dynamic ray tracing system in Cartesian coordinates consists of six linear
equations, it has six linearly independent solutions. It is shown that two such solutions
can be found analytically. The first will be referred to as the ray-tangent solution and
corresponds to central ray �. The second analytical solution will be referred to as the
noneikonal solution because it does not satisfy the constraint relation. In most applications,
the noneikonal solution should be eliminated by a proper choice of the initial conditions.
The noneikonal solution is, however, useful in the construction of the 6 × 6 propagator ma-
trix of the dynamic ray tracing system because it represents one of the linearly independent
solutions.

The wavefront orthonormal coordinates yi are introduced in Section 4.2.2. The ori-
gin of this coordinate system moves along central ray � with the propagating wavefront.
Coordinate axis y3 is oriented along local slowness vector 	p, and the y1- and y2-axes are
confined to the plane tangent to the wavefront. In isotropic media, the wavefront orthonor-
mal coordinate system is equivalent to the local Cartesian ray-centered coordinate system
introduced in Section 4.1.4. In anisotropic media, however, both systems differ because
the slowness vector is not tangent to ray�. Actually, the ray-centered coordinate system in
anisotropic media is always nonorthogonal. Because we prefer to work in Cartesian rect-
angular coordinate systems, we shall use the wavefront orthonormal system. In wavefront
orthonormal coordinates, the number of equations in the dynamic ray tracing system can
be reduced from six to four. All remaining solutions can be computed analytically. It is
also shown how the solutions of the dynamic ray tracing system in Cartesian coordinates
xi can be transformed into solutions of the dynamic ray tracing in wavefront orthonormal
coordinates yi , and vice versa.

The orthonomic system of rays is considered in Section 4.2.3. It is shown there how the
results of dynamic ray tracing can be used to determine the matrices of the second spatial
derivatives of the travel-time field, geometrical spreading, and Jacobian J (T ) along central
ray �. The quadratic expansions for the paraxial travel times in the vicinity of central ray
�, both in Cartesian and wavefront orthonormal coordinates, are derived. Mutual relations
are found, both for isotropic and anisotropic media.

Dynamic ray tracing systems in arbitrary curvilinear, orthogonal or nonorthogonal,
coordinates are derived in Section 4.2.4. The systems are again applicable both to isotropic
and anisotropic media. A particularly simple dynamic ray tracing system is obtained in
special nonorthogonal ray-centered coordinates, in which the 6 × 6 system matrix has
19 zeros, 1 unity, and only 16 elements influenced by the actual form of the Hamiltonian.
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It clearly shows the relations between the dynamic ray tracing systems consisting of six
and four equations.

4.2.1 Cartesian Rectangular Coordinates

In ray computations, it is very common to use Cartesian rectangular coordinates xi . In
these coordinates, travel time T (xi ) satisfies eikonal equation (3.1.1) in isotropic medium
and (3.6.2) in an anisotropic medium. The eikonal equation in both cases can be expressed
in Hamiltonian form H(x)(xi , p

(x)
i ) = 0, where p(x)i = ∂T/∂xi denote the Cartesian com-

ponents of the slowness vector. See (3.1.2) for the isotropic medium and (3.6.3) for the
anisotropic medium. In six-dimensional xi -p

(x)
i -phase space, equation H(x)(xi , p

(x)
i ) = 0

represents a hypersurface.
We shall consider HamiltonianH(x)(xi , p

(x)
i ), which satisfies the relation

p(x)i ∂H(x)
/
∂p(x)i = 1. (4.2.1)

The ray tracing system in Cartesian rectangular coordinate system xi , corresponding to the
eikonal equationH(x)(xi , p

(x)
i ) = 0, then reads

dxi/dT = ∂H(x)
/
∂p(x)i , dp(x)i

/
dT = −∂H(x)/∂xi . (4.2.2)

where the variable T along the ray represents the travel time and is determined by the form
of HamiltonianH(x)(xi , p

(x)
i ) satisfying (4.2.1).

We consider point S(xi0, p
(x)
i0 ) in the xi -p

(x)
i -phase space, situated on hypersurface

H(x)(xi , p
(x)
i ) = 0, so that H(x)(xi0, p

(x)
i0 ) = 0. We further consider ray � with its initial

point at S, satisfying ray tracing system (4.2.2). Ray � is then completely situated on the
hypersurfaceH(x)(xi , p

(x)
i ) = 0passing through S. In otherwords, equationH(x)(xi , p

(x)
i ) =

0 is satisfied along the whole ray �, once it is satisfied at initial point S. In the phase
space, we describe ray� by equations xi (T ) = x�i (T ), p

(x)
i (T ) = p(x)�i (T ), with x�i (T0) =

xi0, p
(x)�
i (T0) = p(x)i0 .

We now wish to derive the equations for computing the first partial derivatives of xi
and p(x)i with respect to initial conditions xi0, p

(x)
i0 along ray � from (4.2.2). We choose an

arbitrary initial parameter and denote it γ . Initial parameter γ may represent any parameter
from the set of initial parameters xi0, p

(x)
i0 , or from some other set of independent parameters

specifying xi0, p
(x)
i0 . We denote

Q(x)
i = (∂xi/∂γ )T=const., P (x)

i = (
∂p(x)i

/
∂γ
)
T=const.

. (4.2.3)

Taking the partial derivative of ray tracing system (4.2.2) with respect to γ , and bearing in
mind that ∂/∂γ commutes with d/dT , we obtain a system of six linear ordinary differential
equations of the first order for Q(x)

i and P (x)
i . It can be expressed in the following form:

dQ(x)
i

/
dT = A(x)

i j Q
(x)
j + B(x)

i j P
(x)
j , dP (x)

i

/
dT = −C (x)

i j Q
(x)
j − D(x)

i j P
(x)
j .

(4.2.4)

Here

A(x)
i j = ∂2H(x)

/
∂p(x)i ∂x j , B(x)

i j = ∂2H(x)
/
∂p(x)i ∂p

(x)
j ,

C (x)
i j = ∂2H(x)

/
∂xi∂x j , D(x)

i j = ∂2H(x)
/
∂xi∂p

(x)
j .

(4.2.5)

The system of six linear ordinary differential equations of the first order (4.2.4) for Q(x)
i
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and P (x)
i is called the dynamic ray tracing system in Cartesian rectangular coordinates.

As we can see from (4.2.5), A(x)
i j , B

(x)
i j ,C

(x)
i j and D(x)

i j satisfy the following three symmetry
relations:

B(x)
i j = B(x)

j i , C (x)
i j = C (x)

j i , D(x)
i j = A(x)

j i . (4.2.6)

If we take the partial derivatives with respect to γ , we wish to stay on the hypersur-
face H(x)(xi , p

(x)
i ) = 0, representing the eikonal equation. Consequently, we require that

∂H(x)(xi , p
(x)
i )/∂γ = 0. Quantities Q(x)

i , P
(x)
i then satisfy the following constraint relation:(

∂H(x)
/
∂xk

)
Q(x)
k + (

∂H(x)
/
∂p(x)k

)
P (x)
k = 0. (4.2.7)

It is not difficult to prove that constraint relation (4.2.7) is satisfied along the whole ray
� after it is satisfied at the initial point S of �. Consequently, one of the six equations of
dynamic ray tracing system (4.2.4) is redundant and may be replaced by (4.2.7).

To simplify the following equations, we shall use the notation along ray �:

U (x)
i = dxi/dT = ∂H(x)

/
∂p(x)i , η

(x)
i = dp(x)i

/
dT = −∂H(x)

/
∂xi .

(4.2.8)

Here U (x)
i are Cartesian rectangular components of the group velocity vector. Constraint

equation (4.2.7) then reads:

U (x)
i P (x)

i − η(x)i Q(x)
i = 0. (4.2.9)

Although the constraint equation (4.2.9) is theoretically satisfied along the whole ray
� after it is satisfied at the initial point S of �, the numerical noise may cause deviations
from it and decrease the stability of dynamic ray tracing. It is then useful to normalize
P (x)
i and Q(x)

i at any step of the ray so that the constraint relation (4.2.9) is satisfied. Note
that the dynamic ray tracing system (4.1.63) in ray-centered coordinates, consisting of four
equations, does not suffer by these difficulties because the constraints are built in.

Dynamic ray tracing system (4.2.4) is also called the paraxial ray tracing system for
rays situated in the vicinity of central ray �. Let us consider paraxial ray �′ described by
equations:

xi (T ) = x�i (T ) + δxi (T ), p(x)i (T ) = p(x)�i (T ) + δp(x)i (T ), (4.2.10)

where xi (T ) = x�i (T ) and p(x)i (T ) = p(x)�i (T ) are equations of central ray �, and δxi (T )
and δp(x)i (T ) specify the linear approximations of the deviations from the central ray.
Assume that the initial point S′[xi0 + δxi0, p(x)i0 + δp(x)i0 ] of paraxial ray�

′ is situated close
to the initial point S[xi0, p

(x)
i0 ] of central ray�, where δxi0 = δxi (T0) and δp

(x)
i0 = δp(x)i (T0)

are small. Because δxi = (∂xi/∂γ )δγ and δp(x)i = (∂p(x)i /∂γ )δγ , the paraxial ray tracing
system for δxi and δp

(x)
i is obtained from dynamic ray tracing system (4.2.4) bymultiplying

it with δγ :

dδxi/dT = A(x)
i j δx j + B(x)

i j δp
(x)
j , dδp(x)i

/
dT = −C (x)

i j δx j − D(x)
i j δp

(x)
j .

(4.2.11)

Here A(x)
i j , B

(x)
i j ,C

(x)
i j , and D

(x)
i j are again given by (4.2.5) and satisfy symmetry relations

(4.2.6). Because the eikonal equation must be satisfied along the paraxial ray�′, we obtain
a constraint relation analogous to (4.2.9)

U (x)
i δp

(x)
i − η(x)i δxi = 0. (4.2.12)
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There are six initial conditions δxi0 and δp
(x)
i0 for paraxial ray tracing system (4.2.11). The

complete ray field of paraxial rays, however, does not have six parameters, but only four;
see Section 4.1.6. Consequently, two initial conditions and the relevant paraxial rays are
redundant. First, δxi0 and δp

(x)
i0 should satisfy constraint relation (4.2.12); otherwise, the

solution of (4.2.11) does not satisfy the eikonal equation. Such solutions of (4.2.11) not
satisfying (4.2.12) will be referred to as the noneikonal solutions. Second, any ray �′ of
the remaining five-parameter system of paraxial rays is identical with a one-parameter
system of paraxial rays, with initial points and initial slowness vectors distributed along
�′. Consequently, the resulting system of paraxial rays is a four-parameter system. If we
wish to retain only one ray of any one-parameter set of identical rays, we can specify the
initial points S′ along some surface�0 passing through S. In certain applications, however,
it may be suitable to consider a five-parameter system of rays, with S ′ distributed arbitrarily
in the vicinity of S, not just along the surface �0 passing through S.

Among the solutions of the paraxial ray tracing system (4.2.11) for nontrivial initial con-
ditions δxi0 and δp

(x)
i0 , there are also solutions that coincide with central ray�. Such initial

conditions will be referred to as the ray-tangent initial conditions, and the corresponding
solutions will be called the ray-tangent solutions.

Thus, the nontrivial initial conditions δxi0 and δp
(x)
i0 may be divided into three groups.

a. Ray-tangent initial conditions. These yield solutions coinciding with central ray�.
b. Noneikonal initial conditions. These do not yield paraxial rays satisfying the eikonal

equation under consideration.
c. Standard paraxial initial conditions. These yield paraxial rays not coinciding with
�, and satisfying the eikonal equation under consideration.

The discussion of the initial conditions for the dynamic ray tracing system (4.2.4) is
analogous to that given earlier for the paraxial ray tracing system (4.2.11). The nontrivial
initial conditions can again be divided into three groups:

a. Ray-tangent initial conditions.
b. Noneikonal initial conditions.
c. Standard paraxial initial conditions.

The ray-tangent and noneikonal solutions of dynamic ray tracing system (4.2.4) can be
found analytically.

a. Ray tangent solutions. We shall prove that the solutions

Q(x)
i = U (x)

i , P (x)
i = η

(x)
i (4.2.13)

satisfy dynamic ray tracing system (4.2.4). Actually, we have

dU (x)
i

/
dT = d

(
∂H(x)

/
∂p(x)i

)/
dT = A(x)

i j U (x)
j + B(x)

i j η
(x)
j ,

(4.2.14)
dη(x)i

/
dT = −d

(
∂H(x)

/
∂xi
)/

dT = −C (x)
i j U (x)

j − D(x)
i j η

(x)
j .

This is equivalent to dynamic ray tracing system (4.2.4). Note that U (x)
i and η(x)i are known

from ray tracing; see (4.2.2) and (4.2.8). It is simple to see that the ray-tangent solutions
satisfy constraint equation (4.2.9) because

U (x)
i P (x)

i − η(x)i Q(x)
i = U (x)

i η
(x)
i − η(x)i U (x)

i = 0.
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b. Noneikonal solutions. We shall consider HamiltonianH(x)(xi , p
(x)
i ) for which first

derivative ∂H(x)/∂xi is a homogeneous function of the second degree in p(x)i . This assump-
tion is satisfied, for example, for Hamiltonian H(x)(xi , p

(x)
i ) = 1

2 (G(xi , p
(x)
i ) − 1), where

G is an eigenvalue of the Christoffel matrix. This Hamiltonian is commonly considered
in anisotropic media, see (3.6.3), but also in isotropic media, see (3.1.13). Using Euler’s
theorem for homogeneous functions (2.2.24) and (4.2.1), we then obtain

p(x)i

∂2H(x)

∂p(x)i ∂x j
= 2

∂H(x)

∂x j
= −2η(x)j , p(x)i

∂2H(x)

∂p(x)i ∂p
(x)
j

= ∂H(x)

∂p(x)j
= U (x)

j .

(4.2.15)

Now we shall prove that Q(x)
i and P (x)

i , given by relations

Q(x)
i = (T − T0)U (x)

i , P (x)
i = p(x)i + (T − T0)η

(x)
i , (4.2.16)

are solutions of dynamic ray tracing system (4.2.4), if Hamiltonian H(x)(xi , p
(x)
i ) satisfies

(4.2.15). Using (4.2.14) and (4.2.15), we obtain

d
[
(T − T0)U (x)

i

]/
dT = U (x)

i + (T − T0)dU (x)
i

/
dT

= A(x)
i j (T − T0)U (x)

j + B(x)
i j

(
p(x)j + (T − T0)η

(x)
j

)
,

d
[
p(x)i + (T − T0)η

(x)
i

]/
dT = 2η(x)i − (T − T0)dη

(x)
i

/
dT

= −C (x)
i j (T −T0)U (x)

j −D(x)
i j

(
p(x)j + (T − T0)η

(x)
j

)
.

This is equivalent to dynamic ray tracing system (4.2.4) applied to (4.2.16). Consequently,
(4.2.16) are solutions of (4.2.4).As in ray-tangent solutions (4.2.13),U (x)

i andη(x)i in (4.2.16)
are known from ray tracing. It is not difficult to prove that solutions (4.2.16) do not satisfy
constraint relation (4.2.9). Indeed,

U (x)
i P (x)

i − η(x)i Q(x)
i = U (x)

i p(x)i + (T − T0)
(U (x)

i η
(x)
i − η(x)i U (x)

i

)
= U (x)

i p(x)i = 1.

Thus, U (x)
i P (x)

i − η(x)i Q(x)
i �= 0, and (4.2.16) represents a noneikonal solution of dynamic

ray tracing system (4.2.4).
Note that all equations of this section may be used both for isotropic and anisotropic

media.

4.2.2 Wavefront Orthonormal Coordinates

Consider fixed point R on ray� and introducewavefront orthonormal coordinates yi whose
origin is at R. The y3-axis is oriented along slowness vector 	p at R, and axes y1 and y2 are
confined to the plane tangent to the wavefront at R and are mutually perpendicular. In an
isotropic medium, the wavefront orthonormal coordinate system is analogous to the local
Cartesian ray-centered coordinate system, see Section 4.1.4. In an anisotropic medium,
however, slowness vector 	p is not tangent to ray� at R, so that the y3-axis is not tangent to
� at R. Choosing the y3-axis to be tangent to ray�would make the system nonorthogonal.
We, however, prefer to work in orthonormal coordinate systems.

We now introduce the basis unit vectors 	e1(R), 	e2(R), and 	e3(R) of the wavefront
orthonormal coordinate system whose origin is at point R on ray�. Origin R moves along
� with the wavefront under consideration; in other words, it is situated at the point of
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intersection of the wavefront with central ray �. Basis vector 	e3(R) is given by a simple
relation, 	e3(R) = C(R) 	p(R), where C is the phase velocity. Basis vectors 	e1(R) and 	e2(R)
are tangent to the wavefront at R and are mutually perpendicular. We shall specify the
variations of 	e1 and 	e2 along� by a differential equation analogous to (4.1.3) for isotropic
media,

d	eI/dT = −( 	p · 	p)−1(	eI · 	η) 	p. (4.2.17)

Here 	η = d 	p/dT . It is not difficult to prove that 	e1(R) and 	e2(R) determined from (4.2.17)
form a right-handed mutually perpendicular triplet of unit vectors with 	e3(R) = C(R) 	p(R)
at any point R on �, if they form such a triplet at initial point S on �.

In contrast to the ray-centered coordinate system, ray � is not a coordinate line in the
wavefront orthonormal coordinate system yi ; only the origin R of the system is situated
on �. Moreover, in anisotropic media, basis vector 	e3(R) is not tangent to ray � but is
perpendicular to the wavefront. The wavefront orthonormal coordinate systems introduced
at different points R on � do not coincide. There is an infinite number of wavefront
orthonormal coordinate systems yi connected with ray �, whose origins are at different
points R on �. Coordinate y3 of any point R′ situated in the paraxial vicinity of ray �
depends on the selection of the origin point R on �. It is always possible to choose point
R so that point R′ is situated in a plane tangent to the wavefront at R. The y3-coordinate of
R′ is then zero. Consequently, if we consider y3 = 0, the position of R′ is fully specified
by travel time T and by coordinates y1 and y2.

We now introduce the transformation matrices from wavefront orthonormal coordinate
system y1, y2, and y3 to the global Cartesian coordinate system xk ,

Hkl = ∂xk/∂yl = ∂yl/∂xk . (4.2.18)

The 3 × 3 matrix Ĥ with elements Hkl is unitary and is related to 	ei as follows:
Ĥ−1 = ĤT , HiK = e(x)Ki , Hi3 = e(x)3i = C p(x)i . (4.2.19)

Superscript (x) is used to emphasize that the components correspond to Cartesian coordi-
nates xi . Similarly, (y) will be used to emphasize wavefront orthonormal coordinates yi .We
also denote the Hamiltonian in the yi -coordinates byH(y)(yi , p

(y)
i ), where p(y)i = ∂T/∂yi .

Hamiltonian H(y)(yi , p
(y)
i ) again corresponds to variable T along ray �, and pressumably

satisfies equations analogous to (4.2.1) and (4.2.15). We denote

U (y)
i = ∂H(y)

∂p(y)i

, η
(y)
i = −∂H

(y)

∂yi
, Q(y)

i = ∂yi
∂γ
, P (y)

i = ∂p(y)i

∂γ
.

(4.2.20)

Here γ is an arbitrary initial parameter and has the same meaning as in (4.2.3). The
derivatives with respect to γ are taken for constant T . The transformation relations read:

U (y)
n = HinU (x)

i , p(y)n = Hin p
(x)
i , η

(y)
n = Hinη

(x)
i ,

Q(y)
n = HinQ

(x)
i , P (y)

n = Hin P
(x)
i ,

U (x)
i = HinU (y)

n , p(x)i = Hin p
(y)
n , η

(x)
i = Hinη

(y)
n ,

Q(x)
i = HinQ

(y)
n , P (x)

i = Hin P
(y)
n .

(4.2.21)

Note that

p(y)I = 0, p(y)3 = 1/C, U (y)
I �= 0, U (y)

3 = C. (4.2.22)
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In an isotropic medium, U (y)
I = 0 also, but in an anisotropic medium, U (y)

I do not vanish.
Due to (4.2.19), Equation (4.2.17) can be used to determine the variations of Hj I along�:

dHj I /dT = −C2(HkIη
(x)
k

)
p(x)j = −C2η(y)I p(x)j . (4.2.23)

Now we shall derive the equations for Q(y)
i and P (y)

i by transforming the dynamic
ray tracing system in Cartesian coordinates xi into wavefront orthonormal coordinates yi .
Consequently, even in the yi -coordinates, we shall use Hamiltonian H(x)(xi , p

(x)
i ) and its

derivatives with respect to xi and p(x)i . This is particularly useful in anisotropic inhomo-
geneous media, as the elastic parameters may be specified in global Cartesian coordinate
system xi . In determining Q(y)

i and P (y)
i , we shall proceed as follows. First, we determine the

ray-tangent and noneikonal solutions analytically. Second, we determine Q(y)
3 and P (y)

3 for
standard paraxial initial conditions analytically. Third, we find the dynamic ray tracing sys-
tem, consisting of four equations in wavefront orthonormal coordinates for Q(y)

I and P (y)
I .

The ray-tangent solutions are obtained from (4.2.13) using (4.2.21):

Q(y)
i = U (y)

i , P (y)
i = η

(y)
i . (4.2.24)

Similarly, the noneikonal solutions are obtained from (4.2.16), using (4.2.21):

Q(y)
i = (T − T0)U (y)

i , P (y)
i = p(y)i + (T − T0)η

(y)
i . (4.2.25)

For standard paraxial conditions, we can determine Q(y)
3 and P (y)

3 analytically in terms of
Q(y)
I and P (y)

I . Because partial derivatives Q(y)
i = ∂yi/∂γ are taken along a plane tangent

to the wavefront at R on �, we obtain p(y)i ∂yi/∂γ = 0. If we take into account p(y)I = 0
and constraint relation (4.2.9) expressed in yi -coordinates, we obtain

Q(y)
3 = 0, P (y)

3 = C−1
(
η
(y)
I Q(y)

I − U (y)
I P (y)

I

)
. (4.2.26)

We shall now derive the dynamic ray tracing system for Q(y)
I and P (y)

I , consisting of four
equations. We use (4.2.4), insert Q(x)

i = HinQ
(y)
n and P (x)

i = Hin P
(y)
n (see (4.2.21)), and

multiply the resulting equations by Him :

Himd
(
HinQ

(y)
n

)/
dT = ĀmnQ

(y)
n + B̄mn P

(y)
n ,

Himd
(
Hin P

(y)
n

)/
dT = −C̄mnQ

(y)
n − D̄mn P

(y)
n ,

(4.2.27)

where

Āmn = HimHjn∂
2H(x)

/
∂p(x)i ∂x j , B̄mn = HimHjn∂

2H(x)
/
∂p(x)i ∂p

(x)
j ,

C̄mn = HimHjn∂
2H(x)

/
∂xi∂x j , D̄mn = HimHjn∂

2H(x)
/
∂xi∂p

(x)
j .

(4.2.28)

Instead of m = 1, 2, 3, we shall only use M = 1, 2. The left-hand sides (LHSs) of (4.2.27)
can then be expressed as follows:

HiMd
(
HinQ

(y)
n

)/
dT = dQ(y)

M

/
dT + Cη(y)M Q(y)

3 ,

HiMd
(
Hin P

(y)
n

)/
dT = dP (y)

M

/
dT + Cη(y)M P (y)

3 .
(4.2.29)

Using (4.2.15), (4.2.21), and (4.2.28), we also obtain these simple expressions for B̄M3 and
D̄M3:

B̄M3 = CU (y)
M , D̄M3 = −2Cη(y)M . (4.2.30)
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Inserting (4.2.26), (4.2.29), and (4.2.30) into (4.2.27) yields the final system of linear
ordinary differential equations of the first order for Q(y)

M and P (y)
M :

dQ(y)
M

/
dT = A(y)

MNQ
(y)
N + B(y)

MNP
(y)
N

dP (y)
M

/
dT = −C (y)

MNQ
(y)
N − D(y)

MNP
(y)
N ,

(4.2.31)

where A(y)
MN, B

(y)
MN,C

(y)
MN, and D

(y)
MN are given by the relations

A(y)
MN = HiM HjN

[
∂2H(x)

/
∂p(x)i ∂x j + U (x)

i η
(x)
j

]
,

B(y)
MN = HiM HjN

[
∂2H(x)

/
∂p(x)i ∂p

(x)
j − U (x)

i U (x)
j

]
,

C (y)
MN = HiM HjN

[
∂2H(x)

/
∂xi∂x j − η(x)i η

(x)
j

]
,

D(y)
MN = HiM HjN

[
∂2H(x)

/
∂xi∂p

(x)
j + η(x)i U (x)

j

]
,

(4.2.32)

and satisfy the following symmetry relations:

B(y)
MN = B(y)

NM , C (y)
MN = C (y)

NM , D(y)
MN = A(y)

NM . (4.2.33)

Equations (4.2.31) with (4.2.32) represent the final dynamic ray tracing system, consisting
of four equations in wavefront orthonormal coordinates yi . Together with (4.2.24) through
(4.2.26), they represent the complete solution of the problem in the yi -coordinates. All these
equations can be used both for isotropic and anisotropic media. In the derivation, we have
used the assumptions that ∂H(x)/∂p(x)i is a homogeneous function of thefirst degree, and that
∂H(x)/∂xi is a homogeneous function of the second degree in p(x)i ; see (4.2.15). Thus, we
can use HamiltonianH(x) in the common formH(x)(xi , p

(x)
i ) = 1

2 (G(xi , p
(x)
i ) − 1), where

G is an eigenvalue of the Christoffel matrix. For isotropic media, the relevant Hamiltonian
readsH(x)(xi , p

(x)
i ) = 1

2 (V
2 p(x)i p(x)i − 1); see (3.1.13). For more details on isotropic media,

see Section 4.7; anisotropic media are covered more completely in Section 4.14.
From the theoretical point of view, it does not matter very much whether we compute

Q(x)
i and P (x)

i using (4.2.4) or Q(y)
M and P (y)

M using (4.2.31). Both sets are mutually related by
transformation equations (4.2.21). At any point of ray �, we can use (4.2.21) and (4.2.26)
to determine Q(x)

i and P (x)
i from Q(y)

M and P (y)
M , and vice versa.

Dynamic ray tracing system (4.2.31) also represents the paraxial ray tracing system for
rays situated in the vicinity of �:

dyM/dT = A(y)
MNyN + B(y)

MN p
(y)
N , dp(y)M

/
dT = −C (y)

MNy
(y)
N − D(y)

MN p
(y)
N .

(4.2.34)

Note that yM are zero along�, so that the paraxial ray tracing system is expressed directly
in terms of yI and p

(y)
I (not in terms of δyM and δp(y)N , as in (4.2.11)). Quantities yI and p

(y)
I

represent the canonical coordinates in the four-dimensional yI -p
(y)
I -phase space. The initial

values yI0 and p(y)I0 at initial point S represent the wavefront orthonormal coordinates yI
of initial point S′ and the relevant yI -coordinates of the initial slowness vector. The initial
point S′ of paraxial ray �′ is situated in a plane tangent to the wavefront at S on �.
The solutions yN and p(y)N of paraxial ray tracing system (4.2.34) then represent the yN -
coordinates and relevant components of the slowness vector p(y)N of paraxial ray �′. The
system of paraxial rays is clearly four-parameter; the noneikonal and coinciding paraxial
rays are automatically eliminated.
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4.2.3 Orthonomic System of Rays

The system of paraxial rays �′ situated close to central ray � is four-parameter. In this
section,we shall consider a two-parameter subsystem, corresponding to the normal congru-
ency of rays (orthonomic system of rays). The orthonomic system of rays is parameterized
by two ray parameters γ1 and γ2; see Section 3.10.1. This system of rays is uniquely related
to the system of wavefronts. In addition, we shall also consider ray coordinates γ1, γ2, and
γ3, where γ3 is some variable along central ray �.

In the following text, we shall consider wavefront orthonormal coordinate system yi ,
which can be simply used for both isotropic and anisotropic media. For isotropic media,
it reduces to the local Cartesian ray-centered coordinate system. We introduce the 2 × 2
matrices Q(y) and P(y), with elements

Q(y)
IJ = (∂yI/∂γJ )T=const., P (y)

IJ = (
∂p(y)I

/
∂γJ

)
T=const.

. (4.2.35)

Dynamic ray tracing system (4.2.31) can then be expressed in simple matrix form:

dQ(y)
/
dT = A(y)Q(y) + B(y)P(y), dP(y)

/
dT = −C(y)Q(y) − D(y)P(y).

(4.2.36)

The elements of the 2 × 2matricesA(y),B(y),C(y), andD(y) are given by (4.2.32) and satisfy
the symmetry relations (4.2.33). Dynamic ray tracing system (4.2.36) is a generalization
of dynamic ray tracing system (4.1.65), derived for the isotropic medium.

As in Sections 4.1.7 and 4.1.8, we obtain the following relation for the 2 × 2 matrix
M(y) of second derivatives of the travel-time field T with respect to y1 and y2:

M (y)
IJ = ∂2T/∂yI∂yJ , M(y) = P(y)Q(y)−1. (4.2.37)

Dynamic ray tracing system (4.2.36) consists of twomatrix equations for the 2 × 2matrices
Q(y) andP(y). They correspond to four scalar equations,which should be solved twice. Thus,
if we wish to compute Q(y) and P(y), we must solve eight scalar equations.

Equations (4.2.36) also represent the paraxial ray tracing system for the orthonomic
system of rays in matrix form. Let us introduce the 2 × 1 paraxial column matrices y =
Q(y)dγ and p(y) = P(y)dγ, where dγ = (dγ1, dγ2)T , y = (y1, y2)T , and p(y) = (p(y)1 , p

(y)
2 )T .

Then, (4.2.36) yields the paraxial ray tracing system:

dy/dT = A(y)y+ B(y)p(y), dp(y)
/
dT = −C(y)y− D(y)p(y). (4.2.38)

Let us now briefly discuss the initial conditions for dynamic ray tracing system (4.2.36)
at the initial point S of ray �, Q(y)(S), and P(y)(S). Matrices Q(y)(S) and P(y)(S) may, in
principle, be arbitrary; no constraint is imposed on them. There are two important linearly
independent matrix initial conditions for (4.2.36):

a. Point-source initial conditions:

Q(y)(S) = 0, P(y)(S) �= 0, rankP(y)(S) = 2. (4.2.39)

b. Plane-wavefront initial conditions:

Q(y)(S) �= 0, P(y)(S) = 0, rankQ(y)(S) = 2. (4.2.40)

The physical meaning of both conditions is obvious. See also Section 4.3.1 and Figure 4.9.
Alternatively, it would be possible to introduce linearly independent solutions in terms of
line sources.

Instead of the initial values of Q(y)(S) and P(y)(S), it may be convenient to specify the
initial conditions by Q(y)(S) andM(y)(S). P(y)(S) is then obtained using relation P(y)(S) =
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M(y)(S)Q(y)(S). Alternatively, it is also possible to use the 2 × 2 matrix of the curvature of
wavefront K(S) or the 2 × 2 matrix of the radii of curvature of wavefront R(S) instead of
M(S); see Section 4.6.3 for isotropic media and Section 4.14.6 for anisotropic media.

From the 2 × 2 matrices Q(y) and P(y), we can also construct the 3 × 3 matrices Q̂(y)

and P̂(y), given by relations

Q(y)
i j = ∂yi/∂γ j , P (y)

i j = ∂p(y)i

/
∂γ j . (4.2.41)

If we take γ3 = T , we can use the analytical expressions for ray-tangent solutions (4.2.24),
and the analytical expressions for Q(y)

3K and P (y)
3K , given by (4.2.26), where we insert Q(y)

IK

for Q(y)
I and P (y)

IK for P (y)
I . Then, we obtain

Q̂(y) =


Q(y) U (y)

1

U (y)
2

0 0 U (y)
3


, P̂(y) =


 P(y) η

(y)
1

η
(y)
2

P (y)
31 P (y)

32 η
(y)
3


. (4.2.42)

The 3 × 3 matrix M̂(y) of the second derivatives of travel-time field T with respect to the
yi -coordinates is given by relations

M (y)
i j = ∂2T/∂yi∂y j , M̂(y) = P̂(y)Q̂(y)−1. (4.2.43)

This yields

M̂(y) =


 M(y) M (y)

13

M (y)
23

M (y)
13 M (y)

23 M (y)
33


 , (4.2.44)

where

M(y) = P(y)Q(y)−1,

M (y)
I3 = C−1η

(y)
I − C−1U (y)

J M (y)
IJ , (4.2.45)

M (y)
33 = C−1η

(y)
3 − C−2η

(y)
I U (y)

I + C−2U (y)
I U (y)

J M (y)
IJ .

Equations (4.2.44) and (4.2.45) are valid for both isotropic and anisotropic media. For
isotropic media, (4.2.44) simplifies because U (y)

I = 0 and η(y)i = −v−1v,i .
As in Section 4.1.8, we can use M̂(y) given by (4.2.44) and (4.2.45) in simple expressions

for paraxial travel times, which are valid even in anisotropic media. Travel time T (R′) at
point R′, situated close to R on ray �, is given by a relation analogous to (4.1.83):

T (R′) = T (R) + ŷT p̂(y)(R) + 1
2 ŷ

T M̂(y)(R)ŷ, (4.2.46)

where p̂(y)(R) = (0, 0, 1/C(R))T , M̂(y)(R) is given by (4.2.44), and ŷ is given by (4.1.84).
In general Cartesian coordinates xi , we can compute Q̂(x) and P̂(x) from Q̂(y) and P̂(y)

using (4.2.21),

Q̂(x) = ĤQ̂(y), P̂(x) = ĤP̂(y), M̂(x) = ĤM̂(y)ĤT . (4.2.47)

The 3 × 3 transformationmatrix Ĥ has elements Hi j given by (4.1.18); see also (4.1.19) and
(4.2.23). The quadratic expansion for paraxial travel time T (R′) in Cartesian coordinates
xi then reads:

T (R′) = T (R) + x̂T p̂(x)(R) + 1
2 x̂

T M̂(x)(R)x̂, (4.2.48)

where x̂ = x̂(R′, R) is given by (4.1.85) and p̂(x) = (p(x)1 , p
(x)
2 , p

(x)
3 )T .
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As we can see from (4.2.47), matrices Q̂(x) and P̂(x) for an orthonomic system of rays
can be determined from Q̂(y) and P̂(y). Thus, we can solve the dynamic ray tracing system
(4.2.31) (eight scalar equations) for Q(y)

MN and P (y)
MN numerically and supplement them by

analytical solutions (4.2.24) and (4.2.26). Matrices Q̂(x) and P̂(x), however, can also be
determined directly from dynamic ray tracing system (4.2.4) in Cartesian coordinates. In
matrix form, (4.2.4) reads

dQ̂(x)/dT = Â(x)Q̂(x) + B̂(x)P̂(x), dP̂(x)/dT = −Ĉ(x)Q̂(x) − D̂(x)P̂(x).

(4.2.49)

The elements A(x)
i j , B

(x)
i j ,C

(x)
i j , and D

(x)
i j of the 3 × 3 matrices Â(x), B̂(x), Ĉ(x), and D̂(x) are

given by (4.2.5). System (4.2.49) consists of two matrix equations for the 3 × 3 matrices
Q̂(x) and P̂(x). This is equivalent to 18 scalar equations. Without lose of generality, the
number of equations can be reduced from 18 to 12. One column in each matrix Q̂(x) and
P̂(x), corresponding to the ray-tangent solution, is known from ray tracing. The paraxial
initial conditions for Q(x)

i N and P (x)
i N , however, should be taken appropriately at S. They can

be expressed in terms of Q(y)
JK (S) and P

(y)
JK (S) as follows:

Q(x)
i N = Hi J Q

(y)
J N ,

P (x)
i N = Hj I p

(x)
i η

(x)
j Q

(y)
I N + (

Hi I − Hj I p
(x)
i U (x)

j

)
P (y)
I N ;

(4.2.50)

see (4.2.21) and (4.2.26) . For point-source initial conditions, we insert Q(y)
I N = 0:

Q(x)
i N = 0, P (x)

i N = (
Hi I − Hj I p

(x)
i U (x)

j

)
P (y)
I N ; (4.2.51)

see (4.2.39). For plane-wavefront initial conditions, we insert P (y)
I N = 0:

Q(x)
i N = Hi J Q

(y)
J N , P (x)

i N = Hj I p
(x)
i η

(x)
j Q

(y)
I N ; (4.2.52)

see (4.2.40). Thus, if we wish to calculate Q(x)
i N and P (x)

i N along ray � using dynamic ray
tracing system (4.2.4) consisting of six equations, we can solve it only twice (N = 1, 2)
with initial conditions (4.2.51) and (4.2.52). The remaining ray-tangent solutions are known
from ray tracing; Q(x)

i3 = U (x)
i and P (x)

i3 = η
(x)
i . Consequently, it is not necessary to solve 18

but only 12 scalar equations if we wish to determine all 18 elements of matrices Q̂(x) and
P̂(x) for an orthonomic system of rays.

Note that Q(y) and Q̂(x) can also be used to determine Jacobian J (T ) and geometri-
cal spreading; see (3.10.9). In fact, the computation of Jacobian J (T ) and of geometrical
spreading was historically the first application of dynamic ray tracing. We obtain

J (T ) = det Q̂(x) = det Q̂(y) = C detQ(y), (4.2.53)

as det Ĥ = 1, and U (y)
3 = C; see (4.2.42) and (4.2.47). Thus, having solved system (4.2.36)

(8 scalar equations), we can calculate detQ(y) and J (T ), even in an anisotropic medium.
Alternatively, we can also solve 12 scalar equations in Cartesian coordinates, supplement
them with (4.2.13), and determine det Q̂(x).

4.2.4 Curvilinear Coordinates

The dynamic ray tracing system in arbitrary curvilinear, orthogonal, or nonorthogonal co-
ordinates ξi , may be obtained directly from that in the Cartesian rectangular coordinates,
which is presented in Section 4.2.1, especially (4.2.4). For the reader’s convenience, its
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simple and brief derivation will be given. The derivation applies both to isotropic and
anisotropic media.

We denote the covariant components of the slowness vector by p(ξ )i = ∂T/∂ξi , and the
Hamiltonian under consideration by H(ξ )(ξi , p

(ξ )
i ). The eikonal equation in Hamiltonian

form reads H(ξ )(ξi , p
(ξ )
i ) = 0. To simplify the notation, all indices will be subscripts, and

the summation will be performed over equal subscripts, even though we are considering
curvilinear, possibly nonorthogonal coordinates. In the equations we shall present, all
quantities are well defined so that there is no possibility of misunderstanding.

The ray tracing system in curvilinear nonorthogonal coordinates ξi , corresponding to
eikonal equationH(ξ )(ξi , p

(ξ )
i ) = 0, then reads

dξi/dT = ∂H(ξ )
/
∂p(ξ )i , dp(ξ )i

/
dT = −∂H(ξ )/∂ξi . (4.2.54)

It is assumed that p(ξ )k ∂H(ξ )/∂p(ξ )k = 1; hence, the variable along the ray again represents
travel time T .

Consider point S(ξi0, p
(ξ )
i0 ) in the six-dimensional ξi -p

(ξ )
i -phase space, situated on the

hypersurface H(ξ )(ξi , p
(ξ )
i ) = 0. Also consider ray � with initial point at S, satisfying ray

tracing system (4.2.54). EquationH(ξ )(ξi , p
(ξ )
i ) = 0 is then satisfied along the whole ray�.

We shall now use ray tracing system (4.2.54) to derive the equations for the first deriva-
tives of ξi and p

(ξ )
i with respect to initial parameter γ . We denote

Q(ξ )
i = (∂ξi/∂γ )T=const., P (ξ )

i = (
∂p(ξ )i

/
∂γ
)
T=const.

. (4.2.55)

Taking the partial derivatives of ray tracing system (4.2.54) with respect to γ , and bearing in
mind that ∂/∂γ commutes with d/dT , we obtain the dynamic ray tracing system, consisting
of six linear ordinary differential equations of the first order for Q(ξ )

i and P (ξ )
i :

dQ(ξ )
i

/
dT = A(ξ )

i j Q
(ξ )
j + B(ξ )

i j P
(ξ )
j , dP (ξ )

i

/
dT = −C (ξ )

i j Q
(ξ )
j − D(ξ )

i j P
(ξ )
j .

(4.2.56)

Here

A(ξ )
i j = ∂2H(ξ )

/
∂p(ξ )i ∂ξ j , B(ξ )

i j = ∂2H(ξ )
/
∂p(ξ )i ∂p

(ξ )
j ,

C (ξ )
i j = ∂2H(ξ )

/
∂ξi∂ξ j , D(ξ )

i j = ∂2H(ξ )
/
∂ξi∂p

(ξ )
j .

(4.2.57)

They satisfy the symmetry relations

B(ξ )
i j = B(ξ )

j i , C (ξ )
i j = C (ξ )

j i , D(ξ )
i j = A(ξ )

j i . (4.2.58)

Quantities Q(ξ )
i and P (ξ )

i satisfy the following constraint relation:(
∂H(ξ )

/
∂ξk
)
Q(ξ )
k + (

∂H(ξ )
/
∂p(ξ )k

)
P (ξ )
k = 0. (4.2.59)

Constraint relation (4.2.59) is satisfied along the whole ray � once it is satisfied at the
initial point S on �.

Dynamic ray tracing system (4.2.56) is also called the paraxial ray tracing system for
paraxial rays �′ situated close to central ray �:

dδξi/dT = A(ξ )
i j δξ j + B(ξ )

i j δp
(ξ )
j , dδp(ξ )i

/
dT = −C (ξ )

i j δξ j − D(ξ )
i j δp

(ξ )
j ,

(4.2.60)

where A(ξ )
i j , B

(ξ )
i j ,C

(ξ )
i j , and D(ξ )

i j are again given by (4.2.57) and satisfy symmetry rela-
tions (4.2.58). As in Cartesian coordinates, quantities δξi and δp

(ξ )
i represent the linear
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approximations of the deviation of paraxial ray �′ from central ray � and of the devia-
tions of the relevant slowness vector covariant components p(ξ )i . For more details, refer to
Section 4.2.1. The constraint relation for paraxial rays reads(

∂H(ξ )
/
∂ξk
)
δξk + (

∂H(ξ )
/
∂p(ξ )k

)
δp(ξ )k = 0.

Similarly as in Cartesian coordinates, two solutions of dynamic ray tracing system (4.2.56)
can be found analytically:

a. Ray-tangent solutions:

Q(ξ )
i = ∂H(ξ )

/
∂p(ξ )i , P (ξ )

i = −∂H(ξ )
/
∂ξi . (4.2.61)

b. The noneikonal solutions:

Q(ξ )
i = (T − T0)∂H(ξ )

/
∂p(ξ )i , P (ξ )

i = p(ξ )i + (T − T0)∂H(ξ )
/
∂ξi .

(4.2.62)

Derivatives ∂H(ξ )/∂ξi and ∂H(ξ )/∂p(ξ )i are known from ray tracing (4.2.54). The ray-tangent
solution satisfies constraint relation (4.2.59), but the noneikonal solution does not satisfy
it.

The dynamic ray tracing system (4.2.56) presented here in general curvilinear coordi-
nates ξi can be modified in many ways. Next we shall discuss several such modifications.
We shall also discuss determining paraxial travel times and geometrical spreading in curvi-
linear coordinates for orthonomic systems of rays.

1. APPLICATION OF THE REDUCED HAMILTONIAN
We shall now prove that the dynamic ray tracing system in arbitrary curvilinear coor-

dinates can always be reduced to four equations, for both isotropic and anisotropic media.
The price we pay for this reduction of the number of equation is that we need to take one
coordinate of the system as a variable along central ray�. This approach is not convenient
if central ray � has a turning point with respect to the selected coordinate in the region of
interest.

We shall use coordinates ξi and assume that ray � does not have a turning point with
respect to the ξ3-coordinate in the region of interest. We introduce the reduced Hamiltonian

H(ξ )
(
ξi , p

(ξ )
i

) = p(ξ )3 +HR
(
ξi , p

(ξ )
I

)
(4.2.63)

(see (3.1.25)), and take ξ3 as the variable along ray�. The ray tracing system then consists
of four equations only:

dξI/dξ3 = ∂HR
/
∂p(ξ )I , dp(ξ )I

/
dξ3 = −∂HR/∂ξI . (4.2.64)

As in other sections, we introduce Q(R)
I and P (R)

I by relations Q(R)
I = (∂ξI /∂γ )ξ3 = const.

and P (R)
I = (∂p(ξ )I /∂γ )ξ3=const., where γ is some initial parameter, that is, ξ10, ξ20, p

(ξ )
10 , or

p(ξ )20 . The derivatives are taken for constant ξ3 and for other constant initial parameters.
The dynamic ray tracing system for Q(R)

I and P (R)
I then consists of four equations only and

reads

dQ(R)
I

/
dξ3 = A(R)

IJ Q
(R)
J + B(R)

IJ P
(R)
J , dP (R)

I

/
dξ3 = −C (R)

IJ Q
(R)
J − D(R)

IJ P
(R)
J ,

(4.2.65)
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where

A(R)
IJ = ∂2HR

/
∂p(ξ )I ∂ξJ , B(R)

IJ = ∂2HR
/
∂p(ξ )I ∂p

(ξ )
J ,

C (R)
IJ = ∂2HR/∂ξI∂ξJ , D(R)

IJ = ∂2HR
/
∂ξI ∂p

(ξ )
J .

(4.2.66)

Equations (4.2.65) represent the “reduced” dynamic ray tracing system. We can also use
δξI and δp

(ξ )
I instead of Q(R)

I and P (R)
I ; then, (4.2.65) represents the “reduced” paraxial

ray tracing system. The reduced paraxial ray tracing system fails if the paraxial ray has a
turning point with respect to the ξ3-coordinate.

As in previous sections, the solutions of the dynamic ray tracing system (4.2.65), Q(R)
I

and P (R)
I , can also be used to construct the complete solutions Q(ξ )

i and P (ξ )
i of the dynamic

ray tracing system with variable u = ξ3 along � and with H(ξ ) = p(ξ )3 +HR(ξi , p
(ξ )
I ). We

take into account that ∂H(ξ )/∂p(ξ )3 = 1, and use constraint relation (4.2.59). In addition, the
ray-tangent and noneikonal solutions can be constructed from the solutions of ray tracing
system (4.2.64).

Dynamic ray tracing system (4.2.65) is valid in an arbitrary coordinate system, both in
isotropic and anisotropic media. It may also be useful in Cartesian rectangular coordinates
(see (3.1.25)) and in orthogonal curvilinear coordinates, see (3.5.13).

2. TRANSFORMATIONS OF DYNAMIC RAY TRACING SYSTEMS
It may be convenient to transform the dynamic ray tracing system from one coordinate

system to another, with the Hamiltonian and its derivatives specified in one (presumably
the simpler) coordinate system. For example, we can specify the Hamiltonian and its
derivatives in the Cartesian coordinate system, in which their expressions are simple,
even in anisotropic media, and perform the computations in some curvilinear coordinate
system.

We shall transform the dynamic ray tracing system from curvilinear coordinates xi to
curvilinear coordinates ξi . We emphasize that xi represent any curvilinear nonorthogonal
coordinates. The Hamiltonian in xi -coordinates readsH(x)(xi , p

(x)
i ), where p(x)i = ∂T/∂xi

are covariant components of the slowness vector in the xi -coordinates. We assume that
both HamiltoniansH(x) andH(ξ ) satisfy relations analogous to (4.2.1) and (4.2.15), so that
variable u along the ray equals T . We denote the transformation matrices from ξi to xk
and back by H (ξ )

im = ∂xi/∂ξm and H̄ (ξ )
mi = ∂ξm/∂xi . They satisfy relations H (ξ )

im H̄
(ξ )
mj = δi j

and H̄ (ξ )
mi H

(ξ )
in = δmn. The ray tracing system is transformed from one coordinate system to

another as follows:

dxi
dT

= H (ξ )
i j

dξ j
dT
,

dp(x)i

dT
= d

dT

(
∂T

∂ξ j

∂ξ j

∂xi

)
= H̄ (ξ )

j i

dp(ξ )j
dT

+ p(ξ )j
d

dT
H̄ (ξ )

j i .

(4.2.67)

As in preceeding sections, we use the notation Q(x)
m = ∂xm/∂γ, P

(x)
m = ∂p(x)m /∂γ, Q

(ξ )
m =

∂ξm/∂γ, and P (ξ )
m = ∂p(ξ )m /∂γ , where γ is some initial parameter. The derivatives with

respect to γ are taken for constant T . The transformation relations between Q(ξ )
m , P

(ξ )
m and

Q(x)
i , P

(x)
i , are

Q(ξ )
m = H̄ (ξ )

mi Q
(x)
i , P (ξ )

m = H (ξ )
im P

(x)
i + FmnQ

(ξ )
n , (4.2.68)

where

Fmn = p(x)i ∂
2xi
/
∂ξm∂ξn. (4.2.69)
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The inversion of (4.2.68) is

Q(x)
i = H (ξ )

im Q
(ξ )
m , P (x)

i = H̄ (ξ )
mi

(
P (ξ )
m − FmnQ

(ξ )
n

)
. (4.2.70)

Now we shall transform the dynamic ray tracing system from the xi -coordinates to the
ξk-coordinates. The dynamic ray tracing system in curvilinear coordinates xi is given by
equations,

dQ(x)
i

/
dT = A(x)

i j Q
(x)
j + B(x)

i j P
(x)
j , dP (x)

i

/
dT = −C (x)

i j Q
(x)
j − D(x)

i j P
(x)
j ,

(4.2.71)

where A(x)
i j , B

(x)
i j ,C

(x)
i j , and D

(x)
i j are given by (4.2.57), ξ being replaced by x ; see (4.2.56).

We shall now use the same approach as in Section 4.2.2 to transform (4.2.71) to coordinates
ξi . We insert (4.2.70) into (4.2.71), multiply the equation for Q(x)

i by H̄ (ξ )
ni , and multiply

the equation for P (x)
i by H (ξ )

in . After some algebra, we obtain the transformed dynamic ray
tracing system for Q(ξ )

n and P (ξ )
n in the same form as (4.2.56), where A(ξ )

i j , B
(ξ )
i j , and C

(ξ )
i j ,

and D(ξ )
i j are given by relations

A(ξ )
i j = Ā

(ξ )
i j − B̄(ξ )

im Fmj − H̄ (ξ )
imd
(
H (ξ )
mj

)/
dT,

B(ξ )
i j = B̄(ξ )

i j ,

C (ξ )
i j = C̄

(ξ )
i j − D̄(ξ )

im Fmj − Fim A
(ξ )
mj − H (ξ )

mi d
(
H̄ (ξ )
nm Fnj

)/
dT,

D(ξ )
i j = D̄(ξ )

i j − Fim B̄
(ξ )
mj + H (ξ )

mi d(H̄
(ξ )
jm)
/
dT .

(4.2.72)

Here

Ā
(ξ )
i j = H̄ (ξ )

in H
(ξ )
mj ∂

2H(x)
/
∂p(x)n ∂xm, B̄(ξ )

i j = H̄ (ξ )
in H̄

(ξ )
jm∂

2H(x)
/
∂p(x)n ∂p

(x)
m ,

C̄
(ξ )
i j = H (ξ )

ni H
(ξ )
mj ∂

2H(x)
/
∂xn∂xm, D̄(ξ )

i j = H (ξ )
ni H̄

(ξ )
jm∂

2H(x)
/
∂xn∂p

(x)
m .

(4.2.73)

Note that symmetry relations (4.2.58) are again satisfied. Constraint relation (4.2.59) can
be expressed in terms of HamiltonianH(x) as

Q(ξ )
l

(
∂H(x)

∂xk
H (ξ )
kl − ∂H(x)

∂p(x)k

H̄ (ξ )
mk Fml

)
+ P (ξ )

l

∂H(x)

∂p(x)k

H̄ (ξ )
lk = 0. (4.2.74)

Thus, we can specify Hamiltonian H(x) and its derivatives in one curvilinear coordinate
system and perform dynamic ray tracing in another curvilinear coordinate system. The
transformed dynamic ray tracing system is particularly useful if coordinates xi correspond
to the global Cartesian coordinate system.

3. NONORTHOGONAL RAY-CENTERED COORDINATES
We shall now use transformation equations (4.2.72) to derive the dynamic ray trac-

ing system in nonorthogonal ray-centered coordinates ζi . The nonorthogonal ray-centered
coordinate system is introduced here so that it can also be applied to anisotropic media.
As in isotropic media, we choose central ray � to be the ζ3-coordinate axis and the ζ1-
and ζ2-axes to be straight lines tangent to the wavefront, intersecting at central ray �.
Coordinate ζ3 represents travel time T . Obviously, the ray-centered coordinate system ζi in
anisotropic media is nonorthogonal because the ray is not perpendicular to the wavefront.
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Themutual relation between globalCartesian rectangular coordinates xi and nonorthogonal
ray-centered coordinates ζi reads

xi (ζ j ) = x�i (ζ3) + H (ζ )
i N (ζ3)ζN . (4.2.75)

Here xi = x�i (ζ3) represent the equations of central ray �, along which ζ1 = ζ2 = 0.
The transformation matrices from Cartesian coordinates xi to nonorthogonal ray-centered
coordinates ζm and back are again denoted by H (ζ )

im and H̄ (ζ )
mi and satisfy the relations

H (ζ )
im H̄

(ζ )
mj = δi j and H̄ (ζ )

mi H
(ζ )
in = δmn. Note that H (ζ )

i j and H̄ (ζ )
i j are always different from Hi j

introduced in Section 4.1.5 even in isotropic media because ζ3 = T , but q3 = s. We
also introduce standard notations U (ζ )

i = dζi/dT and η(ζ )i = ∂p(ζ )i /dT . We realize that in
isotropic media U (ζ )

I = 0 and p(ζ )I = 0, but in anisotropic media U (ζ )
I = 0 and p(ζ )I �= 0.

Note that the situation is different in the wavefront orthonormal coordinate system, where
U (y)
I �= 0, p(y)I = 0. We also obtain:

H̄ (ζ )
3i = p(x)i , H (ζ )

i3 = U (x)
i , p(x)i H (ζ )

in = δn3, H̄ (ζ )
ni U (x)

i = δ3n,

FMN = 0, Fm3 = F3m = p(x)i dH (ζ )
im

/
dT = −H (ζ )

im η
(x)
i , (4.2.76)

dFm3/dT = −η(x)i dH (ζ )
im

/
dT + H (ζ )

im

(
C (x)
i j U (x)

j + D(x)
i j η

(x)
j

)
.

Using (4.2.76) in (4.2.72), we obtain the dynamic ray tracing system in nonorthogonal
ray-centered coordinates ζi as follows:

dQ(ζ )
i

/
dT = A(ζ )

i j Q
(ζ )
j + B(ζ )

i j P
(ζ )
j , dP (ζ )

i

/
dT = −C (ζ )

i j Q
(ζ )
j − D(ζ )

i j P
(ζ )
j .

(4.2.77)

The expressions for A(ζ )
i j , B

(ζ )
i j ,C

(ζ )
i j , and D

(ζ )
i j are surprisingly simple. For i = I and j = J ,

we obtain

A(ζ )
IJ = Ā

(ζ )
IJ − H̄ (ζ )

I i dH
(ζ )
i J

/
dT, B(ζ )

IJ = B̄(ζ )
IJ ,

C (ζ )
IJ = C̄

(ζ )
IJ − H (ζ )

i I H
(ζ )
j J η

(x)
i η

(x)
j , D(ζ )

IJ = D̄(ζ )
IJ − H̄ (ζ )

J i dH
(ζ )
i I

/
dT .

(4.2.78)

Here Ā
(ζ )
IJ , B̄

(ζ )
IJ , C̄

(ζ )
IJ and D̄(ζ )

IJ are givenby (4.2.73) inwhich curvilinear coordinates ξi are re-
placed by nonorthogonal ray-centered coordinates ζi . All other expressions A

(ζ )
nk , B

(ζ )
nk ,C

(ζ )
nk ,

and D(ζ )
nk , for n = 3 and/or k = 3, vanish, with the exception of B(ζ )

33 :

A(ζ )
i3 = A(ζ )

3i = 0, C (ζ )
i3 = C (ζ )

3i = 0, D(ζ )
i3 = D(ζ )

3i = 0,

B(ζ )
I3 = B(ζ )

3I = 0, B(ζ )
33 = 1.

(4.2.79)

As we can see from (4.2.78) and (4.2.79), A(ζ )
i j , B

(ζ )
i j ,C

(ζ )
i j , and D

(ζ )
i j again satisfy symmetry

relations (4.2.58). The symmetry relations are also satisfied for i = I and j = J . Constraint
relation (4.2.74) takes a very simple form in the nonorthogonal ray-centered coordinates

P (ζ )
3 = 0. (4.2.80)

The dynamic ray tracing system (4.2.77) in nonorthogonal ray-centered coordinates,
consisting of six equations, can be decomposed into two subsystems. The first subsystem
consists of four equations:

dQ(ζ )
I

/
dT = A(ζ )

IJ Q
(ζ )
J + B(ζ )

IJ P
(ζ )
J , dP (ζ )

I

/
dT = −C (ζ )

IJ Q
(ζ )
J − D(ζ )

IJ P
(ζ )
J ,

(4.2.81)
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I = 1, 2, and the second subsystem consists of two equations for Q(ζ )
3 and P (ζ )

3 :

dQ(ζ )
3

/
dT = P (ζ )

3 , dP (ζ )
3

/
dT = 0. (4.2.82)

The second subsystem can be solved analytically. For standard paraxial initial conditions
(with Q(ζ )

30 = P (ζ )
30 = 0), we obtain the following relations valid along the whole ray:

Q(ζ )
3 (T ) = 0, P (ζ )

3 (T ) = 0. (4.2.83)

For ray-tangent initial conditions (with Q(ζ )
30 = 1, but P (ζ )

i0 = 0 and Q(ζ )
I0 = 0), we obtain

the complete linearly independent solution:

Q(ζ )
3 (T ) = Q(ζ )

30 = 1, Q(ζ )
I (T ) = 0, P (ζ )

i (T ) = 0. (4.2.84)

Finally, for the noneikonal initial conditions (with P (ζ )
30 �= 0, Q(ζ )

i0 = 0, and P (ζ )
I0 = 0), the

linearly independent solution is

P (ζ )
3 (T ) = P (ζ )

30 , Q(ζ )
3 (T ) = (T − T0)P

(ζ )
30 ,

P (ζ )
I (T ) = 0, Q(ζ )

I (T ) = 0.
(4.2.85)

This solution does not satisfy constraint relation (4.2.80) and does not correspond to the
eikonal equation under consideration. Nevertheless, it may be useful in constructing the
6 × 6 propagator matrix of the dynamic ray tracing system.

Dynamic ray tracing system (4.2.77) with (4.2.78) in nonorthogonal ray-centered co-
ordinates ζi depends on the specification of H

(ζ )
ik and H̄ (ζ )

ni . As we can see in (4.2.76), H̄
(ζ )
3i

and H (ζ )
i3 are known along �, H̄ (ζ )

3i = p(x)i , and H (ζ )
i3 =U (x)

i . It remains to specify H (ζ )
i K and

H̄ (ζ )
Ni , which determine the actual orientation of axes ζ1 and ζ2 in the plane tangent to the

wavefront at any point of ray �. Dynamic ray tracing system (4.2.77) with (4.2.78) is
valid for arbitrarily chosen H (ζ )

i K and H̄ (ζ )
Ni along the ray, which satisfy H (ζ )

im H̄
(ζ )
mj = δi j and

H̄ (ζ )
mi H

(ζ )
in = δmn . For different options, see Hanyga (1982a), Kendall, Guest, and Thomson

(1992), and Klimeš (1994). Here we shall specify H (ζ )
i K and H̄ (ζ )

Ni along � in a simple way:

dH (ζ )
i K

/
dT = −(H (ζ )

kK η
(x)
k

)U (x)
i , dH̄ (ζ )

Ni

/
dT = −(H̄ (ζ )

NkdU (x)
k

/
dT
)
p(x)i .

(4.2.86)

This specification simplifies the expressions for A(ζ )
IJ , B

(ζ )
IJ ,C

(ζ )
IJ , and D

(ζ )
IJ considerably:

A(ζ )
IJ = H̄ (ζ )

I n H
(ζ )
mJ∂

2H(x)
/
∂p(x)n ∂xm,

B(ζ )
IJ = H̄ (ζ )

I n H̄
(ζ )
Jm∂

2H(x)
/
∂p(x)n ∂p

(x)
m ,

C (ζ )
IJ = H (ζ )

nI H
(ζ )
mJ

(
∂2H(x)

/
∂xn∂xm − η(x)n η

(x)
m
)
,

D(ζ )
IJ = H (ζ )

nI H̄
(ζ )
Jm∂

2H(x)
/
∂xn∂p

(x)
m .

(4.2.87)

Expressions (4.2.79) also apply to option (4.2.86).
Let us return to (4.2.86). If we solve (4.2.86) and add H̄ (ζ )

3i = p(x)i and H (ζ )
i3 = U (x)

i ,
we obtain H (ζ )

ik and H̄ (ζ )
ki in full. Assume that H (ζ )

i K (S) and H̄
(ζ )
Ni (S), with H

(ζ )
i3 (S)=U (x)

i (S)
and H̄ (ζ )

3i (S)= p(x)i (S), are specified at the initial point S of ray� so that H̄ (ζ )
mi (S)H

(ζ )
in (S) =

δmn . Relation H̄
(ζ )
mi H

(ζ )
in = δmn is then satisfied along the whole ray �. Consequently, it is

sufficient to solve numerically only one of the two equations of (4.2.86), preferably the
first, and to calculate the second transformation matrix as the inverse of the first.
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Note that the dynamic ray tracing system in wavefront orthonormal coordinates yi , dis-
cussed in Section 4.2.2, can be obtained from the dynamic ray tracing system in nonorthog-
onal ray-centered coordinates ζi using the transformations

him = ∂yi/∂ζm, h̄mi = ∂ζm/∂yi . (4.2.88)

Transformation matrices him and h̄mi can be expressed in terms of U (y)
i as follows:

hiM = h̄iM = δiM , hi3 = U (y)
i , h̄ I3 = −C−1U (y)

I , h̄33 = C−1.

(4.2.89)

They satisfy relations him h̄mj = δi j and h̄mi hin = δmn. Analogously to (4.2.68) and (4.2.70),
we can then use the transformations

Q(y)
i = himQ

(ζ )
m , P (y)

i = h̄mi
(
P (ζ )
m − fmk Q

(ζ )
k

)
,

Q(ζ )
m = h̄mi Q

(y)
i , P (ζ )

m = him P
(y)
i + fmnh̄ni Q

(y)
i ,

(4.2.90)

where

fMN = 0, fM3 = f3M = −η(y)M , f33 = −U (y)
i η

(y)
i . (4.2.91)

4. ORTHONOMIC SYSTEM OF RAYS
We shall consider a curvilinear, orthogonal, or nonorthogonal coordinate system ξi ,

and introduce 3 × 3 matrices Q̂(ξ ) and P̂(ξ ), with elements Q(ξ )
i j = ∂ξi/∂γ j and P (ξ )

i j =
∂p(ξ )i /∂γ j , where γ j are ray coordinates. The dynamic ray tracing system in matrix form,
for 3 × 3 matrices Q̂(ξ ) and P̂(ξ ), then reads

dQ̂(ξ )
/
dT = Â(ξ )Q̂(ξ ) + B̂(ξ )P̂(ξ ), dP̂(ξ )

/
dT = −Ĉ(ξ )Q̂(ξ ) − D̂(ξ )P̂(ξ ).

(4.2.92)

The elements of Â(ξ ), B̂(ξ ), Ĉ(ξ ), and D̂(ξ ) are given either by (4.2.57) or by (4.2.72). As
in Cartesian rectangular coordinates, (4.2.92) is equivalent to 18 scalar equations for Q(ξ )

i j

and P (ξ )
i j . For orthonomic system of rays, the number of equations can be reduced from

18 to 12 because the third column in each matrix Q̂(ξ ) and P̂(ξ ) represents the ray-tangent
solution and can be calculated analytically:

Q(ξ )
m3 = U (ξ )

m = ∂H(ξ )
/
∂p(ξ )m , P (q)

m3 = η(ξ )m = −∂H(ξ )
/
∂ξm ;

see (4.2.61).We can introduce the 3 × 3matrix M̂(ξ ) of second derivatives of the travel-time
field with respect to ξi ,

M (ξ )
i j = ∂2T/∂ξi∂ξ j , M̂(ξ ) = P̂(ξ )Q̂(ξ )−1. (4.2.93)

Then the expression for the paraxial travel time at point R′, situated in the vicinity of point
R, in curvilinear coordinates ξi , is

T (R′) = T (R) + ξ̂
T
p̂(ξ )(R) + 1

2 ξ̂
T
M̂(ξ )(R)ξ̂, (4.2.94)

where ξ̂ = (ξ1(R′) − ξ1(R), ξ2(R′) − ξ2(R), ξ3(R′) − ξ3(R))T , and p̂(ξ )(R) = (p(ξ )1 (R),
p(ξ )2 (R), p(ξ )3 (R))T . Similarly, we can find the expression for Jacobian J (T ), at any point
R on �, valid in curvilinear coordinates ξi :

J (T ) = det Ĥ(ξ ) det Q̂(ξ ), (4.2.95)

where det Ĥ(ξ ) = ∂(x1, x2, x3)/∂(ξ1, ξ2, ξ3) and det Q̂(ξ ) = ∂(ξ1, ξ2, ξ3)/∂(γ1, γ2, T ).
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As a special case of curvilinear coordinates ξi , we shall consider nonorthogonal ray-
centered coordinates ζi . In these coordinates, all expressions simplify because P (ζ )

3i =
P (ζ )
i3 = 0, Q(ζ )

I3 = Q(ζ )
3I = 0, and Q(ζ )

33 = 1. This yields M (ζ )
I3 = M (ζ )

3I = 0. Equation (4.2.94)
for the paraxial travel time at point R′ in nonorthogonal ray-centered coordinates ζi then
reads

T (R′) = T (R) + ζTp(ζ )(R) + 1
2ζ

TM(ζ )(R)ζ, (4.2.96)

where ζ = (ζ1(R′), ζ2(R′))T and p(ζ )(R) = (p(ζ )1 (R), p(ζ )2 (R))T . In isotropic media,
p(ζ )(R) = 0 and (4.2.96) yields (4.1.77). The expression (4.2.95) for Jacobian J (T ) also
simplifies in nonorthogonal ray-centered coordinates. Bearing in mind that Q(ζ )

33 = 1, we
obtain det Q̂(ζ ) = detQ(ζ ). We also use H (ζ )

i3 = U (x)
i and obtain det(H (ζ )

in ) = U cos γ = C,
where γ is the acute angle between 	p and 	U, cos γ = C/U . This yields

J (T ) = det Ĥ(ζ ) det Q̂(ζ ) = C detQ(ζ ). (4.2.97)

Because detQ(ζ ) = detQ(y), J (T ) in nonorthogonal ray-centered coordinates and in wave-
front orthonormal coordinates is given by the same expression; see (4.2.53).

4.3 Propagator Matrices of Dynamic Ray Tracing Systems

The dynamic ray tracing systems derived in Sections 4.1 and 4.2 consist of four or six
linear ordinary differential equations of the first order. Because the systems are linear, it
is possible and useful to introduce 4 × 4 and 6 × 6 propagator matrices for these systems.
For simplicity, we shall discuss in greater detail only the 4 × 4 propagator matrices for the
dynamic ray tracing systems consisting of four scalar equations. The results derived for
4 × 4 propagator matrices, however, remain valid also for the 6 × 6 propagator matrices,
applicable to dynamic ray tracing systems consisting of six scalar equations. See the brief
treatment of the 6 × 6 propagator matrices in Section 4.3.7. We shall use travel time T as
the variable along ray �, as in Equations (4.1.65) through (4.1.68) in Section 4.1.7 and in
the whole of Section 4.2. The propagator matrices discussed in this section are, of course,
also applicable to paraxial ray tracing systems.

We shall now consider the dynamic ray tracing system consisting of four linear ordinary
differential equations of the first order in the following general form:

dW/dT = SW. (4.3.1)

HereW is a 4 × 1 column matrix, S is the 4 × 4 system matrix of the dynamic ray tracing
system, and T is the travel time along ray�. (4.3.1) represents several dynamic ray tracing
systems derived in the previous sections. Themost important is dynamic ray tracing system
(4.1.67) for isotropic media, expressed in ray-centered coordinates. The next is dynamic
ray tracing system (4.2.31) in wavefront orthonormal coordinates, valid in both isotropic
and anisotropic media. Moreover, paraxial ray tracing systems (4.1.58) in ray-centered
coordinates and (4.2.34) in wavefront orthonormal coordinates can also be expressed in
the form of (4.3.1). Finally, if the 4 × 1 matrixW in (4.3.1) is replaced by the 4 × 2 matrix
X (see (4.1.68)), dynamic ray tracing system (4.3.1) can also be used to compute the 2 × 2
matricesQ and P in ray-centered coordinates in isotropic media (see (4.1.68)), or the 2 × 2
matricesQ(y) and P(y) in wavefront orthonormal coordinates (see (4.2.36)). Hereinafter, we
shall assume that all elements of system matrix S = S(T ) are continuous functions of T
along �. The points at which the elements of S are discontinuous will be considered later.
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The 4 × 4 matrix A(T ) is called the integral matrix of (4.3.1) if it satisfies the relation

dA/dT = SA. (4.3.2)

Thus, each column of integral matrix A satisfies equation (4.3.1).
We shall consider two special cases of integral matrices of (4.3.1): the fundamental

matrix of (4.3.1) and the propagator matrix of (4.3.1). The integral matrix of (4.3.1) is
called fundamental matrix of (4.3.1) if it is nonsingular for every T in its domain of
definition. In other words, the fundamental matrix of (4.3.1) is formed by four linearly
independent solutions of (4.3.1). The integral matrix of (4.3.1) is called the propagator
matrix of (4.3.1) from T0 if it is equal to the 4 × 4 identity matrix at T = T0.

In this section, we shall derive and discuss in detail the solutions of dynamic ray tracing
system (4.3.1). The solutions of systems of linear ordinary differential equations of the
first order have been broadly investigated in the mathematical literature; see, for example,
Coddington and Levinson (1955) and Kamke (1959). In the seismological literature, con-
siderable attention has been devoted to such systems in connection with the computation
of complete seismic wave fields in a 1-D stratified medium; see, for example, Gilbert and
Backus (1966) and Ursin (1983). The form of system matrix S in these seismological ap-
plications is, of course, different from our system matrix S, and the number of equations is
also different. Even though certain general properties of the solutions of (4.3.1) do not de-
pend on the form of matrix S andmay be adopted directly from the foregoing seismological
references, certain other properties are related only to the specific form of S we use. For
this reason, we shall now derive, in a simple and objective way, all the properties we shall
need in the following text. Without proof, we shall only present the uniqueness theorem: If
Si j (T ) (i, j = 1, 2, 3, 4) are continuous functions of T , then, for any 4 × 1 column matrix
W0 and any T0, there is but one solutionW(T ) of (4.3.1) such thatW(T0) = W0.

4.3.1 Definition of the Propagator Matrix

We introduce the propagator matrix from T0 Π(T, T0) as the 4 × 4 integral matrix of (4.3.1)

dΠ/dT = SΠ, (4.3.3)

which satisfies the following initial conditions at T = T0,

Π(T0, T0) = I, (4.3.4)

where I is the 4 × 4 identity matrix. Note that we do not assume that the propagator matrix
Π(T, T0) is the fundamental matrix of (4.3.1); this property is a consequence of (4.3.4)
and will be proved in Section 4.3.3.

We shall now consider ray � and two points S and R situated on � corresponding to
travel times T0 and T and introduce the following notation:

Π(R, S) =
(
Q1(R, S) Q2(R, S)
P1(R, S) P2(R, S)

)
. (4.3.5)

Here Q1,Q2,P1, and P2 are 2 × 2 matrices. They have a very simple physical meaning
for the orthonomic system of rays, if the dynamic ray tracing system is considered in the
form of (4.1.68) or (4.2.36).
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a b

ray ΩΩ ray ΩΩ

S S

Figure 4.9. Explanation of normalized
planewavefront (a) andnormalized point
source (b) initial conditions for dynamic
ray tracing along ray � from S.

� Q1 and P1 are solutions of dynamic ray tracing system (4.1.54) for the initial condi-
tions

Q(S) = I, P(S) = 0, (4.3.6)

where I is a 2 × 2 identity matrix and 0 is a 2 × 2 null matrix; see also (4.2.40). We
shall call the initial conditions (4.3.6) “normalized telescopic point” initial condi-
tions, or “normalized plane wavefront” initial conditions. Matrix M of the second
derivatives of the travel-time field with respect to q1 and q2 vanishes at initial point
S,M(S) = P(S)Q−1(S) = 0. Thus, the wavefront is locally planar at S and the initial
slowness vectors are parallel in the vicinity of S. See Figure 4.9(a).� Q2 and P2 are solutions of the dynamic ray tracing system for the initial conditions

Q(S) = 0, P(S) = I; (4.3.7)

see also (4.2.39). We shall call these initial conditions the normalized point-source
initial conditions. Matrix M of the second derivatives of the travel-time field with
respect to q1 and q2 is infinite at initial point S because Q(S) = 0. This corresponds
to the point-source solution. See Figure 4.9(b).

We shall also use the 4 × 2 matrices Π1 and Π2 defined in the following way:

Π1(R, S) =
(
Q1(R, S)
P1(R, S)

)
, Π2(R, S) =

(
Q2(R, S)
P2(R, S)

)
. (4.3.8)

Thus, Π1 corresponds to the normalized telescopic initial conditions at S, and Π2 corre-
sponds to the normalized point-source initial conditions at S. A similar notation can also
be introduced for other 4 × 4 dynamic ray tracing systems, particularly for dynamic ray
tracing system (4.2.36) in wavefront orthonormal coordinates.

It would also be possible to arrange the columns of the propagator matrix in a different
order and to construct two 4 × 2 solutions different fromΠ1 andΠ2. Such solutions would
correspond to two line source solutions. The physical meaning of individual elements of
the 4 × 4 propagator matrix Π(R, S) will also be discussed in Section 4.3.6.

To simplify the terminology, we shall also use the simpler term ray propagator matrix
instead of the term propagator matrix of the dynamic ray tracing system, where this simpler
terminology can cause no misunderstanding.

An important note. For fixed points S and R on ray �, the 4 × 4 propagator matrix
Π(R, S), corresponding to the dynamic ray tracing system in ray-centered coordinates,
does not depend on the integration parameter u used to solve the dynamic ray tracing
system along ray � from S to R (travel time T , arclength s, and so on).
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4.3.2 Symplectic Properties

The 4 × 4 matrix A is called symplectic if it satisfies the matrix equation

ATJA = J, (4.3.9)

where J is the 4 × 4 matrix

J =
(

0 I
−I 0

)
. (4.3.10)

Here I is the 2 × 2 identity matrix and 0 is the 2 × 2 null matrix. We shall now study
whether the propagator matrix Π of (4.3.1) is symplectic. Because dΠ/dT = SΠ, we
obtain

d(ΠT JΠ)/dT = (dΠT /dT )JΠ + ΠTJ(dΠ/dT )

= ΠTSTJΠ + ΠTJSΠ = ΠT (STJ+ JS)Π.

Thus, ΠT JΠ is constant along � if STJ+ JS = 0 along �. We now introduce the 2 × 2
minors of the 4 × 4 system matrix S as

S =
(

S11 S12
−S21 −S22

)
. (4.3.11)

Condition ST J+ JS = 0 can then be expressed in terms of SIJ as follows:

S12 = ST12, S21 = ST21, S22 = ST11. (4.3.12)

We now take into account the fact that Π = I at the initial point of the ray, see (4.3.4), so
that ΠT JΠ = J at that point. This proves that the propagator matrix satisfies the symplec-
ticity relation

ΠT JΠ = J (4.3.13)

along the whole ray�, if the minors of the systemmatrix of the dynamic ray tracing system
satisfy relations (4.3.12). Relations (4.3.12), however, represent the symmetry conditions,
satisfied by all dynamic ray tracing systems we have studied, see, for example, (4.2.33) for
the wavefront orthonormal coordinates. The conclusion is that the propagator matrices of
the dynamic ray tracing systems are symplectic.

If we use notation (4.3.5), symplectic relation (4.3.13) leads to the following relations
for the 2 × 2 matrices P1,Q1,P2, and Q2:(

QT
1 PT1

QT
2 PT2

)(
0 I

−I 0

)(
Q1 Q2

P1 P2

)
=
(
0 I

−I 0

)
. (4.3.14)

Equation (4.3.14) yields four invariants, which remain constant along ray �,

QT
1 P1 − PT1Q1 = 0, PT2Q1 −QT

2 P1 = I,
(4.3.15)

QT
2 P2 − PT2Q2 = 0, QT

1 P2 − PT1Q2 = I.

These invariants generate many other convenient relations, that are valid along the ray.
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Without deriving them, we shall present a few:

P1Q
−1
1 − (

P1Q
−1
1

)T = 0, P2Q
−1
2 − (

P2Q
−1
2

)T = 0,

P2Q
−1
2 − P1Q

−1
1 = Q−1 T

2 Q−1
1 = Q−1 T

1 Q−1
2 ,

(4.3.16)
P2Q

T
1 − P1Q

T
2 = I, Q1P

T
2 −Q2P

T
1 = I,

Q1Q
T
2 −Q2Q

T
1 = 0, P1P

T
2 − P2P

T
1 = 0,

etc.

4.3.3 Determinant of the Propagator Matrix. Liouville’s Theorem

We take the determinant of both sides of Equation (4.3.13). Because det J = +1,
det(ΠT ) detΠ = (detΠ)2 = 1. This yields

detΠ(R, S) = 1. (4.3.17)

(The possibility of detΠ(R, S) = −1 is excluded by initial conditions (4.3.4).)
Thus, the ray propagator matrix is nonsingular along the whole ray �, and the ray

propagator matrix is also the fundamental matrix of (4.3.1).
Property (4.3.17) also follows from Liouville’s theorem, known from the theory of

linear ordinary differential equations of the first order (see Kamke 1959; Coddington and
Levinson 1955). According to Liouville’s theorem, the determinant of any integral matrix
A(T ) of (4.3.1), detA(T ), satisfies the following equations along the ray:

d(detA(T ))/dT = tr S(T ) detA(T ).

This equation can be solved to yield

detA(T ) = detA(T0) exp

[∫ T

T0

tr S(T ′)dT ′
]
.

Parameter T ′ in the integral represents the travel time along ray �. As a consequence
of (4.3.12), tr S(T ) = 0 in the dynamic ray tracing system, and the foregoing equation
immediately yields (4.3.17) for propagator matrix Π(R, S).

For a detailed discussion, see Gilbert and Backus (1966). In the following text, we shall
refer to (4.3.17) as Liouville’s theorem.

Ray propagator matrix Π(R, S) has four eigenvalues. Liouville’s theorem (4.3.17)
implies that all eigenvalues are different from zero along the whole ray�. The symplectic
properties of the 4 × 4 ray propagator matrix Π imply that the inverse Π−1 has the same
eigenvalues as Π. Let us denote by µ1, µ2, µ3, and µ4 the four eigenvalues of Π(R, S)
and sort them according their absolute values,

|µ1| ≥ |µ2| ≥ |µ3| ≥ |µ4|. (4.3.18)

Because Π and Π−1 have the same eigenvalues, the four eigenvalues of Π, µ1, µ2, µ3,
and µ4, form two reciprocal pairs:

µ1µ4 = 1, µ2µ3 = 1. (4.3.19)

Note that the eigenvalues of the propagatormatrix play an important role in the investigation
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of the chaotic behavior of rays and in the computation of Lyapunov exponents; see Sec-
tion 4.10.7.

4.3.4 Chain Rule

In a smooth medium, if Si j (T ) are continuous functions of T , the ray propagator matrix
satisfies the following chain rule:

Π(T, T0) = Π(T, T1)Π(T1, T0). (4.3.20)

Here T1 corresponds to an arbitrary reference point on ray �, not necessarily situated
between T0 and T .

The proof of relation (4.3.20) can be found, for example, in Gilbert and Backus (1966).
It follows from the uniqueness theorem. Solutions Π(T, T0) and Π(T, T1)Π(T1, T0) are
both solutions of (4.3.3), and they are equal if T = T1. Indeed,

d[Π(T, T1)Π(T1, T0)]/dT − [SΠ(T, T1)Π(T1, T0)]

= [dΠ(T, T1)/dT − SΠ(T, T1)]Π(T1, T0) = 0,

[Π(T, T1)Π(T1, T0)]T=T1 = Π(T1, T1)Π(T1, T0) = Π(T1, T0).

Thus, the uniqueness theorem proves that (4.3.20) is valid for any T .
This equation can be used to connect the propagator matrices calculated independently

along different segments of the ray. For example, the equation can be used when ray tracing
and dynamic ray tracing are being performed analytically in certain parts of the model and
numerically in other parts.

Equation (4.3.20) can be generalized simply. Let us consider points S0, S1, . . . , Sn
along ray �, corresponding to travel times T0, T1, . . . , Tn , respectively. It is not required
that Ti+1 > Ti . Then

Π(Sn, S0) = Π(Sn, Sn−1)Π(Sn−1, Sn−2) · · ·Π(S1, S0) =
1∏
i=n

Π(Si , Si−1).

(4.3.21)

Another consequence of (4.3.20) is related to the inverse of the propagator matrix. Let us
consider T = T0 in (4.3.20). Then

Π(T0, T0) = I = Π(T0, T1)Π(T1, T0). (4.3.22)

It follows from (4.3.22) that

Π−1(T1, T0) = Π(T0, T1). (4.3.23)

4.3.5 Inverse of the Ray Propagator Matrix

We multiply (4.3.13) by JT from the LHS and obtain JTΠTJΠ = I; consequently,

Π−1 = JTΠTJ. (4.3.24)

This immediately yields

Π−1(R, S) =
(

PT2 (R, S) −QT
2 (R, S)

−PT1 (R, S) QT
1 (R, S)

)
; (4.3.25)
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see (4.3.5). Using also relation (4.3.23), we finally obtain

Π(S, R) =
(
Q1(S, R) Q2(S, R)
P1(S, R) P2(S, R)

)

= Π−1(R, S) =
(

PT2 (R, S) −QT
2 (R, S)

−PT1 (R, S) QT
1 (R, S)

)
. (4.3.26)

Hence,

Q1(S, R) = PT2 (R, S), P1(S, R) = −PT1 (R, S),
(4.3.27)

Q2(S, R) = −QT
2 (R, S), P2(S, R) = QT

1 (R, S).

Equation (4.3.25) is of great importance in various applications because it allows us
to combine the boundary conditions for the ray given at different points of the ray. The
equation may be used, for example, in boundary-value ray tracing of paraxial rays; see
Section 4.9.

Note. Matrices Π(S, R) and Π−1(R, S) discussed here correspond to the ray-centered
coordinate system q1, q2, and q3, introduced for the wave propagating along � from S
to R. The used ray-centered coordinate system is connected with the right-handed triplet
	e1, 	e2, 	e3 ≡ 	t , where 	t is tangent to the ray� and is oriented in the direction of propagation
from S to R. For the backward propagator matrix Πb(S, R) corresponding to the ray-
centered coordinate system introduced for the wave propagating in the backward direction
from R to S, see Section 4.4.9.

4.3.6 Solution of the Dynamic Ray Tracing System in Terms

of the Propagator Matrix

Let us again consider ray � and two points S and R on �. Assume that propagator matrix
Π(R, S) is known. The solution of dynamic ray tracing system (4.3.1) at R can then be
expressed for any initial conditions at S in the following form:

W(R) = Π(R, S)W(S). (4.3.28)

The 4 × 1 column matricesW(R) andW(S) have an obvious meaning. For example, if we
consider the dynamic ray tracing system (4.1.67) in ray-centered coordinates, W is given
by (4.1.66). For paraxial ray tracing system (4.1.58) in ray-centered coordinates,W is given
by (4.1.57).

A similar relation can be obtained for any 4 × 2 matrix solution. Let us consider the
4 × 2 matrix X and the dynamic ray tracing system (4.1.68). Then,

X(R) = Π(R, S)X(S). (4.3.29)

Equations (4.3.28) and (4.3.29) are very powerful and play a fundamental role in dynamic
ray tracing. When the ray propagator matrix is known, we can find the solution of the
dynamic ray tracing system analytically for any initial conditions, without repeating the
dynamic ray tracing.

Moreover, we also obtain

W(S) = Π−1(R, S)W(R), X(S) = Π−1(R, S)X(R). (4.3.30)

The elements ofmatrixΠ−1(R, S) canbe simply calculated from the knownmatrixΠ(R, S)
using (4.3.26).
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Equation (4.3.28) offers a simple physical explanation of the elements of the 4 × 4 ray
propagator matrix"αβ(R, S) (α, β = 1, 2, 3, 4): "αβ(R, S) = ∂Wα(R)/∂Wβ(S).

4.3.7 6 × 6 Propagator Matrices

All properties of the 4 × 4 propagator matrices, derived in Sections 4.3.2 through 4.3.6,
also apply to the 6 × 6 propagator matrices of dynamic ray tracing systems consisting of
six equations. Only the 2 × 2 minors of the 4 × 4 propagator matrices should be replaced
by analogous 3 × 3 minors:

Π(R, S) =
(
Π̂11(R, S) Π̂12(R, S)
Π̂21(R, S) Π̂22(R, S)

)
. (4.3.31)

Consequently, the 2 × 2 minors Q1,Q2,P1, and P2, introduced by (4.3.5), should be re-
placed by the 3 × 3 minors Π̂11, Π̂12, Π̂21, and Π̂22 in all equations of the previous sec-
tions. The 6 × 6 propagator matrices of all dynamic ray tracing systemswe have studied are
symplectic because the relevant dynamic ray tracing systems satisfy symmetry relations
(4.3.12). In other words, symplectic relation ΠTJΠ = J is satisfied along the whole ray
�, where J is the 6 × 6 matrix given by (4.3.10), I is the 3 × 3 identity matrix, and 0 the
3 × 3 null matrix. The chain rule Π(R, S) = Π(R, S1)Π(S1, S) and Liouville’s theorem
detΠ(R, S) = 1 are also satisfied, and the inverse of the 6 × 6 propagator matrix is given
by the relations shown in Section 4.3.5. Finally, the equations analogous to (4.3.28) through
(4.3.30) also remain valid.

We shall now briefly discuss several important special cases of the 6 × 6 propagator
matrices. In all cases, Hamiltonians corresponding to the integration parameter T along�
are considered in this section.

1. CARTESIAN RECTANGULAR COORDINATES xi

We shall denote the 6 × 6 propagator matrix, corresponding to dynamic ray tracing
system (4.2.4) in Cartesian rectangular coordinates, byΠ(x)(R, S). The computation of all
elements of the 6 × 6 propagator matrix requires the system of six equations to be solved
numerically six times. In other words, we must solve numerically 36 equations. After all
elements of Π(x)(R, S) are known, the solution of dynamic ray tracing system (4.2.4) at
any point R on � can be expressed analytically for arbitrary initial conditions given at S.
A similar conclusion is also valid for the solutions of paraxial ray tracing system (4.2.11):(

Q̂(x)(R)
P̂(x)(R)

)
= Π(x)(R, S)

(
Q̂(x)(S)
P̂(x)(S)

)
,

(4.3.32)(
δx̂(R)
δp̂(x)(R)

)
= Π(x)(R, S)

(
δx̂(S)
δp̂(x)(S)

)
.

There is, however, one important difference between the 4 × 4 and 6 × 6 propagator matri-
ces. If we are considering eikonal equationH(x)(xi , p

(x)
i ) = 0, the 6 × 6 propagator matrix

Π(x)(R, S) also contains the solution that does not satisfy the eikonal equation (noneikonal
solution). Constraint relation (4.2.9) or (4.2.12) should be applied at initial point S to elim-
inate this solution. After Q̂(x)(S) and P̂(x)(S) are chosen to satisfy constraint relation (4.2.9)
at initial point S, constraint relation (4.2.9) is satisfied along the whole ray �. Similarly,
if δx̂(S) and δp̂(x)(S) satisfy constraint relation (4.2.12) at initial point S, the constraint
relation is also satisfied by δx̂(R) and δp̂(x)(R).
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Note that one of the columns of the 6 × 6 propagatormatrixΠ(x)(R, S) can be expressed
analytically, if one of the coordinate axes of the Cartesian coordinate system is chosen in
the direction of the slowness vector at the initial point S. For example, we can take the
x3-axis along 	p(S). Then p(x)1 (S) = p(x)2 (S) = 0 and p(x)3 (S) = 1/C(S), where C(S) is the
phase velocity along the x3-axis at S. The sixth column of the 6 × 6 propagator matrix
"

(x)
αβ (R, S) represents the noneikonal solution (4.2.16) and may be expressed analytically

as

"
(x)
α6 = C(S)(T − T0)U (x)

α for 1 ≤ α ≤ 3,

"
(x)
α6 = C(S)[p(x)α−3 + (T − T0)η

(x)
α−3

]
for 4 ≤ α ≤ 6.

Indeed, these expressions yield"66 = 1 and"α6 = 0 for α �= 6 at the initial point T = T0.
Equations (4.3.32) can also be used to find Q̂(x)(S) and P̂(x)(S) from known Q̂(x)(R)

and P̂(x)(R), analogously to (4.3.30).
Finally, Equations (4.3.32) offer a simple physical explanation of the individual el-

ements of Π(x)(R, S). Denote W = (Q(x)
1 , Q

(x)
2 , Q

(x)
3 , P

(x)
1 , P

(x)
2 , P

(x)
3 )T . Then "(x)

αβ (for
α = 1, 2, . . . , 6, β = 1, 2, . . . , 6) are given by relations

"
(x)
αβ = ∂Wα(R)/∂Wβ(S). (4.3.33)

2. CURVILINEAR COORDINATES ξi

In the same way as for Cartesian rectangular coordinates, we can construct the 6 × 6
propagator matrix Π(ξ )(R, S) for dynamic ray tracing system (4.2.56) and for paraxial
ray tracing system (4.2.60), consisting of six equations. The continuation equations in
curvilinear coordinates ξi are fully analogous to equations in Cartesian coordinates:(

Q̂(ξ )(R)
P̂(ξ )(R)

)
= Π(ξ )(R, S)

(
Q̂(ξ )(S)
P̂(ξ )(S)

)
,

(4.3.34)(
δξ̂(R)
δp̂(ξ )(R)

)
= Π(ξ )(R, S)

(
δξ̂(S)
δp̂(ξ )(S)

)
.

Again, the initial conditions at point S must satisfy constraint relations (4.2.59). After
the constraint relation is satisfied at S, it is satisfied along the whole ray �. The 6 × 6
propagatormatrixΠ(ξ )(R, S) is again symplectic because the systemmatrix of the dynamic
ray tracing system satisfies symmetry relations (4.2.58). It also satisfies Liouville’s theorem
detΠ(ξ )(R, S) = 1, chain rule (4.3.20), and the relations for its inverse (4.3.26).

3. TRANSFORMATIONS OF PROPAGATOR MATRICES
We shall consider the 6 × 6 propagator matrixΠ(ξ )(R, S) in curvilinear coordinates ξi ,

and the 6 × 6propagatormatrixΠ(x)(R, S).However,we shall assume that xi may represent
curvilinear coordinates. The transformation relations between Q(ξ )

m , P
(ξ )
m and Q(x)

k , P
(x)
k are

given by (4.2.68). These relations can be used to find the equations connecting Π(ξ )(R, S)
with Π(x)(R, S). In matrix form, we can express (4.2.68) and (4.2.70) as

Q̂(ξ ) = ˆ̄H(ξ )Q̂(x), P̂(ξ ) = Ĥ(ξ )T P̂(x) + F̂ ˆ̄H(ξ )Q̂(x),

Q̂(x) = Ĥ(ξ )Q̂(ξ ), P̂(x) = ˆ̄H(ξ )T P̂(ξ ) − ˆ̄H(ξ )T F̂Q̂(ξ ).
(4.3.35)

Here Q̂(ξ ), P̂(ξ ), Q̂(x), and P̂(x) represent 3 × 1 columnmatrices with components Q(ξ )
i , P

(ξ )
i ,

Q(x)
i , and P (x)

i , i = 1, 2, 3. The elements of the 3 × 3 matrix Ĥ(ξ ) are given by
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H (ξ )
im = ∂xi/∂ξm , and the elements of the 3 × 3 matrix ˆ̄H(ξ ) are given by H̄ (ξ )

im = ∂ξi/∂xm .
We also have Ĥ(ξ ) ˆ̄H(ξ ) = I. Finally, the elements of the 3 × 3matrix F̂ are given by (4.2.69).
Equations (4.3.35) can then be expressed as(

Q̂(x)

P̂(x)

)
=
(

Ĥ(ξ ) 0̂

− ˆ̄H(ξ )T F̂ ˆ̄H(ξ )T

)(
Q̂(ξ )

P̂(ξ )

)
,

(4.3.36)(
Q̂(ξ )

P̂(ξ )

)
=
(
ˆ̄H(ξ ) 0̂

F̂ ˆ̄H(ξ ) Ĥ(ξ )T

)(
Q̂(x)

P̂(x)

)
.

Equations (4.3.32) immediately yield(
Q̂(ξ )(R)
P̂(ξ )(R)

)
=
(
ˆ̄H(ξ )(R) 0̂

F̂(R) ˆ̄H(ξ )(R) Ĥ(ξ )T (R)

)
Π(x)(R, S)

×
(

Ĥ(ξ )(S) 0̂

− ˆ̄H(ξ )T (S)F̂(S) ˆ̄H(ξ )T (S)

)(
Q̂(ξ )(S)
P̂(ξ )(S)

)
. (4.3.37)

Consequently, the 6 × 6 propagator matrix Π(ξ )(R, S) can be expressed in terms of the
6 × 6 propagator matrix Π(x)(R, S) as

Π(ξ )(R, S) =
(
ˆ̄H(ξ )(R) 0̂

F̂(R) ˆ̄H(ξ )(R) Ĥ(ξ )T (R)

)

×Π(x)(R, S)

(
Ĥ(ξ )(S) 0̂

− ˆ̄H(ξ )T (S)F̂(S) ˆ̄H(ξ )T (S)

)
. (4.3.38)

It is easy to check that (4.3.38) yields Π(ξ )(S, S) = I.
Equation (4.3.38) has certain important consequences. Assume thatwewish to compute

Π(ξ )(R, S). In this case, we canmap coordinates ξi onto Cartesian coordinates and compute
Π(x)(R, S) in Cartesian coordinates. Propagator matrix Π(ξ )(R, S) can then be obtained
from Π(x)(R, S) by two simple matrix multiplications (4.3.38) at the end points S and R
of ray�. Note that the transformation matrices in (4.3.38) simplify considerably if both xi
and ξi coordinates are Cartesian; then F̂(R) = 0̂ and F̂(S) = 0̂.

4. NONORTHOGONAL RAY-CENTERED COORDINATES ζ i

A very simple 6 × 6 propagator matrix Π(ζ )(R, S) is obtained in nonorthogonal ray-
centered coordinates ζi , for dynamic ray tracing system (4.2.77). Let us denote the 36
elements of Π(ζ )(R, S) by "(ζ )

αβ (R, S), with α= 1, 2, . . . , 6 and β = 1, 2, . . . , 6. Then,
"

(ζ )
3β (R, S)="(ζ )

α3 (R, S)="(ζ )
α6 (R, S)="(ζ )

6β (R, S)= 0, with the exception of three ele-
ments "(ζ )

33 (R, S),"
(ζ )
36 (R, S), and "

(ζ )
66 (R, S):

"
(ζ )
33 (R, S) = "

(ζ )
66 (R, S) = 1, "

(ζ )
36 (R, S) = T (R, S) = T (R) − T (S).

(4.3.39)

See (4.2.84) and (4.2.85). Actually, only 16 elements of propagator matrix Π(ζ )(R, S)
should be computed numerically using the dynamic ray tracing system (4.2.81), solving it
for normalized plane-wavefront initial conditions and for normalized point-source initial
conditions. Three other elements are given by (4.3.39), and the remaining 17 elements
are zero. After the propagator matrix Π(ζ )(R, S) is known along �, we can again use
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the equations analogous to (4.3.32). The initial conditions must satisfy constraint relation
P (ζ )
3 (S) = 0; see (4.2.80). Then P (ζ )

3 (R) = 0 for all points R along�. Thus, the noneikonal
solutions are eliminated very simply in nonorthogonal ray-centered coordinates.

5. WAVEFRONT ORTHONORMAL COORDINATES yi

In wavefront orthonormal coordinates yi , the situation is similar to the nonorthogo-
nal ray-centered coordinates. Only 16 elements of propagator matrix Π(y)(R, S) should
be computed numerically using dynamic ray tracing system (4.2.31). The system should
be solved for normalized plane-wavefront initial conditions (4.2.40) and for normalized
point-source initial conditions (4.2.39). The remaining elements and linearly independent
solutions, however, are not as simple as in general ray-centered coordinates. Ray-tangent
solution (4.2.24) cannot be chosen to render only its third element nonvanishing at initial
point S. It would be necessary to construct a new linearly independent solution, combining
the ray-tangent solutionwith other solutions. The relevant equations, however, are not given
here because we shall not need them at all in this book. All equations we wish to derive in
wavefront orthonormal coordinates yi can be obtained directly from the 4 × 4 propagator
matrix of dynamic ray tracing system (4.2.31). The construction and application of the
6 × 6 propagator matrix Π(y)(R, S) would only represent an alternative approach to that
presented here.

4.3.8 Inhomogeneous Dynamic Ray Tracing System

Inhomogeneous dynamic and paraxial ray tracing systems have been successfully used in
certain applications, particularly in the ray perturbation method. For simplicity, we shall
only discuss the inhomogeneous dynamic ray tracing system in Cartesian coordinates,
consisting of six linear ordinary differential equations of the first order. The correspond-
ing homogeneous dynamic ray tracing system is given by (4.2.4). In matrix form, the
inhomogeneous dynamic ray tracing system reads

d

dT

(
Q̂(x)

P̂(x)

)
=
(

Â(x) B̂(x)

−Ĉ(x) −D̂(x)

)(
Q̂(x)

P̂(x)

)
+
(
Ê(x)

F̂(x)

)
. (4.3.40)

Here Â(x), B̂(x), Ĉ(x), and D̂(x) are 3 × 3 matrices with elements given by (4.2.5), and
Q̂(x), P̂(x), Ê(x), and F̂(x) are 3 × 1 column matrices. For Ê(x) = 0̂ and F̂(x) = 0̂, inhomo-
geneous dynamic ray tracing system (4.3.40) reduces to the standard dynamic ray tracing
system (4.2.4).

We denote by Π(x)(T, T0) the 6 × 6 propagator matrix of homogeneous dynamic ray
tracing system (4.2.4), expressed as a function of travel time T along�, withΠ(x)(T0, T0) =
I. The solution of inhomogeneous dynamic ray tracing system (4.3.40) can then be ex-
pressed in terms of propagator matrix Π(x)(T, T0) as follows:(

Q̂(x)(T )
P̂(x)(T )

)
= Π(x)(T, T0)

(
Q̂(x)(T0)
P̂(x)(T0)

)
+
∫ T

T0

Π(x)(T, T ′)
(
Ê(x)(T ′)
F̂(x)(T ′)

)
dT ′.

(4.3.41)

Here the integral is taken along central ray � and integration variable T ′ represents the
travel time. SeeGilbert and Backus (1966) formore details. Solution (4.3.41) can be simply
verified by direct inspection. Taking the derivatives of both of its sides with respect to T ,
(4.3.40) is obtained.
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Thus, once the propagator matrix of the homogeneous dynamic ray tracing system is
known, the solution of the relevant inhomogeneous dynamic ray tracing system can be
obtained by quadratures along central ray �.

In an analogous way, it is possible to find the solutions of any 4 × 4 and 6 × 6 inho-
mogeneous dynamic ray tracing system, expressed in any coordinate system.

4.4 Dynamic Ray Tracing in Isotropic Layered Media

This section is devoted to dynamic ray tracing in ray-centered coordinates in isotropic
layered media containing structural interfaces. We shall consider an orthonomic system of
rays and the dynamic ray tracing system (4.1.64) or (4.1.65), consisting of four equations.
First, we shall derive an equation for the travel-time distribution along any curved interface
� crossing the central ray, in the vicinity of the point of incidence. Surface�may represent
a structural interface. We then apply the phase matching method, which requires that the
phase functions (travel times) of incident, reflected, and transmitted waves be equal along
�; see Section 2.4.5. This will be sufficient to recompute the matrix M of the second
derivatives of the travel-time field across interface�. After this, we shall take into account
the continuity of rays across interface � and obtain equations for the transformation of
matricesQ and P and for the transformation of the ray propagator matrix Π across �. For
anisotropic media, see Section 4.14, and for dynamic ray tracing systems consisting of six
equations see Section 4.7.

As a by-product of the investigation of dynamic ray tracing in a layered medium, we
shall also obtain a special version of the dynamic ray tracing, which we shall call surface-
to-surface dynamic ray tracing. In this version, the initial points of the central ray and of
all paraxial rays are situated along some anterior surface, and the termination points of all
these rays are situated along a posterior surface. The ray propagator matrices for surface-
to-surface dynamic ray tracing can be simply obtained from the general ray propagator
matrix Π merely by rearranging the terms. See Section 4.4.7.

4.4.1 Geometry of the Interface

Let us assume that surface � crossing the central ray � is described by equation

�(xi ) = 0. (4.4.1)

Let ray � of the incident wave strike surface � at point Q. We assume that surface �
is smooth at Q. More specifically, we assume that at least �, ∂�/∂xi , and ∂2�/∂xi∂x j
(i, j = 1, 2, 3) are continuous at Q.

Surface�may also be a structural interface. It is then very useful to introduce the reflec-
tion/transmission point Q̃. The point of incidence Q and the point of reflection/transmission
Q̃ coincide, but point Q corresponds to the incident wave, and point Q̃ corresponds to the
reflected/transmitted wave; see Figure 4.10. As we know, many quantities computed by ray
tracing and dynamic ray tracing are discontinuous across �, for example 	p(Q) �= 	p(Q̃),
M(Q) �= M(Q̃),Q(Q) �= Q(Q̃), and P(Q) �= P(Q̃). To simplify the notation, we shall also
use the following convention. If arguments Q and Q̃ are omitted, we understand that
	p,M,P,Q, and so on correspond to point Q (incident wave), and that 	̃p, M̃, P̃, Q̃, and so
on correspond to point Q̃ (reflected/transmitted wave).

To discuss the problem of the dynamic ray tracing across the interface, it is, in principle,
not necessary to introduce a local Cartesian coordinate system on interface � at point Q;
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S
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Q

Q

ray ΩΩ

interface ΣΣ
~

Figure 4.10. Definition of the point of
incidence Q and of reflection/transmis-
sion point Q̃ on interface�. Both points
coincide, but point Q corresponds to
the incident wave, and point Q̃ corre-
sponds to the selected reflected/trans-
mitted wave.

it is merely necessary to know the derivatives ∂�/∂xi and ∂2�/∂xi∂x j at Q. The first
derivatives (∂�/∂xi )Q are related to the normal to � at Q. We remind the reader that the
problem of reflection/transmission of HF elastic waves at a curved interfacewas also solved
in Section 2.4.5 without introducing the local Cartesian coordinate system connected with
interface � at Q.

Nevertheless, in certain applications, such as in the surface-to-surface dynamic ray
tracing, it will be useful to consider local Cartesian coordinate systems connected with
interfaces.

We introduce a local Cartesian coordinate system (z1, z2, z3) with its origin at Q and
basis vectors 	i (z)1 ,

	i (z)2 , and 	i (z)3 . We specify unit vector 	i (z)3 to coincide with the unit vector
normal to interface � at Q, 	n(Q),

	i (z)3 = 	n(Q). (4.4.2)

The two other basis vectors 	i (z)1 and 	i (z)2 are obviously situated in the plane tangent to �
at Q. It is possible to specify them arbitrarily in the tangent plane. We only require triplet
	i (z)1 ,

	i (z)2 ,
	i (z)3 to be mutually orthogonal and right-handed.

Unit vector 	n(Q) normal to � at Q is given by relation

	n(Q) = ε∗∇�
(∇� · ∇�)1/2 . (4.4.3)

Here ε∗ equals either +1 or −1; the choice is optional. In the general Cartesian coordinate
system, Equation (4.4.3) yields the following relations for the Cartesian components of
unit normal 	n(Q),

nk(Q) = ε∗ ∂�
∂xk

/(
∂�

∂x j

∂�

∂x j

)1/2

. (4.4.4)

If surface � is specified by equation

x3 = f (x1, x2), (4.4.5)

we can put �(xi ) = x3 − f (x1, x2) = 0 and obtain

∂�/∂x1 = − ∂ f/∂x1, ∂�/∂x2 = − ∂ f/∂x2, ∂�/∂x3 = 1.

(4.4.6)

Inserting these expressions into (4.4.4) yields nk(Q).
We denote the slowness vector of the incident wave at Q by 	p(Q). We call the plane

specified by 	p(Q) and 	n(Q) the plane of incidence. If 	p(Q) is parallel to 	n(Q) (normal
incidence), the plane of incidence is not defined, but it may be chosen as an arbitrary plane
containing 	n(Q).
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In this way, the z3-axis of the local Cartesian coordinate system connected with �
at Q is strictly specified. We will specify the local Cartesian coordinate system z1, z2, z3
completely by the 3 × 3 transformationmatrix Ẑ from the localCartesian coordinate system
zi to the general Cartesian coordinate system xi ,

dxk = Zkldzl or dx̂ = Ẑdẑ, (4.4.7)

where dẑ ≡ (dz1, dz2, dz3)T . Matrix Ẑ is orthonormal, so that Ẑ−1 = ẐT , and det Ẑ = 1.
Consequently,

dzk = Zlkdxl or dẑ = ẐTdx̂. (4.4.8)

The elements of transformation matrix Ẑ are given by any of the following relations:

Zkl = 	ik · 	i (z)l = ∂xk/∂zl = ∂zl/∂xk . (4.4.9)

The first column of matrix Ẑ is formed by the general Cartesian components of basis vector
	i (z)1 , the second column corresponds to 	i (z)2 , and the third column corresponds to 	i (z)3 ≡ 	n.
Thus, unit basis vectors 	i (z)1 ,

	i (z)2 , and 	i (z)3 are fully specified by matrix Ẑ.
In addition to matrix Ẑ, we also introduce the 3 × 3 transformation matrix Ĝ(Q) from

ray-centered coordinates q1, q2, q3 = s to the local Cartesian coordinates z1, z2, z3 at the
point of incidence Q,

dzk = Gkl(Q)dql(Q) or dẑ = Ĝ(Q)dq̂(Q), (4.4.10)

where dq̂(Q) ≡ (dq1(Q), dq2(Q), dq3(Q))T . Matrix Ĝ(Q) is orthonormal, and Ĝ−1(Q) =
GT (Q), det(Ĝ(Q)) = 1. Thus,

dqk(Q) = Glk(Q)dzl(Q) or dq̂(Q) = ĜT (Q)dẑ(Q). (4.4.11)

The elements of transformation matrix Ĝ(Q) are given by equation

Gkl(Q) = 	i (z)k · 	el (Q) = (∂zk/∂ql)Q = (∂ql/∂zk)Q , (4.4.12)

where 	el(Q), l = 1, 2, 3, are the basis vectors of the ray-centered coordinate system of
the incident wave at Q. Thus, the first column of Ĝ(Q) represents the basis vector 	e1, the
second column represents the basis vector 	e2, and the third column represents the basis
vector 	e3; they are all expressed in their zi -components (i = 1, 2, 3).

It is simple to prove that matrices Ẑ, Ĝ(Q), and Ĥ(Q) are mutually related as follows:

Ĝ(Q) = ẐT Ĥ(Q), Ĥ(Q) = ẐĜ(Q). (4.4.13)

Matrix Ẑ is, of course, the same for the wave incident at Q and for the waves reflected/trans-
mitted at Q̃. Matrices Ĝ(Q̃) and Ĥ(Q̃) are, however, different from Ĝ(Q) and Ĥ(Q). The
mutual relations between Ĝ(Q̃) and Ĝ(Q) and between Ĥ(Q̃) and Ĥ(Q) will be derived
later on.

In the dynamic ray tracing across interface �, an important role is played by the
curvature of interface � at point Q. We denote the 2 × 2 matrix of the curvature of
interface� at Q byD(Q), with elements DIJ(Q). We define D(Q) in the standard way. We
describe interface � in the vicinity of point Q by equation

z3
.= − 1

2 zI z J DIJ(Q). (4.4.14)

Tofind explicit formulae for DIJ, we expand�(zi ) in the vicinity of Q up to the second-order
terms in zi ,

�(Q) + (∂�/∂zi )Qzi + 1
2 (∂

2�/∂zi∂z j )Qzi z j + · · · = 0;
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see (4.4.1). As the interface passes through point Q, �(Q) = 0. Then

(∂�/∂zI )QzI + (∂�/∂z3)Qz3 + 1
2 (∂

2�/∂zI ∂zJ )QzI z J + · · · = 0.

Terms with zI z3 and z23 have been omitted because they are of higher order. Since
(∂�/∂zI )Q = 0, we finally obtain

(∂�/∂z3)Qz3 + 1
2 (∂

2�/∂zI ∂zJ )QzI z J + · · · = 0.

This yields

DIJ(Q) = (∂2�/∂z I∂zJ )Q/(∂�/∂z3)Q . (4.4.15)

We can now replace the local Cartesian coordinates zi by the general Cartesian coor-
dinates xi using transformation relations

(∂�/∂z3)Q = Zi3(∂�/∂xi )Q,

(∂2�/∂z I∂zJ )Q = Zi I Zk J (∂
2�/∂xi∂xk)Q .

We then obtain equation

DIJ = Zi I Zk J (∂
2�/∂xi∂xk)Q/[Z j3(∂�/∂x j )Q]. (4.4.16)

We remind the reader that Z j3 are components of the unit normal to interface � at Q.
Using (4.4.4), we can express the denominator of the preceding equation in the form

Z j3(∂�/∂x j )Q = ε∗(∂�/∂x j )Q(∂�/∂x j )Q/[(∂�/∂xk)Q(∂�/∂xk)Q]1/2

= ε∗[(∂�/∂x j )Q(∂�/∂x j )Q]1/2.

This yields the final equation for curvature matrix D(Q),

DIJ(Q) = ε∗Zi I Zk J D
(x)
ik (Q), (4.4.17)

where

D(x)
ik (Q) = (∂2�/∂xi∂xk)Q/[(∂�/∂x j )Q(∂�/∂x j )Q]

1/2. (4.4.18)

We emphasize that D(x)
ik (Q) are independent of the local Cartesian coordinate system zi .

It will also be useful to know the components of the unit vector 	n normal to interface
� in the vicinity of point Q, in local Cartesian coordinate system zi . Assuming that the
interface is given by Equation (4.4.14), and using (4.4.5) with (4.4.4) and (4.4.6), we obtain

nI = ε∗DIJzJ , n3 = ε∗. (4.4.19)

These equations are valid with an accuracy up to the linear terms in zI .
Let us return to the selection of the basis vectors 	i (z)1 and 	i (z)2 of the local Cartesian

coordinate system at Q. They can be chosen in various ways. We shall describe one simple
option. We will consider any vector 	ν that is not parallel to 	n(Q). We can then put

	i (z)2 = 	n × 	ν
|	n × 	ν| ,

	i (z)1 = 	n × (	ν × 	n)
|	n × 	ν × 	n| = 	ν − 	n(	ν · 	n)

[	ν · 	ν − (	ν · 	n)2]1/2 . (4.4.20)

As a special case of this choice, we can take 	ν = 	p(Q), the slowness vector of the incident
wave at Q. This option has been traditionally considered in the seismological literature.
Together with (4.4.2), we obtain

	i (z)3 = 	n, 	i (z)2 = 	n × 	p
|	n × 	p| ,

	i (z)1 = 	p − 	n( 	p · 	n)
[ 	p · 	p − ( 	p · 	n)2]1/2 . (4.4.21)
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In option (4.4.21), unit vector 	i (z)2 is perpendicular to the plane of incidence, and 	i (z)1 is
situated along the intersection of the plane of incidence with the plane tangent to � at Q.
Since 	p(Q) · 	i (z)1 ≥ 0, the positive orientation of the 	i (z)1 axis is “along the slowness vector
of the incident wave.” In the following text, we shall call the option based on (4.4.21) the
standard option of the local Cartesian coordinate system zi at Q.

Option 	ν = 	p in (4.4.20) fails for normal incidence because 	ν is then parallel to 	n(Q).
However, we can take 	i (z)2 = 	e2(Q).

For the readers’ convenience, we shall express the 3 × 3 matrix Ĝ(Q), corresponding
to the standard option of the local Cartesian coordinate system z1, z2, z3 at Q, specified by
(4.4.21), explicitly. Using (4.4.12), we obtain

Ĝ(Q) =

ε cos iS cos κ −ε cos iS sin κ sin iS

sin κ cos κ 0
−sin iS cos κ sin iS sin κ ε cos iS


 = Ĝ‖(Q)Ĝ⊥(Q),

(4.4.22)

where Ĝ‖(Q) and Ĝ⊥(Q) are rotational matrices, given by relations

Ĝ‖(Q) =

ε cos iS 0 sin iS

0 1 0
−sin iS 0 ε cos iS


, Ĝ⊥(Q) =


cos κ −sin κ 0
sin κ cos κ 0
0 0 1


.

(4.4.23)

Themeaning of the individual symbols follows: iS is the acute angle of incidence, 0 ≤ iS ≤
1
2π, ε is the orientation index introduced by (2.4.71), that is ε = sign( 	p(Q) · 	n). Finally,
κ is the angle between 	e2 and 	i (z)2 , 0 ≤ κ ≤ 2π , specified by relations cos κ = 	e2 · 	i (z)2 and
sin κ = 	e1 · 	i (z)2 . Matrix Ĝ⊥ performs the rotation in the plane perpendicular to ray� at the
point of incidence Q so as to shift 	e2 into 	i (z)2 . Similarly, matrix Ĝ‖ performs the rotation
in the plane of incidence so as to shift the unit vector 	N , perpendicular to the wavefront of
the incident wave at Q, into 	i (z)3 .

Matrix Ĝ(Q̃), corresponding to reflected/transmittedwaves, can be expressed explicitly
in a similar way. We shall consider the same local Cartesian coordinate system zi as in
(4.4.22), corresponding to standard option (4.4.21). In addition, we shall consider the
standard option for 	e1(Q̃) and 	e2(Q̃) given by (2.3.45). Hence,

Ĝ(Q̃) =

±ε cos iR cos κ ∓ε cos iR sin κ sin iR

sin κ cos κ 0
−sin iR cos κ sin iR sin κ ±ε cos iR


= Ĝ‖(Q̃)Ĝ⊥(Q̃),

(4.4.24)

where Ĝ‖(Q̃) and Ĝ⊥(Q̃) are given by relations

Ĝ‖(Q̃) =

±ε cos iR 0 sin iR

0 1 0
−sin iR 0 ±ε cos iR


 , Ĝ⊥(Q̃) = Ĝ⊥(Q). (4.4.25)

Here iR is the acute angle of reflection/transmission, the upper sign corresponds to the
transmitted wave, the lower sign corresponds to the reflected wave, and κ is the same
as in (4.4.22). Relation Ĝ⊥(Q̃) = Ĝ⊥(Q) guarantees standard option (2.3.45). Conse-
quently, the angles between 	e2 and 	i (z)2 are the same for incident and R/T waves,
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	e2(Q) · 	i (z)2 = 	e2(Q̃) · 	i (z)2 . The same is, of course, also valid for the angles between 	e1
and 	i (z)2 at Q and Q̃.

To determine Ĝ(Q̃) from Ĝ(Q), it is not necessary to compute angles iS and iR . Let
us assume that the elements G21(Q) and G22(Q), corresponding to the incident wave at
Q, are known. Then, assuming standard option (4.4.21) and standard option (2.3.45), we
simply obtain

Ĝ(Q̃) =

 G22(Q)G33(Q̃) −G21(Q)G33(Q̃) G13(Q̃)

G21(Q) G22(Q) 0
−G22(Q)G13(Q̃) G21(Q)G13(Q̃) G33(Q̃)


 . (4.4.26)

Here G13(Q̃)=	i (z)1 · 	e3(Q̃)= V (Q̃)	i (z)1 · 	p(Q̃) and G33(Q̃)=	i (z)3 · 	e3(Q̃)= V (Q̃)	i (z)3 · 	p(Q̃).
See Snell’s law (2.4.70) for 	p(Q̃). It is interesting to note that matrix Ĝ(Q̃) is fully specified
by four quantities G21(Q),G22(Q),G13(Q̃), and G33(Q̃). Using Ĝ(Q̃), we can compute
matrix Ĥ(Q̃),

Ĥ(Q̃) = ẐĜ(Q̃), (4.4.27)

which gives the Cartesian components of basis vectors 	e1(Q̃), 	e2(Q̃), and 	e3(Q̃).
Matrix Ĥ(Q̃) can also be determined directly, without introducing the local Cartesian

coordinate system zi . It is sufficient to knowunit vector 	n(Q) normal to� atQ, and slowness
vectors 	p(Q) = 	N (Q)/V (Q) and 	p(Q̃) = 	N (Q̃)/V (Q̃). Standard option (2.3.45) yields

	e2(Q̃) = (	e2(Q) · 	n)[( 	N (Q) · 	N (Q̃))	n − (	n · 	N (Q̃)) 	N (Q)] − (	n · 	e1(Q))(	n × 	N (Q))

|	n × 	N (Q)|2 ,

	e1(Q̃) = 	e2(Q̃) × 	N (Q̃).

(4.4.28)

4.4.2 Matrix M Across the Interface

We shall now derive the equations for the distribution of the travel time along interface�,
in the vicinity of Q. First, however, we shall write a general equation for the distribution
of the travel time in the vicinity of Q. At point Q ′, situated close to Q, see (4.1.86),

T (Q ′) = T (Q) + x̂T (Q ′, Q)p̂(x)(Q)

+ 1
2 x̂

T (Q ′, Q)Ĥ(Q)M̂(Q)ĤT (Q)x̂(Q ′, Q). (4.4.29)

We remind the reader that x̂(Q′, Q) = x̂(Q ′) − x̂(Q); see (4.1.85). Using transformation
matrix Ẑ, we can easily express (4.4.29) in the local Cartesian coordinate system zi :

p̂(x)(Q) = Ẑ(Q)p̂(z)(Q), x̂(Q ′, Q) = Ẑ(Q)ẑ,

x̂T (Q ′, Q)p̂(x)(Q) = ẑT ẐT (Q)Ẑ(Q)p̂(z)(Q) = ẑT p̂(z)(Q).

Here ẑ ≡ (z1(Q′), z2(Q′), z3(Q ′))T , zi (Q ′) are zi -coordinates of point Q ′, and p̂(z)(Q) rep-
resents a column matrix of the components of slowness vector 	p in the local Cartesian
coordinate system zi . Expansion (4.4.29) then becomes

T (Q ′) = T (Q) + ẑT p̂(z)(Q) + 1
2 ẑ

T M̂(z)(Q)ẑ, (4.4.30)

where

M̂(z)(Q) = ẐT (Q)Ĥ(Q)M̂(Q)ĤT (Q)Ẑ(Q) = Ĝ(Q)M̂(Q)ĜT (Q).

(4.4.31)



4.4 DYNAMIC RAY TRACING IN ISOTROPIC LAYERED MEDIA 295

In component form, (4.4.30) reads

T (Q ′) = T (Q) + zi p
(z)
i (Q) + 1

2 zi z j M
(z)
i j (Q). (4.4.32)

We remind the reader that zi are the local Cartesian coordinates of point Q ′. The general
expansions (4.4.30) and (4.4.32) are valid in the whole medium surrounding � from the
side of the incident wave, in the vicinity of point Q.

We shall now specify general expression (4.4.32) for points Q′ situated along interface
�, in the vicinity of Q. Coordinates zi of point Q′, situated on interface �, in the vicinity
of Q, are as follows: Q′ ≡ [z1, z2, z3 = − 1

2 zI z J DIJ(Q)]. Thus, the position of point Q′

on � is fully specified by coordinates z1, z2 and by curvature matrix D(Q). If we insert
z3 = − 1

2 zI z J DIJ(Q) into (4.4.32),we obtain travel time T (Q ′) as a function of twovariables
only, z1, and z2. For this reason, we shall use the notation T (Q′) ≡ T�(z1, z2). In the
expression for T�(z1, z2), we shall only retain the terms up to the second order in z1 and
z2. First, we express (4.4.32) as

T�(z1, z2) = T (Q) + zI p
(z)
I (Q) + z3 p

(z)
3 (Q)

+ 1
2 zI z JGIk(Q)GJm(Q)Mkm(Q).

All the other terms are of a higher order, due to (4.4.14). We can put

GIkG JmMkm = GIKGJMMKM + GI3GJMM3M

+GIKGJ3MK3 + GI3GJ3M33.

We denote

EIJ(Q) = GI3(Q)GJM(Q)M3M (Q) + GIK(Q)GJ3(Q)MK3(Q)

+GI3(Q)GJ3(Q)M33(Q). (4.4.33)

We can then write

T�(z1, z2) = T (Q) + zI p
(z)
I (Q) + 1

2 zI z J FIJ(Q), (4.4.34)

where

FIJ(Q) = GIK(Q)GJM(Q)MKM(Q) + EIJ(Q) − p(z)3 (Q)DIJ(Q). (4.4.35)

Equation (4.4.34), with (4.4.33) and (4.4.35), represents the final solution of our problem,
in component form. It gives the distribution of the travel time T along any surface �
crossing the central ray � at point Q. In matrix form,

T�(z1, z2) = T (Q) + zTp(z)(Q) + 1
2z

TF(Q)z, (4.4.36)

with

F(Q) = G(Q)M(Q)GT (Q) + E(Q) − p(z)3 (Q)D(Q). (4.4.37)

In actual computations, we shall usually work with transformation matrices Ĥ, Ĝ, and Ẑ.
For this reason, we also express p(z)1 (Q), p(z)2 (Q), and p(z)3 (Q) in (4.4.34) through (4.4.37)
in terms of these quantities. Hence,

p(z)i (Q) = Zki (Q)p
(x)
k (Q) = V−1(Q)Zki (Q)Hk3(Q) = V−1(Q)Gi3(Q).

(4.4.38)

Here V (Q) denotes the propagation velocity of the incident wave at Q.
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Expansions similar to (4.4.36) can be obtained for any R/T wave in the vicinity of point
Q̃. We denote the travel time of the R/T wave along surface � in the vicinity of Q̃ by

T̃
�
(z1, z2). Then

T̃�(z1, z2) = T (Q̃) + zTp(z)(Q̃) + 1
2z

TF(Q̃)z, (4.4.39)

where

F(Q̃) = G(Q̃)M(Q̃)GT (Q̃) + E(Q̃) − p(z)3 (Q̃)D(Q). (4.4.40)

Here E(Q̃) is again given by (4.4.33), where Q has been is replaced by Q̃. We also have
D(Q̃) = D(Q).

We now apply phase matching along�, in the vicinity of Q. We remind the reader that
the phase matching follows from the boundary conditions at interface�; see Section 2.4.5.
The phase matching implies that T̃�(z1, z2) = T�(z1, z2). Thus,

T (Q) + zTp(z)(Q) + 1
2z

TF(Q)z = T (Q̃) + zTp(z)(Q̃) + 1
2z

TF(Q̃)z.

(4.4.41)

Equation (4.4.41) yields three equations:

T (Q) = T (Q̃), p(z)(Q) = p(z)(Q̃), F(Q) = F(Q̃). (4.4.42)

Themeaning of the first equation, T (Q) = T (Q̃), is obvious. The second equation indicates
that the tangential components of the slowness vectors of the incident and R/T waves are
equal. In fact, it implies Snell’s law. The main result of this section is given by the relation
F(Q) = F(Q̃). We can express it as

G(Q)M(Q)GT (Q) + E(Q) − p(z)3 (Q)D

= G(Q̃)M(Q̃)GT (Q̃) + E(Q̃) − p(z)3 (Q̃)D. (4.4.43)

Equation (4.4.43) yields an important relation for the transformation of matrix M across
interface �,

M(Q̃) = G−1(Q̃)[G(Q)M(Q)GT (Q) + E(Q) − E(Q̃) − uD]G−1T (Q̃),

(4.4.44)

where

u = p(z)3 (Q) − p(z)3 (Q̃) = V−1(Q)G33(Q) − V−1(Q̃)G33(Q̃). (4.4.45)

In abbreviated form, (4.4.44) reads

M̃ = G̃−1[GMGT + E− Ẽ− uD]G̃−1T . (4.4.46)

The physical interpretation of (4.4.44) or (4.4.46) is straightforward. The equations allow
us to evaluate the matrix of the second derivatives of travel-time fieldM(Q̃) corresponding
to anywave reflected/transmitted at point Q̃, if thematrix of the second derivatives of travel-
time fieldM(Q), corresponding to the incident wave, is known at the point of incidence Q.
The first term in (4.4.46), G̃−1GMGT G̃−1T , represents the actual transformation of matrix
M from the ray-centered coordinate system at Q to the ray-centered coordinate system at
Q̃. The second term, G̃−1(E− Ẽ)G̃−1T , characterizes the effect of inhomogeneities of the
medium close to Q and Q̃. Finally, the third term, −uG̃−1DG̃−1T , represents the effect of
the curvature of interface � at Q.
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Equation (4.4.33) for inhomogeneity matrix E can be expressed as

EIJ(Q) = −V−2(Q){[GI3(Q)GJK(Q) + GIK(Q)GJ3(Q)](∂V/∂qK )Q
+GI3(Q)GJ3(Q)(∂V/∂q3)Q}; (4.4.47)

see (4.1.81).
For the readers’ convenience, we shall explicitly express the individual quantities de-

rived in this section, corresponding to the standard option of the local coordinate Cartesian
system z1, z2, z3 at Q specified by (4.4.21) and to the standard option of 	e1(Q̃) and 	e2(Q̃)
given by (2.3.45).

From (4.4.22) through (4.4.25), we immediately obtain the expressions for the 2 × 2
matrices G(Q),G(Q̃),G‖(Q),G⊥(Q),G‖(Q̃), and G⊥(Q̃):

G(Q) = G‖(Q)G⊥(Q), G(Q̃) = G‖(Q̃)G⊥(Q̃), (4.4.48)

G‖(Q) =
(
ε cos iS 0

0 1

)
, G⊥(Q) =

(
cos κ −sin κ
sin κ cos κ

)
,

(4.4.49)

G‖(Q̃) =
(±ε cos iR 0

0 1

)
, G⊥(Q̃) =

(
cos κ −sin κ
sin κ cos κ

)
.

As we can see from (4.4.22) through (4.4.25), (4.4.48), and (4.4.49), the determinants
of the 3 × 3 matrices Ĝ(Q), Ĝ(Q̃), Ĝ‖(Q), Ĝ⊥(Q), Ĝ‖(Q̃), Ĝ⊥(Q̃),G⊥(Q), and G⊥(Q̃)
equal unity. For G(Q),G(Q̃),G‖(Q), and G‖(Q̃), however, we have

detG(Q) = detG‖(Q) = ε cos iS,
(4.4.50)

detG(Q̃) = detG‖(Q̃) = ±ε cos iR.
Now we shall discuss quantity u and matrices E and Ẽ. As we can see from (4.4.22) and
(4.4.24), quantity u given by (4.4.45) can be expressed as

u = ε(V−1(Q) cos iS ∓ V−1(Q̃) cos iR), (4.4.51)

where the upper sign corresponds to the transmitted wave, and the lower sign corresponds
to the reflected wave. For an unconverted reflected wave, V (Q) = V (Q̃) and iS = iR . Then,
(4.4.51) yields

u = 2εV−1(Q) cos iS. (4.4.52)

Note that u does not depend at all on the orientation of 	e1 and 	e2.
Finally, the expression for the 2 × 2 matrices E can also be written in a simpler form in

the standard option of the local Cartesian coordinate system zi at Q, specified by (4.4.21).
Wecan consider (4.4.47) and insertG23 = 0; see (4.4.22). This yields E22(Q)= E22(Q̃)= 0.
If we also introduce the derivatives of velocities with respect to coordinates zi instead of
qi , we obtain for the incident wave

E11(Q) = −sin iS V
−2(Q)

[
(1 + cos2 iS)V

(z)
,1 − ε cos iS sin iS V (z)

,3

]
,

E12(Q) = E21(Q) = −sin iS V
−2(Q)V (z)

,2 , (4.4.53)

E22(Q) = 0.

Similarly, for R/T waves,

E11(Q̃) = −sin iRV
−2(Q̃)

[
(1 + cos2 iR)Ṽ

(z)
,1 ∓ ε cos iR sin iR Ṽ (z)

,3

]
,

E12(Q̃) = E21(Q̃) = −sin iR V
−2(Q̃)Ṽ

(z)
,2 , (4.4.54)

E22(Q̃) = 0.
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Here we have used the notation

V (z)
,i = (∂V/∂zi )Q = (∂V/∂x j )Q Z ji ,

Ṽ
(z)
,i = (∂ Ṽ /∂zi )Q̃ = (∂ Ṽ /∂x j )Q̃ Z ji .

(4.4.55)

It is remarkable that EIJ and Ẽ IJ do not depend on the orientation of unit vectors 	e1 and 	e2
in the plane perpendicular to ray �.

For the unconverted reflected wave, we obtain a very simple expression for E− Ẽ:

E11 − Ẽ11 = 2ε cos iS sin
2 iS V−2(Q)V (z)

,3 ,

E12 − Ẽ12 = E21 − Ẽ21 = E22 − Ẽ22 = 0.
(4.4.56)

Thus, E− Ẽ depends only on the derivatives of the velocity in the direction perpendicular
to the interface � in this case.

4.4.3 Paraxial Slowness Vector

Because the general expression (4.4.32) for the travel-time field in the vicinity of point Q in
local Cartesian coordinates z1, z2, z3 is known, we can also easily compute expressions for
the zi -components of slowness vector 	p, p(z)i (Q′) = (∂T/∂zi )Q′ . Since expression (4.4.32)
for T (Q′) is valid up to the second-order terms in zi , the expressions for p

(z)
i (Q ′) are valid

only up to the first order in zi . From (4.4.32), we obtain

p(z)i (Q′) = p(z)i (Q) + M (z)
i j (Q)z j , (4.4.57)

whereM (z)
i j (Q) is given by (4.4.31) and z j are the coordinates of point Q

′. Equation (4.4.57)
is generally valid at any point Q′ close to Q, on the side of interface � that contains the
incident wave.

We will now use these general equations to write the relevant expressions for 	p(z)(Q′)
at points Q′ situated directly on surface �, Q′ ≡ [z1, z2,− 1

2 zI z J DIJ(Q)]. From (4.4.57),
we obtain

p(z)i (Q′) = p(z)i (Q) + M (z)
i J (Q)z J , for Q′ ∈ �. (4.4.58)

We resolve 	p(z)(Q′) into two vectorial components, 	p(n)(Q ′) and 	p(�)(Q ′), normal and
tangential to � at Q′,

	p(z)(Q′) = 	p(n)(Q′) + 	p(�)(Q ′), for Q′ ∈ �, (4.4.59)

where

	p(n)(Q′) = (	n(Q ′) · 	p(z)(Q′))	n(Q′),

	p(�)(Q ′) = 	p(z)(Q ′) − (	n(Q′) · 	p(z)(Q′))	n(Q′).
(4.4.60)

Inserting (4.4.19) for 	n(Q ′) and (4.4.58) for 	p(z)(Q′) into (4.4.60), we obtain the following
results:� For the normal component of slowness vector 	p at Q ′ ∈ �,

p(n)I (Q′) = p(z)3 (Q)DIJ(Q)z J ,

p(n)3 (Q′) = p(z)3 (Q) + [
p(z)I (Q)DIK(Q) + M (z)

3K (Q)
]
zK .

(4.4.61)
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� For the tangential component of the slowness vector at Q ′ ∈ �,
p(�)I (Q′) = p(z)I (Q) + [

M (z)
IJ (Q) − p(z)3 (Q)DIJ(Q)

]
z J

= p(z)I (Q) + FIJ(Q)z J , (4.4.62)

p(�)3 (Q′) = −p(z)I (Q)DIK(Q)zK .

See (4.4.35). Similar equations can also be immediately obtained for the waves reflected/
transmitted at point Q̃

′
. It is simple to check that the tangential components of slow-

ness vector 	p(z) remain continuous across interface �, p(�)i (Q̃
′
) = p(�)i (Q ′). Of course,

the normal components of the slowness vector are not continuous across the interface,
	p(n)(Q̃′

) �= 	p(n)(Q′).

4.4.4 Transformation of Matrices Q and P Across the Interface

We require the paraxial rays to be continuous across interface �. We denote the ray pa-
rameters of the central ray � passing through point Q by γI and the ray parameter of
an arbitrarily selected paraxial ray by γ ′

I . We assume that the paraxial ray is incident at
interface� at point Q′ close to point Q; Q ′ ≡ [z1, z2,− 1

2 zI z J DIJ(Q)], γ ′
I = γI (Q′). Then

dγI = (∂γI/∂zJ )QdzJ = (∂γI/∂qm)Q(∂qm/∂zJ )QdzJ ,

where dγI = γ ′
I − γI , dzI = zI (Q ′). Since (∂γI/∂q3)Q = 0,

dγI = (∂γI/∂qM )Q(∂qM/∂zJ )Qdz J .

The same relation can, of course, be applied to rays reflected/transmitted at point Q̃. Hence,

(∂γI/∂qM )Q(∂qM/∂zJ )Q = (∂γI/∂q̃M )Q̃(∂ q̃M/∂zJ )Q̃,

where q̃M are the ray-centered coordinates corresponding to the R/Twaves at Q̃, qM corre-
spond to the incident wave at Q. It follows from (4.1.33) and (4.1.34) that (∂γI /∂qM )Q =
(Q−1(Q))I M , and from (4.4.12) that (∂qM/∂zJ )Q = GJM(Q). Thus,

(Q−1(Q))I MGJM(Q) = (Q−1(Q̃))I MGJM(Q̃).

In matrix form,

Q−1(Q)GT (Q) = Q−1(Q̃)GT (Q̃). (4.4.63)

The final result is

Q(Q̃) = GT (Q̃)G−1 T (Q)Q(Q). (4.4.64)

Similarly,

dγ = Q−1(Q)GT (Q)dz, dz = G−1 T (Q)Q(Q)dγ, (4.4.65)

where dγ ≡ (dγ1, dγ2)T , dz ≡ (dz1, dz2)T , dγI = γ ′
I − γI = γI (Q ′) − γI (Q), and dzI =

zI (Q′). Equation (4.4.64) also implies

detQ(Q̃)/detG(Q̃) = detQ(Q)/detG(Q). (4.4.66)

The derivation of the transformation relations between P(Q̃) and P(Q) is straightfor-
ward. Because M(Q̃) = P(Q̃)Q−1(Q̃), we obtain P(Q̃) = M(Q̃)Q(Q̃). We can then use
relations (4.4.46) forM(Q̃) and (4.4.64) for Q(Q̃). This yields

P̃ = G̃−1[GMGT − uD+ E− Ẽ]G̃−1T G̃TG−1TQ.
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BecauseM = PQ−1,

P̃ = G̃−1[GP+ (E− Ẽ− uD)G−1TQ]. (4.4.67)

This is the final relation for the transformation of matrix P across interface �.
We shall now look for the projection of matrices Q and P on an arbitrary surface �

crossing ray � at point Q. Using (4.4.62), we can put

dp(�)I (Q ′) = p(�)I (Q ′) − p(�)I (Q) = FIJ(Q)z J .

Using (4.4.37) and (4.4.65), this yields

dp(�)(Q ′) = [
GP+ (

E− p(z)3 D
)
G−1 TQ

]
dγ. (4.4.68)

Combining Equations (4.4.65) for dz and (4.4.68) for dp(�)(Q ′), we finally obtain(
dz(Q′)

dp(�)(Q ′)

)
= Y(Q)

(
Qdγ
Pdγ

)
, (4.4.69)

where Qdγ = Q(Q)(γ(Q′) − γ(Q)), Pdγ = P(Q)(γ(Q′) − γ(Q)), and γ = (γ1, γ2)T .
Y(Q) is a 4 × 4 matrix

Y(Q) =
(

G−1T (Q) 0
(E(Q) − p(z)3 (Q)D)G−1T (Q) G(Q)

)
. (4.4.70)

We also have (
Qdγ
Pdγ

)
= Y−1(Q)

(
dz(Q′)

dp(�)(Q ′)

)
(4.4.71)

with

Y−1(Q) =
(

GT (Q) 0
−G−1(Q)(E(Q) − p(z)3 (Q)D) G−1(Q)

)
. (4.4.72)

We shall call Y(Q) the projection matrix.
Direct inspection proves that projection matrix Y(Q) and its inverse Y−1(Q) are sym-

plectic,

YT (Q)JY(Q) = J, Y−1 T (Q)JY−1(Q) = J. (4.4.73)

Here J is given by relation (4.3.10). This also implies Liouville’s relations detY(Q) = 1 and
detY−1(Q) = 1. Similarly, matrices Y(Q) and Y−1(Q) satisfy important inverse relations
valid for the inverse of the propagator matrix:

if Y(Q) =
(
a b
c d

)
, then Y−1(Q) =

(
dT −bT

−cT aT

)
; (4.4.74)

see (4.3.25). This can again be proved by direct inspection from (4.4.70) and (4.4.72).

4.4.5 Ray Propagator Matrix Across a Curved Interface

Deriving expressions for the transformations of the ray propagator matrix across interface
� at point Q is not difficult. Using Equations (4.4.64) and (4.4.67), we obtain(

Q(Q̃)
P(Q̃)

)
= Π(Q̃, Q)

(
Q(Q)
P(Q)

)
, (4.4.75)
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where the 4 × 4 matrix Π(Q̃, Q) is given as

Π(Q̃, Q) =
(

GT (Q̃)G−1T (Q) 0
G−1(Q̃)(E(Q) − E(Q̃) − uD)G−1 T (Q) G−1(Q̃)G(Q)

)
,

(4.4.76)

and u is given by (4.4.51). ForG(Q) andG(Q̃), refer to (4.4.48) and (4.4.49); forE(Q) and
E(Q̃), refer to (4.4.53) and (4.4.54); and for D, refer to (4.4.15). Matrix Π(Q̃, Q) plays
an important role in the investigation of the propagation of high-frequency seismic body
waves in layered structures. We shall call it the interface propagator matrix.

We can see from (4.4.76) that the interface propagatormatrixΠ(Q̃, Q) can be expressed
as a product of two matrices,

Π(Q̃, Q) = Y−1(Q̃)Y(Q), (4.4.77)

where Y and Y−1 are given by (4.4.70) and (4.4.72). Relation (4.4.75) also immediately
follows from Equations (4.4.69) and (4.4.71) and from the continuity of the matrix(

dz
dp(�)

)

across the interface. Hence,(
Q(Q̃)dγ
P(Q̃)dγ

)
= Y−1(Q̃)

(
dz

dp(�)

)
= Y−1(Q̃)Y(Q)

(
Q(Q)dγ
P(Q)dγ

)
. (4.4.78)

This implies (4.4.75) with (4.4.77).
As in (4.3.5), we shall also use the standard notation for the 2 × 2minors of the interface

propagator matrix Π(Q̃, Q),

Π(Q̃, Q) =
(
Q1(Q̃, Q) Q2(Q̃, Q)
P1(Q̃, Q) P2(Q̃, Q)

)
, (4.4.79)

where

Q1(Q̃, Q) = GT (Q̃)G−1T (Q), Q2(Q̃, Q) = 0,

P1(Q̃, Q) = G−1(Q̃)[E(Q) − E(Q̃) − uD]G−1T (Q), (4.4.80)

P2(Q̃, Q) = G−1(Q̃)G(Q).

We shall now discuss the chain property of the ray propagator matrix along ray �
crossing interface � at point Q; see Figure 4.10. Consider point S situated on an incident
branch of ray� and point R situated on the reflected/transmitted branch of ray�. Assume
that basis vectors 	e1 and 	e2 and the relevant ray propagator matrix Π(Q, S) are known at
the point of incidence Q. Hence, for a wave arbitrarily reflected/transmitted at point Q̃,

Π(Q̃, S) = Π(Q̃, Q)Π(Q, S), (4.4.81)

where Π(Q̃, Q) is the interface propagator matrix given by (4.4.76) or (4.4.77). At point
R situated on the ray of the selected reflected/transmitted wave,

Π(R, S) = Π(R, Q̃)Π(Q̃, Q)Π(Q, S). (4.4.82)

Thus, the chain property of the ray propagator matrix is satisfied even along rays� crossing
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interfaces; it is merely necessary to introduce the interface propagator matrix Π(Q̃, Q) at
the point of intersection of ray�with interface�. The point of intersection should be split
into two points: the point of incidence Q and the R/T point Q̃.

It is not difficult to show that the product of two symplectic matrices is also sym-
plectic. Equation (4.4.77) then indicates that the interface propagator matrix Π(Q̃, Q) is
symplectic,

ΠT (Q̃, Q)JΠ(Q̃, Q) = J. (4.4.83)

We also have detΠ(Q̃, Q) = 1. The inverse of the interface propagator matrixΠ−1(Q̃, Q)
is given by relation

Π−1(Q̃, Q) = Π(Q, Q̃) =
(
Q1(Q, Q̃) Q2(Q, Q̃)
P1(Q, Q̃) P2(Q, Q̃)

)

=
(
PT2 (Q̃, Q) −QT

2 (Q̃, Q)
−PT1 (Q̃, Q) QT

1 (Q̃, Q)

)

=
(

GT (Q)G−1 T (Q̃) 0
−G−1(Q)[E(Q)−E(Q̃)− uD]G−1T (Q̃) G−1(Q)G(Q̃)

)
.

(4.4.84)

4.4.6 Ray Propagator Matrix in a Layered Medium

We shall consider a laterally inhomogeneous medium containing curved interfaces of the
first order �1, �2, . . . , �k . The surface of the model is considered to be one of these in-
terfaces. Assume a ray of an arbitrary multiply reflected (possibly converted) wave and
denote it again by �. We consider N + 2 points situated on ray �: the initial point S,
the end point R, and N points of reflection/transmission on � between S and R; see
Figure 4.11. At any point where ray � is incident at an interface, we shall again for-
mally distinguish between the point of incidence, situated on the ray of the incident wave,
and the point of reflection/transmission, situated on the ray of the reflected/transmitted
wave. We denote the points of incidence (situated on the interfaces �i , i = 1, 2, . . . , k)
consecutively Q1, Q2, . . . , QN , and the corresponding points of reflection/transmission
Q̃1, Q̃2, . . . , Q̃N . Point Qi , of course, coincides with point Q̃i , but the parameters of the
medium and of the wave propagating along � may be different at Qi and Q̃i . Formally,
we shall also use Q̃0 = S. Interfaces �i are assumed to be continuous together with at
least the second derivatives in the vicinity of points Qi . The segments of ray � in the
individual layers may correspond either to a P or to an S wave. Thus, a completely general,
multiply-reflected, converted high-frequency wave is considered.

S = Q

interface ΣΣ

ray ΩΩ
R = Q

1

2

3

N

N+1

0
~

Q1
~

Q1

Q
~

2

Q2

Q3

Q3
~

Q
~

N

QN

ΣΣ

interface ΣΣ

interface ΣΣ

interface 

Figure 4.11. Ray � of an elementary
multiply reflected/transmitted ray in a
layered/blocked medium. Points Q1,
Q2, . . . , QN represent points of in-
cidence, and points Q̃1, Q̃2, . . . , Q̃N

represent the relevant reflection/trans-
mission points.
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By dynamic ray tracing along the individual segments of ray � (see (4.3.29)), and by
applying the interface propagator matrix (see (4.4.75)), we finally obtain

(
Q(R)
P(R)

)
= Π(R, Q̃N )

1∏
i=N

[Π(Q̃i , Qi )Π(Qi , Q̃i−1)]

(
Q(S)
P(S)

)
. (4.4.85)

The symbol
∏1

i=N Ai denotes matrix product ANAN−1 . . .A1.
It follows immediately from (4.4.85) that the ray propagator matrix Π(R, S) is given

by relation

Π(R, S) = Π(R, Q̃N )
1∏

i=N

[Π(Q̃i , Qi )Π(Qi , Q̃i−1)]. (4.4.86)

All symbols in (4.4.86) have the same meaning as in (4.4.85).
We shall now show that the ray propagatormatrixΠ(R, S) corresponding to an arbitrary

multiply reflected (possibly converted) wave propagating in a 3-D laterally varying layered
medium satisfies the properties proved in Section 4.3 for the ray propagator matrix in a
smooth medium.

a. The symplectic property. All matrices in the product on the RHS of (4.4.86) are
symplectic. This implies that the final matrixΠ(R, S) in (4.4.86) is also symplectic.

b. Liouville’s theorem. The determinants of all matrices on theRHS of (4.4.86) equal
1. This implies that detΠ(R, S) = 1, even in a laterally varying structure.

c. Chainproperty. Considering (4.3.20) for smooth parts of ray� and (4.4.82) across
interfaces, we obtain a generally valid chain rule,

Π(R, S) = Π(R, O)Π(O, S). (4.4.87)

Here O is an arbitrary point situated on ray � of a wave multiply reflected in
a layered medium. Point O may be situated even on an interface, but we must
strictly distinguish between the points of incidence (Qi ) and the points of reflec-
tion/transmission (Q̃i ). Point O may, of course, be situated also outside points S
and R, but on the ray �.

d. The inverse of the ray propagatormatrix. If we express the ray propagatormatrix
Π(R, S) given by (4.4.86) as

Π(R, S) =
(
Q1(R, S) Q2(R, S)
P1(R, S) P2(R, S)

)
, (4.4.88)

then the inverse of Π(R, S) is given by relation

Π−1(R, S) = Π(S, R) =
(
PT2 (R, S) −QT

2 (R, S)
−PT1 (R, S) QT

1 (R, S)

)
. (4.4.89)

Theproof of (4.4.89) follows immediately from the symplecticity and chain property
of Π(R, S). It is also possible to prove (4.4.89) directly. We can simply show that
the product of two matrices with inverses given by (4.4.89) has an inverse that is
again given by (4.4.89). We then take into account that all matrices in the product
on the RHS of (4.4.86) satisfy (4.4.89); see (4.3.26) and (4.4.84).
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4.4.7 Surface-to-Surface Ray Propagator Matrix

Wemultiply (4.4.86) byY−1(S) from the right and byY(R) from the left. We also introduce
4 × 4 matrix

T(R, S) = Y(R)Π(R, S)Y−1(S). (4.4.90)

We then take into account (4.4.77) and rewrite (4.4.86) as

T(R, S) = T(R, Q̃N )
1∏

i=N

T(Qi , Q̃i−1). (4.4.91)

The 4 × 4 matrix T(R, S) will be called the surface-to-surface ray propagator matrix. We
remind the reader that Q̃0 ≡ S.

The surface-to-surface raypropagatormatrixT(R, S) satisfies the sameproperties as ray
propagatormatrixΠ(R, S).We can immediately see from (4.4.90) thatT(S, S) = I.Matrix
T(R, S) is symplectic because it is a product of symplectic matrices. Also, detT(R, S) = 1
because the determinants of Y(R),Y−1(S), andΠ(R, S) equal 1. If we introduce the 2 × 2
matrices A(R, S),B(R, S),C(R, S), and D(R, S) as

T(R, S) =
(
A(R, S) B(R, S)
C(R, S) D(R, S)

)
, (4.4.92)

the inverse of T(R, S) is

T−1(R, S) = T(S, R) =
(
DT (R, S) −BT (R, S)

−CT (R, S) AT (R, S)

)
. (4.4.93)

The proof of (4.4.93) is straightforward; any of the three matrices in (4.4.90) satisfies the
same property. The chain property of T(R, S) follows from the chain property ofΠ(R, S).

We shall now discuss the physical meaning of the surface-to-surface ray propagator
matrix. We can put

Π(R, S) = Y−1(R)T(R, S)Y(S).

Inserting this into (4.3.29) yields

Y(R)

(
Q(R)
P(R)

)
= T(R, S)Y(S)

(
Q(S)
P(S)

)
.

Using (4.4.69), we obtain(
dz(R′)

dp(�)(R′)

)
= T(R, S)

(
dz(S′)

dp(�)(S′)

)
, (4.4.94)

where R′ denotes a point situated on the posterior surface passing through point R, and S′

stands for a point situated on the anterior surface passing through point S. It is assumed
that R′ is situated close to R, and S′ close to S. Equation (4.4.94) represents the final
continuation equation for the surface-to-surface dynamic ray tracing.

We shall now explain in greater detail the physical meaning of 4 × 1 matrices(
dz(R′)

dp(�)(R′)

)
and

(
dz(S′)

dp(�)(S′)

)
.

Consider central ray � connecting point S situated on anterior surface �a and point R
situated on posterior surface�p.We introduce local Cartesian coordinate systems z1, z2, z3
at both surfaces, with origins at S and R. The z3-axes of both systems correspond to unit
normals to �a and �p at S and R. Axes z1 and z2 at S and R are chosen so that both
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systems z1, z2, z3 form a right-handed Cartesian coordinate system; otherwise, they may
be chosen arbitrarily.

Let us now select paraxial ray �′, which passes through point S′ situated on anterior
surface �a specified by coordinates z1(S′) and z2(S′). Let us emphasize that point S′ is
situated on surface�a , not in the plane tangent to�a at S. The z3-coordinate of point S′ is
given by the relation z3 = − 1

2 zI z J DIJ(S). If anterior surface �a and its curvature matrix
DIJ at S are known, point S′ is fully specified by z1(S′) and z2(S′); the z3-coordinate of S′

can be determined from them, if necessary. We also denote dz(S′) ≡ (z1(S′), z2(S′))T .
The direction of the selected paraxial ray �′ at S′ is fully specified by dp(�)1 (S′) and

dp(�)2 (S′), given by relations

dp(�)I (S′) = p(�)I (S′) − p(�)I (S), (4.4.95)

where 	p(�)(S′) denotes the vectorial component of the slowness vector, tangent to �a at
S′, in the same way that 	p(�)(S) denotes the vectorial component of the slowness vector,
tangent to�a at S. If dp

(�)
I (S′) are known at S′, the complete slowness vector 	p(S′) can be

determined using Equations (4.4.59) through (4.4.62), and vice versa.
Equation (4.4.94) then determines the coordinates z1(R′) and z2(R′) of point R′ atwhich

paraxial ray�′ intersects posterior surface�p. In addition, it also determines components
dp(�)1 (R′) = p(�)1 (R′) − p(�)1 (R) and dp(�)2 (R′) = p(�)2 (R′) − p(�)2 (R). All quantities have
exactly the same meaning as they do on the anterior surface.

We shall emphasize an important point. The column 4 × 1 matrix (z1, z2, p
(�)
1 , p(�)2 )T

is continuous across any interface�. Thus, it is not necessary to distinguish between points
Qi and Q̃i , and Equation (4.4.91) simplifies to

T(QN , Q0) =
1∏

i=N

T(Qi , Qi−1), (4.4.96)

where Q0 is situated on the anterior surface and QN is on the posterior surface.
Using (4.4.90) and (4.4.92), we can find the relations between A(R, S), B(R, S),

C(R, S), and D(R, S) given by (4.4.92) and Q1(R, S),Q2(R, S),P1(R, S), and P2(R, S),
given by (4.3.5). We shall present three important relations:

B = G−1T (R)Q2G
−1(S)

DB−1 = G(R)P2Q
−1
2 GT (R) + E(R) − p(z)3 (R)D(R), (4.4.97)

−B−1A = −G(S)Q−1
2 Q1G

T (S) + E(S) − p(z)3 (S)D(S).

Thus, B is simply related to Q2, which plays an important role in the computation of
geometrical spreading; see Section 4.10.2. The physical meaning of DB−1 is obvious from
(4.4.37). It represents a 2 × 2matrix of second derivatives of the travel-time field T �(z1, z2)
with respect to the zI -coordinates along the posterior surface �p, forM = P2Q

−1
2 . It will

be shown in Section 4.6 thatM = P2Q
−1
2 corresponds to a point source situated at S, that

is, on the anterior surface �a; see (4.6.8). The meaning of −B−1A is similar. It represents
the matrix of second derivatives of the travel-time field T �(z1, z2) with respect to the zI -
coordinates along the anterior surface �a , due to a point source situated at R, that is, on
posterior surface �p; see (4.6.9).

Surface-to-surface computations have been effectively used in seismic exploration for
oil, particularly inmodels composed of homogeneous layers separated by curved interfaces;
seeBortfeld (1989),Bortfeld andKemper (1991), andHubral, Schleicher, andTygel (1992),
among others. The complete theoretical treatment can be found in Bortfeld (1989), who
speaks of the theory of seismic systems. See also Section 4.9.5.



306 DYNAMIC RAY TRACING. PARAXIAL RAY METHODS

4.4.8 Chain Rules for the Minors of the Ray Propagator Matrix.

Fresnel Zone Matrix

One of the most important relations in the paraxial ray theory is the chain rule for the
ray propagator matrix Π(R, S) in layered laterally varying media; see (4.4.87) as well as
(4.4.81) or (4.4.82). A similar chain rule can also be written for 2 × 2 matrices Q1(R, S),
Q2(R, S),P1(R, S), andP2(R, S),minors of the ray propagatormatrixΠ(R, S); see (4.3.5).
The chain rules allow matrices Q1, Q2, P1, and P2 to be factorized into individual factors,
corresponding to specified branches of ray �. These factors can be calculated indepen-
dently, and in many cases analytically.

The chain rules forQ1,Q2,P1, andP2 have certain important applications. For example,
the chain rule for matrix Q2(R, S) can be used to factorize the geometrical spreading; see
Section 4.10.4. It also provides a suitable tool for investigating the KMAH index and the
phase shift due to caustics; see Section 4.12.2.

Let us consider ray �, connecting two points S and R. The point S may represent a
point source, or it may merely represent a reference point on�. At point Q, situated on ray
� between S and R, ray � is incident at interface �. The ray propagator matrix Π(R, S)
can then be expressed in the following form (see (4.4.82)):

Π(R, S)=
(
Q1(R, Q̃) Q2(R, Q̃)
P1(R, Q̃) P2(R, Q̃)

)(
QI

1 0
PI1 PI2

)(
Q1(Q, S) Q2(Q, S)
P1(Q, S) P2(Q, S)

)
,

(4.4.98)

where QI
1 = Q1(Q̃, Q),PI1 = P1(Q̃, Q), and PI

2 = P2(Q̃, Q) are 2 × 2 minors of the in-
terface propagator matrix Π(Q̃, Q),

QI
1 = GT (Q̃)G−1T (Q), PI1 = G−1(Q̃)(W(Q) −W(Q̃))G−1T (Q),

PI
2 = G−1(Q̃)G(Q), W(Q) = E(Q) − p(z)3 (Q)D;

(4.4.99)

see (4.4.80). From (4.4.98), we then obtain

Q1(R, S) = Q1(R, Q̃)U1Q1(Q, S),

Q2(R, S) = Q2(R, Q̃)U2Q2(Q, S),

P1(R, S) = P1(R, Q̃)U3P1(Q, S),

P2(R, S) = P2(R, Q̃)U4P2(Q, S).

(4.4.100)

These equations represent the basic form of the chain rules for minors of the ray propagator
matrix. The whole ray� is decomposed into two branches: from S to Q and from Q̃ to R.

The 2 × 2 matrices U1, U2, U3, and U4 are given by relations

U1 = QI
1 +Q−1

1 (R, Q̃)Q2(R, Q̃)P
I
1

+Q−1
1 (R, Q̃)Q2(R, Q̃)P

I
2P1(Q, S)Q

−1
1 (Q, S),

U2 = PI1 +Q−1
2 (R, Q̃)Q1(R, Q̃)Q

I
1 + PI2P2(Q, S)Q

−1
2 (Q, S),

U3 = QI
1Q1(Q, S)P

−1
1 (Q, S) + P−1

1 (R, Q̃)P2(R, Q̃)P
I
2

+ P−1
1 (R, Q̃)P2(R, Q̃)P

I
1Q1(Q, S)P

−1
1 (Q, S),

U4 = PI2 + PI1Q2(Q, S)P
−1
2 (Q, S)

+ P−1
2 (R, Q̃)P1(R, Q̃)Q

I
1Q2(Q, S)P

−1
2 (Q, S).
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The expressions for U1,U2,U3, and U4 are not simple and contain minors of ray
propagator matrices Π(R, Q̃) and Π(Q, S). All these minors, however, can be expressed
in terms of the 2 × 2 matricesM of the second derivatives of the travel-time field at Q or
Q̃, due to a point source or a telescopic source at S or R. Here we shall discuss in greater
detail only the chain rule for the minor Q2(R, S), which plays a very important role in
many applications. We shall denote byM(Q, S) the matrixM of the second derivatives of
the travel-time field at Q due to a point source situated at S, and by M(Q̃, R) the matrix
M at Q̃ due to a point source situated at R. Applying (4.1.72) and (4.3.26) to the point
sources at S and R, we obtain

M(Q, S) = P2(Q, S)Q
−1
2 (Q, S), M(Q̃, R) = −Q−1

2 (R, Q̃)Q1(R, Q̃).

(4.4.101)

For more details on (4.4.101), see Section 4.6.1. Using (4.4.101), the expression for U2

may be expressed in the following way:

U2 = PI1 −M(Q̃, R)QI
1 + PI

2M(Q, S)

= G−1(Q̃)[F(Q, S) − F(Q̃, R)]G−1T (Q), (4.4.102)

where

F(Q, S) = G(Q)M(Q, S)GT (Q) + E(Q) − p(z)3 (Q)D(Q),

F(Q̃, R) = G(Q̃)M(Q̃, R)GT (Q̃) + E(Q̃) − p(z)3 (Q̃)D(Q).
(4.4.103)

As we can see from (4.4.37) and (4.4.40), F(Q, S) represents the matrix of second deriva-
tives of the travel-time field along surface� at point Q due to a point source situated at S.
Matrix F(Q̃, R) has a fully analogous meaning, but the source is situated at R. Similarly,
we can introduce F(Q̃, S) and F(Q, R). Matrices F are continuous across the interface �:

F(Q, S) = F(Q̃, S), F(Q, R) = F(Q̃, R).

We now introduce the 2 × 2 matrixMF (Q; R, S) by the relation

U2 = G−1(Q̃)MF (Q; R, S)G−1T (Q). (4.4.104)

Using (4.4.102), we obtain

MF (Q; R, S) = F(Q, S) − F(Q̃, R)

= F(Q, S) − F(Q, R)

= F(Q̃, S) − F(Q̃, R). (4.4.105)

Matrix MF (Q; R, S) plays an important role in the computation of Fresnel volumes and
Fresnel zones; see Section 4.11. For this reason, we call it the Fresnel zone matrix. The
term Fresnel zone matrix was introduced by Hubral, Schleicher, and Tygel (1992), using
the surface-to-surface ray propagator matrix. Fresnel zone matrices have also found appli-
cations in the calculation of relative geometrical spreading (see Section 4.10.4) and in the
computation of the KMAH index (see Section 4.12.2).

The Fresnel zonematrixMF (Q; R, S) is related to the selected ray� and to three points
situated on it: point source S, receiver R, and the point Q at which the Fresnel zone matrix
is evaluated. It is continuous across interface �,

MF (Q; R, S) = MF (Q̃; R, S); (4.4.106)

see (4.4.105).
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An important note. In our treatment, the travel time increases from S to R, and the
introduced ray-centered coordinate system corresponds to the direction of propagation
from S to R. Both F(Q, S) and F(Q̃, R) are expressed in the same ray-centered coordinate
system. This implies that the numerical value of F(Q, S) will mostly have the opposite sign
to the numerical value of F(Q̃, R). For example, in a homogeneous medium, M(Q, S) is
always positive, andM(Q̃, R) is always negative.

As shown in (4.4.105), the Fresnel zone matrix can be expressed in several general
forms. If we insert (4.4.103) into (4.4.105), we obtain more specific expressions:

MF (Q; R, S) = G(Q)[M(Q, S) −M(Q, R)]GT (Q)

= G(Q̃)[M(Q̃, S) −M(Q̃, R)]GT (Q̃)

= G(Q̃)
[
PI1 + PI

2M(Q, S) −M(Q̃, R)QI
1

]
GT (Q).

(4.4.107)

Alternatively, other useful forms are

MF (Q; R, S) = G(Q)M(Q, S)GT (Q) −G(Q̃)M(Q̃, R)GT (Q̃)

+ E(Q) − E(Q̃) − uD(Q)

= G(Q)P2(Q, S)Q
−1
2 (Q, S)GT (Q)

+ G(Q̃)Q−1
2 (R, Q̃)Q1(R, Q̃)G

T (Q̃)

+ E(Q) − E(Q̃) − uD(Q). (4.4.108)

The expressions (4.4.108) for the Fresnel zone matrix MF (Q; R, S) are very general.
If we choose the standard option of the local Cartesian coordinate system zi at point Q
on �, given by (4.4.21), and a standard choice of 	e1(Q̃) and 	e2(Q̃) given by (2.3.45), the
individual matrices in (4.4.108) simplify. We can insert expressions (4.4.48) with (4.4.49)
forG(Q) and G(Q̃), (4.4.51) for u, (4.4.53) for EIJ(Q), and (4.4.54) for EIJ(Q̃). For other
possible simplifications, see Section 4.8.4.

The final equation for the decomposition of Q2(R, S) using the Fresnel zone matrix
can be obtained from (4.4.100) and (4.4.104):

Q2(R, S)=Q2(R, Q̃)G
−1(Q̃)MF (Q; R, S)G−1T (Q)Q2(Q, S). (4.4.109)

Relation (4.4.109) can, of course, be further chained, if we decompose Q2(R, Q̃) and/or
Q2(Q, S). It would also be possible to write a similar expression for N points of incidence,
Q1, Q2, . . . , QN , situated along � between S and R. See Hubral, Tygel, and Schleicher
(1995).

Points Q and Q̃ in the preceding relations are situated on a curved interface that crosses
ray�. Point Q corresponds to the point of incidence, and point Q̃ corresponds to the point
of reflection/transmission. All the presented relations, of course, also remain valid for point
Q, situated on the smooth part of the ray.

4.4.9 Backward Propagation

In certain applications, particularly in the investigation of various source-receiver reciproc-
ities, it would be useful to compare the results of the forward computations (from S to R)
with those of the backward computation (from R to S). In the backward propagation,
we must consider an orientation of the slowness vector opposite to that in the forward
propagation.
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We shall first briefly discuss the forward dynamic ray tracing along �, from S to
R. At the initial point S, we specify the right-handed triplet of unit vectors 	e1(S), 	e2(S),
and 	e3(S) ≡ 	t(S), where 	t(S) is tangent to the ray � and oriented in the direction of
propagation from S to R. The unit vectors 	e1(S) and 	e2(S) may be chosen arbitrarily in
the plane perpendicular to � at S, only they must be mutually perpendicular and form a
right-handed triplet with 	t(S). At any point of incidence on a structural interface, we use
a standard option (4.4.21) to construct a local Cartesian coordinate system zi , with the
z3-axis oriented along the normal 	n to the interface at that point. The orientation of the unit
normal 	n may be chosen arbitrarily to any side of the interface. We also use the standard
choice (2.3.45) to determine 	e1 and 	e2 for the generated R/T waves. See also (4.4.25). As a
result, we obtain the 4 × 4 propagator matrixΠ(R, S) and the relevant right-handed triplet
	e1(R), 	e2(R), and 	e3(R) ≡ 	t(R) at R. An important consequence of the standard choice of
	e1 and 	e2 at individual points of incidence follows. If the unit vectors 	e1(S) and 	e2(S) are
rotated by an angle ϕ in the plane perpendicular to the ray � at S, the unit vectors 	e1(R)
and 	e2(R) will be rotated by the same angle in the plane perpendicular to the ray � at R.

Now we shall specify the backward propagation and denote the quantities correspond-
ing to the backward propagation by the superscript b. At R, we choose

	eb1(R) = −	e1(R), 	eb2(R) = 	e2(R), 	eb3(R) = −	e3(R). (4.4.110)

Here we have changed the orientation of 	eb3(R) because the slowness vector 	pb(R) is
opposite to 	p(R). Since we wish to use the right-handed triplet, we have also changed the
orientation of 	eb1(R). It would also be possible to use different alternative choices, but here
we shall consider (4.4.110) systematically in the backward propagation.

At all interfaces, we must relate 	i (z)3 ≡ 	n used in the forward propagation to 	i (z)b3 in the
backward propagation. We shall use the following relation at all points of incidence:

	i (z)b3 = −	i (z)3 . (4.4.111)

Thus, the unit vectors 	i (z)b3 are taken opposite to 	i (z)3 at all points of incidence. The other two
unit basis vectors 	i (z)b1 and 	i (z)b2 are computed in a standard way, using the standard option
(4.4.21). This gives 	i (z)b1 = −	i (z)1 and 	i (z)b2 = 	i (z)2 . Consequently, the local Cartesian coor-
dinate systems are again right-handed at all points of incidence. (See Figure 5.9.) The
standard choice should be used to determine 	eb1, 	eb2, and 	eb3 at relevant R/T points.

Thus, the backward propagation from R to S is fully specified by conditions (4.4.110)
and (4.4.111). By dynamic ray tracing in the backward direction, from R to S, we obtain at
S the propagator matrix Πb(S, R) and the basis vectors 	eb1(S), 	eb2(S), and 	eb3(S). The basis
vectors 	ebi (S) are related to 	ei (S) as follows:

	eb1(S) = −	e1(S), 	eb2(S) = 	e2(S), 	eb3(S) = −	e3(S), (4.4.112)

We also obtain a simple relation between the forward propagator matrix Π(R, S)
(see (4.3.5)) and the backward propagator matrix Πb(S, R):

Πb(S, R) =
(
Qb

1(S, R) Qb
2(S, R)

Pb1(S, R) Pb2(S, R)

)
=
(

Q̄1(S, R) −Q̄2(S, R)
−P̄1(S, R) P̄2(S, R)

)

=
(
P̄T2 (R, S) Q̄T

2 (R, S)
P̄T1 (R, S) Q̄T

1 (R, S)

)
. (4.4.113)

Here Q̄I and QI are the same; only their off-diagonal terms have opposite signs. The
relations between P̄I and PI are analogous.
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Equations (4.4.112) and (4.4.113) can be used in various applications of forward and
backward propagation. The most important consequence of (4.4.113) is

detQb
2(S, R) = detQ2(S, R) = detQ2(R, S). (4.4.114)

It will be shown in Section 4.10.2 that (4.4.114) implies the reciprocity of relative geomet-
rical spreading in forward and backward propagation.

4.5 Initial Conditions for Dynamic Ray Tracing

To compute ray propagator matrix Π along ray �, we do not need to specify the initial
conditions at the initial point S of ray�; they are given by the identity matrix. To determine
the actual matricesQ,P, andM along�, however, we must know the initial values of these
matrices at S (at least of two of them). The problem is that these matrices are not, as
a rule, known at S; they must be computed from other known quantities at S. All three
initialmatricesQ(S),P(S), andM(S) dependon the selection of the ray-centered coordinate
system 	e1(S), 	e2(S), and 	e3(S).MatricesQ(S) andP(S) also depend on the parameterization
of the ray field close to S. In addition, M(S) and P(S) depend on the travel-time field in
the vicinity of S.

In this section, we shall first consider the case of a smooth curved initial surface �0

situated in an isotropic inhomogeneous medium, along which the initial time field T 0 is
specified. To perform ray tracing and dynamic ray tracing from�0, it is necessary to solve
two problems:

a. To determine the initial slowness vectors for ray tracing.
b. To determine Q(S) and P(S) for dynamic ray tracing in ray-centered coordinates.

The first problemwill be solved in Section 4.5.1; the second will be solved in Section 4.5.2.
In Section 4.5.3, the results are specified for ray parameters γI corresponding to local
Cartesian coordinates zI in a plane tangent to �0 at S. In addition to a smooth initial
surface �0, we shall also consider two very important cases of a point source at S (see
Section 4.5.4) and of an initial line C0 (see Section 4.5.5). Finally, a general initial surface
�0 containing edges and vertexes will be discussed in Section 4.5.6.

There are many analogies between the problem of initial surface �0 and the problem
of reflection/transmission at a structural interface �. The main difference consists in the
different functional descriptions of the initial surface �0 and structural interface � we
use. In the case of initial surface �0, it is convenient to consider a global parameteric
description, with two parameters γ1 and γ2, which may also be taken as the ray parameters
of the orthonomic system of rays generated at�0. The initial travel time T 0 along�0 may
also be simply introduced as a function of these two parameters. The implicit description
�(xi ) = 0 (see (4.4.1)) or the explicit description x3 = f (xI ) (see (4.4.5)) used in the
solution of the reflection/transmission problems are not as suitable in solving the initial
surface problem because they do not assign initial conditions to given ray parameters.
Because we shall use the parameteric description of �0, we cannot directly apply the
results of Section 4.4 here. Another difference with respect to Section 4.4 is that we shall
not construct an auxiliary Cartesian coordinate system z1, z2, z3 at point S of initial surface
�0. The parameteric description of�0 does not require it. This will be done in Section 4.5.3
only as an example to the general approach.
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Figure 4.12. Initial surface �0, speci-
fied by parameteric equation 	x = 	x(γ1,
γ2), where γ1 and γ2 are two parameters
such as the Gaussian coordinates along
�0. Isolines γ1 = const. and γ2 = const.
and the unit normal 	n0 at point S[γ1, γ2]
on �0 are shown.

4.5.1 Initial Slowness Vector at a Smooth Initial Surface

We shall consider a smooth initial surface �0. Surface �0 may correspond to a structural
interface, to a free surface, to an interface between a solid and fluid medium (for example,
an ocean bottom), to a wavefront, to a hypothetical exploding reflector, or to an auxiliary
surface situated in a smooth medium. Initial surface �0 will be described by parameteric
vectorial equation

	x = 	x(γ1, γ2). (4.5.1)

Here 	x is the radius-vector and γ1 and γ2 are two parameters (for example, Gaussian
coordinates along�0). Parameters γ1 and γ2 will also be taken as ray parameters, specifying
the rays generated at the individual points of �0. See Figure 4.12. Equation (4.5.1) is very
general and can also be used to describe closed smooth surfaces, salt domes, and the like.
We shall use the standard notation for first and second partial derivatives,

	x,I = ∂	x/∂γI , 	x,IJ = ∂2	x/∂γI ∂γJ , (4.5.2)

and denote

E = 	x,1 · 	x,1, F = 	x,1 · 	x,2, G = 	x,2 · 	x,2. (4.5.3)

Assume that initial time field T 0(γ1, γ2) is known along�0. Initial time field T 0(γ1, γ2)
may be constant along �0 (wavefront, exploding reflector) or may vary along it. We also
assume that the first and second derivatives of the initial time field, T 0

,I = ∂T 0/∂γI and
T 0
,IJ = ∂2T 0/∂γI∂γJ , are known along�0 (they can be determined fromknown T 0(γ1, γ2)).
Nowwe shall determine the tangential component 	p(�)(S) of the initial slowness vector

	p0(S) at any selected point S situated on �0. Because 	p(�) is tangential to �0, we can put
	p(�) = a	x,1 + b	x,2,wherea andb are not yet known.Multiplying this equation successively
by 	x,1 and 	x,2, we obtain two equations for a and b:

	p(�) · 	x,1 = T 0
,1 = aE + bF, 	p(�) · 	x,2 = T 0

,2 = aF + bG.

Solving these equations for a and b, we obtain

	p(�) = (EG − F2)−1
[(
GT 0

,1 − FT 0
,2

)	x,1 + (−FT 0
,1 + ET 0

,2

)	x,2]. (4.5.4)

This is the final expression for 	p(�). Magnitude p(�) of 	p(�) can be determined from the
relation

p(�)2 = 	p(�) · 	p(�) = (EG − F2)−1
(
GT 02

,1 + ET 02
,2 − 2FT 0

,1T
0
,2

)
. (4.5.5)
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Equations (4.5.4) and (4.5.5) can also be expressed in a more compact form if we introduce
the 2 × 2 matrix A by the relation

A = (EG − F2)−1

(
G −F

−F E

)
. (4.5.6)

Then (4.5.4) and (4.5.5) read

	p(�) = AIKT
0
,K 	x,I , p(�)2 = AIKT

0
,I T

0
,K . (4.5.7)

To determine the complete initial slowness vector 	p0(S), we also need to find its component
normal to �0. We denote the unit normal to initial surface �0 at S by 	n0. If �0 is smooth
in the vicinity of S, 	n0 is given by relation

	n0 = (	x,1 × 	x,2)
/|	x,1 × 	x,2| = (EG − F2)−1/2(	x,1 × 	x,2). (4.5.8)

For points S situated at the edges and vertices in �0, see Sections 4.5.4 through 4.5.6.
Slowness vector 	p0 is situated in the radiation plane, specified by 	n0 and 	p(�),

	p0 = σ 	n0 + 	p(�). (4.5.9)

Quantity σ can be determined from the relevant eikonal equation. For isotropic media, the
eikonal equation reads σ 2 + p(�)2 = 1/V 2, where V is the propagation velocity at S, but
outside �0. Consequently,

σ = ε
(
V−2 − p(�)2

)1/2
. (4.5.10)

Here ε = ±1 is the given orientation index, ε = sgn( 	p0 · 	n0), specifying to which side
of �0 the wave under consideration propagates. If �0 is a structural interface, we have,
in general, four possible velocities V (S): P and S wave velocities on each side of �0

at S. Consequently, we have four generated waves at S. The number of velocities and
relevant generated waves is smaller in some special cases (for example, acoustic case or
�0 representing a formal surface).

The initial slowness vectors 	p0(S) of all waves generated at S are situated in the same
radiation plane so that they are coplanar. The radiation plane plays a role very similar to
the role of the plane of incidence in the R/T problems. See Figure 4.13.

radiation plane

surface ΣΣn
a

b
p

S

((ΣΣ))

0
0 Figure 4.13. Radiation plane, constructed at

point S of initial surface�0. It is specified by
unit normal 	n0 to�0 at S, and by the tangential
component 	p(�)(S) of the slowness vector at
S. The initial slowness vectors of all elemen-
tarywaves generated on initial surface�0 at S
are situated in the radiation plane; see vectors
	a and 	b.
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The slowness vector 	p0 given by (4.5.9) corresponds to a homogeneous wave only if
σ is real-valued, that is, if

p(�)2 ≤ V−2(S). (4.5.11)

In the opposite case, the relevant slowness vector 	p0 and the corresponding ray are not
real, but complex-valued. The corresponding wave is then inhomogeneous and cannot be
computedby the standard raymethod. It is obvious that certain of the possible four generated
waves may be inhomogeneous (with a complex-valued initial slowness vector), and the
other may represent standard homogeneous waves. There are several various combinations
of generated homogeneous and inhomogeneous waves, as in the R/T problem. For the
limiting case of p(�)2 = V−2(S), we obtain σ = 0. The relevant ray grazes initial surface
�0 at S.

The procedure described here may also be used if initial surface �0 is situated in an
inhomogeneous anisotropic medium. Relations (4.5.7) and (4.5.9) remain valid; only σ
in (4.5.9) must be determined from the eikonal equation for an anisotropic medium. The
method outlined in Section 2.3.3 can be used for this purpose. In general, three different
values of σ , corresponding to one qP and two qS waves, may be obtained on each side of
�0 at S.

4.5.2 Initial Values of Q, P, and M at a Smooth Initial Surface

First, we need to determine the initial values of basis vectors 	e1(S), 	e2(S), and 	e3(S) of the
ray-centered coordinate system at S. Unit vector 	e3(S) is tangent to ray � at S,

	e3(S) = V (S) 	p0(S) = V (S)
(
σ 	n0 + 	p(�)(S)). (4.5.12)

The other two unit vectors, 	e1(S) and 	e2(S), may be taken arbitrarily in the plane perpendic-
ular to 	e3(S); the only requirement is that 	e1(S), 	e2(S), and 	e3(S) be mutually perpendicular
and form a right-handed system. It may also be convenient to take either 	e1(S) or 	e2(S)
perpendicular to the radiation plane.

Now we shall determine Q(S) and P(S). The determination of Q(S) is easy. We have

QIJ = ∂qI/∂γJ = (∂qI/∂xk)(∂xk/∂γJ ) = eIk(∂xk/∂γJ ).

Consequently,

QIJ(S) = 	eI (S) · 	x,J (S). (4.5.13)

The determination of PIJ(S) is more involved. We need to determine the partial deriva-
tives of slowness vector 	p with respect to γJ along the wavefront (not along �0). In
addition to ray coordinates γ1, γ2, γ3 = T we also introduce auxiliary ray coordinates
γ ′
1 = γ1, γ

′
2 = γ2, and γ ′

3 = T − T 0(γ1, γ2). Whereas the coordinate surface γ3 = T rep-
resents the wavefront, coordinate surface γ ′

3 = T − T 0 = 0 is the initial surface, �0. The
transformation matrix (∂γi/∂γ ′

j ) from coordinates γ1, γ2, γ3 to coordinates γ ′
1, γ

′
2, γ

′
3 and

its inverse are given by relations

(∂γi/∂γ
′
j ) =


 1 0 0

0 1 0
T 0
,1 T 0

,2 1


 , (∂γ ′

i /∂γ j ) =

 1 0 0

0 1 0
−T 0

,1 −T 0
,2 1


 .
(4.5.14)
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Now we shall discuss the partial derivatives of the slowness vector 	p with respect to ray
parameters γI . We shall use the following notation:

	p,J = (∂ 	p/∂γJ )wavefront, 	p0,J = (∂ 	p/∂γJ )�0 = (∂ 	p0/∂γJ )�0. (4.5.15)

Here 	p0 is given by (4.5.9). The relation between 	p,J and 	p0,J follows from (4.5.14),

	p,J = 	p0,J − (∂ 	p/∂γ ′
3)T

0
,J = 	p0,J − (∂ 	p/∂T )T 0

,J = 	p0,J + V−1∇VT 0
,J .

(4.5.16)

Derivatives 	p0,J are obtained from (4.5.9), and (4.5.16) yields

	p,J = σ 	n0,J + σ,J 	n0 + 	p(�),J + V−1∇VT 0
,J . (4.5.17)

Derivatives 	n0,J , σ,J , T 0
,J , and 	p(�),J are taken along �0. Finally, for PIJ = 	eI · 	p,J , we get

PIJ = σ
(	eI · 	n0,J

)+ σ,J (	eI · 	n0)+ (	eI · 	p(�),J

)+ V−1T 0
,J (	eI · ∇V ). (4.5.18)

Here σ, 	n0, 	e1, 	e2, T 0
,J , and∇V are presumably known; we only need to find the expressions

for 	p(�),J , σ,J , and 	n0,J .
For 	p(�),J , (4.5.7) yields

	p(�),J = ANK,JT
0
,K 	x,N + ANKT

0
,KJ	x,N + ANKT

0
,K 	x,NJ. (4.5.19)

To determine σ,J , we use (4.5.10) and (4.5.7):

σ,J = −σ−1
[
V−3(∇V · 	x,J ) + 1

2 ANK,JT
0
,NT

0
,K + ANKT

0
,NT

0
,KJ

]
. (4.5.20)

Finally, the expressions for 	n0,J are known from the differential geometry of surfaces
(Weingarten equations); see Korn and Korn (1961). We shall present a simple and ob-
jective derivation. We put 	n0,J = aJ 	x,1 + bJ 	x,2, and multiply it successively by 	x,1 and 	x,2.
The resultant two equations read

aJ E + bJ F = −L1J , aJ F + bJG = −L2J .

Here LNJ = −	n0,J · 	x,N . Because 	n0 · 	x,N = 0, we also have 	n0,J · 	x,N + 	n0 · 	x,NJ = 0. This
yields

LNJ = 	n0 · 	x,NJ. (4.5.21)

The solution of the two previous equations reads

	n0,J = −(EG − F2)−1[(L1JG − L2J F)	x,1 + (L2J E − L1J F)	x,2].
(4.5.22)

Using AIJ given by (4.5.6), we can express (4.5.22) in compact form

	n0,J = −L JN ANK	x,K . (4.5.23)

Quantities LNJ are closely related to the curvature of �0 at S. In the differential geometry
of surfaces, they are usually denoted as follows: L11 = L , L12 = L21 = M , and L22 = N .

Equations (4.5.13) and (4.5.18),with (4.5.19) through (4.5.23) give the final expressions
for QIJ(S) and PIJ(S). It would, of course, be possible to express these equations in many
alternative forms. If T 0(γ1, γ2) is constant along �0, (4.5.18) simplifies considerably:

PIJ = −εV−2(∇V · 	x,J )(	eI · 	n0) − εV−1LJKANK(	eI · 	x,N ). (4.5.24)

If initial surface �0 is planar, the second (curvature) term in (4.5.24) vanishes. If initial
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surface�0 is situated in a homogeneous medium, the first (inhomogeneity) term vanishes.
Using (4.5.13) and (4.5.18), we can determine the 2 × 2 matrix of the second derivatives
of travel-time fieldM(S):

M(S) = P(S)Q−1(S). (4.5.25)

It would also be possible to derive the equations for slowness vector 	p0(S) and for
matrices Q(S) and P(S) considering initial surface �0 to be a 2-D Riemannian space,
with curvilinear nonorthogonal coordinates γ1 and γ2. The covariant components of the
relevant metric tensor gIJ are given by relations g11 = E, g12 = g21 = F , and g22 = G, and
its contravariant components are gIJ = AIJ; see (4.5.6). The derivatives ANK,J of the metric
tensor are closely related to the Christoffel symbols; see (3.5.56).

4.5.3 Special Case: Local Cartesian Coordinates zI as Ray Parameters

As an important example of the general approach described in Section 4.5.2, we shall
specify the equation derived for one choice of ray parameters γ1 and γ2. We shall construct
a local Cartesian coordinate system zi at S, with its origin at S and with the z3-axis along
normal vector 	n0. Axes z1 and z2 are tangent to�0 at S and may be chosen arbitrarily. Such
a system was introduced in Section 4.4.1 so that we can use the notation introduced in that
section. Ẑ denotes the 3 × 3 transformation matrix from the local Cartesian coordinate
system z1, z2, z3 to the general Cartesian coordinate system x1, x2, x3, and 	i (z)1 ,

	i (z)2 , and 	i (z)3

are the basis vectors of the zi -coordinate system, with 	i (z)3 = 	n0. Initial surface �0 in the
“quadratic” vicinity of S is approximated by equation z3 = − 1

2 zI z J DIJ(S), where DIJ(S)
is the matrix of curvature of �0 at S.

We shall now specify the ray parameters γ1, γ2 to be equal to z1, z2, the local Cartesian
coordinates in the plane tangent to �0 at S. For given DIJ(S), two parameters γ1 = z1 and
γ2 = z2 fully specify the relevant point S′ on�0, S′[z1, z2, z3 = − 1

2 zI z J DIJ]. It is important
to keep in mind that the derivatives with respect to γI (≡ zI ) represent the derivatives along
initial surface �0, not along the plane tangent to �0 at S.

For xk,I and xk,IJ, we obtain

xk,I = ZkI − Zk3zJ DIJ, xk,IJ = −Zk3DIJ. (4.5.26)

Using these expressions, we can calculate other important quantities of Section 4.5.2.
Specifying them for point S, we obtain

E = 1, F = 0, G = 1, AIJ = δIJ,

AIJ,N = 0, LNJ = −DNJ.

Equation (4.5.7) yields the following expressions for the tangential component of the
slowness vector:

	p(�) = T 0
,I
	i (z)I , p(�)2 = T 0

,I T
0
,I . (4.5.27)

Similarly, slowness vector 	p0 is given by (4.5.9) with σ given by (4.5.10). For QIJ(S)
and PIJ(S), we can again use (4.5.13) and (4.5.18); the individual expressions in (4.5.18),
however, simplify as follows:

PIJ = −σ−1V−3
(∇V · 	i (z)J

)
G3I − σ−1T 0

,NT
0
,NJG3I + σDKJGKI + T 0

,NJGNI

− T 0
,N DNJG3I + V−1(∇V · 	eI )T 0

,J . (4.5.28)

Here we have used the notation GIJ = 	i (z)I · 	eJ as in Section 4.4.1.
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Now we need to determine 	e1, 	e2, and 	e3. We shall specify them in terms of the 3 × 3
matrix Ĝ:

Ĝ = Ĝ‖Ĝ⊥, Ĝ‖ =

σVg−1T 0

,1 −g−1T 0
,2 VT 0

,1

σVg−1T 0
,2 g−1T 0

,1 VT 0
,2

−Vg 0 Vσ


 . (4.5.29)

Here g = T 0
,I T

0
,I and rotation matrix Ĝ⊥ is given by (4.4.23). The third column of Ĝ‖

represents the basis vector 	e3 tangent to the ray. The second column of Ĝ‖ represents the
basis vector 	e2 perpendicular to the radiation plane, and the first column of Ĝ‖ represents
basis vector 	e1, confined to the radiation plane. Matrix Ĝ⊥ rotates 	e1 and 	e2 about 	e3 into
any other position. Using (4.5.29), we also obtain equations

GMIGNI = δMN − V 2T 0
,MT

0
,N , GMIG3I = −σV 2T 0

,M . (4.5.30)

It will be useful to compute GMIPIJ from (4.5.28) instead of PIJ. Multiplying (4.5.28) by
GMI, and using (4.5.30), we obtain

GMIPIJ = T 0
,MJ + σDMJ − EMJ, (4.5.31)

where EMJ is the inhomogeneity matrix, given by the relation

EMJ = σ−1V−3
(∇V · 	i (z)J

)
GMIG3I − V−1(	eI · ∇V )GMIT

0
,J .

Using (4.5.30) for GMIG3I , expressing T 0
,J = V−1GJ3 (see (4.5.29)) and transforming

∇V · 	i (z)J = (∇V · 	ei )GJi , we obtain

EMJ = −V−2[(GM3GJK + GMKGJ3)(∂V/∂qK ) + GM3GJ3(∂V/∂q3)].

But this is exactly the same as the inhomogeneity matrix in Section 4.4.2; see (4.4.47). The
final expressions for Q,P, andM are

Q = GT , P = G−1
(
T0 + p(z)3 D− E

)
,

M = G−1
(
T0 + p(z)3 D− E

)
G−1T .

(4.5.32)

Here T0 represents the 2 × 2 matrix with elements T 0
,IJ = ∂2T 0/∂zI ∂zJ . The derivatives

should be calculated along �0.

Notes.

1. Equations (4.5.32) forQ,P, andMwere derived by direct application of the general
equations of Sections 4.5.1 through 4.5.3 to specific ray parameters z1 and z2 corre-
sponding to local Cartesian coordinates in the plane tangent to�0 at S. The resultant
equations for P andM, however, can also be derived in a considerably simpler way,
using the relations of Section 4.4. We use (4.4.37) and bear in mind that F = T0.
Then (4.4.37) immediately yields (4.5.32) for M. Matrix P is obtained from the
relation P = MQ. Consequently, (4.4.37) yields an independent test of the results.

2. Let us now mutually compare the general results of Section 4.5.2 with the results
of this section; see (4.5.32). The results of this section look considerably simpler
when compared with those in Section 4.5.2. They have, however, certain serious
disadvantages. The equations of Section 4.5.2 have a global character; they can
be used to study the whole ray field generated at initial surface �0. Surface �0 is
specified quite exactly, using general parameteric equation (4.5.1) with parameters
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γ1 and γ2, and initial time T 0 is expressed in terms of the same parameters γ1, γ2,
so that T 0 = T 0(γ1, γ2). Thus, it is easy to calculate T 0

,I and T
0
,IJ, either analytically

or numerically. On the other hand, (4.5.32) have a local character. At any point
S on �0, where we wish to compute Q,P, and/or M, we must construct the local
Cartesian coordinate system z1, z2, z3. We also describe initial surface �0 by the
local quadratic approximation z3 = − 1

2 zI z J DIJ(S). The local Cartesian coordinate
system and the quadratic approximation of �0 are different from one point of �0

to another. Moreover, the determination of T 0
,IJ needed in (4.5.32) and T 0

,I needed
in (4.5.29) will also be more complicated because initial time T 0 is not, as a rule,
specified in terms of local Cartesian coordinates z1 and z2 (different from one point
S to another), but in some global parameters γ1 and γ2.

3. Thederived equations (4.5.32) are also closely related to surface-to-surface dynamic
ray tracing; see Section 4.4.7 and relation (4.4.69). Consider (4.4.69), taken at point
S′ close to S on anterior surface �0. The initial conditions for surface-to-surface
dynamic ray tracing are dz(S′) = z(S′) and dp(�)(S′) = T0(S)dz(S′). Thus, to start
surface-to-surface dynamic ray tracing, we must know T0(S). It can be proved that
(4.4.69) immediately yields (4.5.32). We only need to insert dγ = dz and multi-
ply (4.4.69) by Y−1(S). This procedure provides an independent test of Equations
(4.5.32). For an analogous derivation in anisotropic media, see Section 4.14.10.

4.5.4 Point Source

We shall now consider a point source situated at S. Because the “initial surface �0”
representing a point source is not smooth, we do not obtain one unit normal 	n0, as in
(4.5.8), but a two-parameteric system of unit normals 	n0,

	n0 = 	n0(γ1, γ2), (4.5.33)

pointing to all sides of S. The relevant slowness vector 	p0 is then given by the relation 	p0 =
V−1	n0; see (4.5.9) for 	p(�) = 0 and ε = 1. Unit vector 	e3 of the ray-centered coordinate
system coincideswith the normal, 	e3 = 	n0(γ1, γ2). The other two unit vectors, 	e1 and 	e2, can
be taken arbitrarily in the plane perpendicular to 	e3; the only requirement is that 	e1, 	e2 and
	e3 are mutually perpendicular and form a right-handed system. In principle, it is sufficient
to specify for given γ1 and γ2 only two of 	e1, 	e2, and 	e3, for example, 	e1 = 	e1(γ1, γ2),
	e2 = 	e2(γ1, γ2), and to evaluate the third one as a vector product, for example, 	n0 = 	e3 =
	e1 × 	e2.

Now we shall determine QIJ(S) and PIJ(S). Because QIJ = 	eI · 	x,J and PIJ = 	eI · 	p,J ,
QIJ = 0, PIJ = V−1	eI · 	n0,J . (4.5.34)

These are the final expressions for Q and P, assuming that 	n0 is given by (4.5.33). The ray
parameters γ1 and γ2 in (4.5.33) may be taken arbitrarily.

As an example, we shall choose polar spherical coordinates as ray parameters, γ1 = i0
and γ2 = φ0, as in Section 3.2.1. Then

	n0 ≡ [sin i0 cosφ0, sin i0 sinφ0, cos i0]. (4.5.35)

We choose 	e3 = V 	p0 = 	n0. The other two unit vectors, 	e1 and 	e2, may be taken as follows:

	e1 ≡ [cos i0 cosφ0, cos i0 sinφ0,−sin i0],

	e2 ≡ [−sinφ0, cosφ0, 0].
(4.5.36)
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meridian
φ  = const.

N

S
e2

e3

e1

e1

e1

e2

e2

e3

e3

0

Figure 4.14. Possible choice of ray-centered basis vectors
	e1, 	e2, and 	e3 at a point source.

The direction of 	e1 and 	e2 is demonstrated in Figure 4.14 on a unit sphere with its center at
S. 	e1 is oriented along the meridian (constant φ0) and is positive northward; 	e2 is oriented
along the parallel (constant i0) and is positive westward.

Using (4.5.34) through (4.5.36), we obtain the final result:

Q(S) = 0, P(S) = V−1(S)

(
1 0
0 sin i0

)
, M−1(S) = 0. (4.5.37)

Results (4.5.34) and (4.5.37) can also be obtained by direct application of the equations
derived in Sections 4.5.1 through 4.5.3. We only need to start with a smooth surface �0.
For example, we can consider a spherical initial surface, �0, with its center at S and with
radius a:

	x − 	x(S) ≡ [a sin i0 cosφ0, a sin i0 sinφ0, a cos i0]. (4.5.38)

We assume that the distribution of the initial time T 0(γ1, γ2) along the spherical surface
�0 is constant and consider point S′ on the spherical surface specified by parameters i0
and φ0. Using (4.5.38), we can compute 	x,I and 	x,IJ at S′ and obtain E = a2, F = 0,G =
a2 sin2 i0, A11 = a−2, A12 = A21 = 0, A22 = (a sin i0)−2, L11 = −a, L12 = L21 = 0, and
L22 = −a sin2 i0. Again using 	e1 and 	e2 given by (4.5.36), we obtain the result

Q(S′)= a

(
1 0
0 sin i0

)
, P(S′)= 1

V (S′)

(
1 0
0 sin i0

)
,

(4.5.39)
M(S′)= I

aV (S′)
.

For a → 0, point S′ approaches S and (4.5.39) yields (4.5.37).

4.5.5 Initial Line

Let us consider a smooth 3-D initial line, C0, situated in an inhomogeneous isotropic
medium. Initial line C0 may be described by a vectorial parameteric equation,

	x = 	x(γ2). (4.5.40)

Here γ2 is an arbitrary parameter along initial lineC0, for example, the arclength measured
from some reference point on C0. Thus, any point S situated on C0 may be specified by γ2.
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We shall use the following notation:

	x,2 = ∂	x/∂γ2, 	x,22 = ∂2	x/∂γ 2
2 , G = 	x,2 · 	x,2,

	t = 	x,2/|	x,2| = G−1/2	x,2.
(4.5.41)

Here 	t denotes the unit tangent to initial line C0, and G has the same meaning as in
Section 4.5.1 (see (4.5.3)). If γ2 represents the arclength along C0,G = 1.

We consider an arbitrary distribution of initial travel time T 0 along C0, T 0 = T 0(γ2).
For T 0 = const., we speak of an exploding line.

The tangential component of the initial slowness vector at S can be determined in the
same way as in Section 4.5.1. We obtain

	p(�) = G−1T 0
,2	x,2, p(�)2 = G−1T 02

,2 . (4.5.42)

We now introduce unit normal 	n0, perpendicular to initial line C0 at S. We do not,
however, obtain only one normal 	n0 at S, as in (4.5.8). For fixed γ2, we have a one-
parameteric system of unit normals 	n0

	n0 = 	n0(γ1, γ2), (4.5.43)

parameterized by γ1 and pointing to all sides from S in a plane perpendicular to C0 at S.
Vector 	e1 of the ray-centered coordinate system may then be defined as

	e1 = 	t(γ2) × 	n0(γ1, γ2). (4.5.44)

Alternatively, we may have given, at each γ2, a one-parameteric system of unit vectors 	e1
and corresponding system of normals 	n0:

	e1 = 	e1(γ1, γ2), 	n0 = 	e1(γ1, γ2) × 	t(γ2). (4.5.45)

Unit vector 	e1 is parameterized by γ1 and perpendicular to 	t(γ2).
We shall now discuss initial slowness vector 	p0. We consider point S on C0 and the

radiation plane at S, specified by 	p(�)(S) and 	n0(S),
	p0 = σ 	n0 + G−1/2T 0

,2	t ; (4.5.46)

see (4.5.42) and (4.5.43). Quantity σ can be determined from the eikonal equation. For
isotropic media,

σ = (
V−2 − G−1T 02

,2

)1/2
. (4.5.47)

Here we have taken the plus sign (+) because all generated waves propagate away from
C0. Two waves (P and S) may be generated at any point S of C0. For G−1T 02

,2 >V
−2, the

generated wave is inhomogeneous. For G−1T 02
,2 = V−2, the generated rays graze the initial

line at S.
As in Section 4.5.1, expression (4.5.46) for 	p0 remains valid even if initial line C0 is

situated in an inhomogeneous anisotropic medium. Only σ needs to be determined from
the eikonal equation for the anisotropic medium. In this case, three waves may be generated
at any point S of C0 (qP, qS1, qS2).

For T 0
,2 �= 0 along C0, the initial slowness vectors of a selected generated wave with

velocity V at S form a conical surface in isotropic media, with its axis oriented along−	t(S)
and with the apex angle arctan(σ

√
G/T 0

,2). The wavefront is also conical, with the axis
along 	t(S) and with apex angle arctan(T 0

,2/σ
√
G). For T 0 constant along C0 (exploding

line), the initial slowness vectors at S are perpendicular toC0, and the wavefront is tubular.
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Now we shall discuss the determination of PIJ and QIJ. For this purpose, we need to
specify unit vectors 	e1, 	e2, and 	e3. We shall do this in a standard way: 	e3 = V 	p0 and 	e1, 	e2
perpendicular to 	e3. More specific expressions will be discussed later. Matrices Q and P
are then given by relations

QIJ = 	eI · 	x,J , PIJ = 	eI · 	p,J . (4.5.48)

Here 	p,J represents the derivative ∂ 	p/∂γJ , taken along the wavefront, 	p,J = 	p0,J +
δJ2V−1T 0

,2∇V ; see (4.5.16). Expressions for QIJ are simple because 	x,1 = 0, 	x,2 = √
G	t .

The determination of PIJ is more involved. As in (4.5.18), we obtain

PIJ = σ
(	eI · 	n0,J

)+ δJ2
[
σ,2(	eI · 	n0) + (	eI · 	p(�),2

)+ V−1T 0
,2(	eI · ∇V )].

(4.5.49)

Here

	p(�),2 = −G−2G,2T 0
,2	x,2 + G−1T 0

,22	x,2 + G−1T 0
,2	x,22,

σ,2 = −σ−1
[
V−3(∇V · 	x,2) − 1

2G
−2G,2T 02

,2 + G−1T 0
,2T

0
,22

]
.

(4.5.50)

The derivatives 	n0,J in (4.5.49) depend on a particular choice of 	n0(γ1, γ2); see (4.5.43).
An important choice of 	n0 will be discussed next. Otherwise, (4.5.48) through (4.5.50)
represent the final solution of the problem of ray tracing and dynamic ray tracing from
initial line C0 with an arbitrary distribution of initial time T 0 along it.

For γ2 fixed, that is, for a fixed point S on initial line C0, 	n0(γ1, γ2) represents a one-
parameteric system of normals, with parameter γ1. This one-parameteric system can be
constructed in many ways. Here we shall discuss two possibilities.

a. SPECIFICATION OF �n 0(γ1, γ2) IN TERMS OF AUXILIARY VECTOR �A
Consider vector 	A, which may be constant along C0 or may vary smoothly about it,

	A = 	A(γ2). We can then determine two auxiliary unit vectors 	nA and 	bA using the relations
	bA = (	x,2 × 	A)/|	x,2 × 	A|, 	nA = [(	x,2 × 	A) × 	x,2]

/|(	x,2 × 	A) × 	x,2|.
(4.5.51)

Unit vectors 	nA and 	bA are perpendicular to C0 and are mutually perpendicular. Together
with 	t , triplet 	t, 	nA, 	bA is right-handed and mutually orthogonal at any point S ofC0. Using
these two unit vectors, we can define the system of 	n0 as

	n0(γ1, γ2) = 	nA(γ2) cos i0 + 	bA(γ2) sin i0. (4.5.52)

Here parameter γ1 = i0 specifies the selected radiation plane. Then

	n0,1 = −	nA sin i0 + 	bA cos i0, 	n0,2 = 	nA,2 cos i0 + 	bA,2 sin i0. (4.5.53)

The determination of 	nA,2 and 	bA,2 from (4.5.51) is straightforward. Unit vectors 	e1, 	e2, and
	e3 may be taken as

	e1 = 	bA cos i0 − 	nA sin i0,
	e2 = Vσ 	t − VG−1/2T 0

,2(	nA cos i0 + 	bA sin i0), (4.5.54)

	e3 = VG−1/2T 0
,2	t + Vσ (	nA cos i0 + 	bA sin i0).

Here 	e1 is perpendicular to the radiation plane, and 	e2 is perpendicular to the generated ray
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in the radiation plane. Inserting (4.5.51) through (4.5.54) into (4.5.48) and (4.5.49) yields
the final expressions for QIJ and PIJ, for an arbitrarily chosen auxiliary vector 	A(γ2).

b. SPECIFICATION OF �n 0(γ1, γ2) IN TERMS OF MAIN NORMAL �n
AND BINORMAL �b
One particular choice of auxiliary vector 	A plays a great role in differential geometry of

curves: 	A(γ2) = 	x,22. From a computational point of view, this choice is not as convenient
as some other choices (for example, 	A = const.) because it also requires the computation
of the third derivatives 	x,222 along C0. On the other hand, it offers a simple geometrical
interpretation of the results in terms of the main curvature K and torsion T of initial line
C0. For this reason, we shall present the complete solution of the initial line problem for
this choice.

If 	A = 	x,22, the unit vectors 	nA and 	bA given by (4.5.51) have the geometrical meaning
of the main normal 	n and binormal 	b to initial line C0. Taking the derivatives of 	t , given
by (4.5.41), and of 	n and 	b, given by (4.5.51) with 	A = 	x,22, we obtain

	t ,2 =
√
GK 	n, 	n,2 =

√
G(T 	b − K 	t), 	b,2 = −

√
GT 	n. (4.5.55)

Here K is the main curvature and T is the torsion of initial line C0 at S. They are given by
relations

K = G−3/2|	x,2 × 	x,22|, T = K−2G−3[	x,2 · (	x,22 × 	x,222)]. (4.5.56)

In fact, Equations (4.5.55) represent Frenet’s formulae (3.2.8), modified for general pa-
rameter γ2 along the initial line. For γ2 = s, where s is the arclength along C0 measured
from some reference point, we obtain G = 1 and 	x,2 · 	x,22 = 0. The expression (4.5.55)
for main curvature K then simplifies considerably: K = |	x,22|. As we can see in (4.5.56),
the expression for T contains 	x,222. This is the disadvantage of choice 	A = 	x,22.

Before we write the general expressions for QIJ and PIJ, we shall present the relations
for 	p,J = 	p0,J + δJ2V−1T 0

,2∇V :
	p,1 = σ (−	n sin i0 + 	b cos i0),
	p,2 = σ,2(	n cos i0 + 	b sin i0) + σ

√
GT

(	b cos i0 − 	n sin i0
)

− σ
√
GK cos i0 	t + KT 0

,2	n + (
G−1/2T 0

,2

)
,2

	t + V−1T 0
,2∇V .

The final expressions for Q,P, andM−1 are then

Q =
(
0 0
0 Vσ

√
G

)
, P =

(
σ P12
0 P22

)
, M−1 =

(
0 0
0 Vσ

√
G/P22

)
.

(4.5.57)

Here P12 and P22 are given by the relations

P12 = σ
√
GT − KT 0

,2 sin i0 + V−1T 0
,2(	e1 · ∇V )

P22 = V−1σ−1
√
G
[−σK cos i0 + G−1T 0

,2(V
−1(∇V · 	x,2) (4.5.58)

−G−1(	x,2 · 	x,22)) + G−1T 0
,22

]+ V−1T 0
,2(	e2 · ∇V ).

For γ2 = s, we can insert G = 1 and 	x,2 · 	x,22 = 0. Equation (4.5.58) then yields

P22 = V−1σ−1
[−σK cos i0 + V−1(∇V · 	x,2)T 0

,2 + T 0
,22

]
+ V−1T 0

,2(	e2 · ∇V ). (4.5.59)
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For an exploding initial line C0 and γ2 = s, (4.5.57) and (4.5.59) yield

Q =
(
0 0
0 1

)
, P = V−1

(
1 T
0 −K cos i0

)
,

M−1 =
(
0 0
0 −V/K cos i0

)
.

(4.5.60)

For an exploding planar initial line C0, we even have T = 0, and matrix P becomes
diagonal. Finally, for an exploding straight line C0, K = T = 0. Each of matrices Q,P,
andM−1 has only one nonvanishing element in this case. The eigenvalues of matrix M−1

approach 0 and∞ so that the generated wavefront is cylindrical, and the rays are perpendi-
cular to C0.

As in Section 4.5.4 for a point source, the equations for 	p0 and Q,P, and M−1 may
be derived by direct application of the equations for the smooth initial surface �0; see
Sections 4.5.1 and 4.5.2. Instead of initial line C0, we consider an initial tubular surface
�0 with its axis along initial line C0 and with radius a, and afterwards we take the limit
a → 0. The final results are, of course, the same.

4.5.6 Initial Surface with Edges and Vertexes

The results of Sections 4.5.4 and 4.5.5 for a point source and a line source play an im-
portant role in various applications. They, however, also generalize the results obtained
in Sections 4.5.1 through 4.5.3 for initial surface �0. We can consider a general initial
surface �0 with edges and vertices, and with an arbitrary distribution of initial time T 0

along it. Let us discuss one arbitrary generated wave (P or S) at one side of �0 only. If
point S is situated on the smooth part of �0, one ray is generated at S. The initial condi-
tions for the relevant slowness vector 	p0(S) are given by (4.5.9), and the initial conditions
for Q(S) and P(S) are given by (4.5.13) and (4.5.18). If point S is situated on an edge, a
one-parameteric system of rays is obtained at S. For any selected ray of the system, the
initial conditions for slowness vector 	p0(S) are given by (4.5.46), and for Q(S) and P(S),
the initial conditions are given by (4.5.48) or (4.5.49). Finally, if point S is situated at a
vertex, a two-parameteric system of rays is obtained. For any selected ray of the system,
the initial conditions for slowness vector 	p0(S) are given by 	p0(S) = V−1(S)	n0(S), where
	n0(S) is given by (4.5.35), and P(S) andQ(S) are given by (4.5.34) or (4.5.37). In general,
up to four waves are generated at any point S of �0 (P and S waves at both sides of �0).
The derived equations are valid for all these generated waves, only propagation velocity
V (S) should be properly specified.

4.6 Paraxial Travel-Time Field and Its Derivatives

In the standard ray method, travel times can be simply determined along the rays by numer-
ical quadratures. In addition, standard ray tracing also yields components of the slowness
vector along the ray. The components of the slowness vector represent the first spatial
derivatives of the travel-time field or are directly related to them. Using the slowness
vector, we can also determine the travel-time field in some vicinity of the ray under consid-
eration, without new ray tracing. This simple approach, which uses the first derivatives of
the travel-time field to determine the travel-time field in the vicinity of the ray, corresponds
to a local plane wave approximation.
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Theparaxial raymethod is considerablymore powerful. It yields thematrix of the second
derivatives of the travel-time field along the ray. This matrix can then be used to calculate
the travel-time field in the vicinity of the ray under consideration with a considerably
higher accuracy than the local plane wave approximation. In ray-centered coordinates qI ,
the matrix of second derivatives of the travel-time field can be used to express the travel-
time field in the vicinity of the ray in the form of a Taylor series in qI , up to the quadratic
terms. We speak of the quadratic approximation or the curved wavefront approximation
of the travel-time field. Moreover, knowledge of the second derivatives of the travel-time
field can also be used to determine the linear paraxial distribution of the slowness vector
in the vicinity of the ray.

In this section, we shall first discuss the second derivatives of the travel-time field
because they represent the cornerstones of the paraxial ray method. Since the matrices
of the second derivatives of the travel-time field are closely related to the matrices of the
curvature of the wavefront, we shall also introduce and briefly discuss these matrices. We
shall then summarize themost important equations for the paraxial travel times and paraxial
slowness vectors.

In thewhole section,we treat only initial-value travel-time problems for isotropicmedia.
The boundary-value problems for isotropicmedia, such as the problem of the determination
of the two-point eikonal, will be treated in Section 4.9. For anisotropic inhomogeneous
media, see Section 4.14.

We shall consider central ray� and two points, S and R, situated on it. We assume that
transformationmatrices Ĥ(S) and Ĥ(R) are known and that the 4 × 4 ray propagatormatrix
Π(R, S) has also been determined by dynamic ray tracing in ray-centered coordinates
along ray � from S to R. We shall use the standard notation for the ray propagator matrix
(4.3.5). Ray�may correspond to an arbitrary seismic body wave (P, S, multiply reflected,
converted) propagating in an inhomogeneous isotropic layered medium.

4.6.1 Continuation Relations for Matrix M

In ray-centered coordinates qI , the 2 × 2 matrix M, with elements MIJ = ∂2T/∂qI∂qJ ,
can be calculated along ray � in several ways. First, it can be determined by solving the
nonlinear matrix Riccati equation (4.1.73). Second, it can be expressed in terms of the
2 × 2 transformation matrices Q and P as

M = PQ−1, (4.6.1)

and matrices Q and P can be calculated along ray � using the linear dynamic ray tracing
system in ray-centered coordinates (4.1.64) or (4.1.65). Third, it is possible to perform
the dynamic ray tracing in Cartesian coordinates, and to determineM from the computed
quantities; see Sections 4.2.1 and 4.2.3. Here we shall discuss the second approach; for the
third approach, see Section 4.2.3.

We now wish to find the continuation relations for matrixM in terms of the minors of
ray propagator matrix (4.3.5). In other words, we wish to determine M(R) assuming that
M(S) is known. Before we solve this problem, we shall present the continuation relations
for matrices Q and P. Using (4.3.29), we can express them in the following form:

Q(R) = Q1(R, S)Q(S) +Q2(R, S)P(S),

P(R) = P1(R, S)Q(S) + P2(R, S)P(S).
(4.6.2)
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Conversely,we can determineQ(S) andP(S) fromQ(R) andP(R) (backward continuation):

Q(S) = PT2 (R, S)Q(R) −QT
2 (R, S)P(R),

P(S) = −PT1 (R, S)Q(R) +QT
1 (R, S)P(R).

(4.6.3)

We shall use the following notation, related to the important case of point sources. We
denote the quantities Q(R) and P(R) corresponding to the point source situated at S by
Q(R, S) and P(R, S). In this case, Q(S) = 0, so that (4.6.2) yields

Q(R, S) = Q2(R, S)P(S), P(R, S) = P2(R, S)P(S). (4.6.4)

Similarly, for a point source situated at R, we obtain the backward continuation equations,

Q(S, R) = −QT
2 (R, S)P(R), P(S, R) = QT

1 (R, S)P(R). (4.6.5)

MatricesQ and P and the relevant continuation relations (4.6.2) and (4.6.3) play an impor-
tant role in various applications such as, in the computation of paraxial rays, in the solution
of two-point ray tracing for paraxial rays, and in the evaluation of geometrical spreading.
In this section, we shall use them to find the continuation relations for matrixM.

Using (4.6.1) through (4.6.3), we can write the continuation relations for matrix M.
Assume first that we knowM(S) and wish to computeM(R). Then, in view of (4.6.1) and
(4.6.2),

M(R) = [P1(R, S) + P2(R, S)M(S)][Q1(R, S) +Q2(R, S)M(S)]−1.

(4.6.6)

This is the continuation relation for matrixM. Using (4.6.3), we can calculateM(S) from
knownM(R),

M(S) = [− PT1 (R, S) +QT
1 (R, S)M(R)

][
PT2 (R, S) −QT

2 (R, S)M(R)
]−1
.

(4.6.7)

Equation (4.6.7) represents the backward continuation. In the same way that we introduced
P(R, S) and Q(R, S) for a point source situated at S, we can also introduce M(R, S),
representing M(R) for a point source situated at S. For the point source at S, we have
M(S) → ∞, and (4.6.6) with (4.3.17) yields

M(R, S) = P2(R, S)Q
−1
2 (R, S) = Q−1T

2 (R, S)PT2 (R, S). (4.6.8)

If the point source is at R, we obtain the backward formula

M(S, R) = −QT
1 (R, S)Q

−1T
2 (R, S) = −Q−1

2 (R, S)Q1(R, S). (4.6.9)

As we can see from (4.6.8) and (4.6.9), matricesM(R, S) andM(S, R) are symmetric,

M(R, S) = MT (R, S) M(S, R) = MT (S, R).

Matrix M(R, S), however, differs from M(S, R). Thus, if the positions of the source and
receiver are exchanged, the relevant matricesM(R, S) andM(S, R) are not reciprocal.

The 2 × 2 matrix M(R) can be simply extended to the 3 × 3 matrix M̂(R), which
represents the matrix of second derivatives of the travel-time field with respect to local
Cartesian ray-centered coordinates y1, y2, y3, with the origin at R; see (4.1.81). Using
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M̂(R), we can compute the 3 × 3 matrix M(x)(R) of second derivatives of the travel-time
field with respect to Cartesian coordinates xi , M

(x)
i j (R) = (∂2T/∂xi∂x j )R ; see (4.1.87).

The continuation relations for the 3 × 3 matrix M̂(x) are more involved than the con-
tinuation relations for the 2 × 2 matrixM; see (4.6.6). Assume that M̂(x)(S) and Ĥ(S) are
known at S, and that Ĥ(R) is known at R. M̂(x)(R) can then be determined from M̂(x)(S)
in five steps:

a. From M̂(x)(S), we determine M̂(S) = ĤT (S)M̂(x)(S)Ĥ(S); see (4.1.87).
b. From M̂(S), we determineM(S); see (4.1.81).
c. FromM(S), we calculateM(R) using (4.6.6).
d. We use (4.1.81) to determine M̂(R) fromM(R).
e. We determine M̂(x)(R) from M̂(R) using (4.1.87).

If the point source is situated at S, matrices M̂(R, S) and M̂(x)(R, S) are given by
relations

M̂(R, S) =

 M(R, S)

−(v−2v,1)R
−(v−2v,2)R

−(v−2v,1)R −(v−2v,2)R −(v−2v,3)R


 , (4.6.10)

M̂(x)(R, S) = Ĥ(R)M̂(R, S)ĤT (R). (4.6.11)

4.6.2 Determination of Matrix M from Travel Times

Known Along a Data Surface

Assume that the travel-time field is known along a data surface,�, in the vicinity of point
R on �. We also assume that the travel-time field corresponds to ray-theory travel times
of some elementary wave and that the propagation velocity V of this wave is known in
the vicinity of data surface �, close to R. The travel times along � may be known from
seismic measurements, or even from computations. The problem of determining matrix
M(R) of the approaching elementary wave from travel times known along data surface �
is then fully analogous to the problem of determining matrixM(S) of the wave generated at
an initial surface �0, along which the initial travel-time field is known. The latter problem
was solved in Sections 4.5.1 through 4.5.3 so that we can merely take the results from
that section. The only difference is in the signs of certain quantities, but this is simple to
understand. In Sections 4.5.1 through 4.5.3, we treated the wavefield generated on �0,
and here we are interested in the wavefield approaching on �. We can use (4.5.9) to
determine the slowness vector of the elementary wave under consideration. This equation
also determines the direction of the approaching ray. After this, we can use (4.5.25) with
(4.5.13) and (4.5.18) or, alternatively, (4.5.32), to determine the relevant matrixM(R).

The relevant equations contain the derivatives of the travel-time field along data surface
�. To determine the slowness vector of the elementary wave under consideration at R, we
need to know the first derivatives of the travel-time field along �. If we wish to determine
matrix M(R), the situation is even worse: we must know the second derivatives of the
travel-time field along �. Numerically, the determination of these derivatives is often
unstable, particularly if we are treating empirical data from seismic measurements. Various
alternatives of the popular T 2 − X2 method can be also used to determine the second
derivatives of the travel-time field along �. For this purpose, it is suitable to transform the
paraxial travel-time field from the parabolic to the hyperbolic form; see Section 4.6.4.
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All thematrices in (4.5.32) depend on the choice of basis vectors 	e1(R) and 	e2(R). Basis
vectors 	e1(R) and 	e2(R) are perpendicular to unit vector 	e3(R) ≡ 	t(R), tangent to the ray,
and 	e1(R), 	e2(R), and 	e3(R) form a right-handed triplet of unit vectors. Otherwise, 	e1(R)
and 	e2(R) may be chosen arbitrarily. Matrix M(R) determined by (4.5.32) is, of course,
related to the choice of 	e1(R) and 	e2(R) but may, without loss of generality, be rotated to
any other choice of 	e′

1(R) and 	e′
2(R).

4.6.3 Matrix of Curvature of the Wavefront

The 2 × 2 matrix of the curvature of wavefrontK is related very simply to matrixM of the
second derivatives of the travel-time field.

The general relations for the matrix of curvature D of surface � were derived in
Section 4.4.1. Let us consider surface � which is continuous with its first and second
tangential derivatives at point R.We construct a local Cartesian coordinate system z1, z2, z3
with its origin at R and with the local z3-axis situated along the normal to � at R. Thus,
the z1- and z2-axes are tangent to the surface at point R. In the vicinity of R, the interface
can be described by equation

z3 = ± 1
2 zI z J DIJ. (4.6.12)

HereDwith elements DIJ is a 2 × 2 matrix of the curvature of surface� at R. Its elements
depend on the orientation of axes z1 and z2 in the plane tangent to � at R. The choice of
the sign in (4.6.12) is arbitrary and may be specified by convention.

We shall now consider the wavefront at any point R of ray �. We shall choose the
local ray-centered Cartesian coordinates y1, y2, y3, instead of z1, z2, z3 because axis y3
coincides with the normal to the wavefront (it is tangent to ray � at R). The wavefront
passing through R is given by the relation T (y1, y2, y3) = T (R) = const. By convention,
we shall consider the sign in Equation (4.6.12) to be a minus sign. Thus, we shall define
matrix K of the curvature of the wavefront by relation

y3 = − 1
2 yI yJ KIJ. (4.6.13)

The relation between KIJ andMIJ can nowbe easily obtained from (4.1.80). In this equation,
we can neglect the terms with y23 and yI y3 because they are of higher order due to (4.6.13).
If point R′ is situated on the wavefront passing through point R, we have T (R′) = T (R).
Then, (4.1.80) yields

v−1(R)y3 + 1
2 yI yJ MIJ(R) = 0.

This equation can be expressed as

y3 = − 1
2 yI yJv(R)MIJ(R). (4.6.14)

Comparing (4.6.13) with (4.6.14) yields the final relation between the matrix of curvature
of wavefront K(R) and the matrix of second derivatives of the travel-time field,M(R),

K(R) = v(R)M(R). (4.6.15)

We can easily derive the ordinary differential equation for K. By insertingM = v−1K
into (4.1.73), we obtain

vdK/ds − ∂v/∂s K+ vK2 + V = 0. (4.6.16)
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As we can see, the matrix of curvature of the wavefront is again controlled by an ordinary
differential nonlinear first-order equation of the Riccati type. The equation is only slightly
more complicated than the relevant equation forM, due to the additional term K∂v/∂s.

We can also define the 2 × 2 matrix of the radii of curvature of the wavefront,

R(R) = K−1(R). (4.6.17)

Inserting K = R−1 into (4.6.16) yields the ordinary nonlinear differential equation of the
first order for R:

vdR/ds + ∂v/∂s R− RVR− vI = 0. (4.6.18)

The nonlinear equations (4.6.16) and (4.6.18) of the Riccati type for K and R are
usually inconvenient for applications. It is more convenient to use the linear dynamic ray
tracing system (4.1.64) or (4.1.65) for P and Q. Using (4.6.6) and (4.6.15), we obtain the
continuation relation for curvature matrix K:

K(R) = v(R)[P1(R, S) + v−1(S)P2(R, S)K(S)]

× [Q1(R, S) + v−1(S)Q2(R, S)K(S)]−1. (4.6.19)

The backward continuation formula is obtained from (4.6.7),

K(S) = v(S)
[−PT1 (R, S) + v−1(R)QT

1 (R, S)K(R)
]

× [
PT2 (R, S) − v−1(R)QT

2 (R, S)K(R)
]−1
. (4.6.20)

We shall also give an equation for the transformation of the curvature matrix of the wave-
front across a curved interface between two inhomogeneous media. Using (4.6.15) and
(4.4.46), we obtain

K̃ = ṽv−1G̃−1[GKGT − vuD+ v(E− Ẽ)]G̃−1T . (4.6.21)

All the symbols have the same meaning as in (4.4.46).
Because matrixK is symmetric, it has two real-valued eigenvalues. Let us denote these

eigenvalues K1 and K2. They represent the principal curvatures of thewavefront at the point
of ray � under consideration. The principal directions of the curvature of the wavefront
are determined by the relevant eigenvectors 	eK1 and 	eK2 . At any point R of the ray, the three
unit vectors 	eK1 (R), 	eK2 (R), and 	t(R) are mutually orthogonal.

Instead of principal curvatures K1(R) and K2(R), we can also use the principal radii
of the curvature of the wavefront on � at R,

R1(R) = 1/K1(R), R2(R) = 1/K2(R). (4.6.22)

Quantities K1,2(R) and R1,2(R) may take any real values, including 0 and∞. For K1,2(R) �=
0 and R1,2(R) �= 0, the point R of thewavefront is called elliptic (if K1K2 > 0) orhyperbolic
(if K1K2 < 0). For K1(R) = 0 and K2(R) �= 0, or for K1(R) �= 0 and K2(R) = 0, the point
R is calledparabolic at R.A special case of ellipsoidalwavefronts is the sphericalwavefront
at R, if K1(R) = K2(R). For K1(R) = K2(R) = 0, the wavefront is locally planar at R.
See Figure 4.15. For K1(R) = K2(R), the point R is also called ombilic. Note that the
wavefront in the vicinity of an ombilic point is either locally spherical (K1 = K2 �= 0) or
locally planar (K1 = K2 = 0).

Some other quantities are also often used to describe the curvatures of surfaces. We
commonly use the mean curvature of the wavefront, H = 1

2 (K1 + K2), and the Gaussian
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N

elliptic, K K  > 0 parabolic, K K   = 01 12 2

N

hyperbolic, K K  < 01 2

N

Figure 4.15. Elliptic, parabolic, and hyperbolic points on a wavefront. At an elliptic point, K1K2 > 0;
at a parabolic point, K1K2 = 0; and at a hyperbolic point, K1K2 < 0.

curvature of the wavefront, K = K1K2. Consequently,

K (R) = K1(R)K2(R) = detK(R) = v2(R) detM(R),

H (R) = 1
2 (K1(R) + K2(R)) = 1

2 trK(R) = 1
2v(R) trM(R).

(4.6.23)

Here tr denotes the trace.

4.6.4 Paraxial Travel Times. Parabolic and Hyperbolic Travel Times

Using the first and second derivatives of the travel-time field, we obtain convenient approx-
imate paraxial equations for the travel-time field in the vicinity of the ray under considera-
tion. These equations were derived in Section 4.1.8; here we shall discuss them only very
briefly.

Let us consider central ray � and point R situated on this ray. In addition, we shall
consider point R′, situated in the vicinity of point R. We can then express the travel-time
field at R′ by convenient quadratic equations. In the case of point R′ situated in plane �⊥

perpendicular to ray � at R, we can use ray-centered coordinates qI (R′). For a generally
situated point R′, we can use either local Cartesian ray-centered coordinates yi (R′, R) or
general Cartesian coordinates xi (R′, R). We obtain

T (R ′) = T (R) + 1
2q

T (R′)M(R)q(R′) for R′ ∈ �⊥,

T (R ′) = T (R) + ŷT (R′, R)p̂(y)(R) + 1
2 ŷ

T (R′, R)M̂(R)ŷ(R ′, R), (4.6.24)

T (R ′) = T (R) + x̂T (R′, R)p̂(x)(R) + 1
2 x̂

T (R′, R)M̂(x)(R)x̂(R′, R).

The meaning of the individual symbols is obvious; for details see Section 4.1.8.
Equations (4.6.24) can be usedwithout any knowledge of the travel-time field outside R.

The only quantities that must be explicitly known if we wish to apply (4.6.24) represent the
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travel time and its first and second derivatives at R. The travel-timefield under consideration
may correspond to a point source, or line source, or surface source. In addition, it is not
necessary to know the position of the source.

Let us now discuss the distribution of travel times in a plane perpendicular to � at R.
As we can see in the first equation of (4.6.24), the travel-time curves T = T (q1) (for q2
fixed) and T = T (q2) (for q1 fixed) represent parabolas. It is also common to speak of
parabolic approximation of travel times. In certain applications, particularly in the seismic
prospecting for oil, it ismore common to use a hyperbolic approximation of travel times. For
positive-definite matrix MIJ(R), we can easily transform the parabolic approximation into
the hyperbolic approximation and back. Taking the square of the first equation of (4.6.24),
and neglecting the terms higher than quadratic in qI , we obtain a general expression for
the hyperbolic approximation of travel times:

T 2(R′) .= T 2(R) + T (R)qI (R
′)qJ (R′)MIJ(R). (4.6.25)

Equation (4.6.25) can be extended even to an arbitrary surface � passing through R.
The relation (4.4.34) gives the parabolic travel-time approximation along �. For positive-
definite matrix FIJ(R), the relevant hyperbolic approximation then reads(

T�(z1, z2)
)2 .= [

T (R) + zI p
(z)
I (R)

]2 + T (R)zI z J FIJ(R). (4.6.26)

Here FIJ(R) are given by (4.4.37).
The hyperbolic approximation (4.6.26) is suitable if we wish to determine FIJ(R) from

known travel-time data along �, using an alternative of the T 2 − X2 method. Note that
the simplest version of (4.6.26) is represented by the well-known reflection travel-time
hyperbola T 2 = T 2

0 + X2/V 2
NMO , where X is the offset and VNMO is the so-called normal

moveout velocity. Equation (4.6.26) generalizes this equation for a fully general case of
an arbitrary elementary wave (multiply reflected, transmitted, converted) in general 3-D
laterally varying layered and block structure and can be used to define some parameters
alternative to the normal moveout velocities in terms of FIJ(R) for such general cases. On
the contrary, if these parameters are determined from the travel-time data known along �,
they can be used to compute FIJ(R).

In the next part of this section, we shall consider ray � and two points S and R on it.
Moreover, we shall assume that a point source is situated at S. We denote by T (R, S) the
travel time from point source S to receiver R along �. This notation is introduced due to
consistency with other similar symbols Π(R, S),M(R, S), and the like. It is obvious that
travel time T (R, S) is reciprocal,

T (R, S) = T (S, R). (4.6.27)

In an analogous way, we shall denote T (R ′, S) the paraxial travel times from a point source
situated at S to the receiver situated at R′, close to R. Simple expressions for T (R′, S) can
be obtained from (4.6.24):

T (R′, S) = T (R, S) + 1
2q

T (R′)M(R, S)q(R′) for R′ ∈ �⊥,

T (R′, S) = T (R, S) + ŷT (R′, R)p̂(y)(R) + 1
2 ŷ

T (R′, R)M̂(R, S)ŷ(R′, R),

T (R′, S) = T (R, S) + x̂T (R′, R)p̂(x)(R) + 1
2 x̂

T (R′, R)M̂(x)(R, S)x̂(R′, R).

(4.6.28)

ForM(R, S), M̂(R, S), and M̂(x)(R, S), refer to (4.6.8), (4.6.10), and (4.6.11), respectively.
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We need to emphasize the difference between T (R, S) and T (R′, S). Presumably, all
these quantities correspond to a point source at S on�. If both points S and R are situated
on ray�, quantity T (R, S) has a broader meaning: it also represents the travel time from S
to R along�, where S is an arbitrary reference point on ray� (not a point source). Paraxial
expressions (4.6.28) for T (R′, S), however, are valid only for a point source at S.

We shall add three remarks regarding Equations (4.6.28). To calculate T (R′, S), where
S represents a point source situated on central ray�, thewhole ray propagatormatrix (4.3.5)
does not need to be known. It is sufficient to calculate only minorsQ2(R, S) and P2(R, S).
Thus, the dynamic ray tracing needs to be performed only once, for the point-source initial
conditions. As will be shown in Section 4.9, the whole propagator matrix (4.3.5) must be
known to calculate T (R′, S′), where both points S′ and R′ are situated outside central ray
� (but close to S and R, respectively).

The second note is related to the accuracy of Equations (4.6.24) and (4.6.28) for paraxial
travel times. Equations are only approximate, and their accuracy decreases with increasing
distance of point R′ from R. It is high if point R ′ is situated close to R and if the wavefront
is smooth at R. It may, however, be rather low if the wavefront behaves anomalously in the
vicinity of R (R close to a caustic point, to a structural interface, to boundary rays, and the
like).

The third note is terminological. Paraxial travel time T (R′, S) is not computed by ray
tracing from S to R′ but is approximated by using the paraxial ray methods; see (4.6.28).
For this reason, we can also call Equations (4.6.28) equations for a paraxial two-point
eikonal. The general equations for a paraxial two-point eikonal T (R ′, S′) will be derived
in Section 4.9.

4.6.5 Paraxial Slowness Vector

By paraxial slowness vector, we understand the gradient of the paraxial travel-time field,
	p = ∇T , in the vicinity of central ray �. Because the expression for the paraxial travel
times are quadratic in terms of qI (or yi or xi ), the expressions for the paraxial slowness
vector are linear only.

The derivatives of the paraxial travel times (4.6.24) yield

p(q)(R′) = M(R)q(R′) p(q)3 (R′) = v−1(R), for R′ ∈ �⊥,

p̂(y)(R′) = p̂(y)(R) + M̂(R)ŷ(R′, R), (4.6.29)

p̂(x)(R′) = p̂(x)(R) + M̂(x)(R)x̂(R ′, R).

It should be emphasized that p̂(y)(R) has only one nonvanishing component: p(y)3 (R) =
1/v(R). To obtain the paraxial slowness vector at R ′ due to a point source situated at S,
we merely replace M(R) by M(R, S), M̂(R) by M̂(R, S), and M̂(x)(R) by M̂(x)(R, S) in
(4.6.29).

Using Equations (4.6.29) and (4.6.24), we can express the paraxial travel time at R′ in
terms of the slowness vectors at R and R′,

T (R′) = T (R) + 1
2q

T (R′)p(q)(R′) for R′ ∈ �⊥,

T (R′) = T (R) + 1
2 ŷ

T (R′, R)
[
p̂(y)(R′) + p̂(y)(R)

]
, (4.6.30)

T (R ′) = T (R) + 1
2 x̂

T (R′, R)
[
p̂(x)(R′) + p̂(x)(R)

]
.

These equations will be used very conveniently to compute the paraxial travel times, if we
first determine the paraxial slowness vector; see Section 4.9.
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As in (4.6.24), the travel-time field under consideration in (4.6.29) and (4.6.30) may
correspond to an arbitrarily situated point source, line source, or surface source.

4.7 Dynamic Ray Tracing in Cartesian Coordinates

The dynamic ray tracing system in ray-centered coordinates has played an important role
in the seismic ray theory. It can be used to evaluate a simple 4 × 4 propagator matrix
Π(R, S), which offers a large number of important applications. Nevertheless, it is of
some interest to express the dynamic ray tracing systems also in other coordinates and
to determine the relevant 6 × 6 propagator matrices. In certain situations, dynamic ray
tracing in other coordinate systems may be numerically more efficient when compared
with dynamic ray tracing in ray-centered coordinates. Particularly important is the dynamic
ray tracing system in Cartesian coordinates. The number of equations in this dynamic ray
tracing system is higher than in the ray-centered coordinates, but the system matrix may
be simpler. Moreover, they do not require the computation of the basis vectors 	e1 and 	e2
of the ray-centered coordinate system along the ray. The dynamic ray tracing in Cartesian
coordinates is also suitable in anisotropic media, as will be shown in Section 4.14.

The dynamic ray tracing system in Cartesian coordinates was derived and discussed in
Section 4.2.1. Here we shall use the same notation as in that section. We shall first slightly
generalize the system (4.2.4) for an arbitrary monotonic variable u along ray � and give
several examples of dynamic ray tracing systems for isotropic media, using different u;
see Section 4.7.1. In Section 4.7.2, we shall construct the 6 × 6 propagator matrix of the
dynamic ray tracing system for an arbitrary monotonic variable u along� and then discuss
the transformation of the dynamic ray tracing system across a structural interface. The
relevant expressions for the interface propagator matrix will be given. These expression
are, of course, also valid for u = T . The expressions for the 6 × 6 propagator matrix are
extended to rays� situated in a layeredmedium. In Section 4.7.3, 6 × 6 propagatormatrices
in layeredmedia in arbitrary curvilinear coordinates are discussed. The derived expressions
for the 6 × 6 propagator matrices can be suitably used in the ray perturbation theory;
see Sections 4.7.4 and 4.7.5. The main purpose of Section 4.7.4 is to derive convenient
expressions for paraxial rays in a perturbed medium, situated close to a reference ray �0,
constructed in the unperturbed background medium. Finally, the computation of third and
higher derivatives of the travel-time field along rays will be discussed in Section 4.7.6. It
will be shown that “higher-order dynamic ray tracing systems” are not necessary to compute
“higher derivatives” of the travel-time field. It is sufficient to use a standard dynamic ray
tracing system and to supplement it by some quadratures along ray �.

4.7.1 Dynamic Ray Tracing System in Cartesian Coordinates

The general dynamic ray tracing system in Cartesian coordinates, valid for both isotropic
and anisotropicmedia, was derived in Section 4.2.1; see (4.2.4)with (4.2.5). Themonotonic
paramater u along � in (4.2.4) represents travel time T . The analogous system, however,
remains valid also for any other monotonic parameter u. We introduce

Q(x)
i (u) = (∂xi/∂γ )u=const., P (x)

i (u) = (
∂p(x)i

/
∂γ
)
u=const.

. (4.7.1)

We use the same notation for Q(x)
i and P (x)

i as in Section 4.2.1, where monotonic variable u

represented travel time T . In this section, however, we shall use Q(x)
i and P (x)

i for arbitrary
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monotonic variable u. Of course, the variable u along ray � is related to the form of
HamiltonianH(x)(xi, p

(x)
i ) under consideration; see (3.1.4). Taking the partial derivative of

ray tracing system (3.1.3) with respect to γ , and bearing in mind that ∂/∂γ commutes with
d/du, we again obtain the dynamic ray tracing system in the following form:

dQ(x)
i

/
du = A(x)

i j Q
(x)
j + B(x)

i j P
(x)
j , dP (x)

i

/
du = −C (x)

i j Q
(x)
j − D(x)

i j P
(x)
j .

(4.7.2)

Here A(x)
i j , B

(x)
i j ,C

(x)
i j , and D(x)

i j are given by (4.2.5). The Hamiltonian H(x)(xi , p
(x)
i ) in

(4.2.5), however, must correspond to the variable u along �. Quantities A(x)
i j , B

(x)
i j ,C

(x)
i j ,

and D(x)
i j satisfy symmetry relations (4.2.6) and constraint relation (4.2.7) for any u. Note

that (4.7.2) also represents the paraxial ray tracing system, if we replace Q(x)
i by δxi , and

P (x)
i by δp(x)i ; see (4.2.11).
As in Section 4.2.1, we can find the ray tangent solutions of dynamic ray tracing system

(4.7.2) analytically,

Q(x)
i = dxi/du = ∂H(x)

/
∂p(x)i = aU (x)

i ,
(4.7.3)

P (x)
i = dp(x)i

/
du = −∂H(x)

/
∂xi = aη(x)i .

Here U (x)
i and η(x)i are given by (4.2.8), and U (x)

i represent the Cartesian components of the
group velocity vector. Quantity a(T ) is given by the relation

a(T ) = dT/du = p(x)k ∂H(x)
/
∂p(x)k . (4.7.4)

Of course, a(T ) = 1 for u = T .
As an example of general dynamic ray tracing system (4.7.2), we shall specify it

for isotropic media, for several different Hamiltonians H(x)(xi , p
(x)
i ) and for the relevant

variables u along �.
Travel time T is most commonly considered to be a monotonic parameter, u, along the

ray. In this case, we can take HamiltonianH(x) in the formH(x) = 1
2 ln(p

(x)
i p(x)i ) + ln V (xi );

see (3.1.7). The dynamic ray tracing for u = T reads

d

dT
Q(x)
i = δi j p

(x)
n p(x)n − 2p(x)i p(x)j(
p(x)k p(x)k

)2 P (x)
j ,

d

dT
P (x)
i = −∂

2 ln V

∂xi∂x j
Q(x)

j .

(4.7.5)

We note that ∂2H(x)/∂p(x)i ∂x j = ∂2H(x)/∂xi∂p
(x)
j = 0 in our case.

An alternative form of the dynamic ray tracing system for u = T can be obtained from
HamiltonianH(x) = 1

2 (V
2 p(x)i p(x)i − 1):

d

dT
Q(x)
i = ∂V 2

∂x j
p(x)i Q(x)

j + V 2P (x)
i ,

(4.7.6)
d

dT
P (x)
i = − 1

2

∂2V 2

∂xi∂x j
p(x)k p(x)k Q(x)

j − ∂V 2

∂xi
p(x)j P (x)

j ;

see (3.1.13). Here we can, of course, insert p(x)k p(x)k = V−2, as the Hamiltonian vanishes
along thewhole ray. It may seem surprising that we have obtained two different dynamic ray
tracing systems, (4.7.5) and (4.7.6), for the same parameter T along the ray. The explanation
is simple. The dynamic ray tracing systems satisfy the constraint equation (4.2.7) along the
whole ray. Applying this constraint to the initial conditions for (4.7.5) and (4.7.6) and taking
into account that the constraint is satisfied along the whole ray, we find that both systems are
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equivalent. The meaning of Q(x)
i and P (x)

i in (4.7.5) and (4.7.6) is Q(x)
i = (∂xi/∂γ )T=const.

and P (x)
i = (∂p(x)i /∂γ )T=const..

If we assume arclength s to be the monotonic parameter u along the ray, we can take
HamiltonianH(x) in the formH(x) = (p(x)i p(x)i )1/2 − V −1(xi ). We then obtain the dynamic
ray tracing system as follows:

d

ds
Q(x)
i = δi j

(
p(x)n p(x)n

)− p(x)i p(x)j(
p(x)k p(x)k

)3/2 P (x)
j ,

d

ds
P (x)
i = ∂2

∂xi∂x j

(
1

V

)
Q(x)

j .

(4.7.7)

As for u = T , we can also write for u = s a dynamic ray tracing system alternative to
(4.7.7). We use HamiltonianH = 1

2V (p
(x)
k p(x)k − V−2) (see (3.1.16)), and obtain

d

ds
Q(x)
i = ∂V

∂x j
p(x)i Q(x)

j + V P (x)
i ,

(4.7.8)
d

ds
P (x)
i = − 1

V 2

(
∂2V

∂xi∂x j
− 1

V

∂V

∂xi

∂V

∂x j

)
Q(x)

j − ∂V

∂xi
p(x)j P (x)

j .

The meaning of Q(x)
i and P (x)

i in (4.7.7) and (4.7.8) is Q(x)
i = (∂xi/∂γ )s=const. and P

(x)
i =

(∂p(x)i /∂γ )s=const..
The simplest dynamic ray tracing system is obtained for monotonic parameter σ along

the ray. HamiltonianH(x) is then given by the relationH(x) = 1
2 (p

(x)
i p(x)i − 1/V 2), and the

dynamic ray tracing system reads

d

dσ
Q(x)
i = P (x)

i ,
d

dσ
P (x)
i = 1

2

∂2

∂xi∂x j

(
1

V 2

)
Q(x)

j . (4.7.9)

If 1/V 2 is a linear function of coordinates xi , dynamic ray tracing system (4.7.9) can be
simply solved analytically:

P (x)
i (σ ) = P (x)

i (σ0), Q(x)
i (σ ) = Q(x)

i (σ0) + (σ − σ0)P (x)
i (σ0).

All these dynamic ray tracing systems can be expressed in terms of ordinary differential
equations of the second order. Particularly simple equations are obtained for u = σ ,

d2

dσ 2
Q(x)
i − 1

2

∂2

∂xi∂x j

(
1

V 2

)
Q(x)

j = 0; (4.7.10)

see (4.7.9). The meaning of Q(x)
i and P (x)

i in (4.7.9) and (4.7.10) is Q(x)
i = (∂xi/∂γ )σ=const.

and P (x)
i = (∂p(x)i /∂γ )σ=const..

4.7.2 6 × 6 Propagator Matrix in a Layered Medium

Dynamic ray tracing system (4.7.2) consists of six linear ordinary differential equations of
the first order. Consequently, we can construct the 6 × 6 propagator matrix Π(x)(u, u0) of
this dynamic ray tracing system. The 6 × 6 matrixΠ(x)(u, u0) satisfies the initial condition
Π(x)(u0, u0) = I at u = u0, where I is the 6 × 6 identity matrix. See Section 4.3.7. Because
the dynamic ray tracing system (4.7.2) satisfies symmetry relations (4.2.6), the 6 × 6
propagator matrix Π(x)(u, u0) is symplectic for any monotonic variable u along �. The
6 × 6 propagator matrix Π(x)(u, u0) also satisfies Liouville’s theorem, chain property, the
relations for its inverse, and so on. Consider two points, R and S, situated on ray�, where
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S corresponds to variable u0 and R corresponds to variable u. After propagator matrix
Π(x)(R, S) is known, (4.3.32) can be used to compute the solution of the dynamic ray tracing
system (4.7.2) at any point R on �, assuming the initial conditions are known at point S.

To compute the 6 × 6 propagator matrix Π(x)(R, S) along ray � crossing structural
interface �, it is necessary to know the transformation of the propagator matrix across the
interface. Let us denote the point of incidence of � on � by Q and the related R/T point
by Q̃. As in ray-centered coordinates, the transformation of the 6 × 6 propagator matrix
across interface � can be expressed in the following form:

Π(x)(R, S) = Π(x)(R, Q̃)Π(x)(Q̃, Q)Π(x)(Q, S); (4.7.11)

see (4.4.82). Here Π(x)(Q̃, Q) is the 6 × 6 interface propagator matrix in Cartesian coor-
dinates. Interface propagator matrixΠ(x)(Q̃, Q) depends on the HamiltonianH(x)(xi , p

(x)
i )

used so that it is different for different monotonic variables u.
A simple derivation of the interface propagator matrix, based on the continuity of

paraxial rays across the interface, is given by Farra and Le Bégat (1995). We shall not
repeat the derivation here; we only present the final results. We consider an interface
described by the relation �(x1, x2, x3) = 0; see (4.4.1). Partial derivatives �,i = ∂�/∂xi
are closely related to the components of the vector normal to interface �, see (4.4.4), and
�,i j = ∂2�/∂xi∂x j are closely related to the curvature of the interface, see (4.4.16). Then

Π(x)(Q̃, Q) =
(
Π̂

(x)

11 (Q̃, Q) 0̂

Π̂
(x)

21 (Q̃, Q) Π̂
(x)

22 (Q̃, Q)

)
= TΠ + ∆, (4.7.12)

where the 6 × 6 matrices Π,T, and ∆ are given by relations

Π =
(
Π̂1 0̂
Π̂2 Î

)
, T =

(
Î 0̂
T̂1 T̂2

)
, ∆ =

(
∆̂1 0̂
∆̂2 0̂

)
. (4.7.13)

The physical meaning of projection matrices Π and T and of matrix ∆ is explained in
detail by Farra and Le Bégat (1995). In (4.7.13), Î and 0̂ are 3 × 3 unity and null matrices,
and 3 × 3 matrices Π̂1, Π̂2, T̂1, T̂2, ∆̂1, and ∆̂2 are as follows:

("1)i j = δi j −�i j/�, ("2)i j =  i j/�,

(T1)i j = ( j i −  ̃ j i )/�̃− A1(δik − �̃ki/�̃)�,k j ,

(T2)i j = δi j − (�̃ j i −� j i )/�̃, (�1)i j = �̃i j/�, (�2)i j = − ̃i j/�.

(4.7.14)

Individual symbols in (4.7.14) have the following meaning:

�ik = (
∂H(x)

/
∂p(x)i

)
�,k, � = �i i ,

 ik = (
∂H(x)

/
∂xi
)
�,k, A1 = (

p(x)i − p̃(x)i

)
�,i/�,k�,k .

(4.7.15)

Using (4.7.12) through (4.7.15), we obtain the final expressions for the 3 × 3 minors
Π̂

(x)

11 (Q̃, Q), Π̂
(x)

21 (Q̃, Q), and Π̂
(x)

22 (Q̃, Q) of the 6 × 6 interface propagator matrix
Π(x)(Q̃, Q), (

"
(x)
11 (Q̃, Q)

)
i j

= δi j − (�i j − �̃i j )/�,(
"

(x)
22 (Q̃, Q)

)
i j

= δi j − (�̃ j i −� j i )/�̃,(
"

(x)
21 (Q̃, Q)

)
i j

= ( i j −  ̃i j )/�− ( ̃ j i − j i )/�̃− A2�,i�, j/��̃

− A1(δik − �̃ki/�̃)�,kn(δnj −�nj/�).

(4.7.16)
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Here A2 is given by the relation:

A2 = (
∂H̃(x)

/
∂p(x)i

)(
∂H(x)

/
∂xi
)− (

∂H(x)
/
∂p(x)i

)(
∂H̃(x)

/
∂xi
)
.

All quantities with a tilde correspond to the R/T point Q̃ on �, and all quantities without
a tilde correspond to the point of incidence Q on �. Computation of Π(x)(Q̃, Q) does not
require any local coordinate system to be introduced at Q. Equation (4.7.12) is valid for any
form of Hamiltonian, including anisotropic media. It is possible to prove that Π(x)(Q̃, Q)
is symplectic and that detΠ(x)(Q̃, Q) = 1. Farra and Le Bégat (1995) also noticed that
certain previously published interface matrices analogous to (4.7.12) were not symplectic.
Using relation (4.7.12), it can also be proved that Q(x)

i (Q̃) and P (x)
i (Q̃) (corresponding to

the R/T wave) satisfy constraint relation (4.2.7) if Q(x)
i (Q) and P (x)

i (Q) (corresponding to
the incident wave) satisfy them.

The relations presented in this section can be used to calculate the 6 × 6 propagator
matrixΠ(x)(u, u0) in Cartesian coordinates, in any layered isotropic or anisotropicmedium.
Monotonic variable u along�maybe arbitrary. To obtain the complete 6 × 6 ray propagator
matrix, the system of six equations (4.7.2) should be solved six times. In other words, we
need to solve a system consisting of 36 equations along ray � from S to R to determine
Π(x)(R, S).

Consider a 3-D laterally varying isotropic or anisotropic structure containing curved
interfaces of the first order �1, �2, . . . , �k . Assume ray � of an arbitrary multiply re-
flected (possibly converted) elementary wave. Consider N points of reflection/transmission
on � between initial point S and end point R. We denote the points of incidence by
Q1, Q2, . . . , QN , and the relevant R/T points by Q̃1, Q̃2, . . . , Q̃N . The final 6 × 6 prop-
agator matrix of (4.7.2) in Cartesian coordinates is then given by the relations:

Π(x)(R, S) = Π(x)(R, Q̃)
1∏

i=N

[
Π(x)(Q̃i , Qi )Π(x)(Qi , Q̃i−1)

]
. (4.7.17)

The 6 × 6 propagator matrix Π(x)(R, S) in a general 3-D layered medium satisfies all the
properties of the ray propagator matrix Π(x)(R, S) in a smooth medium at any point on
ray � (including the interfaces): the symplectic property, Liouville’s theorem, the chain
property, and the like. Moreover, relation (4.7.17) can be used to prove that Q(x)

i (R) and

P (x)
i (R) satisfy constraint relation (4.2.7) if Q(x)

i (S) and P (x)
i (S) satisfy it.

4.7.3 Transformation of the Interface Propagator Matrix

The dynamic ray tracing system in arbitrary curvilinear coordinates were derived and
discussed in Section 4.2.4, and the relevant 6 × 6 propagator matrices were derived and
discussed in Sections 4.3.7.2 and 4.3.7.3. Although the monotonic variable along ray � in
Sections 4.2.4 and 4.3.7 was travel time T , the systems may easily be modified for an arbi-
trary monotonic variable u. Consequently, dynamic ray tracing in curvilinear coordinates
in smooth anisotropic and anisotropic media does not cause any problem from a theoretical
point of view. If we wish to perform dynamic ray tracing in curvilinear coordinates in a
layered medium, however, we must know the 6 × 6 interface propagator matrix in these
coordinates. In this section, we shall derive a simple expression for the 6 × 6 interface
propagator matrix in curvilinear coordinates ξi .

We denote the interface propagator matrix in ξi coordinates by Π(ξ )(Q̃, Q). We as-
sume that this propagator matrix corresponds to the variable u along the ray. We can then
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transform expression (4.7.12) for the interface propagator matrix Π(x)(Q̃, Q) from
Cartesian coordinates to curvilinear coordinates ξi using relation (4.3.38),

Π(ξ )(Q̃, Q) =
(

ˆ̄H(ξ )(Q̃) 0̂

F̂(Q̃) ˆ̄H(ξ )(Q̃) Ĥ(ξ )T (Q̃)

)

×Π(x)(Q̃, Q)

(
Ĥ(ξ )(Q) 0̂

− ˆ̄H(ξ )T (Q)F̂(Q) ˆ̄H(ξ )T (Q)

)
. (4.7.18)

All the symbols have the samemeaning as in (4.3.38). The 3 × 3matrices Ĥ(ξ )(Q), ˆ̄H(ξ )(Q),

and F̂(Q) may be different from Ĥ(ξ )(Q̃), ˆ̄H(ξ )(Q̃), and F̂(Q̃), for example, for coordinate
system ξi connected with central ray �. This applies to ξi = yi (wavefront orthonormal
coordinates), to ξi = ζi (nonorthogonal ray-centered coordinates), and the like. Equation
(4.7.18) can be expressed in many alternative forms.

4.7.4 Ray Perturbation Theory

In this section, we shall show that the Hamiltonian approach to dynamic ray tracing can be
conveniently used in the ray perturbation theory. We shall use the notation of Section 3.9,
where the first-order travel-time perturbations were studied. Here we are, however, inter-
ested in the perturbations of seismic rays.We consider the backgroundmediumM0, charac-
terized by HamiltonianH(x)0, and reference ray�0 in the backgroundmediumM0, param-
eterized by monotonic parameter u. We also consider two points on �0, S, and R, and de-
note uS = u(S) and uR = u(R). Ray�0 in phase space is specified by parameteric equation
xi = x0i (u) and p(x)i = p(x)0i (u). In the perturbed mediumM, the Hamiltonian is denoted

byH(x). We introduce �H(x) by relationH(x)(xi , p
(x)
i ) = H(x)0(xi , p

(x)
i ) +�H(x)(xi , p

(x)
i )

and assume that�H(x) is small. Consider ray� in the perturbedmediumM, situated close
to �0. We describe ray � by the parameteric relation:

xi (u) = x0i (u) +�xi (u), p(x)i (u) = p(x)0i (u) +�p(x)i (u), (4.7.19)

as in Section 3.9. We then obtain

dxi
du

= dx0i
du

+ d�xi
du

= ∂H(x)

∂p(x)i

= ∂
(H(x)0 +�H(x)

)
∂
(
p(x)0i +�p(x)i

)
.= ∂H(x)0

∂p(x)0i

+ ∂2H(x)0

∂p(x)0i ∂x0j
�x j + ∂2H(x)0

∂p(x)0i ∂p(x)0j

�p(x)j + ∂�H(x)

∂p(x)0i

,

dp(x)i

du
= dp(x)0i

du
+ d�p(x)i

du
= −∂H

(x)

∂xi
= −∂

(H(x)0 +�H(x)
)

∂
(
x0i +�xi

)
.= −∂H

(x)0

∂x0i
− ∂2H(x)0

∂x0i ∂x
0
j

�x j − ∂2H(x)0

∂x0i ∂p
(x)0
j

�p(x)j − ∂�H(x)

∂x0i
.

Because dx0i /du = ∂H(x)0/∂p(x)0i and dp(x)0i /du = −∂H(x)0/∂x0i , we obtain

d�xi/du = A(x)0
i j �x j + B(x)0

i j �p
(x)
j + ∂�H(x)

/
∂p(x)0i ,

(4.7.20)
d�p(x)i

/
du = −C (x)0

i j �x j − D(x)0
i j �p

(x)
j − ∂�H(x)

/
∂x0i .
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Here A(x)0
i j , B

(x)0
i j ,C

(x)0
i j , and D(x)0

i j are given by (4.2.5) and are computed in the background,
unperturbed medium. Like the solutions of standard paraxial ray tracing systems, the solu-
tions of the inhomogeneous paraxial ray tracing system (4.7.20) must satisfy the constraint
relation: (

∂H(x)0
/
∂x0i

)
�xi + (

∂H(x)0
/
∂p(x)0i

)
�p(x)i +�H(x) = 0. (4.7.21)

For �H(x) = 0, (4.7.20) and (4.7.21) represent the standard paraxial ray tracing system
(4.2.11) with (4.2.12) in the background medium. For�H(x) �= 0, however, (4.7.20) repre-
sents the inhomogeneous paraxial ray tracing system (4.3.40), and its solution is given by
(4.3.41). We denote by Π(x)0(u, u0) the ray propagator matrix computed along �0 in the
unperturbed medium. Then

(
�x̂(u)
�p̂(x)(u)

)
= Π(x)0(u, u0)

(
�x̂(u0)
�p̂(x)(u0)

)
+
∫ u

u0

Π(x)0(u, u′)
(
Ê(x)(u′)
F̂(x)(u′)

)
du ′.

(4.7.22)

The integral in (4.7.22) is taken along ray �0 in unperturbed medium M0, and Ê(x) and
F̂(x) are 3 × 1 column matrices with components given by relations:

E (x)
i = ∂�H(x)

/
∂p(x)i , F (x)

i = −∂�H(x)
/
∂xi . (4.7.23)

Equation (4.7.22) can be used to compute paraxial rays situated in the vicinity of ray�0 in
the perturbed medium. To use them, it is necessary to determine the derivatives of �H(x)

with respect to xi and p
(x)
i . This is not difficult because the expressions for�H(x) are known

from Section 3.9, for both isotropic and anisotropic media; see (3.9.8) and (3.9.14).
Equations similar to (4.7.20) can also be used to construct true rays situated in the

vicinity of any reference curveC0. This problem found important applications in connection
with the bending method of two-point ray tracing; see Section 3.11.3.2. For a detailed
derivation and discussion, valid both for isotropic and anisotropic media, see Farra (1992).

4.7.5 Second-Order Travel-Time Perturbation

We again consider the background mediumM0, characterized by HamiltonianH(x)0, and
perturbed medium M, with Hamiltonian H(x). We also consider reference ray �0 in the
background mediumM0, parameterized by monotonic parameter u, and two points S and
R situated on �0. It was shown in Section 3.9 that the first-order travel-time perturbation
can be computed by a quadrature of the first-order perturbation of the Hamiltonian along
�0, in the backgroundmedium. The knowledge of the perturbed ray is not required in these
computations.

In the foregoing section, we derived the inhomogeneous paraxial ray tracing system
(4.7.20), which can be used to compute the first-order ray perturbations in the paraxial
vicinity of reference ray�0. Intuitively, we expect (4.7.20) to be sufficient to determine the
second-order travel-time perturbation. In this section, we shall derive the expressions for
the second-order travel-time perturbation and prove that the knowledge of the first-order
ray perturbation is really sufficient to determine them.

In the derivation of the second-order travel-time perturbation, we shall follow Farra
(1999). We introduce small parameter ε and express formally H(x), xi , and p(x)i in the
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perturbation series in powers of ε, up to quadratic terms:

H(x) = H(x)0 + εH(x)1 + ε2H(x)2, xi = x0i + εx1i + ε2x2i ,
p(x)i = p(x)0i + εp(x)1i + ε2 p(x)2i .

(4.7.24)

Let us emphasize that x1i , x
2
i , p

(x)1
i , and p(x)2i are not powers, but first-order and second-

order perturbations. Using (4.7.24), we easily obtain

p(x)i ẋi = p(x)0i ẋ0i + ε(p(x)0i ẋ1i + p(x)1i ẋ0i
)+ ε2(p(x)0i ẋ2i + p(x)1i ẋ1i + p(x)2i ẋ0i

)
,

(4.7.25)

H(x)
(
xi , p

(x)
i

) = H(x)0
(
x0i , p

(x)0
i

)+ ε(H(x)1 − ṗ(x)0i x1i + p(x)1i ẋ0i
)

+ ε2
(
H(x)2 − ṗ(x)0i x2i + p(x)2i ẋ0i + ∂H(x)1

∂x0i
x1i

+ ∂H(x)1

∂p(x)0i

p(x)1i + A

)
, (4.7.26)

where

A = 1
2

[
A(x)0
i j p(x)1i x1j + B(x)0

i j p(x)1i p(x)1j + C (x)0
i j x1i x

1
j + D(x)0

i j x1i p
(x)1
j

]
;

see (4.2.5) for A(x)0
i j , B

(x)0
i j ,C

(x)0
i j , and D(x)0

i j . Superscript 0 is used to emphasize that the
quantities are computed along reference ray �0 in the background medium. Using the
paraxial ray tracing system (4.7.20), where we replace �xi and �p

(x)
i by x1i and p

(x)1
i , we

obtain

A = 1
2 x

1
i

(− ṗ(x)1i − ∂H(x)1
/
∂x0i

)+ 1
2 p

(x)1
i

(
ẋ1i − ∂H(x)1

/
∂p(x)0i

)
. (4.7.27)

We now combine expressions (4.7.25) and (4.7.26) to exclude p(x)2i . Taking into account
H(x)(xi , p

(x)
i ) = 0 andH(x)0(x0i , p

(x)0
i ) = 0, we obtain the final expression for p(x)i ẋi :

p(x)i ẋi = p(x)0i ẋ0i − εH(x)1

− ε2[H(x)2 + 1
2 x

1
i ∂H(x)1

/
∂x0i + 1

2 p
(x)1
i ∂H(x)1

/
∂p(x)0i

]
+ ε(p(x)0i x1i

). + ε2(p(x)0i x2i
). + 1

2ε
2
(
x1i p

(x)1
i

).
. (4.7.28)

Here ( ). denotes d( )/du. Using (4.7.28), we can obtain the expression for the travel
time in the perturbed medium,

T (xi (uR),xi (uS)) =
∫ uR

uS

p(x)i ẋidu =
∫ uR

uS

p(x)0i ẋ0i du −
∫ uR

uS

[
εH(x)1

+ ε2
(
H(x)2+ 1

2

∂H(x)1

∂x0i
x1i + 1

2

∂H(x)1

∂p(x)0i

p(x)1i

)]
du

+ ε[p(x)0i x1i
]uR
uS

+ ε2[p(x)0i x2i
]uR
uS

+ 1

2
ε2
[
x1i p

(x)1
i

]uR
uS
;

(4.7.29)

see Section 3.9.1. We shall now collect the terms with ε and ε2 in (4.7.29). Quantity ε only
has a formal meaning, and we can put ε = 1. Equation (4.7.29) for the travel time in the
perturbed medium can then be expressed in the following form:

T (xi (uS), xi (uR)) = T 0 + T 1 + T 2. (4.7.30)
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Here T 0 is the travel time from S to R along�0 in the background medium, T 1 is the first-
order travel-time perturbation, and T 2 the second-order travel-time perturbation. They are
given by the following relations:

T 0 =
∫ uR

uS

p(x)0i ẋ0i du,

T 1 = −
∫ uR

uS

H(x)1du + [
p(x)0i x1i

]uR
uS
,

(4.7.31)

T 2 = −
∫ uR

uS

[
H(x)2 + 1

2

∂H(x)1

∂x0i
x1i + 1

2

∂H(x)1

∂p(x)0i

p(x)1i

]
du

+ [
p(x)0i x2i

]uR
uS

+ 1
2

[
p(x)1i x1i

]uR
uS
.

In (4.7.31), all integrals are taken along reference ray �0. For first-order travel-time per-
turbation T 1, the result (4.7.31) is fully equivalent to (3.9.3).

Expression (4.7.30) and (4.7.31) can be used to find the travel time in the perturbed
medium from the fixed point S′ situated close to S to the fixed point R′ situated close to R.
We specify the coordinates of points S′ and R′ by relations xi (S′) = xi (S) + x1Si , xi (R

′) =
xi (R) + x1Ri , and assume that x1Si and x

1
Ri are small. We use (4.7.30) and (4.7.31), where

we put

x1i (uS) = x1Si , x1i (uR) = x1Ri , x2i (uS) = x2i (uR) = 0. (4.7.32)

Then the term [p(x)0i x2i ]
uR
uS

in the expression for T 2 vanishes, and term 1
2 [p

(x)1
i x1i ]

uR
uS

reads

1
2

[
p(x)1i x1i

]uR
uS

= 1
2

(
x1Ri p

(x)1
i (uR) − x1Si p

(x)1
i (uS)

)
. (4.7.33)

Consequently, second-order travel-time perturbation T 2 does not depend on the second-
order ray perturbations x2i or on the second-order slowness vector perturbations p(x)2i .

4.7.6 Higher Derivatives of the Travel-Time Field

The first derivatives of the travel-time field, represented by the slowness vector 	p = ∇T ,
can be determined along the ray by standard ray tracing. Similarly, the second derivatives
of the travel-time field can be computed by dynamic ray tracing. To compute the first
derivatives of the travel-time field, the first derivatives of the propagation velocity must
be known. Similarly, the dynamic ray tracing system uses the second derivatives of the
propagation velocity.

The question is whether it is also possible to compute the third and higher derivatives
of the travel-time field along the ray. It seems natural to think that some “higher-order
dynamic ray tracing systems” will be necessary to perform such computations. Fortunately,
the calculation of higher derivatives is conceptually much simpler. After the 3 × 3 matrix
Q̂(x) is known along the central ray, the higher derivatives of the travel-time field can be
determined by simple quadratures along the ray. However, to calculate the nth derivative
of the travel-time field, we need to know the nth derivatives of the propagation velocity
along the ray.

The theory of calculation of higher derivatives of the travel-time field is due to Babich,
Buldyrev, and Molotkov (1985). We shall present a modified derivation, given by Klimeš
(1997b). To simplify the mathematical treatment, we shall work with parameter σ along the
ray, related to arclength s and travel time T along the ray as follows: dσ = V ds = V 2dT .
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The dynamic ray tracing system for 3 × 3 matrices Q(x)
ik and P (x)

ik in Cartesian coordinates
then reads

d

dσ
Q(x)
ik = P (x)

ik ,
d

dσ
P (x)
ik = 1

2

∂2

∂xi∂x j

(
1

V 2

)
Q(x)

jk ; (4.7.34)

see (4.7.9). We assume that dynamic ray tracing system (4.7.34) has been solved along ray
�, so that the 3 × 3 matrices Q(x)

ik and P (x)
ik are known at any point of the ray.

We now introduce the N th derivative of the travel-time field T,i jk...mn as

T,i jk...mn = ∂NT (x1, x2, x3)

∂xi∂x j∂xk . . . ∂xm∂xn
. (4.7.35)

The total number of indices in T,i jk...mn representing the N th derivative is N . The first
derivative is T,i = pi , where pi are components of the slowness vector. Similarly, the
second derivatives are T,i j = M (x)

i j , where M (x)
i j are the elements of matrix M̂(x) given

by relation M̂(x) = P̂(x)Q̂(x)−1. Using this relation, we obtain a useful equation: P (x)
i j =

M (x)
ik Q

(x)
k j = T,ik Q

(x)
k j .

We shall now compute the following derivative along ray �:

d

dσ

(
T,i jk...mnQ

(x)
ia Q

(x)
jb Q

(x)
kc . . . Q

(x)
meQ

(x)
n f

)
= dT,i jk...mn

dσ
Q(x)
ia Q

(x)
jb Q

(x)
kc . . . Q

(x)
meQ

(x)
n f

+ T,i jk...mn
dQ(x)

ia

dσ
Q(x)

jb Q
(x)
kc . . . Q

(x)
meQ

(x)
n f

+ T,i jk...mnQ
(x)
ia

dQ(x)
jb

dσ
Q(x)
kc . . . Q

(x)
meQ

(x)
n f

+ · · ·

+ T,i jk...mnQ
(x)
ia Q

(x)
jb Q

(x)
kc . . . Q

(x)
me

dQ(x)
n f

dσ
.

We insert

d

dσ
T,i jk...mn = ∂T,i jk...mn

∂xr

dxr
dσ

= T,r T,ri jk...mn,

dQ(x)
ia

/
dσ = P (x)

ia = T,ir Q
(x)
ra ,

and the like and obtain

d

dσ

(
T,i jk...mnQ

(x)
ia Q

(x)
jb Q

(x)
kc . . . Q

(x)
meQ

(x)
n f

)
= Ki jk...mnQ

(x)
ia Q

(x)
jb Q

(x)
kc . . . Q

(x)
meQ

(x)
n f . (4.7.36)

Here Ki jk...mn is given by the relation

Ki jk...mn = T,r T,ri jk...mn + T,ri T,r jk...mn

+ T,r j T,irk...mn + T,rkT,i jr ...mn + · · ·
+ T,rmT,i jk...rn + T,rnT,i jk...mr . (4.7.37)

If T,i jk...mn represents the N th derivative of the travel-time field, the expression for Ki jk...mn

given by (4.7.37) contains the (N + 1)st derivatives; see T,ri jk...mn . Thus, Equations (4.7.36)
with (4.7.37) cannot be directly used for the successive calculation of derivatives. The



4.8 SPECIAL CASES 341

highest derivatives in (4.7.37), however, can be removed using the eikonal equation T,r T,r =
1/V 2:

1
2 (1/V

2),i jk...mn − 1
2 (T,r T,r ),i jk...mn = 0. (4.7.38)

By applying (4.7.38), the (N + 1)st derivative of the travel-time field can be replaced by
the N th derivative of the square of slowness. Adding (4.7.38) to (4.7.37) yields a new
expression for Ki jk...mn:

Ki jk...mn = (
1
2V

−2
)
,i jk...mn

− 1
2 (T,r T,r ),i jk...mn

+ T,r T,ri jk...mn + T,ri T,r jk...mn + T,r j T,irk...mn + · · ·
+ T,rmT,i jk...rn + T,rnT,i jk...mr . (4.7.39)

It is not difficult to see that the highest term T,r T,ri jk...mn is canceled by the highest derivative
termof 1

2 (T,r T,r ),i jk...mn . For N ≥ 3, thenext term is also canceled.Consequently, the highest
derivative of T in the expression (4.7.39) for Ki jk...mn is of the (N − 1)st order. We thus
replace the highest derivatives of the travel-time field by the derivatives of the square of
slowness.

Equation (4.7.36) with (4.7.39) represents the final form of the equations for computing
the N th derivatives of the travel-time field along ray �. Equation (4.7.36) can be simply
integrated along the ray. Because Q(x)

i j are assumed to be known along the ray, the results
of the integration, T,i jk...mnQ

(x)
ia Q

(x)
jb Q

(x)
kc . . . Q

(x)
meQ

(x)
n f , can be used to compute T,i jk...mn .

The expressions for Ki jk...mn given by (4.7.39) are straightforward, but for high N ,
they may be cumbersome. For low N , however, they are very simple. We shall give the
expression for N = 3 and N = 4,

Ki jk = 1
2 (V

−2),i jk, (4.7.40)

Ki jkl = 1
2 (V

−2),i jkl − T,ri j T,rkl − T,rikT,r jl − T,rilT,r jk . (4.7.41)

As indicated by (4.7.40), the third derivatives of the propagation velocity must be known
along ray� if we wish to calculate the third derivatives of the travel-time field. No deriva-
tives of the travel-time field appear in the expression for Ki jk . To calculate the fourth
derivatives of the travel-time field, Ti jkl , we need to know the fourth derivatives of the
square of slowness, and the third derivatives of the travel-time field.

4.8 Special Cases. Analytical Dynamic Ray Tracing

In certain simple situations, dynamic ray tracing systems in isotropic media can be solved
analytically. Dynamic ray tracing then reduces to step-by-step computations, passing from
one interface to another, and to applying appropriate interface matrices at structural inter-
faces. In this section, we shall briefly discuss several such situations.

4.8.1 Homogeneous Layers Separated by Curved Interfaces

We first consider dynamic ray tracing system (4.1.64) in ray-centered coordinates. In a
homogeneous layer, velocity V = const., and elements VIJ ofmatrixV vanish. The dynamic
ray tracing system is then as follows:

dQ/ds = VP, dP/ds = 0; (4.8.1)
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see (4.1.64). The solution reads

Q(R) = Q(S) + Vl(R, S)P(S), P(R) = P(S), (4.8.2)

where l(R, S) is the length of the straight-line segment from S to R.
Ray propagator matrix Π(R, S) along the segment of ray � from S to R in a smooth

medium then yields

Π(R, S) =
(
I Vl(R, S)I
0 I

)
. (4.8.3)

Interface matrix Y(Q) and its inverse Y−1(Q) also simplify because E(Q) = 0. Equa-
tions (4.4.70) and (4.4.72) yield

Y(Q) =
(

G−1 T (Q) 0
−p(z)3 (Q)D(Q)G−1T (Q) G(Q)

)
,

(4.8.4)

Y−1(Q) =
(

GT (Q) 0
p(z)3 (Q)G−1(Q)D(Q) G−1(Q)

)
.

Interface propagator matrix Π(Q̃, Q) is then given by the following relation:

Π(Q̃, Q)=Y−1(Q̃)Y(Q)=
(

GT (Q̃)G−1T (Q) 0
−uG−1(Q̃)D(Q)G−1T (Q) G−1(Q̃)G(Q)

)
,

(4.8.5)

where u is given by (4.4.45) or (4.4.51); see (4.4.76). Finally, we shall present an expression
for the surface-to-surface ray propagator matrix, T(R, S) = Y(R)Π(R, S)Y−1(S),

T(R, S) = Y(R)

(
I Vl(R, S)I
0 I

)
Y−1(S). (4.8.6)

Here Y(R) and Y−1(S) are given by (4.8.4).
Let us now consider the solutions of dynamic ray tracing system (4.7.6) in Cartesian

coordinates for a homogeneous medium. For a homogeneous medium, the system reads

dQ(x)
i

/
dT = V 2P (x)

i , dP (x)
i

/
dT = 0. (4.8.7)

Assume that the initial values of P (x)
i and Q(x)

i are known at point S of ray�. The solution
of (4.8.7) at point R of ray � is then

P (x)
i (R) = P (x)

i (S),
(4.8.8)

Q(x)
i (R) = Q(x)

i (S) + V 2T (R, S)P (x)
i (S).

Here T (R, S) is the travel time from S to R, that is, T (R, S) = l(R, S)/V .

4.8.2 Homogeneous Layers Separated by Plane Interfaces

In this case, the curvatures of the interfaces at all points of incidence vanish, and matrices
(4.8.4) and (4.8.5) simplify. We obtain

Y(Q) =
(
G−1 T (Q) 0

0 G(Q)

)
, Y−1(Q) =

(
GT (Q) 0

0 G−1(Q)

)
,

(4.8.9)
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and, similarly,

Π(Q̃, Q) =
(
GT (Q̃)G−1T (Q) 0

0 G−1(Q̃)G(Q)

)
. (4.8.10)

Otherwise, the equations remain the same.

4.8.3 Layers with a Constant Gradient of Velocity

We shall consider a model in which the velocity of propagation V is a linear function of
Cartesian coordinates, V (xi ) = V0 + Ai xi . Using (4.1.63), we find that the matrix V of
second derivatives of velocity with respect to q1 and q2 vanishes. The dynamic ray tracing
in ray-centered coordinates can again be expressed in the form of (4.8.1). The solution,
however, is a little more complex than (4.8.2) because velocity V is variable along ray �:

Q(R) = Q(S) + P(S)
∫ R

S
V ds, P(R) = P(S). (4.8.11)

We denote

σ (R, S) =
∫ R

S
V ds =

∫ R

S
V 2 dT (4.8.12)

and obtain

Q(R) = Q(S) + P(S)σ (R, S), P(R) = P(S). (4.8.13)

It is obvious thatσ in (4.8.12) and (4.8.13) is amonotonic parameter along the ray introduced
in Section 3.1.1; see (3.1.11). The ray propagator matrixΠ(R, S) along the segment of ray
� from S to R then reads

Π(R, S) =
(
I Iσ (R, S)
0 I

)
. (4.8.14)

Interface matrices Y(Q), Y−1(Q), and Π(Q̃, Q), however, do not simplify in this case;
general relations (4.4.70), (4.4.72), and (4.4.76) need to be used. The foregoing equations,
together with expressions for the interface propagator matrixΠ(Q̃, Q), can be also suitably
used for analytical dynamic ray tracing in models consisting of tetrahedral cells with
constant gradients of velocity inside the cells and in layered and blockmodels with constant
gradient of velocity inside individual layers and blocks. See also Lafond and Levander
(1990).

For the surface-to-surface ray propagator matrix, we obtain

T(R, S) = Y(R)

(
I Iσ (R, S)
0 I

)
Y−1(S). (4.8.15)

4.8.4 Analytical Dynamic Ray Tracing in Cartesian Coordinates

The simplest solution of the dynamic ray tracing system inCartesian coordinates is obtained
from (4.7.9) for themodel with a constant gradient of the square of slowness V−2(xi ), that is
V−2(xi ) = A0 + Ai xi ; seeSection 3.4.2. The relevantHamiltonian inCartesian coordinates
is given by the relationH(x) = 1

2 (p
(x)
i p(x)i − 1/V 2), and the monotonic parameter along the

ray is σ , where dσ = V 2dT = V ds. The solution of (4.7.9) reads

P (x)
i (R) = P (x)

i (S), Q(x)
i (R) = Q(x)

i (S) + σ (R, S)P (x)
i (S). (4.8.16)
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Here σ (R, S) is given by (4.8.12), Q(x)
i = (∂xi/∂γ )σ=const. and P

(x)
i = (∂p(x)i /∂γ )σ=const..

The 6 × 6 propagator matrix Π(x)(R, S) is then given by the relation

Π(x)(R, S) =
(
Î σ (R, S)Î
0̂ Î

)
. (4.8.17)

Expression (4.8.17) practically agrees with (4.8.3). The minors of (4.8.17), however, rep-
resent 3 × 3 matrices, but the minors of (4.8.3) represent 2 × 2 matrices. If we combine
(4.8.17) with the interface ray propagator matrices (4.7.12) and use (4.7.11), we obtain
the analytical expression for the 6 × 6 propagator matrix in general 3-D laterally varying
layered and block structures, with a constant gradient of 1/V 2 in the individual layers and
in models consisting of tetrahedral cells with a constant gradient of 1/V 2 in the individual
cells.

If the gradient of ln V (xi ) or 1/V (xi ) is constant, it is possible to use dynamic ray
tracing system (4.7.5) (with monotonic variable T ) or (4.7.7) (with monotonic variable s).
We again obtain constant P (x)

i along the whole ray, P (x)
i (R) = P (x)

i (S). The equations for

Q(x)
i are, however, more complicated. We can insert the proper analytical solutions for p(x)i

and use P (x)
i = const. Q(x)

i can then be obtained by quadratures along central ray �.
Analytical expression for the propagator matrix in terms of closed-form integrals can

also be derived for vertically inhomogeneous media. In this case, it is suitable to use the
reduced HamiltonianHR(xi , pI ) introduced by (3.1.28). If we assume that the velocity de-
pends on the Cartesian coordinate x3 only, the reduced Hamiltonian is given by the relation
HR = −S(x3, p1, p2), with S = [1/V 2(x3) − p21 − p22]

1/2. This yields ∂HR/∂xI = 0 and
∂HR/∂pI = S−1 pI . The ray tracing system then shows that p1 and p2 are constant along
the whole ray. It is usual to take p1 and p2 as ray parameters γ1 and γ2. The 4 × 4 dynamic
ray tracing system corresponding to the reduced Hamiltonian under consideration is then
given by (4.2.65), with

AR
IJ = 0, BR

IJ = S−1δIJ + S−3 pI pJ , CR
IJ = 0, DR

IJ = 0,

(4.8.18)

andwith QR
I = (∂xI/∂γ )x3=const. and PR

I = (∂p(x)I /∂γ )x3=const.. Consequently, dynamic ray
tracing (4.2.65) is very simple and reads

dQR/dx3 = BRPR, dPR/dx3 = 0. (4.8.19)

Because BR depends on x3 only, (4.8.19) has the solution

QR(x3) = QR(x30) +
(∫ x3

x30

BR(x3)dx3

)
PR(x30), PR(x3) = PR(x30).

(4.8.20)

Here we have assumed that x3 > x30 and that there is no turning point between x30 and
x3. Otherwise, it would be necessary to divide the ray at all turning points into upgoing
and downgoing segments. Equation (4.8.20) shows that the reduced 4 × 4 ray propagator
matrix ΠR(x3, x30) is given by the relation

ΠR(x3, x30) =
(
I

∫ x3
x30
BR(x3)dx3

0 I

)
. (4.8.21)

Thus, the computation of the propagator matrix ΠR(x3, x30) only requires the quadrature
of matrix BR(x3) along the x3 axis, from x30 to x3.
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Note that detQR has a simple geometrical meaning. It represents the cross section of
the ray tube by a plane x3 = const. It is interesting that this cross section remains constant
along the ray, if plane-wavefront initial conditions are considered; see (4.8.21). The waves
propagating in a vertically inhomogeneous medium and corresponding to plane wavefront
initial conditions are often called Snell’s waves.

It is not difficult to find relations between the 4 × 4 propagator matrix ΠR(R, S),
given by (4.8.21), and the relevant 4 × 4 propagator matrix Π(R, S), corresponding to
ray-centered coordinates (4.3.5). Actually, the reduced propagator matrixΠR(R, S) can be
interpreted as the surface-to-surface ray propagator matrix T(R, S), which was introduced
in Section 4.4.7. In this case, all surfaces are plane and parallel. Using (4.4.90), we obtain

Π(R, S) = Y−1(R)ΠR(R, S)Y(S). (4.8.22)

Here the 2 × 2 matrices Y and Y−1 are given by (4.4.70) and (4.4.72), where D = 0,E
has only one nonvanishing term E11 (as V

(z)
,1 = V (z)

,2 = 0), and G is given by (4.4.48) and
(4.4.49). Notice that ΠR(R, S) is continuous across structural interfaces but that Π(R, S)
is not continuous.

Without any loss of generality, we can consider only planar rays situated in plane �‖,
parallel to the x3-axis and passing through S and R. We shift the x3-axis parallel to pass
through point S and rotate the Cartesian coordinate system about the x3-axis in such a
way that �‖ represents plane x2 = 0. We choose p2(S) = 0 and e22(S) = 1. Then p2 = 0
and e22 = 1 along the whole ray. Consequently, polarization vector 	e2 is perpendicular
to �‖, and 	e1 and 	e3 are situated in plane �‖. As usual, we denote p1 = p. Because
p2 = 0 along the whole ray, we obtain BR

11 = S−3V−2, BR
22 = S−1 and BR

12 = BR
21 = 0,

where S = [1/V 2(x3) − p2]1/2. Equations (4.8.21) and (3.7.9) then yield

QR
2 (x3, x30) =

∫ x3

x30

BR(x3)dx3 =
(
(dx1/dp)x3 0

0 x1/p

)
. (4.8.23)

The derivative (dx1/dp)x3 is taken along line x3 = const. It is straightforward to find the
relation between ΠR(R, S) and Π(R, S) using (4.8.22). We use G⊥ = I and G = G‖,
whereG‖ has diagonal elements G‖

11 = cos i(S), G‖
22 = 1; see (4.4.48) and (4.4.49). Using

(4.8.22) and (4.8.23) also, we obtain

Q2(R, S) = GT (R)QR
2 (R, S)G(S)

=
(
cos i(S) cos i(R)(dx1/dp)x3 0

0 x1/p

)
. (4.8.24)

Using (4.8.24), we obtain an important relation for detQ2(R, S) for vertically inhomoge-
neous media, which is very useful in the computation of relative geometrical spreading,

detQ2(R, S) = p−1 cos i(S) cos i(R)x1(p)(dx1(p)/dp)x3 ; (4.8.25)

see Section 4.10.2. For a more detailed discussion of (4.8.25), see Section 4.10.2.5. If a
line source parallel to x2-axis is considered instead of the point source, Equations (4.8.23)
through (4.8.25) remain valid, but x1/p is replaced by 1.

Equation (4.8.25) remains valid for any ray parameter γ1 (not necessarily p). Ma-
trices Q and P, however, depend on ray parameters. For a point source at S, relation
detQ(R) = detQ2(R, S) detP(S) can be used to compute J (R) = detQ(R). For ray pa-
rameters γ1 = i(S), γ2 = φ(S), we obtain detP(S) = V−1(S)p; see (4.5.37). Then J (R) =
V−1(S) cos i(S) cos i(R)x1(p)(dx1/dp)x3 . This is fully equivalent to the second equation of
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(3.10.45), derived in a quite different way. For ray parameters γ1 = p1 = p and γ2 = p2, we
obtain detP(S) = 1/cos i(S); see (4.10.16). Then J (R) = p−1 cos i(R)x1(p)(dx1/dp)x3 .

We shall now use (4.8.22) to derive the equations for P2(R, S):

P2(R, S) = G−1(R)G(S) −G−1(R)E(R)QR
2 (R, S)G(S). (4.8.26)

If the gradient of velocity vanishes at R, E(R) = 0, and (4.8.26) simplifies:

P2(R, S) = G−1(R)G(S) =
(
cos i(S)/cos i(R) 0

0 1

)
. (4.8.27)

This is actually an expected result, following also from simple geometrical considerations.
The reduced 4 × 4 propagator matrices similar to (4.8.21) can also be derived for some

other one-dimensional models, for example, for radially symmetric models. It is, however,
necessary to be careful because the scale factors also depend on coordinates.

4.8.5 Reflection/Transmission at a Curved Interface

The general procedures for computing the ray propagator matrix Π(R, S) of a wave re-
flected/transmitted at the curved interface � between two laterally inhomogeneous media
were presented inSections 4.4.5 and4.4.8. In this section,we shall discuss these equations in
greater detail, considering a wave generated by a point source situated at S. The derivation
would be similar for all four submatricesQ1(R, S),Q2(R, S),P1(R, S), andP2(R, S) of ray
propagator matrixΠ(R, S). Hence, we shall discuss only the 2 × 2matrixQ2(R, S), which
plays a basic role in computing the amplitudes of the waves generated by the point source.
As a by-product, we shall also obtain convenient equations for the Fresnel zone matrixMF .

We consider a ray of an arbitrary reflected or transmitted (possibly converted) wave.
The ray has two segments: incident and reflected/transmitted. The point source is situated
at the point S of the incident segment, and the receiver at the point R of the R/T segment.
As usual, the point of incidence at interface � is denoted by Q, and the point of R/T is
denoted by Q̃. Otherwise, we shall use the same notation as in Sections 4.4.5 and 4.4.8;
see Figure 4.10.

We shall introduce the standard local Cartesian coordinate system zi at the point of
incidence Q using relations (4.4.21). We remind the reader that orientation index ε is given
by the relation ε = sign( 	p(Q) · 	n), where 	p(Q) is the slowness vector of the incident wave
at Q. Consequently, we can use (4.4.48) and (4.4.49) for G(Q) and G(Q̃). Unit vectors 	e1
and 	e2 may be specified at any point of ray �. We shall specify them at Q and Q̃ in such a
way that 	e2(Q) = 	e2(Q̃) = 	i (z)2 (Q). Thus, 	e2(Q) and 	e2(Q̃) are perpendicular to the plane
of incidence. If we wish to know 	e1(S) and 	e2(S), we need to recalculate 	e2 from Q back
to S. As a consequence of this choice of 	e2(Q) and 	e2(Q̃), we have G⊥(Q) = G⊥(Q̃) = I,
G(Q) = G‖(Q), and G(Q̃) = G‖(Q̃). Equations (4.4.108) and (4.4.109) then yield

Q2(R, S)

= Q2(R, Q̃)

(±ε/cos iR 0
0 1

)
MF (Q; R, S)

(
ε/cos iS 0

0 1

)
Q2(Q, S),

(4.8.28)
MF (Q; R, S)

= G‖(Q)P2(Q, S)Q
−1
2 (Q, S)G‖(Q)

+G‖(Q̃)Q−1
2 (R, Q̃)Q1(R, Q̃)G

‖(Q̃) + E(Q) − E(Q̃) − uD(Q).

(4.8.29)
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Here iS is the acute angle of incidence, iR the acute angle of R/T, G‖(Q) and G‖(Q̃) are
given by (4.4.49), EIJ(Q) and EIJ(Q̃) are given by (4.4.53) and (4.4.54), and u is given by
(4.4.51). The upper sign in (4.8.28) corresponds to the transmitted wave, the lower sign
corresponds to the reflected wave. (4.8.28) also immediately yields an important relation
for detQ2(R, S):

detQ2(R,S) = ± 1

cos iS cos iR
detQ2(R, Q̃) detM

F (Q;R,S) detQ2(Q,S).

(4.8.30)

The upper sign again corresponds to the transmitted wave; the lower sign corresponds to
the reflected wave.

We shall now specify (4.8.28) through (4.8.30) for two simple velocity distributions.

a. INTERFACE BETWEEN MEDIA WITH CONSTANT VELOCITY GRADIENTS
We assume that the velocity V (xi ) corresponding to the incident wave depends on

coordinates xi as V (xi ) = V0 + Ai xi , and the velocity Ṽ (xi ) corresponding to the R/T
wave depends on coordinates xi as Ṽ (xi ) = Ṽ 0 + Ãi xi . Then we can use (4.8.14) and
obtainQ2(Q, S) = σSI andQ2(R, Q̃) = σRI, where σS = σ (Q, S) and σR = σ (R, Q̃) are
given by (4.8.12). Consequently,

Q2(R, S) = σSσR

(±ε/cos iR 0
0 1

)
MF (Q; R, S)

(
ε/cos iS 0

0 1

)
,

(4.8.31)

detQ2(R, S) = ± σ 2
Sσ

2
R

cos iS cos iR
detMF (Q; R, S). (4.8.32)

The elements of the Fresnel zone matrixMF (Q; R, S) are given by the relations

MF
11(Q; R, S) = (cos2iS)/σS + (cos2iR)/σR

+ E11(Q) − E11(Q̃) − u(Q)D11,

MF
12(Q; R, S) = MF

21(Q; R, S) = E12(Q) − E12(Q̃) − uD12,

MF
22(Q; R, S) = 1/σS + 1/σR − uD22.

(4.8.33)

Here EIJ(Q) and EIJ(Q̃) are given by (4.4.53) and (4.4.54), where V (z)
,i = A j Z ji and

Ṽ
(z)
,i = Ã j Z ji . Quantity u(Q) is given by (4.4.51).
For an unconverted reflected wave, expressions (4.8.33) for the elements of the Fresnel

zone matrix simplify. We use iS = iR , (4.4.52) for u, and (4.4.56) for EIJ(Q) − EIJ(Q̃),

MF
11(Q; R, S) = cos iS

[
(1/σS + 1/σR) cos iS

+ 2ε sin2iSV−2V (z)
,3 − 2εV−1D11

]
,

MF
12(Q; R, S) = MF

21(Q; R, S) = −2εV−1 cos iSD12,

MF
22(Q; R, S) = 1/σS + 1/σR − 2εV−1 cos iSD22.

(4.8.34)

All quantities are taken at Q. Let us briefly discuss the signs of the inhomogeneity and
curvature terms in (4.8.34). All these terms contain the factor ε. Instead of V (z)

,3 , we can
introduce V+

,3 = εV (z)
,3 . Quantity V+

,3 is positive if velocity V increases toward interface �
at Q. Similarly, instead of curvature matrix D, we can introduce matrix D+ = εD. Both
eigenvalues of matrix D+ are positive if interface � is concave for the observer situated
on the incident segment of ray �.
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b. INTERFACE SEPARATING HOMOGENEOUS MEDIA
We denote the velocity corresponding to the incident wave by VS and the length of the

incident segment of the ray by lS , lS = SQ. For the R/T segment of the ray, we use VR
and lR , with lR = Q̃R. We then obtain σS = VSlS, σR = VRlR , and EIJ(Q) = EIJ(Q̃) = 0.
Equations (4.8.31) and (4.8.32) remain the same, but we insert σS = VSlS and σR = VRlR .
Equations (4.8.33), however, yield

MF
11(Q; R, S) = (cos2iS)/VSlS + (cos2iR)/VRlR − uD11,

MF
12(Q; R, S) = MF

21(Q; R, S) = −uD12, (4.8.35)

MF
22(Q; R, S) = 1/VSlS + 1/VRlR − uD22.

This gives a useful equation for detMF (Q; R, S):

detMF (Q; R, S)

=
[
cos2iS
VSlS

+ cos2iR
VRlR

− uD11

][
1

VSlS
+ 1

VRlR
− uD22

]
− u2D2

12.

(4.8.36)

For an unconverted reflected wave, iS = iR, VS = VR , and (4.8.35) yields

MF
11(Q; R, S) = V−1

S cos iS[(1/ lS + 1/ lR) cos iS − 2εD11],

MF
12(Q; R, S) = MF

21(Q; R, S) = −2ε cos iSV
−1
S D12, (4.8.37)

MF
22(Q; R, S) = V−1

S [1/ lS + 1/ lR − 2ε cos iS D22].

Similarly, (4.8.36) yields

detMF (Q; R, S) = cos iS
V 2
S

{[(
1

lS
+ 1

lR

)
cos iS − 2εD11

]

×
[
1

lS
+ 1

lR
− 2ε cos iS D22

]
− 4 cos iSD

2
12

}
.

(4.8.38)

4.9 Boundary-Value Ray Tracing for Paraxial Rays

Ray propagator matrixΠ connects the properties of the ray field and of the travel-time field
at different points of ray �. This property of the ray propagator matrix can be effectively
used to solve analytically various boundary-value ray tracing problems for paraxial rays.
In this section, considerable attention will be devoted to the analytical solution of the
two-point ray tracing problem for paraxial rays and to the calculation of the two-point
eikonal. In a similar way, it would be possible to solve analytically other boundary-value
ray tracing problems for paraxial rays such as the initial surface-fixed point ray tracing.
See Section 3.11 for the discussion of various boundary-value ray tracing problems.

We shall consider central ray � and two points, S and R, situated on �. Ray � may
be situated in any 3-D laterally varying layered isotropic structure and may correspond
to an arbitrary high-frequency (HF) seismic body wave, including multiply reflected and
converted waves.

We assume that the following quantities are known.

a. Propagation velocity V at S and R, V (S), and V (R). Each of them corresponds to
the velocity of either the P or S wave, depending on the type of elementary wave
under consideration. The acoustic case may, of course, also be considered.
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b. The gradients of velocity at S and R, (∇V )S and (∇V )R . These gradients again
correspond to the relevant elementary wave.

c. The transformation matrices from ray-centered coordinates qi to Cartesian coordi-
nates xi , Ĥ(S), and Ĥ(R). These matrices specify the local directions of the basis
unit vectors of the ray-centered coordinate systems at S and R, 	ei (S) and 	ei (R).
We remind the reader that the slowness vectors at S and R are given by relations
	p(S) = V−1(S)	e3(S) and 	p(R) = V−1(R)	e3(R).

d. The travel time from S to R, T (R, S), along central ray �, of the elementary wave
under consideration.

e. Ray propagator matrix Π(R, S), computed by dynamic ray tracing in ray-centered
coordinates. As usual, we shall denote the 2 × 2 minors of Π(R, S) by Q1(R, S),
Q2(R, S), P1(R, S), and P2(R, S); see (4.3.5).

We shall also consider two additional points S′ and R′, point S′ situated close to S and
R′ close to R. We shall solve various boundary-value ray tracing problems for these two
points. In particular, we are interested in finding an expression for the two-point eikonal,
T (R′, S′), that is, the travel time from S′ to R′.

4.9.1 Paraxial Two-Point Ray Tracing in Ray-Centered Coordinates

In this section, we shall assume that point S′ is situated in a plane perpendicular to �
at S, and point R′ in a plane perpendicular to � at R. We assume that the ray-centered
coordinates q1 and q2 of these two points are known and denote them qI (S′) and qI (R′).
We wish to find the travel time from S′ to R′, T (R′, S′), and the ray-centered components
of slowness vectors 	p(S′) and 	p(R ′), p(q)I (S′) and p(q)I (R′), corresponding to ray�′(R′, S′)
connecting points S′ and R′.

The ray-centered components of the slowness vectors at S′ and R′ can be found simply.
The paraxial ray tracing system yields the continuation relations(

q(R′)
p(q)(R′)

)
= Π(R, S)

(
q(S′)
p(q)(S′)

)
; (4.9.1)

see (4.3.28). Here we have used the notation

q(R′) =
(
q1(R′)
q2(R′)

)
, q(S′) =

(
q1(S′)
q2(S′)

)
,

(4.9.2)

p(q)(R′) =
(
p(q)1 (R′)
p(q)2 (R′)

)
, p(q)(S′) =

(
p(q)1 (S′)
p(q)2 (S′)

)
;

see (4.1.57). Equation (4.9.1) yields

q(R′) = Q1(R, S)q(S′) +Q2(R, S)p(q)(S′),

p(q)(R′) = P1(R, S)q(S′) + P2(R, S)p(q)(S′).
(4.9.3)

The solution of (4.9.3) for p(q)(S′) and p(q)(R′) is

p(q)(S′) = Q−1
2 q(R′) −Q−1

2 Q1q(S′),

p(q)(R′) = (
P1 − P2Q

−1
2 Q1

)
q(S′) + P2Q

−1
2 q(R′).

(4.9.4)

Here and in the following equation,we omit the arguments of the 2 × 2matricesQ1,Q2,P1,

and P2; we understand these arguments to beQ1(R, S),Q2(R, S), P1(R, S), and P2(R, S).
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Taking into account that

P1 − P2Q
−1
2 Q1 = (P1Q

−1
1 − P2Q

−1
2 )Q1 = −Q−1T

2 Q−1
1 Q1 = −Q−1T

2

(see (4.3.16)), we can express (4.9.4) in its final form,

p(q)(S′) = −Q−1
2 (R, S)Q1(R, S)q(S′) +Q−1

2 (R, S)q(R′),

p(q)(R′) = −Q−1T
2 (R, S)q(S′) + P2(R, S)Q

−1
2 (R, S)q(R′).

(4.9.5)

The paraxial slowness vectors at S′ and R′ have thus been determined analytically.
We shall useM(R, S) = P2(R, S)Q

−1
2 (R, S) to denote the matrix of the second deriva-

tives of travel-time field M at R, due to the point source situated at S. Similarly, we use
M(S, R) = −Q−1

2 (R, S)Q1(R, S), which represents the matrix of the second derivatives
of the travel-time field at S, due to the point source situated at R. See (4.6.8) and (4.6.9).
An alternative form of (4.9.5) is then

p(q)(S′) = M(S, R)q(S′) +Q−1
2 (R, S)q(R′),

p(q)(R′) = −Q−1T
2 (R, S)q(S′) +M(R, S)q(R ′).

(4.9.6)

Assuming that the propagator matrix Π is known along the whole central ray �, and
realizing that q(S′) and p(q)(S′) are known, we can use the continuation relation (4.9.1) to
determine completely the paraxial ray and the paraxial slowness vector at any point of the
paraxial ray. Consequently, Equations (4.9.1) with (4.9.6) solve completely the problem of
two-point ray tracing for paraxial rays in ray-centered coordinates.

The next problem is to determine the travel time from S′ to R ′ along paraxial ray
�′(R′, S′). We can put

T (R′) = T (R) + 1
2q

T (R′)p(q)(R′), T (S′) = T (S) + 1
2q

T (S′)p(q)(S′);

(4.9.7)

see (4.6.30). Subtracting these two equations, we arrive at

T (R′, S′) = T (R, S) + 1
2q

T (R′)p(q)(R′) − 1
2q

T (S′)p(q)(S′). (4.9.8)

As p(q)(R′) and p(q)(S′) are given by (4.9.6), we can use (4.9.8) to determine T (R ′, S′):

T (R′, S′) = T (R, S) + 1
2q

T (R′)
[
M(R, S)q(R′) −Q−1T

2 (R, S)q(S′)
]

− 1
2q

T (S′)
[
M(S, R)q(S′) +Q−1

2 (R, S)q(R′)
]
.

If we take into account that

qT (R′)Q−1T
2 (R, S)q(S′) = qT (S′)Q−1

2 (R, S)q(R′),

we obtain the final expression for the two-point eikonal in ray-centered coordinates:

T (R′, S′) = T (R, S) + 1
2q

T (R′)M(R, S)q(R′) − 1
2q

T (S′)M(S, R)q(S′)

− qT (S′)Q−1
2 (R, S)q(R′). (4.9.9)

4.9.2 Paraxial Two-Point Ray Tracing in Cartesian Coordinates

In this section, we shall consider arbitrary positions of point S′ close to S and point R′

close to R. Points S′ and R′ need not be situated in planes perpendicular to � at S and R,
respectively.
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We shall first solve the problem in the local Cartesian ray-centered coordinate systems
at points S and R and only then rewrite the results in general Cartesian coordinates xi .

At both points S and R, we construct local Cartesian ray-centered coordinate systems
yi ; see Section 4.1.4. We denote the local Cartesian ray-centered coordinates of point S′

by yi (S′, S) and the local Cartesian ray-centered coordinates of point R′ by yi (R′, R). The
second argument in this notation emphasizes the origins of the relevant coordinate systems
at S and R.

We denote the projection of S′ into the plane�⊥(S) perpendicular to� at S by S⊥ and
the projection of R′ into the plane �⊥(R) perpendicular to � at R by R⊥. Then

yI (S
′, S) = qI (S

⊥), yI (R
′, R) = qI (R

⊥). (4.9.10)

We introduce the 3 × 1 column matrices ŷ(S′, S) and ŷ(R′, R) by the following relations:

ŷ(S′, S) =

y1(S′, S)
y2(S′, S)
y3(S′, S)


 =


q1(S⊥)
q2(S⊥)
y3(S′, S)


 ,

ŷ(R′, R) =

y1(R′, R)
y2(R′, R)
y3(R′, R)


 =


q1(R⊥)
q2(R⊥)
y3(R′, R)


 .

(4.9.11)

We now wish to find the travel time from S′ to R′, T (R ′, S′), and the local Cartesian com-
ponents of slowness vectors p(y)i (S′) and p(y)i (R′), corresponding to paraxial ray�′(R′, S′).

We shall first determine the components of slowness vectors p(y)i (R′) and p(y)i (S′),
corresponding to paraxial ray �′(R′, S′). Using (4.6.29), we obtain

p(y)i (R′) = p(y)i (R) + Mi j (R)y j (R
′, R).

This yields

p(y)i (R′) = p(y)i (R) + δi K MKJ(R)yJ (R
′, R) + M+

i j (R)y j (R
′, R). (4.9.12)

Here M+
IJ = 0,M+

3 j = M3 j , and M+
i3 = Mi3. Symbol δi K (i = 1, 2, 3; K = 1, 2) has the

standard meaning: δi K = 1 for i = K and δi K = 0 for i �= K . Due to (4.6.29) and (4.9.10),
we obtain

MKJ(R)yJ (R
′, R) = MKJ(R)qJ (R

⊥) = p(q)K (R⊥).

Because points R⊥ and S⊥ are situated in planes perpendicular to ray � at R and S, we
can use (4.9.6) for p(q)(R⊥):

p(q)K (R⊥) = MKJ(R, S)qJ (R
⊥) − (

Q−1
2 (R, S)

)
JK
qJ (S

⊥). (4.9.13)

Inserting (4.9.13) into (4.9.12) and considering (4.9.10) yields

p(y)i (R′) = p(y)i (R) + M+
i j (R)y j (R

′, R)

+ δi K
{
MKJ(R, S)yJ (R

′, R) − (
Q−1

2 (R, S)
)
JK
yJ (S

′, S)
}
.

Again, taking into account that M+
i j (R) = M+

i j (R, S) and combining the second and last
terms yields the final relation

p(y)i (R′) = p(y)i (R) + Mi j (R, S)y j (R
′, R) − δi K

(
Q−1

2 (R, S)
)
JK
yJ (S

′, S).

(4.9.14)
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To express (4.9.14) in matrix form, it is useful to introduce two matrices

ÎM =

1 0
0 1
0 0


 , Â(R, S) = ÎMQ−1

2 (R, S)ÎMT =

Q−1

2 (R, S)
0
0

0 0 0


 .

(4.9.15)

We also take into account that y(S′, S) = ÎMT ŷ(S′, S) and obtain

p̂(y)(R′) = p̂(y)(R) + M̂(R, S)ŷ(R′, R) − ÎMQ−1T
2 (R, S)y(S′, S)

= p̂(y)(R) + M̂(R, S)ŷ(R′, R) − ÂT (R, S)ŷ(S′, S). (4.9.16)

In a similar way, we obtain the relations for p(y)i (S′),

p(y)i (S′) = p(y)i (S) + Mi j (S, R)y j (S
′, S) + δi K

(
Q−1

2 (R, S)
)
KJ
yJ (R

′, R),

(4.9.17)

or, in matrix form,

p̂(y)(S′) = p̂(y)(S) + M̂(S, R)ŷ(S′, S) + ÎMQ−1
2 (R, S)y(R′, R)

= p̂(y)(S) + M̂(S, R)ŷ(S′, S) + Â(R, S)ŷ(R′, R). (4.9.18)

The next problem is to determine the travel time from S′ to R′ along paraxial ray�′(R′, S′),
T (R′, S′). We use (4.6.30),

T (R′) = T (R) + 1
2 ŷ

T (R′, R)
[
p̂(y)(R′) + p̂(y)(R)

]
,

T (S′) = T (S) + 1
2 ŷ

T (S′, S)
[
p̂(y)(S′) + p̂(y)(S)

]
.

For T (R′, S′) = T (R′) − T (S′), we then obtain

T (R′, S′) = T (R, S) + 1
2 ŷ

T (R′, R)
(
p̂(y)(R′) + p̂(y)(R)

)
− 1

2 ŷ
T (S′, S)

(
p̂(y)(S′) + p̂(y)(S)

)
.

Inserting (4.9.16) and (4.9.18) into the preceding equation yields

T (R′, S′) = T (R, S) + ŷT (R′, R)p̂(y)(R) − ŷT (S′, S)p̂(y)(S)

+ 1
2 ŷ

T (R′, R)M̂(R, S)ŷ(R′, R) − 1
2 ŷ

T (S′, S)M̂(S, R)ŷ(S′, S)

− 1
2 ŷ

T (R′, R)ÂT (R, S)ŷ(S′, S) − 1
2 ŷ

T (S′, S)Â(R, S)ŷ(R′, R).

It is not difficult to see that the last two terms are equal. Thus, the final form for the travel
time from S′ to R′ is

T (R′, S′) = T (R, S) + ŷT (R′, R)p̂(y)(R) − ŷT (S′, S)p̂(y)(S)

+ 1
2 ŷ

T (R′, R)M̂(R, S)ŷ(R′, R) − 1
2 ŷ

T (S′, S)M̂(S, R)ŷ(S′, S)

− ŷT (S′, S)Â(R, S)ŷ(R ′, R). (4.9.19)

In all these equations, we can also use symplectic relations Q2(R, S) = −QT
2 (S, R) and

A(R, S) = −AT (S, R). The last term in (4.9.19) can also be expressed in the form
ŷT (S′, S)ÂT (S, R)ŷ(R′, R).
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All equations for the two-point ray tracing in local Cartesian ray-centered coordinates
yi can easily be expressed in general Cartesian coordinates xi or in any local Cartesian
coordinate system xi introduced at S and R. The local Cartesian coordinate systems at
S and R may be different. We specify the Cartesian coordinate systems at S and R by
transformation matrices Ĥ(S) and Ĥ(R); see Section 4.1.5.

We denote the Cartesian coordinates of points under consideration by xi (R′), xi (R),
xi (S′), and xi (S). We introduce the notations

xi (R
′, R) = xi (R

′) − xi (R), xi (S
′, S) = xi (S

′) − xi (S). (4.9.20)

Similarly, we introduce the 3 × 1 column matrices x̂(R′, R) and x̂(S′, S) using (4.1.85).
The transformation relations are then

x̂(R′, R) = Ĥ(R)ŷ(R′, R), ŷ(R′, R) = ĤT (R)x̂(R′, R),

x̂(S′, S) = Ĥ(S)ŷ(S′, S), ŷ(S′, S) = ĤT (S)x̂(S′, S).
(4.9.21)

We can also transform the slowness vectors in a similar manner.
For slowness vectors p̂(x)(S′) and p̂(x)(R′), (4.9.16) and (4.9.18) yield

p̂(x)(R′) = p̂(x)(R) + M̂(x)(R, S)x̂(R′, R) − Â(x)T (R, S)x̂(S′, S),

p̂(x)(S′) = p̂(x)(S) + M̂(x)(S, R)x̂(S′, S) + Â(x)(R, S)x̂(R′, R).
(4.9.22)

These are the final equations for the two-point paraxial slowness vectors, p̂(x)(R′) and
p̂(x)(S′). Matrices M̂(x) and Â(x) are given by relations

M̂(x)(R, S) = Ĥ(R)M̂(R, S)ĤT (R),

M̂(x)(S, R) = Ĥ(S)M̂(S, R)ĤT (S),

Â(x)(R, S) = Ĥ(S)Â(R, S)ĤT (R).

(4.9.23)

In the last equation of (4.9.23), we can also insert Â(x)(R, S) = −Â(x)T (S, R).
As in ray-centered coordinates, Equations (4.9.22) solve completely the two-point ray

tracing problem if the points S′ and R′ are situated arbitrarily in the vicinity of S and
R and specified in Cartesian coordinates. We have two possibilities for determining the
paraxial ray �′(R′, S′), which connects points S′ and R′. First, we can use xi (S′, S) and
p(x)i (S′), determined by (4.9.22), and perform standard ray tracing from S′. Consequently,
the problem of a two-point ray tracing is reduced to a problem of an initial-value ray tracing.
Alternatively, ray tracing can also be started at R′, using known xi (R′, R) and p(x)i (R′).
Second, we can exploit the known propagator matrixΠ(R, S) and compute the paraxial ray
�′ analytically, without a new ray tracing. To do this, we need to know qI (S⊥) and p(q)I (S⊥)
at point S⊥, where the paraxial ray �′(R′, S′) intersects plane �⊥(S), perpendicular to �
at S. Actually, relevant projection equations follow immediately from those given earlier:

qK (S⊥) = yK (S′, S), yi (S′, S) = Hji (S)x j (S′, S),

p(q)K (S⊥) = HiK (S)(p
(x)
i (S′) − p(x)i (S)) − MK3(S)y3(S′, S).

For isotropic media, MK3(S) = −(v−2v,K )S; see (4.1.81). As soon as qK (S⊥) and p(q)K (S⊥)
are known, (4.9.1) can be used to compute the paraxial ray �′ analytically. (Note that
points S′ and R′ in (4.9.1) are situated in planes perpendicular to � at S and R so that
they correspond to S⊥ and R⊥.) Analogous equations can be also obtained for qK (R⊥) and
p(q)K (R⊥).
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For travel time T (R′, S′) from S′ to R′ (4.9.19) yields

T (R′, S′) = T (R, S) + x̂T (R′, R)p̂(x)(R) − x̂T (S′, S)p̂(x)(S)

+ 1
2 x̂

T (R′, R)M̂(x)(R, S)x̂(R′, R)

− 1
2 x̂

T (S′, S)M̂(x)(S, R)x̂(S′, S)− x̂T (S′, S)Â(x)(R, S)x̂(R′, R).

(4.9.24)

4.9.3 Paraxial Two-Point Eikonal

Equation (4.9.24) represents one of themost important equations of the paraxial raymethod.
It allows travel time T (R′, S′) from any point S′ to any point R′ in a laterally varying layered
structure to be computed analytically, without any ray tracing. Ray �(R ′, S′) connecting
points S′ and R′ need not be computed. The requirement is that ray�(R ′, S′) be a paraxial
ray to central ray�(R, S), alongwhich travel time T (R, S), ray propagatormatrixΠ(R, S),
and some other quantities are known. Points S′ and R′ should be situated close to S and R,
respectively, but otherwise their positions may be arbitrary.

The positions of all points S′, S, R′, and R are specified in general Cartesian coordinates
so that Equation (4.9.24) is easy to use. Moreover, Equation (4.9.24) remains valid even
if the Cartesian coordinate systems at points S and R are different. The local Cartesian
coordinate systems under consideration at S and R are specified by matrices Ĥ(R) and
Ĥ(S) in (4.9.23).

Equation (4.9.24) has a very simple structure that is easy to understand. The first term,
T (R, S), corresponds to the travel time along the central ray; all the remaining terms
represent corrections to T (R, S). Two corrections are linear in coordinates xi (R′, R) and
xi (S′, S) and contain only the first derivatives of the travel-time field, represented by the
relevant slowness vectors. The next three terms are quadratic in the coordinates. The first
of them corresponds to a point source at S (see M̂(x)(R, S)); the second corresponds to a
point source at R (see M̂(x)(S, R)). Finally, the last term is of a mixed character.

Equation (4.9.24) assumes that the ray tracing and dynamic ray tracing was performed
from S to R. For this reason, the signs of the terms with p̂(x)(S) and M̂(x)(S, R) are minus.

4.9.4 Mixed Second Derivatives of the Travel-Time Field

Equation (4.9.24) can also be used to determine the mixed second derivatives of travel-
time field T (R, S) with respect to the Cartesian coordinates of source S and receiver R.
We introduce the 3 × 3 matrix M̂mix(R, S) with elements Mmix

i j given by relations

Mmix
i j (R, S) = (∂2T (R′, S′)/∂xi (S′, S)∂x j (R′, R))R′=R,S′=S. (4.9.25)

Matrix Mmix
i j (R, S) can also be considered for different local Cartesian coordinate systems

introduced at points S and R.
It is simple to determine matrix M̂mix of the mixed second derivatives of the travel-time

field from (4.9.24):

M̂mix(R, S) = −Â(x)(R, S) = −Ĥ(S)


Q−1

2 (R, S)
0
0

0 0 0


 ĤT (R); (4.9.26)

see (4.9.15) and (4.9.23).
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The mixed derivatives of the travel-time field play an important role in the paraxial ray
method. They can be used to determine geometrical spreading from travel-time data. See
Section 4.10.5.

4.9.5 Boundary-Value Problems for Surface-to-Surface Ray Tracing

Boundary-value problems for surface-to-surface ray tracing are fully analogous to the
boundary-value problems in ray-centered coordinates; see Section 4.9.1. We use the no-
tation of Section 4.4.7 and make use of Equation (4.4.94). We remind the reader that the
initial point S of central ray � and the initial point S′ of paraxial ray �′ are situated on
anterior surface �a , close to each other. Similarly, end points R and R ′ of � and �′ are
situated on posterior surface �p. Assuming dz(S′) and dz(R′) are known, (4.4.94) can be
solved for dp(�)(S′) and dp(�)(R′):

dp(�)(S′) = −B−1Adz(S′) + B−1dz(R′),

dp(�)(R′) = −B−1T dz(S′) + DB−1dz(R′).
(4.9.27)

Here A = A(R, S), B = B(R, S), C = C(R, S), and D = D(R, S) are 2 × 2 minors of the
surface-to-surface propagator matrix T(R, S); see (4.4.92).

Equations (4.9.27) can be used in a number of applications. Here we shall use them to
derive an expression for a two-point eikonal, T�(R′, S′), from point S′ on anterior surface
�a to point R′ on posterior surface �p. As in ray-centered coordinates, we obtain

T�(R′, S′) = T�(R, S) + dzT (R′)p(z)(R) − dzT (S′)p(z)(S)

+ 1
2dz

T (R′)DB−1dz(R′) + 1
2dz

T (S′)B−1Adz(S′)

− dzT (S′)B−1dz(R′). (4.9.28)

The positions of point S′ on the anterior surface �a and of point R′ on posterior surface
� may be arbitrary. It is only required that S′ be close to S and R′ be close to R. See also
Bortfeld (1989) and Hubral, Schleicher, and Tygel (1992).

Expression (4.9.28) can also be generalized to consider points S′ and R′, which are
situated outside �a and �p and not directly on them. In fact, in this case (4.9.28) again
yields the earlier derived Equation (4.9.24). For this reason, we shall not give a detailed
derivation here but only a brief outline.We take into account (4.4.97), (4.4.32), and (4.4.36)
and observe that (4.4.36) is a special case of (4.4.32) for Q′ situated on surface �, that is,
for z3 = − 1

2 zI z J DIJ. Consequently, (4.4.36) should be replaced by (4.4.32) for Q ′ situated
outside �. We do this for both points R′ and S′ and obtain (4.9.24).

As in (4.9.25) and (4.9.26), we can introduce mixed second derivatives of the travel-
time field (4.9.28) with respect to z I (S′, S) = dzI (S′) and zJ (R′, R) = dzJ (R′) and express
them in terms of the 2 × 2 matrix B:

M�mix
IJ (R, S) = (∂2T�(R′, S′)/∂z I (S′, S)∂z J (R′, R))R′=R,S′=S, (4.9.29)

M�mix(R, S) = −B−1(R, S). (4.9.30)

In M�mix
IJ , one derivative is taken along anterior surface �a , and the second is taken

along posterior surface �p. Equation (4.9.30) can be used to compute Q2(R, S) from
M�mix(R, S); see (4.4.97) and Section 4.10.5.b.
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4.9.6 Concluding Remarks

The solution of the two-point ray tracing problem, outlined in Section 4.9, is based on
paraxial rays. Consequently, it is only approximate, not exact. Let us consider central ray
�, and twopoints S and R situatedon�.We further consider paraxial ray�′, connecting two
points S′ (close to S) and R′ (close to R). Assume that the 4 × 4 propagator matrixΠ(R, S)
corresponding to ray-centered coordinates is known. We can then compute analytically the
paraxial slowness vectors 	p(R′) and 	p(S′), corresponding to paraxial ray �′. The actual
trajectory of�′ can be obtained analytically using (4.3.28); see Section 4.9.2. The solution
is, however, only approximate; its accuracy decreases with increasing distances S′S and
R′R. If the accuracy of the solution is not sufficient in the actual problem under study, it
is necessary to solve the problem iteratively. In the first iteration, we perform exact ray
tracing, starting from S′, with 	p(S′) taken as initial data. Alternatively, we can start from R′

with 	p(R′), or perform ray computations from both sides. Along the ray(s), we determine
new propagator matrix (matrices). The procedure should be repeated until the required
accuracy is achieved. As we know from Section 3.11.1, the procedure is not necessarily
unique due to the multiplicity of rays.

There are also some other possibilities for treating the two-point ray tracing problem.
Moreover, there are also some other important boundary-value ray tracing problems that are
not discussed here. A detailed treatment of all other boundary-value ray tracing problems
would increase the length of this section inadmissibly. For this reason, we shall only make
a few brief comments.

a. Regarding the boundary-value ray tracing problems connected with initial surfaces
and initial lines, some of them may be easily solved in terms of the surface-to-
surface propagator matrix; see (4.9.27) and (4.9.28). This is left as an exercise for
the reader.

b. Regarding the application of 6 × 6 propagatormatrices, instead of 4 × 4 propagator
matrices, both approaches are alternative. We do not discuss the solution of the
boundary-value ray tracing problems in terms of 6 × 6 propagator matrices. For a
detailed treatment, see Farra andLeBégat (1995) andFarra (1999). These references
also give the solution of the two-point ray tracing problem, considering the structural
perturbations of the model.

c. Regarding the inhomogeneous anisotropic medium, for more details refer to Sec-
tion 4.14.12.

4.10 Geometrical Spreading in a Layered Medium

The concept of geometrical spreading plays a very important role in the computation of
amplitudes of seismic body waves propagating in inhomogeneous, isotropic, or anisotropic
layered structures. Usually, geometrical spreading is introduced with respect to the cross-
sectional area of the ray tube or in some relation to the ray Jacobian. Unfortunately, the
definition of geometrical spreading in the seismological literature is not unique. The general
physical meaning of geometrical spreading as introduced by different authors is usually
very similar, but the individual definitions differ in detail. In certain definitions, it is tacitly
assumed that the wavefront is generated by a point source. For details and many other
references, see Gel’chinskiy (1961), Wesson (1970), Červený and Ravindra (1971), Chen
and Ludwig (1973), Červený, Langer, and Pšenčı́k (1974), Green (1976), Popov (1977),
Červený, Molotkov, and Pšenčı́k (1977), Popov and Pšenčı́k (1978a, 1978b), Sharafutdinov
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(1979),Goldin (1979, 1986), Pšenčı́k (1979), Červený andPšenčı́k (1979),Grinfeld (1980),
Červený and Hron (1980), Popov and Tyurikov (1981), Thomson and Chapman (1985),
Červený (1985a, 1985b, 1987a, 1987b), Červený, Klimeš, and Pšenčı́k (1988a, 1988b),
Kendall and Thomson (1989), Ursin (1990), Hubral, Schleicher, and Tygel (1992), Tygel,
Schleicher, and Hubral (1992), Najmi (1996), and Snieder and Chapman (1998), among
others.

Here we shall define geometrical spreading in a simple way. Let us consider an ortho-
nomic system of rays, parameterized by ray parameters γ1, and γ2, and select arbitrarily a
ray� and a point R on the ray.We then define geometrical spreadingL(R) by the following
alternative equations:

L(R) = |J (R)|1/2 = ∣∣U−1(R)J (T )(R)
∣∣1/2 = ∣∣U−1(R)C(R)�(T )(R)

∣∣1/2.
(4.10.1)

Here J , J (T ), and�(T ) have the same meaning as introduced in Sections 3.10.2 and 3.10.3;
see (3.10.23). Quantity J = J (s) is the Jacobian of transformation from ray coordinates
γ1, γ2, γ3 = s to general Cartesian coordinates x1, x2, x3, J (T ) is the Jacobian of trans-
formation from ray coordinates γ1, γ2, γ3 = T to general Cartesian coordinates x1, x2, x3,
�(T ) represents the scalar surface element cut out of the wavefront by the ray tube and
normalized with respect to dγ1dγ2, U is the group velocity, and C is the phase velocity
along�. For acoustic waves and for elastic waves in isotropic media, group velocity U and
phase velocity C can be replaced by the propagation velocity (c or α or β, depending on the
type of wave). We remind the reader that J = J (s) is also called the ray Jacobian. Instead of
J (s) and J (T ), we can also use J (u), where u is an arbitrary monotonic parameter along ray
�, and J (u) is the relevant Jacobian of transformation from ray coordinates γ1, γ2, γ3 = u
to x1, x2, x3. The relation between J (s) and J (u) is J (s) = gu J (u), with gu = du/ds. Ray Ja-
cobian J = J (s) also measures the cross-sectional area of the ray tube, d�⊥, perpendicular
to the ray, normalized with respect to dγ1dγ2. More details are given in Section 3.10.

Several useful relations for |J (R)| were derived in Section 3.10.4. All these relations
can be used to evaluate geometrical spreading L(R). In this section, we shall discuss
the computation of geometrical spreading L(R) by dynamic ray tracing and derive some
general properties of J (R) and L(R). We shall also introduce a new quantity, the relative
geometrical spreading (see Section 4.10.2) and discuss the possibilities of factorizing
the geometrical spreading. Finally, we shall propose methods of determining the relative
geometrical spreading from travel-time data known along a surface.

4.10.1 Geometrical Spreading in Terms of Matrices Q and Q̂(x)

It was shown in Sections 4.2.3 and 4.2.4.4 that J (T ) can be computed by dynamic ray tracing
in any curvilinear coordinate system ξi in terms of the 3 × 3 matrix Q̂(ξ ) (with elements
∂ξi/∂γ j ); see (4.2.95). Using (4.10.1), geometrical spreading is obtained in the following
form:

L(R) = ∣∣U−1(R) det
(
Ĥ(ξ )

)
det
(
Q̂(ξ )

)∣∣1/2. (4.10.2)

Here Ĥ(ξ ) is a 3 × 3 transformation matrix from curvilinear coordinates ξi to Cartesian
coordinates xi , H

(ξ )
i j = ∂xi/∂ξ j , det Q̂(ξ ) = ∂(ξ1, ξ2, ξ3)/∂(γ1, γ2, T ), and U is the group

velocity. Equation (4.10.2) is valid for both isotropic and anisotropic media and in any
coordinate system ξi .
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Here we are mainly interested in rectangular Cartesian coordinates xi and in wavefront
orthonormal coordinates yi . In isotropic media, the wavefront orthonormal coordinates yi
coincide with the local ray-centered coordinates. Consequently, we wish to express L(R)
in terms of Q̂(x) and Q̂(y). Instead of Q̂(y), we shall also use the simpler notation Q̂, as
in Section 4.1.5.c for isotropic media. In both cases, (4.10.2) simplifies as |det Ĥ(y)| = 1.
Using (4.2.42), we obtain

L(R) =

∣∣∣∣∣∣∣det

Q

(x)
11 Q(x)

12 t (x)1

Q(x)
21 Q(x)

22 t (x)2

Q(x)
31 Q(x)

32 t (x)3



∣∣∣∣∣∣∣
1/2

=

∣∣∣∣∣∣∣det

Q

(y)
11 Q(y)

12 t (y)1

Q(y)
21 Q(y)

22 t (y)2

0 0 t (y)3



∣∣∣∣∣∣∣
1/2

.

(4.10.3)

Here t (x)i and t (y)i are Cartesian and wavefront orthonormal components of the unit vector
tangent to the ray, t (x)i = U (x)

i /U and t (y)i = U (y)
i /U . Because t (y)3 = C/U , we also obtain an

important expression:

L(R) = ∣∣C(R)U−1(R) detQ(y)(R)
∣∣1/2 = |C(R)U−1(R) detQ(R)|1/2.

(4.10.4)

Equations (4.10.1) through (4.10.4) are valid both for isotropic and anisotropic media.
In the remaining part of Section 4.10, we shall consider only isotropic media, unless
otherwise stated. Then C = U, t (y)1 = t (y)2 = 0, and t (y)3 = 1. Equation (4.10.4) simplifies

L(R) = ∣∣detQ(y)(R)
∣∣1/2 = |detQ(R)|1/2. (4.10.5)

We shall now derive the continuation relations for geometrical spreading along a ray.
We consider ray� and two points S and R situated on this ray. In view of relations (4.6.2),

L(R) = |det[Q1(R, S) +Q2(R, S)M(S)]|1/2L(S). (4.10.6)

Alternatively, we can use (4.6.3),

L(R) = ∣∣det[PT2 (R, S) −QT
2 (R, S)M(R)

]∣∣−1/2L(S). (4.10.7)

Here Q1, Q2, P1, and P2 are 2 × 2 minors of the ray propagator matrix (4.3.5). It can be
proved that relations (4.10.6) and (4.10.7) are equivalent.

For a point source situated at point S, Q(S) = 0, and (4.6.2) yields

L(R) = |detQ2(R, S) detP(S)|1/2. (4.10.8)

Similarly, for a point source situated at point R, Q(R) = 0, and using Equation (4.6.3),

L(S) = |detQ2(R, S) detP(R)|1/2, (4.10.9)

since det(−QT
2 (R, S)) = detQ2(R, S). We can now write the general relation

L(R) = |detP(S)/detP(R)|1/2L(S). (4.10.10)

In general, detP(S) �= detP(R). Thus, Equation (4.10.10) implies that geometrical spread-
ing L is not reciprocal.
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4.10.2 Relative Geometrical Spreading

Let us consider ray� connecting point source S with the receiver situated at R. We define
the relative geometrical spreading L(R, S) due to a point source at S as

L(R, S) = L(R)/|detP(S)|1/2 = |detQ2(R, S)|1/2. (4.10.11)

The relative geometrical spreading at S due to a point source situated at R

L(S, R) = L(S)/|detP(R)|1/2 = |detQ2(R, S)|1/2 = L(R, S). (4.10.12)

We have arrived at this important conclusion: Relative geometrical spreading is reciprocal.
The relative geometrical spreading L(R, S) plays a basic role in the computation of

ray amplitudes of seismic body waves generated by a point source, particularly in the
computation of ray-theory Green functions; see Chapter 5. For this reason, we shall now
briefly summarize various methods of determiningL(R, S) in different types of media. We
shall also present several analytical expressions for simpler structures. Because L(R, S) =
L(S, R), we shall only discuss L(R, S) given by (4.10.11). We emphasize that we are
considering an orthonomic central system of rays in an isotropic medium, generated by
a point source situated at S. For fixed points S and R situated on ray �, the relative
geometrical spreading L(R, S) does not depend on the integration parameter u used to
solve the dynamic ray tracing system from S to R along ray � (travel time T , arclength s,
and the like).

1. Dynamic ray tracing in ray-centered coordinates. Q2(R, S) is then determined
at any point R on�, and (4.10.11) can be used to calculate L(R, S). In simpler structures,
the 4 × 4 propagator matrixΠ(R, S) can be determined analytically; see Section 4.8. This
applies particularly to a 3-D layered structure in which the layers with a constant velocity
or with a constant gradient of velocity are separated by curved structural interfaces. The
propagator matrix is then given by the analytic expression

Π(R, S) =
(
I Iσ (R, Q̃N )
0 I

)

×
1∏

i=N

(
Q1(Q̃i , Qi ) Q1(Q̃i , Qi )σ (Qi , Q̃i−1)
P1(Q̃i , Qi ) P1(Q̃i , Qi )σ (Qi , Q̃i−1) + P2(Q̃i , Qi )

)
;

(4.10.13)

see Section 4.4.6 and Fig. 4.11. Here σ (Qi , Q̃i−1) is given by (4.8.12), and Q1(Q̃i , Qi ),
P1(Q̃i , Qi ), and P2(Q̃i , Qi ) are given by (4.4.80). Q2(R, S) is then obtained as the upper
right-hand 2 × 2 minor of Π(R, S); see (4.3.5). For homogeneous layers, σ (Qi , Q̃i−1) =
Vl(Qi , Q̃i−1), where V is the velocity in the layer and l(Qi , Q̃i−1) is the distance between
Qi and Q̃i−1. Equation (4.10.13) yields many other simpler expressions, for example, for
plane dipping interfaces, plane-parallel interfaces, 2-D structures, and the like.

2. Dynamic ray tracing in Cartesian coordinates. Here we shall assume that the
dynamic ray tracing along� is performed in Cartesian coordinates. We then can calculate
J or J (T ) along � as shown in Section 4.2.3 and 4.2.4.4. Using (4.10.1), we obtain

L(R, S) = |J (R)/detP(S)|1/2 = V−1(R)
∣∣J (T )(R)/detP(S)∣∣1/2

= ∣∣�(T )(R)/detP(S)
∣∣1/2. (4.10.14)
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Thus, to determine L(R, S), we also need to know detP(S) for a point source at S. This
can be determined analytically. We can use PIJ(S) = (	eI · ∂ 	p/∂γJ )S , where γ1 and γ2 are
ray parameters. We shall present two examples.

a. For γ1 = i0 and γ2 = φ0, where i0 and φ0 are take-off angles at S, defined in Sec-
tion 3.2.1 and used in Section 4.5.4, we can use (4.5.37) and obtain

detP(S) = V−2(S) sin i0. (4.10.15)

b. For γ1 = p1(S) and γ2 = p2(S), where p1, p2 are the components of the slowness
vector, we obtain

detP(S) = 1/cosφ0 = 1/V (S)p3(S) = 1/
[
1 − V 2(S)

(
p21(S) + p22(S)

)]1/2
.

(4.10.16)

If J (R), J (T )(R), or �(T )(R) is known, the relative geometrical spreading L(R, S) is ob-
tained by inserting (4.10.15) or (4.10.16) into (4.10.14) (depending on the ray parameters
γ1 and γ2 chosen). An analogous approach can be applied even if the dynamic ray tracing
is performed in curvilinear coordinates.

3. Surface-to-surface ray tracing. To obtain L(R, S) from the results of surface-to-
surface ray tracing, we shall use (4.4.50) and the first equation of (4.4.97):

L(R, S) = |detG(R) detG(S) detB(R, S)|1/2
= |cos iS cos iR detB(R, S)|1/2. (4.10.17)

Here iS is the acute angle between the direction of the normal 	n to anterior surface �a at
S, and iR has the same meaning on posterior surface�p at R. The 2 × 2 matrix B(R, S) is
known from surface-to-surface ray tracing; see (4.4.92). Note that detB is also reciprocal,
detB(R, S) = detB(S, R).

4. Homogeneous medium. Equation (4.10.13) yields a simple expression for a ho-
mogeneous medium without interfaces:

L(R, S) = Vl(R, S), (4.10.18)

where V is the velocity and l(R, S) is the distance between S and R. (4.10.18) also imme-
diately follows from (4.10.14), if we insert (3.10.36) into it for J and (4.10.15) for detP(S),
or (3.10.37) for J and (4.10.16) for detP(S).

5. Vertically inhomogeneous media. We then can use (4.10.14) and insert there gen-
eral relations (3.10.45) for J and (4.10.15) for detP(S):

L(R, S) = |p−1 cos i0 cos iη(p)(∂η/∂p)z |1/2
= V (S)|cos iη(i0)(∂η/∂i0)z/sin i0|1/2
= |p−2 cos i0 cos iη(p)(∂T/∂p)z|1/2
= V (S)|p−1 cos iη(i0)(∂T/∂i0)z/sin i0|1/2. (4.10.19)

It is assumed that source S is situated at depth z0 and that the receiver is at depth z. i0 = i(S)
and i = i(R) represent the acute angles between the vertical axis and the ray at S and R.
Quantity p represents the seismological ray parameter for a vertically inhomogeneous
medium and is constant along the whole ray, p = (sin i0)/V (S) = (sin i(z))/V (z); see
(3.7.4). Note also that cos i0 = [1 − V 2(S)p2]1/2 and cos i = [1 − V 2(R)p2]1/2. Function
η = η(p) represents the horizontal distance between S and R, and T = T (p) represents
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the relevant travel time. If the ray is downgoing or upgoing monotonically between S and
R, we can use the notation of Section 3.7.1: η(p) = x(p, z, z0) and T (p) = T (p, z, z0);
see (3.7.11).

In (4.10.19), most quantities are known from ray tracing and travel-time computations.
In addition to these quantities, we only need to determine the derivatives (∂η/∂p)z (or
(∂η/∂i0)z or (∂T/∂p)z or (∂T/∂i0)z). For fixed z0 and z, the expressions for the derivatives
with respect to p can be found in terms of closed-form integrals for any velocity-depth
distribution V (z) using (3.7.11). We obtain

∂x(p, z0, z)

∂p
= ±

∫ z

z0

Vdz

(1 − p2V 2)3/2
,

∂T (p, z0, z)

∂p
= ±

∫ z

z0

pVdz

(1 − p2V 2)3/2
.

(4.10.20)

The plus sign (+) refers to z > z0 (downgoing ray), and the minus sign (−) to z < z0 (up-
going ray). The integrals can be evaluated numerically for any velocity-depth distribution
V (z). Rays with turning points have to be divided into upgoing and downgoing segments.
The only complication is for z0 or z close to the depth of the turning point of the ray zM , at
which p = 1/V (zM ). The integrands of (4.10.20) grow above all limits for z0 = zM and/or
z = zM . The singularity, however, can be removed using the integration-by-parts method.

For simpler velocity-depth distributions, analytical expressions for η(p) and T (p) are
known; see Section 3.7.2. Then the determination of the derivatives is straightforward,
and the computation of L(R, S) using (4.10.19) is elementary, even for ray segments that
contain the turning point or are directly at the turning point.

Notice that the first and third equations of (4.10.19) clearly display the reciprocity of
L(R, S).

6. Vertically inhomogeneous layered structure. Equations (4.10.19) also remain
valid in this case. We merely use

η(p) =
N+1∑
k=1

x(p, zk−1, zk), T (p) =
N+1∑
k=1

T (p, zk−1, zk). (4.10.21)

Depths zi correspond to structural interfaces or simply to grid points of the velocity-depth
approximation, z0 and zN+1 represent the positions of the source and the receiver.

As the simplest example,we consider amodel consisting of homogeneous plane-parallel
layers, with the z-axis perpendicular to the interfaces. Then

η(p) = p
N+1∑
k=1

Vkdk/ck, (∂η/∂p)z =
N+1∑
k=1

Vkdk/c
3
k .

Here dk = |zk − zk−1| and ck = [1 − p2V 2
k ]

1/2. The final expression forL(R, S) is obtained
from the first equation of (4.10.19):

L(R, S) =
[
cos i0 cos i p

−1η(p)
N+1∑
k=1

Vkdk/c
3
k

]1/2

=
[
cos i0 cos i

(
N+1∑
k=1

Vkdk/ck

)(
N+1∑
k=1

Vkdk/c
3
k

)]1/2

. (4.10.22)

The same expression is obtained even if we use other equations of (4.10.19).
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Expressions analogous to (4.10.22) can also be obtained for vertically inhomogeneous
layered structures with some other simple velocity-depth distributions within the layers;
see Section 3.7.2. This applies to layers with a constant vertical gradient of V (z), V −2(z),
ln V (z), and the like. One must only be careful to use the proper expressions for the ray
elements with a turning point. Such expressions can be found in Section 3.7.2 for all the
aforementioned velocity distributions.

7. Radially symmetric models. We use (3.10.46), (4.10.14), and (4.10.15) and obtain

L(R, S) = r r0|p−1 sin θ cos i0 cos i (∂θ/∂p)r |1/2
= rV (S)|sin θ cos i (∂θ/∂i0)r/sin i0|1/2
= r r0 p

−1|sin θ cos i0 cos i (∂T/∂p)r |1/2
= V (S)|rV (R) sin θ cotan i (∂T/∂i0)r/sin i0|1/2. (4.10.23)

Here i(r ) is the acute angle between the ray and the vertical line at r, i0 = i(S), and
i = i(R). Quantity p represents the seismological ray parameter for a radially symmetric
medium and is constant along the whole ray, that is, p = r sin i(r )/V (r ) = r0 sin i0/V (S);
see (3.7.31).We denote r0 = r (S), r = r (R), so that cos i0 = [1− V 2(S)p2r−2

0 ]1/2, cos i =
[1− V 2(R)p2r−2]1/2. Theother symbols in (4.10.23) have the samemeaning as in (3.10.46).
It is assumed that θ = 0 at source S so that colatitude θ measures the angular distance be-
tween S and R, and is reciprocal. The first and third equations of (4.10.23) again clearly
show that L(R, S) is reciprocal.

As in vertically inhomogeneous media, we introduce functions θ (p, ri , ri+1) and
T (p, ri , ri+1); see (3.7.35). For fixed ri and ri+1, we then obtain

∂θ (p, ri , ri+1)

∂p
= ±

∫ ri+1

ri

r V dr

(r2 − V 2 p2)3/2
,

∂T (p, ri , ri+1)

∂p
= ±

∫ ri+1

ri

p V r dr

(r2 − V 2 p2)3/2
.

(4.10.24)

The numerical computation of (4.10.24) is easy for any velocity distribution V (r ). The
complication is again connected with the turning point r = rM , for which rM/V (rM ) = p;
see (3.7.36). This complication may be overcome by the integration-by-parts method.

Equations (4.10.23) remain valid also for radially symmetric media containing struc-
tural interfaces of the first order along spherical surfaces r = rk = const. As for vertically
inhomogeneous media [see(4.10.21)], we express θ (p) and T (p) as the sum of elements
corresponding to the individual layers:

θ (p) =
N+1∑
k=1

θ (p, rk−1, rk), T (p) =
N+1∑
k=1

T (p, rk−1, rk). (4.10.25)

The analytical expressions for θ (p, rk−1, rk) and T (p, rk−1, rk) for several simple velocity
distributions V (r ) can be found in Section 3.7.4. The computation of L(R, S) for layered
radially symmetric media with these velocity distribution within the individual layers is
straightforward.

8. Other analytical cases. Analytical expressions for relative geometrical spreading
L(R, S) can be found for many other one-dimensional velocity distributions. Also, these
expression may be simply modified to vertical profiles (VSP, cross-hole). The relevant
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expressions for Jacobian J in vertically inhomogeneous media, with the derivatives taken
along a vertical profile, can be found in Section 3.10.4.8a.

It is also simple to find L(R, S) for polynomial rays in both vertically inhomoge-
neous and radially symmetric media. For vertically inhomogeneous media, we merely
use (4.10.19) and (4.10.21) and the expressions for x(p, zk−1, zk) given in Section 3.7.3.
If the velocity-depth distribution between the individual grid points is approximated by
z = ai + biV−2 + ci V−4 + diV−6, the analytical expressions forL(R, S) are immediately
obtained from (3.7.28). Analogous equations are also obtained for polynomial rays in radi-
ally symmetricmedia; see (3.7.47). The relevant derivativeswith respect to p for polynomial
rays, required in (4.10.19) and (4.10.23), can be found in Červený (1980) for vertically
inhomogeneous media and in Červený and Janský (1983) for radially symmetric media.

The relative geometrical spreadingL(R, S), as introduced here, is close to the geometri-
cal spreading factors introduced in other publications. Unfortunately, the definitions differ
in details. Moreover, most of the other definitions do not exhibit reciprocity L(R, S) =
L(S, R). For example, the “spreading function” L , introduced by Equation (2.108) in
Červený and Ravindra (1971), is related to L(R, S) in media without interfaces as fol-
lows: L(R, S) = V (S)L . In media with interfaces, the “interface factor”

∏k
j=1(dσ (Oj )/

dσ ′(Oj ))1/2 should also be eliminated from (2.108). The reason is that we are connecting
the interface factor with the R/T coefficients, not with geometrical spreading; see Chapter
5. Consequently, many analytical expressions for L for various types of media, published
by Červený and Ravindra (1971), can be used to determine L(R, S). We only multiply L
by V (S) and exclude the interface factor. The same also applies to geometrical spreading
L introduced by Červený, Molotkov, and Pšenčı́k (1977).

4.10.3 Relation of Geometrical Spreading to Matrices M and K

In an orthogonal ray-centered coordinate system, q1, q2, q3 = s, with scale factors h1 =
h2 = 1 and h3 = h (see (4.1.11)), the well-known expression for ∇2T reads

∇2T = 1

h1h2h3

[
∂

∂q1

(
h2h3
h1

∂T

∂q1

)
+ ∂

∂q2

(
h1h3
h2

∂T

∂q2

)
+ ∂

∂q3

(
h1h2
h3

∂T

∂q3

)]

= 1

h

[
∂

∂q1

(
h
∂T

∂q1

)
+ ∂

∂q2

(
h
∂T

∂q2

)
+ ∂

∂q3

(
1

h

∂T

∂q3

)]
.

On the central ray �, h = 1, ∂T/∂qI = 0, and ∂h/∂q3 = 0. The expression for ∇2T sim-
plifies to

∇2T = ∂2T

∂q2
1

+ ∂2T

∂q22
+ ∂2T

∂q23
= trM+ d

ds

(
1

v

)
.

In view of (3.10.30),

trM+ d

ds

(
1

v

)
= 1

J

d

ds

(
J

v

)
.

This yields the final relation between J andM:

trM = (vJ )−1dJ/ds = 2v−1L−1dL/ds. (4.10.26)
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Relation (4.10.26) can be expressed in terms of the 2 × 2 matrix of the curvature of the
wavefront. Taking into account K = vM, (4.10.26) yields

trK = J−1dJ/ds = 2L−1dL/ds. (4.10.27)

We can also use the mean curvature of the wavefront H = 1
2 (K1 + K2), trK = 2H . Hence,

(4.10.27) yields this simple relation between H and J :

H = 1
2 J

−1dJ/ds = L−1dL/ds. (4.10.28)

All three equations (4.10.26) through (4.10.28) can be solved for J or L. For example, the
solution of (4.10.28) is

J (R) = J (S) exp

(
2
∫ R

S
H ds

)
, L(R) = L(S) exp

(∫ R

S
H ds

)
.

(4.10.29)

In ahomogeneousmedium, (4.10.29) canbe simply integrated.BecauseKI (s) = 1/RI (s) =
1/[RI (s0) + s − s0], we obtain

∫ R
S H ds = 1

2 ln[K (S)/K (R)], where K = K1K2 is the
Gaussian curvature of the wavefront. Then (4.10.29) yields

J (R) = J (S)K (S)/K (R), L(R) = L(S)[K (S)/K (R)]1/2. (4.10.30)

Alternatively, we can insert

K (S)/K (R) = (R1(S) + l)(R2(S) + l)/R1(S)R2(S), (4.10.31)

where l is the distance between S and R, l = SR, and R1,2(S) are themain radii of curvature
of the wavefront at S.

4.10.4 Factorization of Geometrical Spreading

It was shown in Section 4.4.8 that the 2 × 2 matrixQ2(R, S) can be factorized. This capa-
bility immediately implies that relative geometrical spreadingL(R, S) = |detQ2(R, S)|1/2
can also be factorized (Goldin 1991).

Let us consider ray � in a layered laterally varying medium, connecting two points:
S (point source) and R (receiver). In addition, let us consider point Q on �, at which ray
� is incident at surface �. Surface � may be curved and may be arbitrarily inclined with
respect to the incident ray �. It may also represent a structural interface. In this case, we
also consider point Q̃, situated at the same position as Q on �, but from the side of the
generated wave under consideration (reflected, transmitted). Using (4.4.100), we obtain

L(R, S) = |detQ2(R, S)|1/2
= |detQ2(R, Q̃)|1/2|detU2|1/2|detQ2(Q, S)|1/2
= L(R, Q̃)L(Q̃, Q)L(Q, S). (4.10.32)

Here we have employed the following notation:

L(Q̃, Q) = |detU2|1/2, (4.10.33)

whereU2 can be expressed in terms of the Fresnel zone matrixMF (Q; R, S) using relation
(4.4.104). We shall refer to factor L(Q̃, Q) as the interface spreading factor.

The interface spreading factor can be expressed in several alternative forms. We take
into account that detG(Q) = ti (Q)ni (Q), where ni are components of the unit normal to
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� at Q. From a physical point of view, ti (Q)ni (Q) = ± cos i(Q), where i(Q) is the angle
of incidence (that is, the acute angle between the tangent to the incident ray and normal
to interface � at Q). Similarly, we can put detG(Q̃) = ti (Q̃)ni (Q). Components ti (Q̃)
correspond to the reflected/transmitted ray. In view of (4.4.104),

L(Q̃, Q) = |ti (Q̃)ni (Q)tk(Q)nk(Q)|−1/2|detMF (Q; S, R)|1/2, (4.10.34)

where MF is the Fresnel zone matrix introduced by (4.4.107). For unconverted reflec-
ted waves such as acoustic waves, purely P waves, and purely S waves, ti (Q̃)ni (Q) =
−ti (Q)ni (Q), and Equation (4.10.34) yields

L(Q̃, Q) = |detMF (Q; S, R)|1/2/|ti (Q)ni (Q)|. (4.10.35)

Thus, the interface spreading factor can be expressed simply in terms of the Fresnel zone
matrix.

4.10.5 Determination of the Relative Geometrical Spreading

from Travel-Time Data

In certain seismological applications such as studies of the absorption of seismic body
waves and true-amplitude studies in seismic prospecting for oil, it is very useful to eliminate
the relative geometrical spreading from the measured amplitudes of seismic body waves.
The question whether the relative geometrical spreading can be determined from purely
kinematic measurements of the travel-time field, without any knowledge of the structure
or of the actual type of the body wave under investigation, is one of the basic problems in
the ray theory and is widely discussed in the literature.

This problem has recently also found new applications in theoretical studies and in the
numerical modeling of seismic wave fields. As described in Section 3.8, the travel-time
field can also be computed directly, without ray tracing. This capability applies mainly
to travel-time fields of the first arrivals, but the method can be extended even to some
more complex waves (for example, reflected and multiply reflected waves). As a result of
these computations, the travel times are determined in a regularly spaced grid of points
covering the model. It would add considerably to the possibilities of such computations
if they were supplemented by the evaluation of geometrical spreading (and, consequently,
of amplitudes). The problem in this case is the same as in the seismological applications
described earlier: to determine the geometrical spreading from known travel times.

The problem of determining geometrical spreading from travel-time data, without any
knowledge of the structure and of the type ofwave and its ray field, is not straightforward. In
general, it is not sufficient to know the travel-time field generated by a single point source;
the travel-time fields generated by several points sources should be known. Also, the travel
time generated by a source sufficiently different from the point source (for example, a plane
wave) may be considered.

Let us consider an arbitrary multiply reflected, possibly converted, seismic body wave
propagating in a general 3-D laterally varying structure. Consider ray � corresponding to
this wave and two points, R and S, situated on this ray. The relative geometrical spreading
can then be determined from the travel-time data in several ways.

a. The first option is to determine the geometrical spreading from several experiments,
exploiting the measured matrix M of second derivatives of the travel-time field at
points S and R. The method of determining matrixM from travel-time data known
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along a data surface is described in Section 4.6.2. For this purpose, velocities and
their first derivatives and curvatures of data surfaces at S and R have to be also
known. In general, at least three experiments must be performed. In some special
source–receiver configurations (for example, if the source and receiver coincide,
S ≡ R), the number of experiments is reduced to two.

b. The second option is to determine the relative geometrical spreading from mixed
second derivatives of the travel-time field. The velocities at S and R must also be
known.

c. The third option, convenient mainly in the case of grid computation of the travel-
time field, was proposed by Vidale and Houston. The interested reader is referred
to Vidale and Houston (1990).

We shall now briefly describe the first two possibilities.

a. DETERMINATION OF RELATIVE GEOMETRICAL SPREADING L(R, S )
FROM MATRICES M
We shall consider the following three experiments; see Figure 4.16.� For the point source at S, we determine the matrix of second derivatives of the
travel-time field at R,M(R, S), from the travel-time data close to R.� For the point source at R, we determine the matrix of second derivatives of the
travel-time field at S,M(S, R), from the travel-time data close to S.� In the third experiment, the source may be situated either at S or at R, but it must be
different from a point source; in other words, the wavefront generated by the source
must be sufficiently different from the wavefront generated by the point source.
We can consider, for example, a locally plane wavefront. This source may, of course,
be simulated by an array of point sources. Assume that such a source is situated at
S. Denote the matrix of second derivatives of the travel-time field corresponding to
this source at S byM(S), with detM(S) �= ∞, and assume thatM(S) is known. We
then determine the matrix of second derivatives of the travel-time field at R,M(R),
from the travel-time data close to R.

Figure 4.16. Determination of relative geometrical spreading from travel-time data. Description of
three experiments to determine M(R, S), M(S, R), M(S), and M(R). (a) First experiment; (b) second
experiment; (c) third experiment. For more details see text.
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Thus, these three experiments yield four matrices: (a) M(R, S), (b) M(S, R), and (c)
M(S) and M(R). We shall now derive equations that will allow us to determine L(R, S)
from these four matrices. To shorten the derivation, we shall simply writeQ1,Q2,P1, and
P2 instead of Q1(R, S), Q2(R, S), P1(R, S), and P2(R, S).

We can put

M(R, S) = P2Q
−1
2 , M(S, R) = −Q−1

2 Q1,

M(R) = (P1 + P2M(S))(Q1 +Q2M(S))−1;
(4.10.36)

see (4.6.6), (4.6.8), and (4.6.9). Equations (4.10.36) yield

M(R, S)Q2 = P2, Q2M(S, R) = −Q1,

M(R)(Q1 +Q2M(S)) = P1 + P2M(S).
(4.10.37)

We now take into account the symplectic relation P2QT
1 − P1QT

2 = I (see (4.3.16)) and
write

P1 = (
P2Q

T
1 − I

)
Q−1T

2 = [
M(R, S)Q2Q

T
1 − I

]
Q−1T

2 . (4.10.38)

Inserting (4.10.38) into (4.10.37) and eliminating P2 from (4.10.37) yields

Q2M(S, R) = −Q1,

M(R)(Q1 +Q2M(S)) = [
M(R, S)Q2Q

T
1 − I

]
Q−1T

2 +M(R, S)Q2M(S).

(4.10.39)

This can be expressed as

Q2M(S, R) = −Q1,

M(R)(Q1 +Q2M(S))QT
2 = M(R, S)

[
Q2Q

T
1 +Q2M(S)QT

2

]− I.

(4.10.40)

If we eliminate Q1,

M(R)Q2(−M(S, R) +M(S))QT
2

= M(R, S)Q2(−M(S, R) +M(S))QT
2 − I. (4.10.41)

This yields

Q2(M(S, R) −M(S))QT
2 = (M(R) −M(R, S))−1. (4.10.42)

Taking the determinant of (4.10.42), we obtain

L(R, S) = |det(M(R) −M(R, S)) det(M(S, R) −M(S))|−1/4. (4.10.43)

This is the final equation we have been looking for. The equation was first published by
Červený, Klimeš, and Pšenčı́k (1988a).

Some special cases of this equation are known from the literature (see, for example,
Hubral 1983). Let us consider, as an example, the special case of waves reflected from an
interface, with the positions of the source and receiver coinciding (zero-offset configura-
tion). Two experiments are sufficient in this case because M(R, S) = M(S, R). We still
have, however, M(S) �= M(R). M(S) corresponds to the generated wavefront, and M(R)
corresponds to the measured wavefront in the third experiment.
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b. DETERMINATION OF RELATIVE GEOMETRICAL SPREADING L(R, S )
FROM MIXED TRAVEL-TIME DERIVATIVES
It was proposed by Gritsenko (1984) to determine geometrical spreading from mixed

second derivatives of the travel-time field. For a detailed discussion, see Goldin (1986).
We shall start the derivation with (4.9.26). We again consider ray�, connecting a point

source at S and receiver at R, and assume that velocities V (S) and V (R) are known. We
introduce two data surfaces: the source data surface �1 at S and the receiver data surface
�2 at R. The surfaces may be curved and arbitrarily inclined with respect to the central
ray �. We only exclude the case of ray � tangent to �1 at S and/or to �2 at R. At both
surfaces, �1 and �2, we introduce standard local Cartesian coordinate systems zi (S) and
zi (R) as described in Section 4.4.1, with the relevant 3 × 3 transformation matrices Ẑ(S)
and Ẑ(R). We use (4.4.13) to obtain Ĥ(S) = Ẑ(S)Ĝ(S) and Ĥ(R) = Ẑ(R)Ĝ(R). Inserting
these relations into (4.9.26) yields

M̂mix(R, S) = −Ẑ(S)Ĝ(S)


Q−1

2 (R, S)
0
0

0 0 0


 ĜT (R)ẐT (R).

This implies

−Ĝ(S)


Q−1

2 (R, S)
0
0

0 0 0


 ĜT (R) = M̂�mix(R, S), (4.10.44)

where M̂�mix is a 3 × 3 matrix of second mixed derivatives of the travel-time field with
respect to the positions of the source and receiver, zi (S) and zi (R), respectively:

M̂�mix(R, S) = ẐT (S)M̂mix(R, S)Ẑ(R). (4.10.45)

The elements of matrix M̂�mix are given by relation

M�mix
i j (R, S) =

[
∂2T (R′, S′)
∂zi (S′)∂z j (R′)

]
R′=R,S′=S

. (4.10.46)

In the following, we shall consider only the 2 × 2 upper-left-hand minors of both sides of
(4.10.45),

−G(S)Q−1
2 (R, S)GT (R) = M�mix(R, S). (4.10.47)

The 2 × 2 matrix M�mix(R, S) only contains four mixed second derivatives of the travel-
time field along �1 at S and along �2 at R. Relation (4.10.47) yields

Q2(R, S) = −GT (R)(M�mix(R, S))−1G(S). (4.10.48)

This equation also immediately follows from the surface-to-surface ray tracing; see (4.9.30)
and (4.4.97). The surface �1, corresponds to the anterior surface �a , and surface �2

corresponds to the posterior surface�p in this case. (4.10.48) can be used to determine all
four elements ofQ2(R, S) only if basis vectors 	e1 and 	e2 are known at S and R because these
vectors determine matrices G(S) and G(R). The determination of the relative geometrical
spreading, however, is simpler because it does not require matrices G(S) and G(R), but
only their determinants, to be known:

detG(S) = ti (S)ni (S), detG(R) = ti (R)ni (R). (4.10.49)
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Here ni (S) and ni (R) are unit normals to �1 at S and to �2 at R, and ti (S) and ti (R) are
unit vectors tangent to � at S and R. Note that the positive orientation of ray � is from S
to R and that unit tangents ti (S), ti (R) are taken positive along the positive orientations of
ray �. The final equations for the relative geometrical spreading are

L(R, S) = |detQ2(R, S)|1/2 =
∣∣∣∣ (ti (S)ni (S))(tk(R)nk(R))detM�mix(R, S)

∣∣∣∣
1/2

=
∣∣∣∣cos i(S) cos i(R)detM�mix(R, S)

∣∣∣∣
1/2

. (4.10.50)

Equation (4.10.50) can be conveniently used in various seismological applications. The
source data surface, �1, and the receiver data surface, �2, may be different, but they may
also coincide and form one common data surface. As a very important example, we can
consider the surface of the Earth on which both the sources and receivers are distributed.
Similar equations were also derived by Goldin (1986) and Hubral, Schleicher, and Tygel
(1992), among others.

To determine L(R, S) using (4.10.50), we need to find four first derivatives of the
travel-time field on surfaces �1, �2, (∂T/∂zI )S , and (∂T/∂z I )R and four mixed second
derivatives of the travel-time field ∂2T/∂zI (S)∂z J (R). The second mixed derivatives form
matrixM�mix. The first derivatives can serve to determine ti (S)ni (S) and tk(R)nk(R) using
eikonal equation

ti (S)ni (S)=V (S)(∂T/∂z3)S = ±{1− V 2(S)
[
(∂T/∂z1)

2
S + (∂T/∂z2)

2
S

]}1/2
.

A similar equation can also be written for ti (R)ni (R). The sign is obvious, but it has no
effect on L(R, S) at all; see (4.10.50).

Equation (4.10.50) is convenient for computing the relative geometrical spreading in
the numerical modeling of travel-time fields by direct methods, without ray tracing (see
Section 3.8). Let us assume that such direct methods yield travel times in a regularly
spaced grid of points, covering the model under consideration, due to a point source
situated at a selected grid point. We then choose surfaces �1 and �2 on the coordinate
surfaces, corresponding to the individual grid planes. Thus, we have nine different possible
combinations of source and receiver data planes. Both data planes may, of course, coincide.
The travel-time computations should be performed for at least three source points situated
in source plane �1.

We shall add one remark regarding Equation (4.10.50). MatrixM�mix of second deriva-
tives of the travel-time field in (4.10.50) can be approximately expressed in terms of first
derivatives of components of the slowness vector, computed for at least three point sources.
Consequently, the computation of second derivatives (of travel times) can be replaced by the
computation of first derivatives (of the slowness vector), assuming that the slowness vectors
are known at grid points, instead of the travel time, or in addition to it. The appropriate
equations are straightforward.

4.10.6 Determination of the 4 × 4 Propagator Matrix

from Travel-Time Data

The simplest derivation of the complete 4 × 4 propagator matrix from travel-time data
is based on the formalism of the surface-to-surface ray tracing. Consider a ray � with
the initial point S situated on the anterior surface �a and the end point R situated on
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the posterior surface �p. We wish to determine the 4 × 4 surface-to-surface propagator
matrix T(R, S), given by (4.4.92); in other words, we wish to determine four 2 × 2 ma-
trices A(R, S),B(R, S),C(R, S), and D(R, S). As we know from Section 4.9.5, matrix
B(R, S) can be determined from the 2 × 2 matrix of mixed second derivatives of the
travel-time field M�mix(R, S); see (4.9.30) and (4.9.29). Thus, it remains to determine
A(R, S),C(R, S), and D(R, S). Using (4.9.28), we obtain simple expressions for DB−1

and B−1A:

(DB−1)IJ = [∂2T�/∂z I (R′)∂zJ (R′)]R′=R,S′=S,

(B−1A)IJ = [∂2T�/∂z I (S′)∂zJ (S′)]R′=R,S′=S.
(4.10.51)

It follows from (4.10.51) that the components of DB−1 represent the second derivatives
of the travel-time field along the posterior surface �p, due to a point source situated on
the anterior surface at S, and the components of B−1A represent the second derivatives
of the travel-time field along the anterior surface �a , due to a point source situated on
the posterior surface at R. Because B(R, S) is known, (4.10.51) can be used to determine
A(R, S) andD(R, S):A = B(B−1A) andD = (DB−1)B. Finally,C can be determined from
the symplectic relation DTA− BTC = I,

C = B−1T (DTA− I). (4.10.52)

The derived relations for A, B, C and D represent the complete solution of the
problem.

From the surface-to-surface propagator matrix T(R, S), represented by A(R, S),
B(R, S), C(R, S), and D(R, S), it is possible to determine the 4 × 4 ray-centered prop-
agator matrix Π(R, S), represented by Q1(R, S), Q2(R, S), P1(R, S), and P2(R, S). The
matrices Q2(R, S), P2(R, S), and Q1(R, S) are obtained from (4.4.97), and P1(R, S) is
obtained from the symplectic relation P1 = Q−1T

2 (PT2Q1 − I).
Thus, the 4 × 4 propagator matrices can be determined from three 2 × 2 matrices of

second derivatives of the travel-time field: one along the anterior surface, one along the
posterior surface, and one mixed. The matrices of second derivatives of the travel-time
field can be found from observed data. First, it is possible to determine them by numerical
differentiation of observed travel-times. Second, the parabolic travel-time approximation
can be replaced by the hyperbolic travel-time approximation (see (4.6.26)), and an alter-
native of the T 2 − X2 method can be applied. Note that the hyperbolic approximation for
the travel-time T�(R′, S′), given by (4.9.28), in surface-to-surface ray tracing reads

(T�(R′, S′))2 .= [
T�(R, S) + dzT (R′)p(z)(R) − dzT (S′)p(z)(S)

]2
+ T�(R, S)[dzT (R′)DB−1dz(R′) + dzT (S′)B−1Adz(S′)

− 2dzT (S′)B−1dz(R′)]. (4.10.53)

4.10.7 Exponentially Increasing Geometrical Spreading.

Chaotic Behavior of Rays

In a homogeneousmedium, the geometrical spreading increases linearlywith the increasing
length of the ray l; see (4.10.18). In inhomogeneous media, the behavior of the geometrical
spreading along the ray ismore complex. In certain cases, the average geometrical spreading
increases exponentially with increasing length of the ray. This increase occurs mainly in
laterally varying 2-D and 3-D structures in which the heterogeneities exceed a certain
degree. Such rays often exhibit chaotic behavior.
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The chaotic behavior of rays ismostly characterized by their extremely strong sensitivity
to the initial ray conditions, for example, to the ray parameters. The chaotic rays, with the
same initial point and with a very small difference in ray parameters, tend to diverge
exponentially from each other with the increasing length of the ray.

The chaotic behavior of rays introduces certain fundamental limitations on the feasi-
bility of ray-theory computations. Let us assume that computers with a fixed length of
the word are used. Then, the two-point ray tracing cannot be performed with a required
accuracy if the length of rays under consideration exceeds some limit (predictability hori-
zon). Similarly, sufficiently accurate interpolations within ray tubes cannot be performed
if the rays are long because the ray tubes are extremely broad. The next disadvantage
is that the number of multiple rays, corresponding to one elementary wave, arriving at
the receiver, increases strongly with increasing distance between the source and receiver,
measured along rays. Consequently, the complete system of multiple two-point rays cor-
responding to the elementary wave under consideration cannot be efficiently calculated at
the receiver.

There aremany approaches to the investigation of the chaotic behavior of rays. The ideas
of these approaches have been mostly taken from the investigation of chaos in dynamical
systems in physics. The exponential divergence of nearby rays in the phase space has been
often quantified by the so-called Lyapunov exponents. The Lyapunov exponents can be
defined in various ways. One of definitions is based on the results of dynamic ray tracing
along the ray, particularly on the 4 × 4 propagator matrixΠ(T, T0); see Section 4.3.3. The
two positive Lyapunov exponents lI (I = 1, 2) are then defined by the relation

lI = lim sup
T→∞

[(T − T0)
−1 ln |µI (T, T0)|] (4.10.54)

(Klimeš 1999a; Matyska 1999). Here the limit is computed along the ray, T being the time
variable along the ray. Further,µ1 andµ2 represent the eigenvalues of the 4 × 4 propagator
matrixΠ, with the largest absolute values. It is sufficient to study only the positiveLyapunov
exponents l1 and l2 corresponding to the two largest eigenvalues µ1 and µ2 because µ3

and µ4 would yield the negative Lyapunov exponents of the same absolute value as l2 and
l1. This result follows immediately from the property (4.3.19) of the eigenvalues of the
propagator matrix Π. Equation (4.10.54) can be also modified for any other monotonic
variable along �.

The definition (4.10.54) is very general and can be applied to any ray �, situated in
an arbitrary 3-D laterally varying layered structure. If µI (T ) increases with T only slowly,
(4.10.54) yields lI = 0 (nonchaotic ray). Only if µI (T ) depends exponentially on T are
lI nonvanishing. Consequently, lI represent measures of the exponential deviation of rays.
The main problem in the application of Equation (4.10.54) in realistic models of a finite
size is that the limit T → ∞ is not attainable. Actually, in realistic models, it would be
necessary to consider some average values of ln |µI | and perform some extrapolations.

Chaotic behavior of rays has played a very important role in long-range acoustic wave
propagation in underwater acoustics. The main subject of interest has been the behavior of
acoustic wavefields in ocean waveguides with smooth lateral heterogeneities at long-range
distances. The basic principles of the ray chaos in underwater acoustics are described in
detail in Palmer et al. (1988), Brown, Tappert, and Goni (1991), Brown et al. (1991), Smith,
Brown, and Tappert (1992), and Abdullaev (1993). These references may serve as a good
introduction to the subject. See also Tappert and Tang (1996), Mazur and Gilbert (1997),
Jiang, Pitts, and Greenleaf (1997), and other references given there.
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In seismology, the investigation of chaotic behavior of seismic rays has started recently.
Keers, Dahlen, and Nolet (1997) investigated a chaotic ray behavior in models with later-
ally varying interfaces, particularly in the Earth’s crust with the undulating Mohorovičić
discontinuity. They found that the chaotic behavior due to laterally varying interfaces is
very pronounced at large epicentral distances. For Lyapunov exponents in randomly lay-
ered media, see Scales and Van Vleck (1997). It is obvious that the chaotic behavior of
seismic rays will also play an important role in seismic exploration for oil. An attempt to
quantify the exponential divergence of rays with respect to the complexity of the model
and to formulate explicit criteria enabling to construct models suitable for ray tracing was
made by Klimeš (1999a). This area is open for further research.

The rays may exhibit chaotic behavior in both deterministic and stochastic (random)
environments. In both of these types of media, the exponential increase of geometrical
spreading due to chaotic behavior of rays competes with a large spreading due to diffrac-
tions and scattering. In general, the waves arriving as first arrivals in media, in which
heterogeneities exceed certain degree, may be of diffractive character and need not be ob-
tained by regular ray tracing (Wielandt 1987). For a discussion of wave propagation and ray
tracing in random media, see Chernov (1960), Wu and Aki (1985), Ojo and Mereu (1986),
Rytov, Kravtsov, and Tatarskii (1987), Müller, Roth, and Korn (1992), Roth, Müller, and
Snieder (1993), Ryzhik, Papanicolaou, and Keller (1996), Witte, Roth, and Müller (1996),
and Samuelides (1998), among others. Similarly, as in deterministic models, the subject of
ray tracing and travel-time computation in random media requires further investigation.

4.11 Fresnel Volumes

Fresnel volumes were introduced in Section 3.1.6; see also (3.1.46) and Figure 3.2. Let us
consider a point source of a monochromatic wave (of frequency f ) situated at S, a receiver
at R, and ray � connecting S and R. From the physical point of view, the Fresnel volume
(3.1.46) represents the frequency-dependent spatial vicinity of ray �, which actually in-
fluences the wavefield at receiver R. The cross section of the Fresnel volume by a plane
perpendicular to � is called the Fresnel zone, and the section of the Fresnel volume by
interface � is called the interface Fresnel zone.

Equation (3.1.46) defines the monochromatic Fresnel volume. The seismic wavefield,
however, is not monochromatic, but transient. Seismic signals are usually represented by
short wavelets, the Fourier spectrum of which contains many frequencies. For narrow-band
signals, the monochromatic Fresnel volumes, constructed for the prevailing frequency of
the signal, may represent a good approximation of the Fresnel volume relevant to the signal.
It would otherwise be necessary to consider the Fresnel volumes for several frequencies.
See also Knapp (1991) and Brühl, Vermeer, and Kiehn (1996).

Recently, Fresnel volumes and Fresnel zones have found many applications in seismol-
ogy and in seismic exploration. Traditionally, they have played an important role in the
investigation of the resolution of seismic methods (Sheriff and Geldard 1982; Sheriff 1989;
Lindsey 1989; Thore and Juliard 1999). Fresnel volumes have also been used to study the
accuracy of the ray method (Kravtsov and Orlov 1980; Ben-Menahem and Beydoun 1985;
Beydoun andBen-Menahem1985;Kravtsov 1988). They have been applied in tomographic
studies and in other methods of inversion of seismic data (Yomogida 1992; Vasco, Peterson,
and Majer 1995; Gudmundsson 1996; Schleicher et al. 1997; Pulliam and Snieder 1998).
It can be expected that Fresnel volumes will find many other applications in both forward
and inverse seismic methods.
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Twomethods have been proposed to compute Fresnel volumes in complex 2-D and 3-D
layered structures.

The first method, called Fresnel volume ray tracing, proposed by Červený and Soares
(1992), is based on the paraxial ray approximation. It consists in standard numerical ray
tracing, supplemented by dynamic ray tracing. The dynamic ray tracing is used to compute
the ray propagatormatrix,which is needed to evaluate theFresnel volume.Because dynamic
ray tracing and computing the ray propagator matrix are standard procedures in most ray
tracing packages, Fresnel volume ray tracing is simple to program and is numerically very
efficient. See Section 4.11.2.

The second method is based on network ray tracing or on any other method of grid
travel-time computation; see Kvasnička and Červený (1994) and Section 4.11.3.

Both of these methods have certain advantages and disadvantages. They cannot be
applied universally, but only in certain situations. For a detailed comparison, see Sec-
tion 4.11.4.

In some simple cases, the Fresnel volumes may be calculated analytically. Such analyti-
cal results are useful in various applications. Moreover, the analytical results offer a deeper
insight into the properties of Fresnel volumes and Fresnel zones. See Section 4.11.1.

Fresnel volumes can be constructed not only for a point source, but also for waves
generated at an initial surface. As an example, see (3.1.52) for the radius of the Fresnel
zone corresponding to a plane wave (not a point source) at S. To shorten the treatment, this
case is not discussed here. The interested reader can find the relevant equations in Kravtsov
and Orlov (1980) and Červený (1987b).

Although this chapter is devoted to paraxial ray methods and to dynamic ray tracing,
we describe here even computation of Fresnel volumes based on other methods. See, for
example, Section 4.11.3 devoted to network ray tracing computations. This is done for
completeness.

4.11.1 Analytical Expressions for Fresnel Volumes and Fresnel Zones

For simple structures such as a plane structural interface between two homogeneous half-
spaces, the expressions for Fresnel volumes and Fresnel zones of certain important ele-
mentary waves can be found analytically. In some cases, we are even able to find exact
expressions for Fresnel volumes defined by (3.1.46).We shall present here, without detailed
derivation, several important relations that may be useful in applications. For a detailed
derivation of all equations, many examples, and the physical discussion of the results, see
Kvasnička and Červený (1996).

1. UNCONVERTED REFLECTED WAVES
Let us consider an unconverted reflected wave at a plane interface � between two

homogeneous halfspaces. Let source S and receiver R be situated at distances hS and hR
from �. Denote the velocity in the first halfspace (containing S and R) by V1 and in the
second halfspace by V2. We also denote by iS the angle of incidence, g = tan iS , and by
Q the point of incidence of ray � on �. The intersection of the Fresnel volume of the
reflected wave with interface � is referred to as the interface Fresnel zone. In our case,
the interface Fresnel zone is an ellipse, with half-axes r‖ and r⊥. The in-plane half-axis r ‖

corresponds to the plane of incidence, and the transverse half-axis r⊥ corresponds to the
direction perpendicular to the plane of incidence.
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A simple geometrical treatment yields the following expressions for r ‖ and r⊥:

r‖ = b

√
1 + g2

1 + g2ν2

(
1 − x20

a2
+ g2ν2

)1/2

,

r⊥ = b
1√

1 + g2ν2

(
1 − x20

a2
+ g2ν2

)1/2

;

(4.11.1)

see Kvasnička and Červený (1996). Here l is the length of the ray of the wave reflected
from S to R, l = SQ + QR. The quantities a and b represent the half-axes of the ro-
tational ellipsoidal Fresnel volume of the direct wave in a homogeneous medium with
velocity V1, assuming the distance between the source and receiver is l. They are given by
expressions (3.1.49). In a high-frequency approximation a = 1

2 l and b = 1
2 f

−1/2(V1l)1/2.
The quantity ν denotes “the fatness ratio,” ν = b/a. In a high-frequency approximation,
ν = f −1/2(V1/ l)1/2. Finally, x0 is the distance of the point of incidence Q from point O ,
situated on ray� in the middle between S and R (measured along�). For hS = hR , x0 = 0.
It may be useful to express l and x0 in terms of more practical quantities hS, hR , and g:

x0 = 1
2 (hR − hS)

√
1 + g2, l = (hR + hS)

√
1 + g2. (4.11.2)

Note that
√
1 + g2 = 1/cos iS .

The accuracy of Equations (4.11.1) is very high. For V1 > V2, (4.11.1) are quite exact.
For V1 < V2, they may lose some accuracy in the critical and overcritical regions, where
the reflected waves are contaminated by head waves. Equations (4.11.1) are very general
and can be simplified in many ways, for example, for hS = hR (so that x0 = 0), for normal
incidence iS = 0 (so that g = 0), and for the high-frequency approximation. The simplest
and most useful is the high-frequency approximation, valid for |x0| � l. The terms with
ν can be neglected in this case. If we also use b = 1

2 f
−1/2(V1l)1/2 and (4.11.2) for l, we

obtain

r‖ = f −1/2

(
V1hRhS

(hR + hS) cos3 iS

)1/2

, r⊥ = f −1/2

(
V1hRhS

(hR + hS) cos iS

)1/2

.

(4.11.3)

The Fresnel volume of the reflectedwave also penetrates into the secondmedium, below
�. Let us denote the maximum penetration distance D (see Figure 4.17). Geometrical
considerations yield an approximate equation, valid for modest angles of incidence:

D = 1
4 f

−1V2
(
1 − V 2

2 sin2 iS
/
V 2
1

)−1/2
. (4.11.4)

In general, the center of the interface Fresnel ellipse is not situated at the point of
incidence Q but is shifted outside the ray along the intersection of interface � with the
plane of incidence. This off-ray shift d is given by the relation

d = |x0g|ν2
√
1 + g2

/
(1 + g2ν2). (4.11.5)

The off-ray shift d vanishes for hS = hR (so that x0 = 0), for iS = 0 (so that g = 0), and in
the high-frequency approximation (so that ν ∼ f −1/2 and d ∼ f −1). The off-ray shift can
be simply understood geometrically, considering the example of the unconverted reflected
wave at a plane interface between two homogeneous halfspaces. The interface Fresnel zone
is then represented by the intersection of the interface with the Fresnel ellipsoid, with foci
situated at the receiver and at the image source. The intersection of an ellipsoid with a
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plane is always an ellipse, but the center of the ellipse is not necessarily situated on the
axis of the ellipsoid (representing the ray in our case).

2. TRANSMITTED WAVES
We shall now consider receiver R situated in the second medium, again at distance

hR from �, and denote the angle of transmission iR . In this case, the exact expressions
for the half-axes of the interface Fresnel zone cannot be found. We shall present only the
high-frequency approximation, valid for modest angles of incidence:

r ‖ = f −1/2

(
cos3 iS
VShS

+ cos3 iR
VRhR

)−1/2

, r⊥ = f −1/2

(
cos iS
VShS

+ cos iR
VRhR

)−1/2

.

(4.11.6)

Here VS = V1 and VR = V2. For VS = VR , (4.11.6) yields (4.11.3). If VR > VS , (4.11.6)
fails for angles of incidence iS close to the critical angle of incidence i∗S , given by relation
i∗S = arcsin(VS/VR). The interface Fresnel zone corresponding to iS close to i∗S may be very
extensive. The relevant approximate expressions can be found in Kvasnička and Červený
(1996). This reference also gives a detailed treatment of the Fresnel volumes of headwaves.

3. CONVERTED REFLECTED AND TRANSMITTED WAVES
Relations (4.11.6) can again be used. Velocities VS and VR should be taken according

to the type of converted wave under consideration: VS correspond to the velocity at the
source and VR to the velocity at the receiver.

For the interfaceFresnel zones of convertedwaves, see alsoEaton, Stewart, andHarrison
(1991) and Hubral et al. (1993).

4.11.2 Paraxial Fresnel Volumes. Fresnel Volume Ray Tracing

A simple and efficient algorithm for evaluating paraxial Fresnel volumes along the ray in
a 3-D laterally varying layered structure, called Fresnel volume ray tracing, was proposed
by Červený and Soares (1992). It is based on dynamic ray tracing and computing the
ray propagator matrix along the ray. We shall consider ray � and two points S and R
on �. Assume that point S represents a point source and point R, the receiver. Ray �
corresponds to an arbitrary multiply reflected and converted elementary wave propagating
in a 3-D layered laterally varying structure. Let us select an arbitrary point F situated in
the paraxial vicinity of �. Point F then belongs to the Fresnel volume for frequency f if
it satisfies (3.1.46). See also Figure 3.2.

We introduce plane �⊥
F passing through F , perpendicular to � and intersecting ray �

at point OF . Then, using (4.6.28) and (3.1.46) yields the equation of the boundary of the
paraxial Fresnel volume on plane �⊥

F for frequency f :

|qT (F)[M(OF , S) −M(OF , R)]q(F)| = f −1. (4.11.7)

Here q(F) = (q1(F), q2(F))T , where qI (F) are ray-centered coordinates of point F . Equa-
tion (4.11.7) also represents the boundary of the paraxial Fresnel zone at point OF of �.

Let us emphasize that M(OF , S) corresponds to a point source situated at S, and
M(OF , R) corresponds to a point source situated at R. Thus, the computation of (4.11.7)
would require two dynamic ray tracings: one from S and the other from R. It is, however,
possible to obtain all the quantities in (4.11.7) by just one dynamic ray tracing, from S to R.
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If we use the chain rule (4.3.20) and the equation for the inverse of the ray propagatormatrix
(4.3.26), we obtain

M(OF , S) = P2(OF , S)Q
−1
2 (OF , S),

M(OF , R) = [−P1(OF , S)Q
T
2 (R, S) + P2(OF , S)Q

T
1 (R, S)

]
× [−Q1(OF , S)Q

T
2 (R, S) +Q2(OF , S)Q

T
1 (R, S)

]−1
.

These equations contain only the submatrices of ray propagator matrices Π(R, S) and
Π(OF , S). In the plane �⊥

F , the 2 × 2 matrix

MF (OF ; R, S) = M(OF , S) −M(OF , R) (4.11.8)

represents the Fresnel zone matrix (see (4.4.107) forG = I). We denote the eigenvalues of
the Fresnel zone matrix by M1(OF ) and M2(OF ).

It is simple to see that (4.11.7) represents a quadratic curve in plane�⊥
F . For M1(OF ) >

0 and M2(OF ) > 0, the curve is a Fresnel ellipse and for M1(OF )M2(OF ) < 0 the Fresnel
hyperbola. We shall discuss here the Fresnel ellipses and comment only briefly on the
Fresnel hyperbolas later. The half-axes of the Fresnel ellipse r1(OF ) and r2(OF ) are given
as

r1(OF ) = f −1/2[M1(OF )]
−1/2, r2(OF ) = f −1/2[M2(OF )]

−1/2.

(4.11.9)

For a detailed descriptionof the algorithmofFresnel volume ray tracing andmanynumerical
examples of paraxial Fresnel volumes, see Červený and Soares (1992). For alternative
approaches, see Gelchinsky (1985), Hubral et al. (1993), and Pulliam and Snieder (1998).

The Fresnel zone, as introduced here, specifies the intersection of the Fresnel volume
with plane �⊥

F perpendicular to ray �. It is often valuable to study the intersection of the
Fresnel volume with some general surface � crossed by ray � or with structural interface
�.We then speak of the interface Fresnel zone of the elementary wave under consideration.
The interface Fresnel zone can be obtained by projecting the standard Fresnel zone onto
interface �, taking into account relations (4.4.40). As in Section 4.4.2, we introduce the
local Cartesian coordinate system z1, z2, z3, with its origin at the point of incidence Q on
�, and with the z3-axis coinciding with the normal to � at Q. Let us now consider any
point F situated on structural interface � in the vicinity of Q. Point F is situated on the
boundary of the interface Fresnel zone if its coordinates z1(F) and z2(F) satisfy the relation

|zT (F)MF (Q; R, S)z(F)| = f −1. (4.11.10)

Here z(F) = (z1(F), z2(F))T , andMF (Q; R, S) is the interface Fresnel zone matrix. It is
given by the relation

MF (Q; R, S) = G(Q)[M(Q, S) −M(Q, R)]GT (Q). (4.11.11)

The meaning of G(Q) is the same as in Section 4.4.2; see (4.4.107).
Equation (4.11.11) for the interface Fresnel zone matrix MF (Q; R, S) generalizes

(4.11.8). If we use a plane surface � perpendicular to ray � in a smooth medium and
choose local Cartesian coordinates z1 = q1 and z2 = q2, (4.11.11) reduces to (4.11.8). For
this reason, we call the general form of the matrix MF (Q; R, S) given by (4.11.11) the
Fresnel zone matrix and do not emphasize the word interface.

Note that the Fresnel zone matrix MF (Q; R, S) is continuous across the interface �
from the point of incidence Q to the R/T point Q̃,MF (Q̃; R, S). The half-axes r1(Q) and
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r2(Q) of the interface Fresnel zone are given by relations (4.11.9), where M1(OF ) and
M2(OF ) are substituted by the eigenvalues M1(Q) and M2(Q) of the Fresnel zone matrix
MF (Q; R, S) given by (4.11.11).

It is interesting to realize that the Fresnel zone matrixMF (Q; R, S) given by (4.11.11)
corresponds fully to the analogous matrix obtained by factorization of the 2 × 2 matrix
Q2(R, S) in Section 4.4.8; see (4.4.105), (4.4.107), and (4.4.108). Section 4.4.8 gives sev-
eral alternative general forms of the Fresnel zone matrix. All these forms can be used to
calculate the dimensions of the interface Fresnel zones. It is merely necessary to find the
eigenvalues of MF (Q; R, S) and to insert them into (4.11.9). The Fresnel zone matrix is
also discussed in great detail in Section 4.8.5, where explicit expressions are found for an
interface � between two media with a constant velocity gradient and for an interface be-
tween two homogeneous media. For a plane interface�(DIJ = 0), Equations (4.11.9) with
(4.8.35) immediately yield (4.11.6) for the interface Fresnel zone of transmitted (possibly
converted)waves. This equation further yields (4.11.3) for unconverted reflectedwaves.Be-
cause |detQ2(R, S)|1/2 equals the relative geometrical spreading L(R, S) (see (4.10.11)),
the Fresnel zone matrix is also directly related to the relative geometrical spreading. This
relation was also studied by Sun (1996).

Equations (4.11.7) through (4.11.11) are related to elliptical Fresnel zones. The hyper-
bolic Fresnel zones are more complex, with long hyperbolic tails extending to infinity.
Asatryan and Kravtsov (1988) showed that these tails do not influence the wavefield at
the receiver significantly. The Fresnel zones are again satisfactorily described by (4.11.9),
whereM1(OF ) andM2(OF ) should be taken in absolute values, and f should be substituted
by 2 f . For applications of hyperbolic Fresnel zones, see Neele and Snieder (1992).

4.11.3 Fresnel Volumes of First Arriving Waves

Fresnel volumes can also be computed by network ray tracing (see Kvasnička and Červený
1994) or by any other method of grid travel time computation. The method is fast and
efficient. It can, however, be applied only to waves arriving at the receiver as the first
arrivals. In addition, it may also be applied to reflected waves from structural interface �
because the direct wave may be artificially removed from the computations. The reflected
waves calculated by network ray tracing, however, are considered in a broader sense than
usual. They correspond not only to reflections from the structural interface� itself but also
from the whole second medium below �. Such reflected waves also include head waves
(if they exist), waves refracted in the second medium and returning into the first medium,
and edge waves generated at the edges of interface �, among others. In case of multiple
arrivals of the reflected wave, only the travel times of the first arrivals are considered.

The algorithms for the computation of Fresnel volumes of direct waves and of reflected
waves, based on network ray tracing, are different. The former requires two network ray
tracings, and the latter need four network ray tracings.

a. Let us first consider the direct wave from point source S to receiver R. By the
direct wave we understand the wave that is not reflected at any interface but that
may be transmitted any number of times. We perform two network ray tracings and
compute T (F, S) from point S, and T (F, R) from point R for all points F in the
grid model. The boundary of the Fresnel volume for frequency f is then formed
by points F satisfying the relation

T (F, S) + T (F, R) − T (S, R) = 1
2 f

−1. (4.11.12)
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Thus, the boundary of the Fresnel volume of the direct wave can be constructed as
an isosurface, along which T (F, S) + T (F, R) − T (S, R) is constant and equals
1
2 f .

b. Let us now consider the reflected wave in a broader sense, from interface �. We
perform the computations in two steps. In the first step, we compute T (F, S) and
T (F, R), corresponding to the direct wave, at all points F of the model, including
interface�. In the second step, interface� is assumed to be a secondary source sur-
face, and two network ray tracings are performed, starting from the interface travel
times along�. The relevant travel times at points F are denoted by T (F, �, S) and
T (F, �, R). The boundary of the Fresnel volume of reflected waves for frequency
f is then formed by points F satisfying the relation

min[T (F, S) + T (F, �, R)

− T (S, R); T (F, R) + T (F, �, S) − T (S, R)] = 1
2 f

−1. (4.11.13)

Thus, the Fresnel volumes of reflected waves are constructed as an isosurface along
which the quantity on the LHS of (4.11.13) is constant and equals 1

2 f
−1.

Note that the network ray tracing computation of Fresnel volumes is fully based on the
computation of travel times, and the ray does not need to be known. In fact, the method
may be used even for the computation of Fresnel volumes of first arriving waves for which
standard ray tracing fails (head waves, waves diffracted from edges, diffractions behind
smooth objects, and the like). For examples of such computations, see Kvasnička and
Červený (1994).

4.11.4 Comparison of Different Methods of Calculating

Fresnel Volumes and Fresnel Zones

In 3-D laterally varying layered structures, analytic methods can rarely be used to calculate
Fresnel volumes, Fresnel zones, and interface Fresnel zones. At present, there are two basic
methods of performing such computations (see Sections 4.11.2 and 4.11.3): (a) Fresnel
volume ray tracing and (b) a method based on network ray tracing. There are several
important differences between these two methods.

1. Bothmethods apply to differentwaves. Fresnel volume ray tracing is applicable only
to zero-order ray theory elementary waves, but not to higher-order waves (such as
head waves) and to diffracted waves. On the contrary, the method based on network
ray tracing is applicable only to waves arriving in the first arrivals, even if these
waves do not belong to the category of zero-order ray theory waves; see Section 3.8.
The category of first arriving waves, however, may be extended even to reflected
waves in a broader sense; see Section 4.11.3.

2. The sensitivity of the method to the existence of structural interfaces situated close
to ray�, but not touching it, is another difference. Fresnel volume ray tracing is not
sensitive to these interfaces at all because dynamic ray tracing is controlled only
by the first and second derivatives of velocity directly along ray � and not by the
structure in the vicinity of �. Thus, Fresnel volume ray tracing does not yield the
correct width of the Fresnel volume in this case. The method based on network ray
tracing, however, takes into account the structural interfaces in the vicinity of �
automatically. See examples in Kvasnička and Červený (1994).
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Figure 4.17. The Fresnel volume of a wave reflected at a plane interface between two homogeneous
media. Only a section, perpendicular to the interface and passing through source S and receiver R,
is displayed. Comparison of three different methods to compute the Fresnel volumes: (a) Analytic
computations. (b) Network ray tracing. (c) Fresnel volume ray tracing. The continuous line, representing
the boundary of the Fresnel volume, was computed by methods (a) and (b). Both methods gave the
same result in this case. The bold lines perpendicular to the ray were computed by method (c). As we
can see, Fresnel volume ray tracing mostly yields sufficiently accurate results. For exceptions and for
a more detailed discussion, see the text.

3. The final difference involves the accuracy of both methods. The Fresnel volume
ray tracing is a high-frequency method and yields sufficiently accurate results only
for high-frequencies, for which the whole Fresnel volume is situated in the paraxial
vicinity of ray �. The accuracy of network ray tracing is independent of frequency
(except for numerical errors). Thus, in cases when both methods can be applied,
the accuracy of Fresnel volume ray tracing is in general lower. Moreover, Fresnel
volume ray tracing yields only quantities that are of the order of f −1/2 (half-axes
of Fresnel zones and of interface Fresnel zones) and does not yield the quantities
that are of the order f −1 (the overshooting distance behind the source and receiver,
penetration distance D of the Fresnel volume of a reflected wave below a structural
interface, off-ray shift d of the center of the interface Fresnel zone). The methods
based on the network ray tracing yield both the effects of f −1/2 and f −1 correctly.

A simple example of the Fresnel volume for frequency f = 25 Hz of an unconverted
wave reflected fromplane interface� between two homogeneous halfspaceswith velocities
V1 = 2.4 km/s and V2 = 3 km/s and for hS = hR = 0.75 km is shown in Figure 4.17. The
distance between S and R equals 1.5 km, and the angle of incidence iS = 450. In this simple
case, bothmethods can be used to calculate the Fresnel volume.Moreover, analyticmethods
can also be used to compute all quantities. The continuous thin line shows the boundary of
the Fresnel volume computed by network ray tracing. The bold lines perpendicular to the
ray show the half-axes r‖ of the Fresnel ellipses computed by Fresnel volume ray tracing.
In this case, the network ray tracing yields exact results so that it may serve to appreciate
the accuracy of the Fresnel volume ray tracing.

As we can see in Figure 4.17, Fresnel volume ray tracing mostly yields sufficiently
accurate results, with several exceptions.

a. Fresnel volume ray tracing does not give the overshooting distance � at S and R,
which equals 24 m in our case; see (3.1.50). Close to S and R, slightly smaller
Fresnel zones are obtained in comparison with exact values. Similar effects would



380 DYNAMIC RAY TRACING. PARAXIAL RAY METHODS

be observed at caustic points. The paraxial Fresnel volume, computed by Fresnel
volume ray tracing, degenerates to a point at a caustic point of the second order and
to a line at a caustic point of the first order.

b. The Fresnel zones computed by Fresnel volume ray tracing in planes perpendicular
to � are not sensitive to the existence of the interface � in the vicinity of �.
Formally, they intersect interface � close to the point of incidence Q. This is,
however, only a formal problem that can be easily solved by simple modifications
in plotting routines. The boundary of the Fresnel volume and its intersection with
the interface� is displayed correctly. Consequently, the size of the interface Fresnel
zone is quite obvious.

c. Fresnel volume ray tracing does not give the actual penetration of the Fresnel
volume into the second medium. This is the most serious problem in the application
of Fresnel volume ray tracing. The maximum penetration distance D computed
by network ray tracing is close to 54 m. This is slightly higher than the 48 m
obtained from approximate formula (4.11.4). We must, however, take into account
that (4.11.4) is valid only for modest angles of incidence.

Note that both methods yield the same value of the in-plane half-axis r ‖ of the interface
Fresnel zone, which also agrees with the approximate formula (4.11.6). In all cases, r‖ .=
320 m is obtained. Because hS = hR , the off-ray shift d in Figure 4.17 vanishes.

4.12 Phase Shift Due to Caustics. KMAH Index

The KMAH index k(B, A) of ray trajectory � from A to B and the relevant phase shift
due to caustics T c(B, A),

T c(B, A) = − 1
2πk(B, A), (4.12.1)

are introduced in Sections 3.10.5 and 3.10.6 in terms of the 3 × 3 transformation matrix
Q̂(x) from ray coordinates γ1, γ2, γ3 to Cartesian coordinates x1, x2, x3. By caustic points,
we mean the points along � at which det Q̂(x) = 0. In isotropic media, we distinguish
between the caustic points of the first order, at which rank (Q̂(x)) = 2, and caustic points of
the second order, at which rank (Q̂(x)) = 1; see (3.10.48) and (3.10.49). The KMAH index
of the ray trajectory� from A to B in isotropic media, k(B, A), then equals the number of
caustic points along� from A to B, the caustic points of the second order being considered
twice. Alternatively, we can say that the KMAH index increases by 1 when the wave passes
through a caustic point of the first order and by 2 when it passes through a caustic point of
the second order. For a detailed derivation, both for isotropic and anisotropic media, see
Section 5.8.8.

Instead of the 3 × 3 matrix Q̂(x), introduced in Section 3.10 and related to Cartesian
coordinates, also thematrices Q̂ andQ, introduced in Section 4.1 and related to ray-centered
coordinates may be used to define the KMAH index.

If we use the 3 × 3 transformation matrix Q̂ from ray coordinates γ1, γ2, γ3 to ray-
centered coordinates q1, q2, q3, the specification of the caustic points of the first and the
second order remains the same as for Q̂(x); we only replace Q̂(x) by Q̂. This is simple to
see from (4.1.39) and (4.1.29), because Q̂(x) = ĤQ̂ and det Ĥ = 1.

In ray-centered coordinates, it is more common to consider the 2 × 2 transformation
matrix Q from ray coordinates γ1, γ2 to ray-centered coordinates q1, q2, instead of Q̂. The
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2 × 2 matrixQ is computed by dynamic ray tracing along�. We can again specify the po-
sition of the caustic points along the ray by detQ = 0. At the caustic point of the first order,

rank(Q) = 1. (4.12.2)

Similarly, at the caustic point of the second order,

rank(Q) = 0. (4.12.3)

The KMAH index k(B, A) depends on the initial values of matricesQ and P at point A.
It is quite obvious that the number and position of the caustic points along ray � between
A and B may be quite different for the normalized point source initial conditions (Q(A) =
0,P(A) = I) and for the normalized planewave initial conditions (Q(A) = I,P(A) = 0). In
practical applications, themost important role is played by the point source initial condition
because they are required in Green function computations. For this reason, we shall discuss
them in greater detail.

Let us consider a point source at S on � and two points A and B situated on the same
ray �. Assume that the point source is not situated inside interval A, B. We introduce the
KMAH index k(B, A; S) of the ray trajectory� from A to B, for the point source situated
at S. As in the previous cases, k(B, A; S) equals the number of caustic points along� from
A to B, with the caustic points of the second order being considered twice. If we take into
account the relation Q(R) = Q2(R, S)P(S), valid for the point source situated at S (see
(4.6.4)), we can see that KMAH index k(B, A; S) may also be determined by looking for
zeros of the 2 × 2 matrix Q2(R, S) along ray �.

It is possible to see that KMAH index k(R, S; S) is reciprocal in the following sense:

k(R, S; S) = k(R, S; R). (4.12.4)

The reciprocity relation (4.12.4)was proved byGoldin (1991) and byKlimeš (1997c). It can
be understood if we take into account the properties of the inverse of the ray propagator ma-
trix (4.3.26), particularly the property Q2(R, S) = −QT

2 (S, R) (see (4.3.27)). Reciprocity
relation (4.12.4) does not imply that the caustic points are situated at the same points of
ray � if the source is situated at S and at R. The caustic points are, in general, situated at
different points of the ray in both cases, but (4.12.4) remains valid. The reciprocity relation
(4.12.4) remains valid even in anisotropic media; see Klimeš (1997c).

We remind the reader that the minus sign in (4.12.1) corresponds to the plus sign in the
expression for the analytical signal F(ζ ) under consideration, F(ζ ) = x(ζ ) + ig(ζ ). For
time-harmonic waves, it corresponds to the exponential time factor exp[−iω(t − T )] with
positive ω. If we use F(ζ ) = x(ζ ) − ig(ζ ), the minus sign in (4.12.1) should be replaced
by the plus sign. For time-harmonic waves, the minus sign in (4.12.1) should be changed
to a plus sign if we use exponential time factor exp[+iω(t − T )].

The phase shift due to caustics plays an important role in the computation of ray
synthetic seismograms corresponding to the individual elementary waves. When the wave
passes through a caustic point of the first order, the shape of the signal changes to its Hilbert
transform. Similarly, if it passes through the caustic point of the second order, the seismic
signal changes its sign. Thus, it is necessary to discuss the procedures of determining the
phase shift due to the caustic (or, alternatively, the KMAH index) along ray �, starting
from S to R. This is the subject of Sections 4.12.1 and 4.12.2.
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4.12.1 Determination of the KMAH Index by Dynamic Ray Tracing

Let us consider ray� determined by solving the ray tracing system numerically.We assume
that dynamic ray tracing has also been performed along � from S to R and that the 2 × 2
matrix Q is known at all points of �. To locate the caustic points of the first and second
order, it is necessary to find the points at which detQ = 0, satisfying (4.12.2) or (4.12.3).

We shall now consider two consecutive points O1 and O2 on ray �, at which the
2 × 2 matrixQ takes valuesQ1 andQ2, so thatQ1 = Q(O1) andQ2 = Q(O2). We wish to
determinewhether there is a caustic point on� between O1 and O2. Assume that detQ1 �= 0
and detQ2 �= 0 and that the number of caustic points between O1 and O2 does not exceed
one. We can then use the following two criteria.

a. If

detQ1 detQ2 < 0, (4.12.5)

there is a caustic point of the first order (line caustic) between O1 and O2.

b. Otherwise, if

tr[Q1(Q2)−1] detQ1 detQ2 < 0, (4.12.6)

there is a caustic point of the second order (focus) between O1 and O2. Crite-
rion (4.12.6) can also be written in the following form, which is more useful in
programming:(

Q1
11Q

2
22 − Q1

12Q
2
21 + Q1

22Q
2
11 − Q1

21Q
2
12

)
detQ1 < 0. (4.12.7)

Note that there is no caustic point between O1 and O2 if detQ1 detQ2 > 0 and
tr[Q1(Q2)−1] detQ1 detQ2 > 0. Criterion (4.12.7) was proposed by L. Klimeš (see
Červený, Klimeš, and Pšenčı́k 1988b).

For detQ1 = 0 and/or detQ2 = 0, the criteria should be modified. The caustic point is
then situated directly at O1 and/or at O2.

Because the step along ray O1O2 is always finite in numerical ray tracing, the above
discrete algorithms (4.12.5) and (4.12.6) cannot be, in principle, quite safe and may fail
in exceptional cases due to numerical reasons and/or due to a greater number of caustic
points between O1 and O2. It may be useful to decrease the computation step in dangerous
regions where the values of detQ1 and detQ2 are very small.

In a layered medium, the KMAH index is calculated along ray segments between
structural interfaces. Let us consider ray � in a layered medium, with N R/T points
between S and R. Ray� consists of N + 1 segments. The points of incidence are denoted
Q1, Q2, . . . , QN , and the relevant R/T points, Q̃1, Q̃2, . . . , Q̃N . Then

k(R, S) =
N+1∑
k=1

k(Qk, Q̃k−1), (4.12.8)

where k(Qk, Q̃k−1) is the number of caustic points corresponding to the elementary wave
under consideration on ray � between Q̃k−1 and Qk (kth segment of the ray). In (4.12.8),
we have used S ≡ Q̃0 and R ≡ QN+1. Similarly, for the phase shift due to caustics, we
obtain from (4.12.8) and (4.12.1),

T c(R, S) =
N+1∑
k=1

T c(Qk, Q̃k−1), (4.12.9)
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where

T c(Qk, Q̃k−1) = − 1
2πk(Qk, Q̃k−1). (4.12.10)

When a caustic point is situated directly at an interface at point Qk , it should be taken
only once in sum (4.12.8), either in k(Qk, Q̃k−1) or in k(Qk+1, Q̃k).

4.12.2 Decomposition of the KMAH Index

Aswe know from Section 4.4.8, the 2 × 2matrixQ2(R, S) can be factorized; see (4.4.109).
The factorization of Q2(R, S) also implies the factorization of the relative geometrical
spreading; see Section 4.10.4. The equations of Section 4.4.8 may also be used to decom-
pose the KMAH index and the phase shift due to caustics. The decomposition equations
play an important role mainly in investigating the wavefields generated by point sources.

We shall consider ray � of a wave reflected/transmitted from interface � in a laterally
varying 3-D structure and two points S (point source) and R (receiver) situated on �. In
addition, we shall also consider the point Q on � at which ray � is incident at interface
� and the point Q̃, situated at the same position as Q, but corresponding to the relevant
generated wave.We shall call the segment of the ray between S and Q the incident segment
and the segment between Q̃ and R the R/T segment. Surface � may represent a structural
interface as well as an arbitrary surface crossing the ray � in a smooth medium.

Equation (4.4.109) for the factorization of Q2(R, S) yields

k(R, S; S) = k1 + k2 + kF (Q). (4.12.11)

Here k1 and k2 have a standardmeaning: k1 = k(Q, S; S) is theKMAH index corresponding
to the incident segment of the ray, assuming a point source at S; k2 = k(R, Q̃; R) is the
KMAH index corresponding to the R/T segment of the ray, assuming a point source at
R. Let us emphasize that k1 and k2 correspond to point sources at S and R, respectively.
Finally, the additional term kF (Q) is closely related to the interface Fresnel zone matrix
MF (Q; R, S) given by (4.4.107) or (4.4.108). Note that kF (Q) = kF (Q̃).

The relations for kF (Q) can be derived in different ways. For example, it is possible
to derive the relation for kF (Q) by applying the method of stationary phase (for ω → ∞)
to the Kirchhoff integral. This approach was used by Goldin (1991), Goldin and Piankov
(1992), and Schleicher, Tygel, and Hubral (1993). It yields the relation

kF (Q) = 1
2 (2 − SgnMF (Q; R, S)). (4.12.12)

Here SgnMF denotes the signature of the 2 × 2 Fresnel zone matrix. It represents the num-
ber of positive eigenvalues ofMF minus the number of negative eigenvalues. Alternatively,
we can also write

SgnMF = sgnM1 + sgnM2, (4.12.13)

where M1 and M2 represent the eigenvalues of the Fresnel zone matrix MF ; see Sec-
tion 4.11.2.

The decomposition equation (4.12.11) of the KMAH index plays an important role
particularly if the geometrical spreading is not evaluated by dynamic ray tracing. Then
the relations of Section 4.12.1 cannot be applied. As an example, let us consider models
in which the ray tracing is performed analytically or semianalytically or in which the ray
tracing is not needed at all (1-D models with an arbitrary velocity-depth distribution and
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2-D models composed of homogeneous layers or of layers with constant gradients of
velocity, slowness or quadratic slowness, and the like).

Let us explain in greater detail the difference between (4.12.8) and (4.12.11), which
may seem to be in contradiction. Equation (4.12.8) does not consider any contribution from
interfaces, but (4.12.11) does. To make the comparison simpler, we specify (4.12.8) for the
point source at S and for only the two branches of the ray, considered in (4.12.11). (4.12.8)
then yields

k(R, S; S) = k(R, Q̃; S) + k(Q, S; S). (4.12.14)

Both of the terms in (4.12.14) correspond to the point source at S, even the R/T seg-
ment. Thus, k(R, Q̃; S) is influenced by the interface and may be nonvanishing even
in a homogeneous medium. In (4.12.11), however, R/T segment k2 = k(R, Q̃; R) cor-
responds to the point source at R and is not affected by interface � at all. For a ho-
mogeneous medium, both k2 = k(R, Q̃; R) and k1 = k(Q, S; S) in (4.12.11) vanish, and
(4.12.11) yields k(R, S; S) = kF (Q). In the samemedium, (4.12.14) yields k(Q, S; S) = 0
and k(R, S; S) = k(R, Q̃; S). Thus, in this case, k(R, Q̃; S) = kF (Q).

4.13 Dynamic Ray Tracing Along a Planar Ray. 2-D Models

Assume that � is a planar ray in an isotropic medium. For simplicity, we assume that the
plane�‖, in which ray� is situated, corresponds to the x1x3-plane of the general Cartesian
coordinate system and that the x2-axis is perpendicular to that plane. It is obvious that the
first derivatives of velocity with respect to x2 must vanish along the whole ray� (otherwise
ray � would leave plane �‖). Similarly, the normals to the interfaces at all points Qi are
situated in the plane �‖ (the x2-components of all normals vanish).

The case described here also includes a 2-D model in which the structural parameters
do not depend on the x2-coordinate. Ray�with its initial point and initial direction in plane
�‖ is then fully confined to plane �‖ and does not deviate from it. Thus, in computing
the rays and travel times, the foregoing assumptions are sufficient to obtain planar rays. To
perform the dynamic ray tracing and to simplify it, we must make some other assumptions
regarding the second derivatives of velocity and the curvature of interfaces. We shall do
this later.

Let us now consider two points S and R situated on ray� and introduce the initial basis
vectors of the ray-centered coordinate system 	e1(S), 	e2(S), and 	e3(S) = 	t(s). We assume
that the initial slowness vector is fully situated in plane �‖ so that e32(S) = 0. We now
take 	e2(S) to have the direction of the x2-axis so that e21(S) = e23(S) = 0 and e22(S) = 1.
Because system 	e1, 	e2, 	e3 is right-handed, we can put 	e1(S) = 	e2(S) × 	e3(S). According to
Section 4.1.3, vector 	e2 is constant along the whole planar ray � in a smooth medium. If
we denote any point on ray � by R, we can write

	e2(R)= 	e2(S), 	e3(R)= 	t(R)= V (R) 	p(R),
(4.13.1)	e1(R)= 	e2(R)× 	e3(R).

As usual, 	t denotes the unit vector tangent to the ray. These equations allow us to determine
the transformation matrix Ĥ from ray-centered to general Cartesian coordinates at any
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point R of the ray, Hi j = e ji ,

Ĥ(R) =

H11(R) 0 H13(R)

0 1 0
H31(R) 0 H33(R)


 =


 t3(R) 0 t1(R)

0 1 0
−t1(R) 0 t3(R)


 . (4.13.2)

The last relation in (4.13.2) follows from the orthogonality of vectors 	e1 and 	e3. As we
can see from (4.13.2), matrix Ĥ(R) can be expressed completely in terms of Cartesian
components of the unit vector tangent to the ray, 	e3 = 	t . Basis vectors 	e1 and 	e2 do not
need to be determined numerically.

Let us now consider a planar ray that is incident at interface� at point Q. We introduce
the local Cartesian coordinate system (z1, z2, z3) with its origin at Q and with basis vectors
	i (z)1 ,

	i (z)2 , and 	i (z)3 . We wish to use the standard option (4.4.21) for the basis vectors 	i (z)1 ,
	i (z)2 ,

and 	i (z)3 . In addition, we wish to choose 	i (z)2 in such a way that it is perpendicular to the
plane �‖ and has the orientation of the x2-axis. Consequently, we wish to choose 	i (z)2 =
	e2(Q). For a given orientation of the unit normal 	n, however, (4.4.21) would yield 	i (z)2 =
± 	e2(Q), not 	i (z)2 = 	e2(Q). In a layered medium, this might yield jumps of the signs of 	i (z)2

from one point of incidence to another. We can, however, easily remove these jumps by
choosing proper orientation of the unit normals 	n, taking ε∗ = +1 or ε∗ = −1 in (4.4.3).
The appropriate choice of ε∗ is then

ε∗ = sgn[	e2(Q) · (∇� × 	p(Q))] = sgn[p1∂�/∂x3 − p3∂�/∂x1]Q .

(4.13.3)

If we choose ε∗ using (4.13.3) and compute 	i (z)1 ,
	i (z)2 , and 	i (z)3 using the standard option

(4.4.21), the basis vector 	i (z)2 has the same orientation as the x2-axis at all points of in-
cidence and equals 	e2(Q). For a reflected/transmitted wave, we also take 	e2(Q̃) = 	e2(Q).
Consequently, the unit basis vector 	e2 is constant along the whole planar ray �, even in
a layered medium. Note that 	i (z)1 is given by (4.4.21) and does not depend on ε∗. It is al-
ways oriented “along the direction of the propagation of the wave” in the following sense:
	p(Q) · 	i (z)1 ≥ 0.

Using the above standard choice of 	i (z)1 ,
	i (z)2 , and 	i (z)3 and (4.13.2) for Ĥ(R), we obtain

Ĝ(Q) = Ĝ‖(Q), Ĝ(Q̃) = Ĝ‖(Q̃), (4.13.4)

where Ĝ‖(Q) and Ĝ‖(Q̃) are given by (4.4.23) and (4.4.25). Consequently,

G(Q) = G‖(Q), G(Q̃) = G‖(Q̃), (4.13.5)

where G‖(Q) and G‖(Q̃) are given by (4.4.49).
In a 2-D model, independent of Cartesian x2 coordinate, we have the following two

conditions along the whole ray �:

V12 = V21 = V22 = 0, D12 = D21 = D22 = 0. (4.13.6)

Here VIJ represents the second derivative of velocity with respect to qI and qJ , and DIJ

are components of the curvature matrix of interfaces at the points of incidence. In our
treatment, however, we shall consider a more general situation; we admit to V22 �= 0 and
D22 �= 0 so that

V12 = V21 = 0, D12 = D21 = 0, V22 �= 0, D22 �= 0. (4.13.7)

The interpretation of the assumptions in (4.13.7) is obvious. Even though the first derivative
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of the velocity with respect to the x2-coordinate vanishes, the second derivative of velocity
with respect to x2 may be nonzero. This means that plane �‖ may represent the plane of
symmetry of a low-velocity channel or, on the contrary, the plane of symmetry of a high-
velocity layer. Similarly, the interfaces may be curved at the points of incidence along the
x2-axis, but the x2-component of the normal to the interface must vanish at these points.

4.13.1 Transformation Matrices Q and P

Let us now express dynamic ray tracing system (4.1.64) explicitly for all eight components
of the 2 × 2 matrices Q and P,

dQ11

ds
= vP11,

dP11
ds

= −v−2V11Q11,

dQ22

ds
= vP22,

dP22
ds

= −v−2V22Q22, (4.13.8)

dQ12

ds
= vP12,

dP12
ds

= −v−2V11Q12,

dQ21

ds
= vP21,

dP21
ds

= −v−2V22Q21.

Here we have assumed the validity of relations (4.13.7). We choose the initial condition
for QIJ and PIJ as follows:

Q12(S) = Q21(S) = P12(S) = P21(S) = 0. (4.13.9)

The other components ofQ(S) and P(S) may be arbitrary. Thus, we assume that the initial
matrices Q(S) and P(S) are diagonal. Due to initial conditions (4.13.9), (4.13.8) yields

Q12(R) = Q21(R) = P12(R) = P21(R) = 0 (4.13.10)

for any point R situated on ray �.
The remaining part of (4.13.8) may then be divided into two independent systems. The

first system is

dQ11/ds = vP11, dP11/ds = −v−2V11Q11, (4.13.11)

and the second is

dQ22/ds = vP22, dP22/ds = −v−2V22Q22. (4.13.12)

System (4.13.11) (or (4.13.12)) is exactly the same as the dynamic ray tracing system
(4.1.64), but it is in scalar, not matrix, form.

We now introduce the following notation:

Q11 = Q‖, P11 = P‖, Q22 = Q⊥, P22 = P⊥. (4.13.13)

We call quantities Q‖ and P‖ the in-plane quantities and Q⊥ and P⊥ the transverse
quantities. Dynamic ray tracing systems (4.13.11) and (4.13.12) can then be expressed in
more compact forms.� The in-plane dynamic ray tracing system:

dX‖

ds
= S‖X‖, X‖(s) =

(
Q‖(s)
P‖(s)

)
, S‖ =

(
0 v

−v−2V11 0

)
.

(4.13.14)
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� The transverse dynamic ray tracing system:

dX⊥

ds
= S⊥X⊥, X⊥(s) =

(
Q⊥(s)
P⊥(s)

)
, S⊥ =

(
0 v

−v−2V22 0

)
.

(4.13.15)

4.13.2 In-Plane and Transverse Ray Propagator Matrices

We can construct the 2 × 2 ray propagator matricesΠ‖(R, S) andΠ⊥(R, S) corresponding
to systems of equations (4.13.14) and (4.13.15) and satisfying conditions

Π‖(S, S) = I, Π⊥(S, S) = I, (4.13.16)

where I is a 2 × 2 identity matrix. We call Π‖(R, S) the in-plane ray propagator matrix
and Π⊥(R, S) the transverse ray propagator matrix. Similarly, as in (4.3.5), we shall use
the following notation:

Π‖(R, S) =
(
Q‖

1(R, S) Q‖
2(R, S)

P‖
1 (R, S) P‖

2 (R, S)

)
,

Π⊥(R, S) =
(
Q⊥

1 (R, S) Q⊥
2 (R, S)

P⊥
1 (R, S) P⊥

2 (R, S)

)
.

(4.13.17)

The continuation relations (4.3.29) for planar ray � read

X‖(R) = Π‖(R, S)X‖(S), X⊥(R) = Π⊥(R, S)X⊥(S). (4.13.18)

To produce the complete set of equations for the ray propagatormatrix in a layeredmedium,
we need to specify projection matrix Y(Q) for a planar ray. Let us consider planar ray �,
which is incident at point Q on interface �. Hence,

D(Q) =
(
D‖(Q) 0

0 D⊥(Q)

)
, G(Q) =

(
ε cos iS 0

0 1

)
,

(4.13.19)

E(Q) =
(
E‖(Q) 0

0 0

)
.

Here D‖ = D11 and D⊥ = D22 represent the in-plane and transverse elements of curvature
matrix D of interface � at Q. In a 2-D model, D⊥ = 0. The expression for G(Q) follows
from (4.13.5) and (4.4.49). E‖(Q) is the in-plane component of the inhomogeneity matrix;
see (4.4.33). It may be expressed in several alternative forms,

E‖(Q) = −V−2 sin iS[2ε cos iS∂V/∂q1 + sin iS∂V/∂q3]

= −V−2 sin iS[(1 + cos2 iS)∂V/∂z1 − ε cos iS sin iS∂V/∂z3]
= −V−1 sin iS[(p1 sin iS + 2εp3 cos iS)∂V/∂x1

+ (p3 sin iS − 2εp1 cos iS)∂V/∂x3]; (4.13.20)

see (4.4.53). Here p1 and p3 are Cartesian components of the slowness vector 	p, iS is the
acute angle of incidence, and ε is the orientation index, that is ε = sgn( 	p · 	n). All quantities
in (4.13.20) are taken at point Q. Using relations (4.13.19), we can express the in-plane
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and transverse projection matrices Y‖(Q) and Y⊥(Q),

Y‖(Q) = ε

(
1/cos iS 0

(E‖ − εV−1 cos iS D‖)/cos iS cos iS

)
,

Y⊥(Q) =
(

1 0
−εV−1 cos iS D⊥ 1

)
;

(4.13.21)

see (4.4.70). Similarly, we obtain

Y‖−1(Q) = ε

(
cos iS 0

−(E‖ − εV−1 cos iSD‖)/cos iS 1/cos iS

)
,

(4.13.22)

Y⊥−1(Q) =
(

1 0
εV−1 cos iS D⊥ 1

)
.

Expressions similar to (4.13.19) through (4.13.22) can be written even for reflected/trans-
mitted waves at the point Q̃. We only replace V by Ṽ , sin iS by sin iR , and cos iS by
± cos iR . The upper sign corresponds to transmitted waves, and the lower sign corresponds
to reflectedwaves. Then,we also obtain expressions for the in-plane and transverse interface
propagator matrices Π‖(Q̃, Q) = Y‖−1(Q̃)Y‖(Q) and Π⊥(Q̃, Q) = Y⊥−1(Q̃)Y(Q):

Π‖(Q̃, Q) = ±
(

cos iR/cos iS 0
[(E‖ − Ẽ‖) − uD‖]/(cos iR cos iS) cos iS/cos iR

)
,

Π⊥(Q̃, Q) =
(

1 0
−uD⊥ 1

)
.

(4.13.23)

Hereu is givenby (4.4.51).Thefinal equations for the in-plane and transverse raypropagator
matrices Π‖(R, S) and Π⊥(R, S) in a layered medium are

Π‖(R, S) = Π‖(R, Q̃N )
1∏

i=N

(Π‖(Q̃i , Qi )Π‖(Qi , Q̃i−1)),

(4.13.24)

Π⊥(R, S) = Π⊥(R, Q̃N )
1∏

i=N

(Π⊥(Q̃i , Qi )Π⊥(Qi , Q̃i−1));

see (4.4.86). The notation in (4.13.24) is the same as in (4.4.86), and Q̃0 ≡ S.
In a similar way, we can construct the in-plane and transverse surface-to-surface ray

propagator matrices T‖(R, S) and T⊥(R, S):

T‖(R, S) = Y‖(R)Π‖(R, S)Y‖−1(S),

T⊥(R, S) = Y⊥(R)Π⊥(R, S)Y⊥−1(S).
(4.13.25)

In a layered medium, T‖(R, S) and T⊥(R, S) are given by relations analogous to (4.4.96):

T‖(R, S) =
1∏

i=N

T‖(Qi , Qi−1), T⊥(R, S) =
1∏

i=N

T⊥(Qi , Qi−1).

(4.13.26)

Here S ≡ Q0 is situated on the anterior surface, and R ≡ QN is on the posterior surface.
The in-plane and transverse ray propagator matrices satisfy the symplectic properties

(Π‖)TJΠ‖ = J, (Π⊥)TJΠ⊥ = J, J =
(

0 1
−1 0

)
. (4.13.27)
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Similarly, they satisfy the relations for the inverse of the ray propagator matrix. If we
use notation (4.13.17), we obtain

Π‖−1(R, S) = Π‖(S, R) =
(
P‖
2 (R, S) −Q‖

2(R, S)
−P‖

1 (R, S) Q‖
1(R, S)

)
,

Π⊥−1(R, S) = Π⊥(S, R) =
(
P⊥
2 (R, S) −Q⊥

2 (R, S)
−P⊥

1 (R, S) Q⊥
1 (R, S)

)
.

(4.13.28)

Equations (4.13.28) also imply that

Q‖
1(S, R) = P‖

2 (R, S), Q⊥
1 (S, R) = P⊥

2 (R, S),

Q‖
2(S, R) = −Q‖

2(R, S), Q⊥
2 (S, R) = −Q⊥

2 (R, S),

P‖
1 (S, R) = −P‖

1 (R, S), P⊥
1 (S, R) = −P⊥

1 (R, S),

P‖
2 (S, R) = Q‖

1(R, S), P⊥
2 (S, R) = Q⊥

1 (R, S).

(4.13.29)

Relations (4.13.27) through (4.13.29) are also satisfied by matrices T‖, T⊥, Y‖, and Y⊥.
All the matrices also satisfy the chain property (4.4.87).

All the relations in this section are valid for planar ray� in a general layeredmodel with
V22 �= 0 and D22 �= 0; see (4.13.7). In a standard 2-D model, in which V22 = D22 = 0 (see
(4.13.6)), the transverse matrices simplify considerably. The dynamic ray tracing system
(4.13.12) for P22(s) and Q22(s) can be solved analytically to yield

P22(s) = P22(s0), Q22(s) = Q22(s0) + P22(s0)
∫ s

s0

v ds.

The transverse ray propagator matrix, Π⊥(Qi , Q̃i−1), is then given by relation

Π⊥(Qi , Q̃i−1) =
(
1 σ (Qi , Q̃i−1)
0 1

)
. (4.13.30)

Here σ (Qi , Q̃i−1) is given by relation

σ (Qi , Q̃i−1) =
∫ Qi

Q̃i−1

v ds, (4.13.31)

where the integration is taken over ray �. As D22 = 0, we also have

Y⊥(Qi ) = I, Y⊥(Q̃i ) = I, Π⊥(Q̃i , Qi ) = I.

Then (4.13.24) yields

Π⊥(R, S) =
(
1 σ (R, S)
0 1

)
. (4.13.32)

Relation (4.13.32) is the final expression for the transverse ray propagator matrixΠ⊥(R, S)
along planar ray� situated in the 2-D layered medium. In (4.13.32), σ (R, S) is again given
by (4.13.31), but it is taken along the whole ray from S to R, even across the interfaces.

Thus, the transverse ray propagator matrix Π⊥(R, S) in a 2-D layered medium is very
simple and can be computed merely by one simple integration along the ray. If quantity
σ is used as a monotonic parameter along the ray, the transverse ray propagator matrix is
obtained immediately, without any additional computation.



390 DYNAMIC RAY TRACING. PARAXIAL RAY METHODS

4.13.3 Matrices M and K

Weagain consider a planar ray� connecting twopoints S and R and transformationmatrices
Q and P satisfying conditions (4.13.9) at point S. MatricesQ and P are then diagonal along
the whole ray �; see (4.13.10). This configuration implies that matrix M = PQ−1 of the
second derivatives of the travel-time field with respect to ray-centered coordinates qI is also
diagonal. We introduce the in-plane and transverse second derivatives of the travel-time
field, M‖ = ∂2T/∂q21 and M⊥ = ∂2T/∂q22 , as follows:

M(R) =
(
M‖(R) 0

0 M⊥(R)

)
, (4.13.33)

where

M‖(R) = P‖(R)/Q‖(R), M⊥(R) = P⊥(R)/Q⊥(R). (4.13.34)

Assume that we know M‖(R) (or M⊥(S)) at initial point S of � and wish to compute
M‖(R) (or M⊥(R)) at any point R of ray �. If we use (4.13.34), continuation relations
(4.13.18), and the notation (4.13.17), we obtain

M‖(R) = [
P‖
1 (R, S) + P‖

2 (R, S)M
‖(S)

]/[
Q‖

1(R, S) + Q‖
2(R, S)M

‖(S)
]
,

M⊥(R) = [
P⊥
1 (R, S)+ P⊥

2 (R, S)M⊥(S)
]/[

Q⊥
1 (R, S)+Q⊥

2 (R, S)M
⊥(S)

]
.

(4.13.35)

This can be expressed in alternative form using (4.13.29). We can also express M‖(S) in
terms of M‖(R) by interchanging S and R in (4.13.35).

For a point source situated at point S, M‖(S) → ∞ and M⊥(S) → ∞. We again denote
byM‖(R, S) andM⊥(R, S) the in-plane and transverse second derivatives of the travel-time
field, M‖(R) and M(R), corresponding to the point source at S. Hence,

M‖(R, S) = P‖
2 (R, S)

/
Q‖

2(R, S) = −Q‖
1(S, R)

/
Q‖

2(S, R),
(4.13.36)

M⊥(R, S) = P⊥
2 (R, S)

/
Q⊥

2 (R, S) = −Q⊥
1 (S, R)

/
Q⊥

2 (S, R).

Analogous expressions for M‖(S, R) and M⊥(S, R), corresponding to a point source at R,
are obtained from (4.13.36) by interchanging R and S.

In local ray-centered coordinates y1, y2, y3, the 3 × 3 matrix of the travel-time field
M̂(R) at point R of ray � is given by relation

M̂(R) =

 M‖(R) 0 −(v−2∂v/∂q1)R

0 M⊥(R) 0
−(v−2∂v/∂q1)R 0 −(v−2∂v/∂q3)R


 ; (4.13.37)

see (4.1.81). Finally, in general Cartesian coordinates x1, x2, x3, the matrix of the second
derivatives of the travel-time field M̂(x)(R), with components M (x)

i j = ∂2T/∂xi∂x j , is given
by relation

M̂(x)(R) = Ĥ(R)M̂(R)ĤT (R)

=

 t3 0 t1

0 1 0
−t1 0 t3




 M‖ 0 −v−2∂v/∂q1

0 M⊥ 0
−v−2∂v/∂q1 0 −v−2∂v/∂q3




t3 0 −t1
0 1 0
t1 0 t3


 ;

(4.13.38)
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see (4.1.87) and (4.13.2). In (4.13.38), ti are Cartesian components of unit vector 	t tangent
to the ray, that is 	t = 	e3. All quantities in (4.13.38) are taken at point R. We can again
introduce the in-plane and transverse parts of M̂(x)(R),

M(x)‖(R) =
(
M (x)

11 M (x)
13

M (x)
31 M (x)

33

)

=
(
t3 t1

−t1 t3

)(
M‖ −v−2∂v/∂q1

−v−2∂v/∂q1 −v−2∂v/∂q3

)(
t3 −t1
t1 t3

)
,

(4.13.39)

and

M (x)⊥(R) = M (x)
22 (R) = M⊥(R). (4.13.40)

ComponentsM (x)
12 ,M

(x)
21 ,M

(x)
23 , andM

(x)
32 ofmatrixM̂(x) vanish.Note that ∂v/∂qi in (4.13.38)

and (4.13.39) can be expressed in terms of ∂v/∂x1 and ∂v/∂x3 as

∂v/∂q1 = t3∂v/∂x1 − t1∂v/∂x3, ∂v/∂q3 = t1∂v/∂x1 + t3∂v/∂x3;

(4.13.41)

see (4.1.62).
MatrixM is closely related to the matrix of the curvature of the wavefront K = vM:

K(R) =
(
K ‖(R) 0

0 K⊥(R)

)
, (4.13.42)

where K ‖ = vM‖ and K⊥ = vM⊥. Similarly, we can express the continuation relations
for K ‖ and K⊥ using (4.13.35),

K ‖(R) = v(R)
[
v(S)P‖

1 (R, S) + P‖
2 (R, S)K

‖(S)
]

/ [
v(S)Q‖

1(R, S) + Q‖
2(R, S)K

‖(S)
]
,

(4.13.43)
K⊥(R) = v(R)

[
v(S)P⊥

1 (R, S) + P⊥
2 (R, S)K⊥(S)

]
/ [

v(S)Q⊥
1 (R, S) + Q⊥

2 (R, S)K
⊥(S)

]
.

For a point source at S, we obtain

K ‖(R, S) = v(R)P‖
2 (R, S)

/
Q‖

2(R, S) = −v(R)Q‖
1(S, R)

/
Q‖

2(S, R),

K⊥(R, S) = v(R)P⊥
2 (R, S)

/
Q⊥

2 (R, S) = −v(R)Q⊥
1 (S, R)

/
Q⊥

2 (S, R).

(4.13.44)

In Equations (4.13.43) and (4.13.44), we can again interchange S and R.
Instead of the in-plane and transverse curvatures of the wavefront, K ‖ and K⊥, we can

also introduce the in-plane and transverse radii of curvatures of the wavefront R‖ = 1/K ‖

and R⊥ = 1/K⊥. The continuation equations for R‖ and R⊥ are obtained from (4.13.43):

R‖(R) = v−1(R)
[
Q‖

2(R, S) + v(S)Q‖
1(R, S)R

‖(S)
]

/ [
P‖
2 (R, S) + v(S)P‖

1 (R, S)R
‖(S)

]
,

(4.13.45)
R⊥(R) = v−1(R)

[
Q⊥

2 (R, S) + v(S)Q⊥
1 (R, S)R

⊥(S)
]

/ [
P⊥
2 (R, S) + v(S)P⊥

1 (R, S)R⊥(S)
]
.
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Equations (4.13.35), (4.13.43), and (4.13.45) can also be used to find the transformations of
M‖,M⊥, K ‖, K⊥, R‖, and R⊥ across the interface at the point of incidence Q. We merely
use S = Q and R = Q̃ and insert the appropriate elements of the interface propagator
matricesΠ‖(Q̃, Q) andΠ⊥(Q̃, Q) given by (4.13.23). Equations (4.13.35), (4.13.43), and
(4.13.45) simplify considerably in this case as Q‖

2(Q̃, Q) = 0 and Q⊥
2 (Q̃, Q) = 0; see

(4.13.23).
The application of the radii of curvature of the wavefront has a long tradition in the

seismic ray theory. Alekseyev and Gel’chinskiy (1958) proposed a method of calculating
successively R‖ and R⊥ along planar ray� in a medium composed of homogeneous layers
separated by curved interfaces and used the computed quantities R‖ and R⊥ to determine
the geometrical spreading and ray amplitude. The algorithms proposed by Alekseyev and
Gel’chinskiy, of course, follow from the equations presented in this section, which gener-
alize them in several ways. See also the detailed description of the algorithm in Červený
and Ravindra (1971, Eqs. (2.163)–(2.165)).

4.13.4 In-Plane and Transverse Geometrical Spreading

Along planar ray �, t2 = 0, Q21 = 0, and Q(x)
21 = 0. We can then use Equations (4.10.3)

and (4.10.4) and write the following equation for geometrical spreading L(R) at any point
R situated on �:

L(R) = L‖(R)L⊥(R). (4.13.46)

Here L‖(R) is the in-plane geometrical spreading and L⊥(R) the transverse geometrical
spreading. L‖(R) and L⊥(R) can be expressed in several alternative ways:

L‖(R) = |J ‖(R)|1/2 =
∣∣∣∣∣det

(
Q(x)

11 (R) t1(R)
Q(x)

31 (R) t3(R)

)∣∣∣∣∣
1/2

= |Q‖(R)|1/2,

L⊥(R) = |J⊥(R)|1/2 = ∣∣Q(x)
22 (R)

∣∣1/2 = |Q⊥(R)|1/2.
(4.13.47)

We remind the reader that we consider only isotropic media in this section so that U = C.
Quantities Q(x)

11 (R) and Q
(x)
31 (R) in the expression for L‖(R) are elements of matrix Q̂(x)

and can be calculated by dynamic ray tracing in Cartesian coordinates.
From a physical point of view, L‖(R) expresses the geometrical spreading of the ray

tube in the plane of the ray �‖, and L⊥(R) expresses the geometrical spreading of the ray
tube perpendicular to that plane.

Using ray propagator matrices (4.13.17) and continuation relations (4.13.18), we can
write

Q‖(R) = Q‖
1(R, S)Q

‖(S) + Q‖
2(R, S)P

‖(S), (4.13.48)

Q⊥(R) = Q⊥
1 (R, S)Q

⊥(S) + Q⊥
2 (R, S)P

⊥(S). (4.13.49)

This also immediately follows from (4.6.2), if we take into account that the individual
matrices in (4.6.2) are diagonalized for planar rays.

Equations (4.13.48) and (4.13.49) yield the continuation relations forL‖(R) andL⊥(R):

L‖(R) = ∣∣Q‖
1(R, S) + Q‖

2(R, S)M
‖(S)

∣∣1/2L‖(S),

L⊥(R) = ∣∣Q⊥
1 (R, S) + Q⊥

2 (R, S)M
⊥(S)

∣∣1/2L⊥(S).
(4.13.50)
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Now we wish to specify Equations (4.13.48), (4.13.49), and (4.13.50) for a point source
situated at S. In 2-D models, however, we often consider yet another simple type of source:
the line source, perpendicular to the plane�‖ of ray�. We shall give the equations for the
geometrical spreading for both types of sources.

a. Point source at S. Q‖(S) = Q⊥(S) = 0, and Equations (4.13.48) and (4.13.49)
yield

L‖(R) = ∣∣Q‖
2(R, S)P

‖(S)
∣∣1/2, L⊥(R) = ∣∣Q⊥

2 (R, S)P
⊥(S)

∣∣1/2.
(4.13.51)

As in 3-D structures, we can introduce the relative in-plane and transverse geometrical
spreading for the point source situated at S. We denote them by L‖(R, S) and L⊥(R, S):

L(R, S) = L‖(R, S)L⊥(R, S), (4.13.52)

L‖(R, S) = ∣∣Q‖
2(R, S)

∣∣1/2, L⊥(R, S) = ∣∣Q⊥
2 (R, S)

∣∣1/2. (4.13.53)

Both L‖(R, S) and L⊥(R, S) are reciprocal, L‖(R, S) = L‖(S, R) and L⊥(R, S) =
L⊥(S, R).

Equations (4.13.51) through (4.13.53) also apply to the general case of V22 �= 0 and
D22 �= 0. We shall now consider a standard 2-D model in which V22 = D22 = 0. In a 2-D
model, ray propagator matrix Π⊥(R, S) is given by (4.13.32), which implies

Q⊥
2 (R, S) = σ (R, S) =

∫ R

S
v ds.

This yields simpler relations for transverse geometrical spreadings L⊥(R) and L⊥(R, S):

L⊥(R) = |σ (R, S)P⊥(S)|1/2, L⊥(R, S) = |σ (R, S)|1/2. (4.13.54)

The relations for L‖(R, S) and L‖(R), (4.13.51) through (4.13.53), remain the same even
in a standard 2-D model; they do not simplify. Both the relative in-plane and transverse
geometrical spreading, L‖(R, S) and L⊥(R, S), are reciprocal in this case.

b. Line source at S. We consider a line source parallel to the x2-axis, intersecting the
plane �‖ of the ray (plane x1x3) at point S. We choose ray parameter γ2 so that it is equal
to the distance along the line source. We then obtain Q‖(S) = 0, Q⊥(S) = 1, P‖(S) �= 0,
and P⊥(S) = 0. Hence, Equations (4.13.48) and (4.13.49) yield

L‖(R) = ∣∣Q‖
2(R, S)P

‖(S)
∣∣1/2, L⊥(R) = ∣∣Q⊥

1 (R, S)
∣∣1/2. (4.13.55)

The relative geometrical spreading for a point source at S was introduced by (4.10.11).
Definition (4.10.11) cannot be applied to a line source because P(S) = P‖(S)P⊥(S) = 0 in
this case. Still, however, we can define the relative in-plane geometrical spreadingL‖(R, S)
for a line source, in the same way as for a point source; see (4.13.53). Relative transverse
geometrical spreading does not have any meaning for a line source.

In a standard 2-Dmodel (V22 = D22 = 0), Q⊥
1 (R, S) = 1; see (4.13.32). Consequently,

L⊥(R) = 1. (4.13.56)

Let us add a terminological note to the computation of seismic wavefields in standard
2-D models (with V22 = 0 and D22 = 0). If we consider a line source parallel to the x2-
axis (that is, perpendicular to the plane �‖) we speak of standard 2-D computations, or
standard 2-D case. Standard 2-D computations are common mainly in the investigation of
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the complete wavefield by finite differences. In practical application, however, it is more
important to consider a point source situated in the plane �‖. Then we often speak of
2.5-D computations (two-and-half-dimensional computations) or of a 2.5-D case. See, for
example, Bleistein, Cohen, and Hagin (1987). In the ray method, the only difference be-
tween a standard 2-D case and a 2.5-D case is the transverse geometrical spreading. In
the standard 2-D case, there is no transverse spreading; see (4.13.56). In a 2.5-D case,
the relative transverse geometrical spreading L⊥(R, S) is given by (4.13.54). From a nu-
merical point of view, the difference between standard 2-D and 2.5-D cases consists only
in the computation of σ (R, S) by numerical quadratures along the ray �. Thus, we can
easily implement both options into any 2-D ray theory computer code. In finite-difference
computations of complete wavefields, the transition from a line source to a point source is
considerably more complicated.

There is, however, no uniqueness in the term 2.5-D computations. The term has also
been used frequently in a considerablymore generalmeaning: for general 3-Dcomputations
in standard 2-D models; see Brokešová (1994). In this case, the rays are not confined to the
plane x2 = 0, but they are arbitrarily inclined with respect to it. The inclination depends on
the component p20 of the slowness vector at the initial point. Only if p20 = 0 do we obtain
standard 2-D computations with rays confined to the plane x2 = 0. For more details, see
Section 3.3.4.2.

4.13.5 Paraxial Travel Times

We shall consider planar ray �, points S and R situated on �, and point R′ situated close
to R. Point R′ may also be situated outside the plane �‖ so that x2(R′) �= 0.

In ray-centered coordinates, we can use relations (4.13.33) and (4.6.24) to obtain

T (R′) = T (R) + 1
2q

2
1 (R

′)M‖(R) + 1
2q

2
2 (R

′)M⊥(R). (4.13.57)

This relation is valid for points R′ situated in a plane�⊥ perpendicular to� at R. A similar
relation in general Cartesian coordinates reads

T (R′) = T (R) + x‖T (R′, R)p(x)‖(R) + 1
2x

‖T (R′, R)M(x)‖(R)x‖(R′, R)

+ 1
2 x

2
2 (R

′, R)M⊥(R). (4.13.58)

Here we have used the notation

x‖(R′, R) =
(
x1(R′, R)
x3(R′, R)

)
, p(x)‖(R) =

(
p(x)1 (R)
p(x)3 (R)

)
. (4.13.59)

The 2 × 2matrixM(x)‖(R) is given by relation (4.13.39). Point R′ maybe situated arbitrarily
in the vicinity of R in this case.

For a point source situated at point S, (4.13.57) and (4.13.58) yield

T (R′, S) = T (R, S) + 1
2q

2
1 (R

′)M‖(R, S) + 1
2q

2
2 (R

′)M⊥(R, S), (4.13.60)

T (R′, S) = T (R, S) + x‖T (R′, R)p(x)‖(R)

+ 1
2x

‖T (R′, R)M(x)‖(R, S)x‖(R′, R) + 1
2 x

2
2 (R

′, R)M⊥(R, S).

(4.13.61)

Here M⊥(R, S) and M‖(R, S) are given by (4.13.36) andM(x)‖(R, S) follows immediately
from (4.13.39), specified for a point source at S.
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4.13.6 Paraxial Rays Close to a Planar Central Ray

Let us consider a planar central ray� situated in a plane�‖ and assume that V12 = V21 = 0.
We, however, do not require V22 = 0 and D22 = 0; see (4.13.7). The paraxial ray tracing
system then separates into two fully independent systems. The first system is for q1, p

(q)
1 :

dq1/ds = vp(q)1 , dp(q)1

/
ds = −v−2v,11q1, (4.13.62)

and the second is for q2 and p
(q)
2 :

dq2/ds = vp(q)2 , dp(q)2

/
ds = −v−2v,22q2. (4.13.63)

Both systems are fully equivalent to the relevant dynamic ray tracing systems along
the plane central ray �; see (4.13.11) and (4.13.12). Thus, they can be solved using the
2 × 2 ray propagator matrices Π‖(R, S) and Π⊥(R, S), introduced in Section 4.13.2. All
the equations are straightforward.

We shall now pay more attention only to system (4.13.63), which describes the ray
deviations of the paraxial ray �′ from plane �‖ in which the central ray is situated. The
deviations of paraxial ray �′ from plane �‖ are controlled mainly by the initial value of
p(q)2 (s0) and by the distribution of v,22 along central ray �. To demonstrate the effect of
these two quantities on the paraxial ray, we shall consider three simple possibilities: (a)
v,22 = 0, (b) v−3v,22 = k2 > 0, and (c) v−3v,22 = −k2 < 0, where k is some real-valued
constant.

To solve (4.13.63), it is convenient to introduce a new variable σ along central ray �,
such that dσ = vds. Then (4.13.63) yields

dq2/dσ = p(q)2 , dp(q)2

/
dσ = −v−3v,22q2. (4.13.64)

This system can be combined into one ordinary differential equation of the second order,

d2q2
/
dσ 2 + v−3v,22q2 = 0. (4.13.65)

The initial conditions for this differential equation at σ = σ0 are

q2(σ ) = q2(σ0), q ′
2(σ ) = p(q)2 (σ0). (4.13.66)

After q2(σ ) is determined from (4.13.65), p(q)2 (σ ) is obtained from (4.13.64) as a derivative:
p(q)2 (σ ) = dq2(σ )/dσ .

We shall now consider the three cases of v,22:� v,22 = 0.Then d2q2/dσ 2 = 0, and q2(σ ) is a linear function of σ . Taking into account
initial conditions (4.13.66), we obtain

q2(σ ) = q2(σ0) + p(q)2 (σ0)(σ − σ0), p(q)2 (σ ) = p(q)2 (σ0). (4.13.67)� v−3v,22 = k2. Then

d2q2
/
dσ 2 + k2q2 = 0. (4.13.68)

The two linearly independent solutions of (4.13.68) are trigonometric functions
sin k(σ − σ0) and cos k(σ − σ0). In view of initial conditions (4.13.66)

q2(σ ) = q2(σ0) cos k(σ − σ0) + k−1 p(q)2 (σ0) sin k(σ − σ0),
(4.13.69)

p(q)2 (σ ) = p(q)2 (σ0) cos k(σ − σ0) − kq2(σ0) sin k(σ − σ0).� v−3v,22 = −k2. Equation (4.13.65) then yields

d2q2/dσ
2 − k2q2 = 0. (4.13.70)
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The two linearly independent solutions of (4.13.70) are exponential functions
exp(k(σ − σ0)) and exp(−k(σ − σ0)). Taking into account initial conditions
(4.13.66), we obtain

q2(σ ) = 1
2

(
q2(σ0) + k−1 p(q)2 (σ0)

)
ek(σ−σ0)

+ 1
2

(
q2(σ0) − k−1 p(q)2 (σ0)

)
e−k(σ−σ0), (4.13.71)

p(q)2 (σ ) = 1
2

(
kq2(σ0) + p(q)2 (σ0)

)
ek(σ−σ0)− 1

2

(
kq2(σ0) − p(q)2 (σ0)

)
e−k(σ−σ0).

The derived equations (4.13.67), (4.13.69), and (4.13.71) have a very interesting seis-
mological interpretation. If p(q)2 (s0) �= 0, paraxial rays �′ behave in different ways for
v,22 = 0, v,22 > 0, and v,22 < 0.

The case of v,22 = 0 corresponds to a standard 2-D model in which the velocity does
not depend on x2. Paraxial rays �′ deviate linearly from �‖ in a transverse direction with
increasing σ .

For v,22 > 0, �‖ represents the plane of symmetry of a low-velocity channel. It is not
surprising that the paraxial rays �′ have a typical waveguide character in this case. In
the transverse direction, they oscillate around the central ray. The period of oscillation
depends on v,22.

For v,22 < 0, �‖ represents the plane of symmetry of a high-velocity layer. In this case,
paraxial rays�′ deviate exponentially from�‖ in the transverse directionwith increasingσ .

Because the equations for paraxial rays (4.13.64) are fully equivalent to the equations
for Q22 (see (4.13.12)), similar conclusions also apply to the relative transverse geometrical
spreading L⊥(R, S) = [Q⊥(R, S)]1/2. The most interesting is the waveguide behavior of
L⊥(R, S) for v,22 > 0. The relative transverse geometrical spreading L⊥(R, S) oscillates
along central ray � and vanishes at a regularly distributed system of points along it.
Consequently, caustics are formed at these points, and the relevant amplitudes blowup there.

4.13.7 Paraxial Boundary-Value Ray Tracing in the Vicinity

of a Planar Ray. Two-Point Eikonal

We assume that the central ray � with points S and R is situated in plane x1-x3 and that
points S′ and R′ are situated close to S and R, respectively. Points S′ and R′, however, need
not be situated in plane x1-x3.

We shall again use the notations of Sections 4.9 and 4.13 and the initial conditions
(4.13.9). As in Section 4.13.5, we introduce the notation (4.13.59) for x‖(R′, R), x‖(S′, S),
p(x)‖(R), and p(x)‖(S). We shall also use the notations forM(x)‖(R), and M (x)⊥(R) given by
(4.13.39) and (4.13.40).

First, we determine the Cartesian components of slowness vectors 	p(R′) and 	p(S′),
corresponding to the paraxial ray �′(R′, S′) connecting points S′ and R′. Using general
relations (4.9.22), we obtain

p(x)‖(R′) = p(x)‖(R) +M(x)‖(R, S)x‖(R′, R)

− Q‖−1
2 (R, S)ΓT (R, S)x‖(S′, S), (4.13.72)

p(x)⊥(R′) = p(x)⊥(R) + M (x)⊥(R, S)x2(R′, R) − Q⊥−1
2 (R, S)x2(S

′, S).

Here we have used notation

Γ(R, S) =
(
t3(S)t3(R) −t3(S)t1(R)

−t1(S)t3(R) t1(S)t1(R)

)
. (4.13.73)
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In a similar way, we obtain, for p(x)‖(S′) and p(x)⊥(S′),

p(x)‖(S′) = p(x)‖(S)+M(x)‖(S, R)x‖(S′, S)

+ Q‖−1
2 (R, S)Γ(R, S)x‖(R′, R), (4.13.74)

p(x)⊥(S′) = p(x)⊥(S) + M (x)⊥(S, R)x2(S′, S) + Q⊥−1
2 (R, S)x2(R

′, R).

Components p(x)2 = p(x)⊥ do not vanish only if at least one of the points R′ or S′ is situated
outside plane x1-x3. For the travel time from S′ to R′ along paraxial ray�′(R′, S′) (4.9.24)
immediately yields

T (R′, S′) = T (R, S) + x‖T (R′, R)p(x)‖(R) − x‖T (S′, S)p(x)‖(S)

+ 1
2x

‖T (R′, R)M(x)‖(R, S)x‖(R′, R)

− 1
2x

‖T (S′, S)M(x)‖(S, R)x‖(S′, S)

− x‖T (S′, S)Γ(R, S)x‖(R′, R)Q‖−1
2 (R, S) + x2(R

′, R)p(x)2 (R)

− x2(S
′, S)p(x)2 (S) + 1

2 x
2
2 (R

′, R)M (x)
22 (R, S)

− 1
2 x

2
2 (S

′, S)M (x)
22 (S, R) − x2(S

′, S)x2(R′, R)Q⊥−1
2 (R, S).

(4.13.75)

The last five terms represent the contribution corresponding to the deviations of paraxial
ray �′(R′, S′) from plane x1-x3.

4.13.8 Determination of Geometrical Spreading

from the Travel-Time Data in 2-D Media

In this section, we shall consider a planar ray �, fully situated in plane �‖ (described by
equation x2 = 0), and two points S and R situated on �. Ray � may correspond to any
multiply reflected, possibly converted, wave. The geometrical spreading L(R) can then
be expressed as a product of the in-plane geometrical spreading L‖(R) and the tranverse
geometrical spreading L⊥(R); see (4.13.46). Regarding the source, we shall consider two
options: (i) a point source situated at S and (ii) a line source, perpendicular to �‖ and
intersecting �‖ at S. In both cases, the in-plane geometrical spreading L‖(R) can be
factorized further,

L‖(R) = ∣∣Q‖
2(R, S)P

‖(S)
∣∣1/2 = L‖(R, S)|P‖(S)|1/2; (4.13.76)

see (4.13.51) and (4.13.53). Here L‖(R, S) = |Q‖
2(R, S)|1/2 is the relative in-plane geo-

metrical spreading. In this section, we shall discuss possibilities of determinationL‖(R, S)
from travel-time data known in the vicinity of S and R. We shall show that L‖(R, S) can
be completely determined from the travel-time data known in the plane �‖ in the vicinity
of S and R.

It is not surprising that the transverse geometrical spreading L⊥(R) cannot be deter-
mined from the travel time data in plane �‖. It would be necessary to know also the travel
times in a vicinity of �‖ or to proceed in some other way. If we, however, consider a
standard 2-D model (V22 = 0 and D22 = 0) with a line source perpendicular to �‖ at S,
we obtain L⊥(R) = 1, and the determination of L‖(R, S) solves the problem completely.
See a more detailed discussion in Note 2 at the end of this section.

The equations for L‖(R, S) we shall derive are applicable even for structural models
with V22 �= 0 and D22 �= 0; see (4.13.7). The quantities V22 and D22 do not influence
L‖(R, S) at all. They influence only the transverse geometrical spreading L⊥(R).
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In Section 4.10.5, we used twomethods to determine the relative geometrical spreading
L(R, S) in 3-D layered structures from travel-time data known in the vicinity of S and R.
Two analogous methods will be used here to determine the relative in-plane geometrical
spreading L‖(R, S).

a. The first method is based on the first and second derivatives of the travel-time
fields along certain curves C1 and C2 situated in the plane �‖ and passing through S and
R. Exactly in the same way as in Section 4.10.5, we obtain the following expression for
L‖(R, S):

L‖(R, S) = |M‖(R) − M‖(R, S)|−1/4|M‖(S) − M‖(S, R)|−1/4. (4.13.77)

Here M‖ denote the second derivatives of the travel-time field with respect to q1. All
these derivatives can be determined from travel-time data known along the plane�‖. They
correspond to the three experiments described in Section 4.10.5. In the first experiment,
the point (or line) source is situated at S, and M‖(R, S) denotes the second derivative of
the travel-time field at R. In the second experiment, the point (or line) source is situated
at R, and M‖(S, R) denotes the second derivative of the travel-time field at S. In the third
experiment, the source may be situated either at S or at R, but the generated wavefront in
the plane x2 = 0 must be different from those considered in the two previous experiments.
It may, for example, correspond to a straight line passing through S or R. Quantities M‖(R)
and M‖(S) then correspond to the second derivatives of the relevant travel-time fields at R
and S. See Figure 4.16.

The second derivatives of the travel-time field with respect to q1 are not suitable for
measurements. They can, however, be expressed in terms of the second derivatives of
the travel-time field along any curves C1 and C2 passing through points S and R. Using
Equation (4.5.32) and the notations of Section 4.13.2, we obtain

M‖ = V−2( 	p · 	n)−2[T ‖ − E‖ + ( 	p · 	n)D‖]. (4.13.78)

Here T ‖ represents the second derivative of the travel-time field along the relevant curve,
C1 or C2, with respect to z1 (tangent to the curve). It is interesting that the terms with E‖

and D‖ vanish if (4.13.78) is inserted into (4.13.77). We obtain

L‖(R, S) = |cos i(S) cos i(R)|1/2∣∣T ‖(R) − T ‖(R, S)
∣∣−1/4

× ∣∣T ‖(S, R) − T ‖(S)
∣∣−1/4

. (4.13.79)

Here T ‖(R), T ‖(R, S), T ‖(S, R), and T ‖(S) have the same meaning as M‖(R), M‖(R, S),
M‖(S, R), and M‖(S), with the exception that the second derivatives of the travel-time
field are taken along curves C1 and C2 in the plane�‖. The quantity i(S) is the acute angle
between the normal to the curve C1 and slowness vector 	p at the point S. Analogously,
i(R) has the same meaning at R.

Curves C1 and C2 may be arbitrary, with the exception of curves tangent to ray �,
for which 	p · 	n = 0. Factor |cos i(S) cos i(R)|1/2 can also be expressed in a more specific
form,

|cos i(S) cos i(R)|1/2 = (V (S)V (R))1/2[( 	p(S) · 	n(S))( 	p(R) · 	n(R))]1/2
= (V (S)V (R))1/2[(∂T/∂z3)S(∂T/∂z3)R]

1/2.

(4.13.80)

Thus, in addition to the second derivatives of the travel-time field along curves C1 and
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C2, we also need to determine the first derivatives of the travel-time field perpendicular to
curves C1 and C2. Moreover, we need to know V (S) and V (R).

In principle, the first derivatives of the travel-time field perpendicular to curves C1

and C2 need not be determined, it is sufficient to determine the first derivatives of the
travel-time field on curves C1 and C2. Using the eikonal equation, we obtain (∂T/∂z3)2 =
1/V 2 − (∂T/∂z1)2. Thus, the alternative relation to (4.13.80) is

|cos i(S) cos i(R)|1/2 = ∣∣1− V 2(S) (∂T/∂z1)
2
S

∣∣1/4∣∣1− V 2(R) (∂T/∂z1)
2
R

∣∣1/4.
(4.13.81)

Assuming that the velocities V (S) and V (R) are known, Equations (4.13.79) with (4.13.81)
require only the tangential first and second derivatives of the travel-time field on C1 and
C2 to be determined.

It may be useful to take curves C1 and C2 in the plane x1x3 in a special way: along
coordinate lines x1 = const. (vertical line) and/or x3 = const. (horizontal line). As an
example, let us consider the sources and receivers distributed along two vertical lines
x1 = const. (cross-hole configuration). The final equation then reads

L‖(R, S) = ∣∣1 − V 2(S)(∂T/∂x3)
2
S

∣∣1/4∣∣1 − V 2(R)(∂T/∂x3)
2
R

∣∣1/4
× ∣∣T ‖(R)− T ‖(R, S)

∣∣−1/4∣∣T ‖(S, R)− T ‖(S)
∣∣−1/4

; (4.13.82)

see (4.13.79) and (4.13.81). The second derivatives T ‖ in (4.13.82) are taken with respect
to x3.

b. In the second method, the in-plane relative geometrical spreading L‖(R, S) is
obtained from the second mixed derivatives of the travel-time field. Using (4.10.50), we
obtain

L‖(R, S) = ∣∣Q‖
2(R, S)

∣∣1/2 = |cos i(S) cos i(R)|1/2∣∣M�mix
11 (R, S)

∣∣−1/2
.

(4.13.83)

HereM�mix
11 is givenby (4.10.46). It represents themixed secondderivative of the travel-time

fieldwith respect to z1(S) and z1(R), taken along arbitrary curvesC1 andC2 passing through
points S and R. To express |cos i(S) cos i(R)|1/2 in terms of the first derivatives of the travel-
time field and velocities, either Equation (4.13.80) or Equation (4.13.81) can be used.

It may again be convenient to consider the coordinate lines x1 = const. and/or x3 =
const. of a general Cartesian coordinate system as C1 and C2. We have four such lines and
four relevant equations for L‖(R, S) = |Q‖

2(R, S)|1/2:
L‖(R, S) = (V (S)V (R))1/2|p3(S)p3(R)|1/2

∣∣Mmix
11 (R, S)

∣∣−1/2
,

L‖(R, S) = (V (S)V (R))1/2|p3(S)p1(R)|1/2
∣∣Mmix

13 (R, S)
∣∣−1/2

,

L‖(R, S) = (V (S)V (R))1/2|p1(S)p3(R)|1/2
∣∣Mmix

31 (R, S)
∣∣−1/2

,

L‖(R, S) = (V (S)V (R))1/2|p1(S)p1(R)|1/2
∣∣Mmix

33 (R, S)
∣∣−1/2

.

(4.13.84)

Here Mmix
i j represent the relevant mixed second derivatives of the travel-time field with

respect to general Cartesian coordinates given by (4.9.25). Relations (4.13.84), of course,
also follow from (4.13.83). For example, if both curvesC1 andC2 are taken along x1 (so that
they are horizontal), (4.13.83) immediately yields the first equation of (4.13.84). Similarly,
if C1 and C2 are vertical (cross-hole confuguration), (4.13.83) yields the last equation of
(4.13.84).
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As in the first method, the Cartesian component of slowness vector p1 can be expressed
in terms of p3 using the eikonal equation, and vice versa. As an example, we shall again
consider the sources and receivers distributed along two vertical lines x1 = const. (cross-
hole configuration), as in (4.13.82). We then take the last equation of (4.13.84) and obtain

L‖(R, S) = ∣∣1 − V 2(S)(∂T/∂x3)
2
S

∣∣1/4∣∣1 − V 2(R)(∂T/∂x3)
2
R

∣∣1/4
× ∣∣∂2T/∂x3(S)∂x3(R)∣∣−1/2

. (4.13.85)

Equations (4.13.84) can be expressed in many other alternative forms, depending on the
source-receiver configurations under consideration.

Let us add three notes related to the determination of relative geometrical spreading
from travel-time data in 2-D models.

Note 1. The determination of the first derivatives, and particularly of the second deriva-
tives, of the travel-time field is, in general, a very unstable procedure. It is obvious that stan-
dard numerical methodsmay fail and that the travel-time data will require some smoothing.

Note 2. In practical applications,we aremore interested in the geometrical spreading due
to point sources situated in plane x2 = 0 (the so-called 2.5-D case) than in line sources. In
this case, the in-plane geometrical spreadingL‖(R, S) remains the same as for line sources,
but the transverse geometrical spreading is changed. Unfortunately, L⊥(R, S) cannot be
determined from the travel-time data in plane x2 = 0; the data outside this plane would
also be required. Moreover, it would also be necessary to place several sources outside this
plane. In fact, a complete 3-D system would be required. In certain applications, however,
it would be possible to determine L⊥(R, S) by simple quadratures along the ray,

L⊥(R, S) = |σ (R, S)|1/2 =
∣∣∣∣
∫ R

S
V ds

∣∣∣∣
1/2

; (4.13.86)

see (4.13.54). Here the integral is taken along ray �. The computation of L⊥(R, S) using
the foregoing integral is very robust and simple, but ray�must be known. The problem is
that ray � is not known. Ray �, however, may be known approximately, and this could be
sufficient to provide a good estimate of L⊥(R, S). As an example, let us consider the direct
computation of travel times at the grid points of a network, based on finite differences or
the network ray tracing; see Section 3.8. In such direct computations, the rays are not used
but may be approximately estimated. This approximate estimate of the ray may be applied
in computing L⊥(R, S) using (4.13.86) with good accuracy.

Note 3.Themixed second derivatives of the travel-time field in (4.13.84) can be approx-
imately expressed in terms of first derivatives of the components of the slowness vector,
computed for at least two point sources. The resulting equations may be suitable if the
slowness vectors are known along the coordinate lines, instead of the travel time or in
addition to it. See also Section 4.10.5 and Klimeš (2000).

4.14 Dynamic Ray Tracing in Inhomogeneous Anisotropic Media

Ray tracing in an inhomogeneous anisotropic medium is, in principle, simple, although te-
dious; see Section 3.6. If we express the eikonal equation in Hamiltonian form
H(x)(xi , p

(x)
i ) = 0, we can express the ray tracing system in the well-known form (4.2.2).

In a similar way, we can also express the dynamic ray tracing system; see (4.2.4).
The dynamic ray tracing systems for anisotropic inhomogeneous media can be ex-

pressed in various coordinate systems. The most important are the Cartesian coordinate
system, the nonorthogonal ray-centered coordinate system, and the wavefront orthonormal
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coordinate system. The system in Cartesian coordinates consists of six linear ordinary dif-
ferential equations of the first order. The system consisting of six linear ordinary equations
does not require the basis vectors 	e1 and 	e2 to be computed along the ray. The systems
in the nonorthogonal ray-centered coordinate system and in the wavefront orthonormal
coordinates can be simply reduced to four equations. In this section, we shall only use
the Cartesian coordinates and the wavefront orthonormal coordinates because we prefer
to work with orthonormal coordinate systems. For more details on dynamic ray tracing
in inhomogeneous anisotropic media, see Červený (1972), Hanyga (1982a), Gajewski and
Pšenčı́k (1987a), Kendall and Thomson (1989), Gibson, Sena, and Toksöz (1991), Kendall,
Guest, and Thomson (1992), Klimeš (1994), Farra and Le Bégat (1995), Bakker (1996),
and Farra (1999). For some applications in seismic exploration, see Grechka, Tsvankin,
and Cohen (1999).

Remember that basis vectors 	e1 and 	e2 in isotropic media play an important role not
only from the computational point of view but also from the seismological point of view:
	e1 and 	e2 represent the polarization vectors of S waves. This is not the case in anisotropic
inhomogeneous media, where the polarization of the individual wave propagating along
the ray is represented by the relevant eigenvectors 	g(m) of the Christoffel matrix Γ̂. Thus,
in anisotropic inhomogeneous media, basis vectors 	e1 and 	e2 represent merely auxiliary
vectors, without any distinct importance in polarization studies.

4.14.1 Dynamic Ray Tracing in Cartesian Coordinates

In this section, we shall consider HamiltonianH(x)(xi , p
(x)
i ) in the form of (3.6.3),

H(x)
(
xi , p

(x)
i

) = 1
2

(
Gm

(
xi , p

(x)
i

)− 1
)
, (4.14.1)

where Gm ,m = 1, 2, 3, are eigenvalues of the 3 × 3 Christoffel matrix Γ̂with components
�ik = ai jkl p

(x)
j p(x)l . Eigenvalues Gm can be conveniently expressed as

Gm = �ikg
(m)
i g(m)

k = ai jkl p
(x)
j p(x)l g(m)

i g(m)
k ; (4.14.2)

see (2.2.34). The monotonic parameter u along the ray corresponding to Hamiltonian
(4.14.1) is travel time, T . The ray tracing system then reads

dxn
dT

= ∂H(x)

∂p(x)n

,
dp(x)n

dT
= −∂H

(x)

∂xn
, n = 1, 2, 3. (4.14.3)

We now put

Q(x)
n = (∂xn/∂γ )T=const., P (x)

n = (
∂p(x)n /∂γ

)
T=const.

, (4.14.4)

where γ is some initial parameter such as the ray parameter, and n = 1, 2, 3. The dynamic
ray tracing system then reads

dQ(x)
n

/
dT = A(x)

nq Q
(x)
q + B(x)

nq P
(x)
q , dP (x)

n

/
dT = −C (x)

nq Q
(x)
q − D(x)

nq P
(x)
q .

(4.14.5)

Here A(x)
nq , B

(x)
nq ,C

(x)
nq , and D

(x)
nq are given by (4.2.5); see also (4.14.7). Indices n and q take

the values n = 1, 2, 3 and q = 1, 2, 3. System (4.14.5) consists of six ordinary differential
equations of the first order in six unknown quantities Q(x)

n and P (x)
n , n = 1, 2, 3. The system

is linear. We can also replaceH(x) by 1
2Gm in the whole system.

To express the RHSs of systems (4.14.3) and (4.14.5) in practical terms, we need to
determine the first and second derivatives of the Hamiltonian. For the first derivatives,
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we obtain

∂H(x)

∂p(x)n

= 1

2

∂�ik

∂p(x)n

g(m)
i g(m)

k ,
∂H(x)

∂xn
= 1

2

∂�ik

∂xn
g(m)
i g(m)

k ; (4.14.6)

see (3.6.7) and (4.14.1). Similarly, the second derivatives are given by equations

A(x)
nq = ∂2H(x)

∂p(x)n ∂xq
= 1

2

∂2�ik

∂p(x)n ∂xq
g(m)
i g(m)

k + ∂�ik

∂p(x)n

g(m)
i

∂g(m)
k

∂xq
,

B(x)
nq = ∂2H(x)

∂p(x)n ∂p
(x)
q

= 1

2

∂2�ik

∂p(x)n ∂p
(x)
q

g(m)
i g(m)

k + ∂�ik

∂p(x)n

g(m)
i

∂g(m)
k

∂p(x)q

,

(4.14.7)

C (x)
nq = ∂2H(x)

∂xn∂xq
= 1

2

∂2�ik

∂xn∂xq
g(m)
i g(m)

k + ∂�ik

∂xn
g(m)
i

∂g(m)
k

∂xq
,

D(x)
nq = ∂2H(x)

∂xn∂p
(x)
q

= 1

2

∂2�ik

∂xn∂p
(x)
q

g(m)
i g(m)

k + ∂�ik

∂xn
g(m)
i

∂g(m)
k

∂p(x)q

.

We now need to express the first- and second-order derivatives of �ik and the first-order
derivatives of the components of eigenvector 	g(m).

For the derivatives of �ik , we obtain

∂�ik

∂p(x)n

= (ainkl + ailkn)p
(x)
l ,

∂�ik

∂xn
= ∂ai jkl

∂xn
p(x)j p(x)l ,

∂2�ik

∂p(x)n ∂p
(x)
q

= ainkq + aiqkn,
∂2�ik

∂xn∂p
(x)
q

=
(
∂aiqkl
∂xn

+ ∂ailkq
∂xn

)
p(x)l ,

∂2�ik

∂p(x)n ∂xq
=
(
∂ainkl
∂xq

+ ∂ailkn
∂xq

)
p(x)l ,

∂2�ik

∂xn∂xq
= ∂2ai jkl
∂xn∂xq

p(x)j p(x)l ;

(4.14.8)

see also (3.6.9). The derivatives of the components of eigenvector 	g(m) can be expressed
in terms of the two remaining eigenvectors 	g(r ), where r �= m. Assume, for a while, that
m = 1. We wish to determine ∂g(1)k /∂a, where a may be xq , p

(x)
q , or some other quantity.

Since g(1)k g(1)k = 1, g(1)k ∂g
(1)
k /∂a = 0. This means that ∂	g(1)/∂a is perpendicular to 	g(1) and

∂g(1)k

/
∂a = A2g

(2)
k + A3g

(3)
k . (4.14.9)

Taking the derivative of (2.2.32) with respect to a yields

(∂�ik/∂a − δik∂G1/∂a)g
(1)
k + (�ik − G1δik)

(
A2g

(2)
k + A3g

(3)
k

) = 0.

We now take into account that �ikg
(2)
k = G2g

(2)
i and �ik g

(3)
k = G3g

(3)
i . Then

(∂�ik/∂a − δik∂G1/∂a)g
(1)
k + (G2 − G1)A2g

(2)
i + (G3 − G1)A3g

(3)
i = 0.

If wemultiply this equation by g(2)i (or g(3)i ) and take into account that (∂G1/∂a)g
(1)
i g(2)i = 0

(and (∂G1/∂a)g
(1)
i g(3)i = 0), we obtain the final equations for A2 (and A3):

A2 = 1

G1 − G2

∂�ik

∂a
g(1)k g(2)i , A3 = 1

G1 − G3

∂�ik

∂a
g(1)k g(3)i . (4.14.10)
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Along the ray under consideration, G1 = 1. This implies G2 = (C(2)/C(1))2 and G3 =
(C(3)/C(1))2, where C(i) are the phase velocities. Equations (4.14.10) then yield

A2 = C(1)2
C(1)2 − C(2)2

∂�ik

∂a
g(1)k g(2)i , A3 = C(1)2

C(1)2 − C(3)2
∂�ik

∂a
g(1)k g(3)i .

(4.14.11)

Inserting (4.14.11) into (4.14.9) yields the final expression for ∂g(1)k /∂a. If a= xq or
a= p(x)q , the relevant expressions for ∂�ik/∂a are given by (4.14.8). The procedure fails
for C(1) = C(2) and for C(1) = C(3).

Mutatis mutandis, we also obtain the relations for ∂g(2)k /∂a and ∂g
(3)
k /∂a from (4.14.9)

and (4.14.11).
The relations we shall use contain group velocity vector 	U = d	x/dT and vector 	η =

d 	p/dT . In anisotropicmedia, the Cartesian components of 	U and of 	η are given by relations
U (x)
i = dxi/dT = ∂H(x)

/
∂p(x)i = ai jkl p

(x)
l g(m)

j g(m)
k ,

η
(x)
i = dp(x)i

/
dT = −∂H(x)/∂xi (4.14.12)

= − 1
2 (∂a jkln/∂xi )p

(x)
k p(x)n g(m)

j g(m)
l .

4.14.2 Dynamic Ray Tracing in Wavefront Orthonormal Coordinates

Similarly as in Section 4.2.2, we now consider wavefront orthonormal coordinates yi .
We introduce basis vectors 	e1, 	e2, and 	e3 along ray � so that 	e3 = C 	p and 	e1 and 	e2 are
computed using (4.2.17). The 3 × 3 unitary transformation matrix Ĥ from the wavefront
orthonormal coordinates yi to the global Cartesian coordinates xk is defined by (4.2.18) and
(4.2.19). Even in the dynamic ray tracing system in wavefront orthonormal coordinates yi ,
we shall consider HamiltonianH(x)(xi , p

(x)
i ); see (4.14.1). The solutions of this system for

ray-tangent and noneikonal initial conditions can be found analytically; see (4.2.24) and
(4.2.25). For standard paraxial initial conditions, the number of equations of the dynamic
ray tracing system reduces from six to four:

dQ(y)
M

/
dT = A(y)

MNQ
(y)
N + B (y)

MNP
(y)
N , dP (y)

M

/
dT = −C (y)

MNQ
(y)
N − D(y)

MNP
(y)
N .

(4.14.13)

Here Q(y)
I = (dyI /∂γ )T=const. and P (y)

I = (dp(y)I /dγ )T=const.; see (4.2.20). Additionally,
A(y)
MN, B

(y)
MN,C

(y)
MN, and D

(y)
MN are given by (4.2.32) and satisfy symmetry relations (4.2.33).

The paraxial ray tracing system for yM and p(y)M can be expressed in the same form as
(4.14.13), where Q(y)

M and P (y)
M are replaced by yM and p(y)M .

Let us now consider an orthonomic system of rays, parameterized by two ray parameters
γ1 and γ2. We introduce

Q(x)
nK = (∂xn/∂γK )T=const., P (x)

nK = (
∂p(x)n

/
∂γK

)
T=const.

Q(y)
nK = (∂yn/∂γK )T=const., P (y)

nK = (
∂p(y)n

/
∂γK

)
T=const.

(4.14.14)

To find Q(x)
nK and P (x)

nK by dynamic ray tracing in Cartesian coordinates, dynamic ray tracing
system (4.14.5) should be solved twice so that we must solve 12 equations. Similarly, to
find Q(y)

NK and P (y)
NK by dynamic ray tracing in wavefront orthonormal coordinates, dynamic

ray tracing system (4.14.13) should be solved twice, so that we must solve 8 equations.
AfterQ(x)

nK and P (x)
nK are known,we canfind the complete 3 × 3matrices Q̂(x) and P̂(x).We

merely supplement Q(x)
nK and P (x)

nK by ray tangent solutions Q(x)
n3 = U (x)

n and P (x)
n3 = η

(x)
n . We
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can, however, also find complete 3 × 3matrices Q̂(y) and P̂(y). At the point of consideration,
we can choose 	e1 and 	e2 arbitrarily; they only need to form a right-handed orthogonal
system with 	e3 = C 	p(x). We can then use transformation relations Q(y)

nk = HinQ
(x)
ik and

P(y)
nk = Hin P

(x)
ik . Thus, the computation of 	e1 and 	e2 along � is not required in this case.

The opposite situation is similar. After Q(y)
NK and P (y)

NK are determined from (4.14.13),
the complete 3 × 3 matrices Q̂(y) and P̂(y) can be determined using (4.2.42). To determine
Q̂(x) and P̂(x) from Q(y) and P(y), we can use (4.2.50) and supplement it by the ray-tangent
solution (known from ray tracing). In this case, the computation of unit vectors 	e1 and 	e2
along the ray is required.

Both approaches are fully alternative. Deciding whether to perform dynamic ray trac-
ing in Cartesian coordinates (12 equations) or in wavefront orthonormal coordinates (8
equations) depends mostly on the numerical efficiency of the systems. Most computer time
in both systems is spent on computing second partial derivatives of the Hamiltonian. The
disadvantage of the system in Cartesian coordinates is that it consists of 12 equations,
whereas in wavefront orthonormal coordinates the number of equations is only 8. On the
contrary, dynamic ray tracing system (4.14.13) requires HiN to be determined along�; see
(4.2.17). Moreover, the RHSs of the dynamic ray tracing (4.14.13) require many additional
multiplications with HiN ; see (4.2.32).

In general, the dynamic ray tracing system (4.14.5) in Cartesian coordinates may be
numerically more efficient in anisotropic media. Nevertheless, the construction of Q̂(y) and
P̂(y), from computed Q(x)

nK and P (x)
nK , may be very useful. For example, they can be used to

construct the 4 × 4 propagator matrix Π.

4.14.3 The 4 × 4 Ray Propagator Matrix in Anisotropic

Inhomogeneous Media

Let us consider ray � and two points, S and R, situated on this ray. Because dynamic
ray tracing system (4.14.13) is linear, we can introduce the 4 × 4 ray propagator matrix
Π(R, S). It consists of four linearly independent solutions of (4.14.13), satisfying initial
conditions Π(S, S) = I at point S, where I is the 4 × 4 identity matrix. As in isotropic
media, we introduce four 2 × 2 matrices Q1(R, S),Q2(R, S),P1(R, S), and P2(R, S) us-
ing (4.3.5). Matrices Q1(R, S) and P1(R, S) correspond to the normalized plane wave-
front initial conditions at S:Q1(S, S) = I,P1(S, S) = 0. Similarly, matricesQ2(R, S) and
P2(R, S) correspond to the normalized point source initial conditions: Q2(R, S) = 0 and
P2(R, S) = I. The 4 × 4 ray propagator matrix Π(R, S) can be used to continue the Q(y)

and P(y) along ray �:(
Q(y)(R)
P(y)(R)

)
= Π(R, S)

(
Q(y)(S)
P(y)(S)

)
. (4.14.15)

Similarly, paraxial ray �′ is described by the relation(
y(R)
p(y)(R)

)
= Π(R, S)

(
y(S)
p(y)(S)

)
. (4.14.16)

Because symmetry relations (4.2.33) are satisfied along thewhole ray, ray propagatormatrix
Π(R, S) is symplectic even in anisotropic inhomogeneous media. Moreover, Π(R, S)
satisfies chain rule (4.3.20) and relations (4.3.26) for its inverse. Finally, detΠ(R, S) = 1
along the whole ray �.
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Note that the elements of the ray propagator matrix depend on the choice of 	e1(S)
and 	e2(S). They, however, do not depend on the ray parameters, although Q(y)(S) and
P(y)(S) depend on them. Equations (4.14.16) also offer a simple physical interpreta-
tion of the elements of the ray propagator matrix "αβ(R, S), where α, β = 1, 2, 3, 4.
Let (W1,W2,W3,W4)T = (y1, y2, p

(y)
1 , p

(y)
2 )T be the four-dimensional phase-space coor-

dinates, then "αβ(R, S) = ∂Wα(R)/∂Wβ (S).
It should again be emphasized that the 4 × 4 propagator matrix Π(R, S) can also be

calculated by solving dynamic ray tracing system (4.14.5) in Cartesian coordinates. We
only need to use strictly defined initial conditions. For the normalized plane wavefront
initial conditions (Q(y)

I N = δI N , P
(y)
I N = 0), we use

Q(x)
i N = HiN , P (x)

i N = HjN p
(x)
i η

(x)
j ; (4.14.17)

see (4.2.52). Similarly, for the normalized point-source initial conditions (Q(y)
I N = 0, P (y)

I N =
δI N ), we use

Q(x)
i N = 0, P (x)

i N = HiN − HjN p
(x)
i U (x)

j ; (4.14.18)

see (4.2.51). Solving (4.14.5) for initial conditions (4.14.17) and (4.14.18), we obtain
Q(x)
iN and P (x)

iN along ray �. They can be transformed to Q(y)
IN and P (y)

IN using relations
Q(y)
IN = HiIQ

(x)
iN and P (y)

IN = HiIP
(x)
iN . In this way, we obtain Q1(R, S) and P1(R, S) for

initial conditions (4.14.17) and Q2(R, S),P2(R, S) for initial conditions (4.14.18). The
computation of Q1,Q2,P1, and P2 requires (4.14.5) to be solved four times, as N = 1, 2.
Consequently, we must solve only 24 equations, not the complete set of 36 equations that
would be required in the computation of the 6 × 6 propagator matrix Π(x)(R, S).

4.14.4 The 4 × 4 Ray Propagator Matrix in Anisotropic

Homogeneous Media

In this section,we shall solve dynamic ray tracing system (4.14.13)with (4.2.32) andfind the
4 × 4 ray propagator matrix for a homogeneous anisotropic medium. We consider Hamil-
tonian H(x)(xi , p

(x)
i ) = 1

2 (Gm(xi , p
(x)
i ) − 1), where Gm is an eigenvalue of the Christoffel

matrix Γ̂; see (4.14.1). In a homogeneous medium, we obtain A(y)
MN = C (y)

MN = D(y)
MN = 0;

see (4.2.32). Dynamic ray tracing system (4.14.13) then reads

dQ(y)
MK

/
dT = B(y)

MNP
(y)
NK , dP (y)

MK

/
dT = 0.

Here B(y)
MN is given by (4.2.32). In a homogeneous medium, B(y)

MN is constant along the ray.
The solution is

Q(y)
MK(T ) = Q(y)

MK(T0) + (T − T0)B
(y)
MNP

(y)
NK , P (y)

MK(T ) = P (y)
MK(T0).

(4.14.19)

We shall consider an arbitrary straight-line ray� situated in a homogeneous anisotropic
medium and two points, S and R, situated on it. Slowness vector 	p and group velocity
vector 	U are constant along �. We assume that both are known. We shall construct the
4 × 4 ray propagator matrix Π(R, S) along � from S to R. For normalized plane-wave
initial conditions at S (Q(y)

MK(S) = δMK, P
(y)
MK(S) = 0), the solution is

Q1(R, S) = I, P1(R, S) = 0; (4.14.20)
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see (4.14.19). For normalized point-source initial conditions at S (Q(y)
MK(S) = 0, P (y)

MK(S) =
δMK), Equation (4.14.19) yields

Q2(R, S) = T (R, S)B(y), P2(R, S) = I. (4.14.21)

Here T (R, S) is the travel time along � from S to R, T (R, S) = l(R, S)/U , and l(R, S)
is the distance between S and R. The 2 × 2 matrix B(y) with elements B(y)

IJ is given by
(4.2.32). Consequently, the 4 × 4 ray propagator matrix Π(R, S) is given by relation:

Π(R, S) =
(
I T (R, S)B(y)

0 I

)
. (4.14.22)

As we can see from (4.14.22), matrix B(y) plays a basic role in the propagation of seismic
body waves in anisotropic homogeneous media. For this reason, we shall offer several
alternative relations for it. We shall express B(y) in terms of the 2 × 2 curvature matrices
DS,KG , and K(R), corresponding to the slowness surface, group velocity surface, and
wavefront at R, respectively. We shall also relate B(y) to matrices Q2(R, S) andM(y)(R).

First, we shall find a very important relation between B(y) and the 2 × 2 curvature
matrix DS of the slowness surface. Using (4.2.32) for B(y)

MN, multiplying it by HnMHmN , we
obtain

HnMHmN B
(y)
MN = HnMHiMHjN HmN B

+
i j , (4.14.23)

where B+
i j is given by the relation

B+
i j = ∂2H(x)

/
∂p(x)i ∂p

(x)
j − (

∂H(x)
/
∂p(x)i

)(
∂H(x)

/
∂p(x)j

)
.

Before we discuss (4.14.23), we shall prove that p(x)i B+
i j = 0 and p(x)j B+

i j = 0. As we con-
sider Hamiltonian H(x)(xi , p

(x)
i ) for which ∂H(x)/∂p(x)i is a homogeneous function of the

first degree in p(x)i , we obtain

p(x)i B+
i j = p(x)i ∂

2H(x)
/
∂p(x)i ∂p

(x)
j − p(x)i

(
∂H(x)

/
∂p(x)i

)(
∂H(x)

/
∂p(x)j

) = 0;

(4.14.24)

see (4.2.1). Here we have used Euler’s theorem (2.2.24) for homogeneous functions of
the first degree ∂H(x)/∂p(x)j in p(x)i , p

(x)
i ∂

2H(x)/∂p(x)i ∂p
(x)
j = ∂H(x)/∂p(x)j , and the relation

p(x)i U (x)
i = 1; see (2.4.51).

Nowwe return to (4.14.23). Using (2.5.60), we obtain HnMHiM = δni − NnNi = δni −
C2 p(x)n p(x)i . Then (4.14.23) yields

HnMHmN B
(y)
MN = (

δni − C2 p(x)n p(x)i

)(
δmj − C2 p(x)m p(x)j

)
B+
i j = B+

nm,

(4.14.25)

due to (4.14.24).
In addition to orthonormal triplet 	e1(S), 	e2(S), and 	e3(S) = 	N (S), we shall also intro-

duce an alternative orthonormal triplet 	e∗
1(S), 	e∗

2(S), and 	e∗
3(S) = 	t(S). Whereas 	e3(S) =

	N (S) is perpendicular to the wavefront, 	e∗
3(S) is tangent to ray �. Consequently, 	e1(S)

and 	e2(S) are tangent to the wavefront, but 	e∗
1(S) and 	e∗

2(S) are tangent to the slowness
surface. We also introduce H∗

i N = e∗
Ni and take into account that H ∗

i N is constant along �
in a homogeneous medium. Multiplying (4.14.25) by H ∗

nL H
∗
mK , we obtain

AML ANKB
(y)
MN = H∗

nL H
∗
mK B

+
nm = H∗

nL H
∗
mK∂

2H(x)
/
∂p(x)n ∂p

(x)
m . (4.14.26)
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Here we have introduced a 2 × 2 matrix A with components AML:

AML = HnMH
∗
nL , A =

(	e1 · 	e∗
1 	e1 · 	e∗

2

	e2 · 	e∗
1 	e2 · 	e∗

2

)
. (4.14.27)

Because group velocity vector 	U is perpendicular to 	e∗
1 and 	e∗

2, the second term of B+
nm ,

containing (∂H(x)/∂p(x)n ) (∂H(x)/∂p(x)m ), vanishes in (4.14.26).
It is not difficult to see that the RHS of (4.14.26) is closely related to the 2 × 2 curvature

matrix DS of the slowness surface. Using (4.4.17) and (4.4.18) (with ε∗ = 1), we obtain

DS
LN = H ∗

nL H
∗
mN

(
∂2H(x)

/
∂p(x)n ∂p

(x)
m

)/[(
∂H(x)

/
∂p(x)i

)(
∂H(x)

/
∂p(x)i

)]1/2
.

(4.14.28)

Because [(∂H(x)/∂p(x)i )(∂H(x)/∂p(x)i )]1/2 = U , we obtain the final result

B(y) = UA−1TDSA−1 (4.14.29)

and

Q2(R, S) = UT (R, S)A−1TDSA−1 = l(R, S)A−1TDSA−1. (4.14.30)

Note that (4.14.29) and (4.14.30) are valid for arbitrary orthonormal triplets 	e1, 	e2, and 	e3
and 	e∗

1, 	e∗
2, and 	e∗

3, with 	e3 = 	N and 	e∗
3 = 	t .

Equations (4.14.29) and (4.14.30) can also be used to find relations between the 2 × 2
matrix of the second derivatives of the travel-time field M(y)(R) and the 2 × 2 curvature
matrix of slowness surfaceDS for a homogeneous medium. The position of point R may be
arbitrary. For a general treatment of matrixM(y) in an inhomogeneous anisotropic medium,
see Section 4.14.6. Here we shall concentrate only on homogeneous anisotropic media for
which we can find simple analytical relations. We use the continuation relation (4.6.6),
which remains valid even in anisotropic media, and insert (4.14.20) and (4.14.21) for
P1,Q1,P2, and Q2. This yields

M(y)(R) = [
M(y)−1(S) +Q2(R, S)

]−1
. (4.14.31)

This is the general continuation relation forM(y) for the anisotropic homogeneousmedium.
It is valid both for a point source at S (M(y)−1(S) = 0) and for a smooth wavefront at S
(M(y)−1(S) �= 0). If we insert (4.14.30), we obtain the final relation between M(y)(R) and
DS:

M(y)(R) = [
M(y)−1(S) + l(R, S)A−1TDSA−1

]−1
. (4.14.32)

Similarly, we can find relations for the 2 × 2 curvature matrix of wavefront K(R) in terms
of DS . We use K(R) = CM(y)(R), and (4.14.32) yields

K(R) = [K−1(S) + C−1l(R, S)A−1TDSA−1]−1. (4.14.33)

For a point source at S, relations (4.14.32) and (4.14.33) simplify, as M(y)−1(S) =
K−1(S) = 0:

M(y)(R) = ADS−1AT / l(R, S), K(R) = CADS−1AT / l(R, S).

(4.14.34)

Finally, the 2 × 2 curvaturematrixKG of the group velocity surface equals the 2 × 2 curva-
turematrixK of thewavefront taken for T (R, S) = l(R, S)/U = 1, that is, for l(R, S) = U .
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Then (4.14.34) yields

KG = (C/U)ADS−1AT . (4.14.35)

In the computation of ray amplitudes, it is useful to know the determinants of the
2 × 2 matrices derived earlier. The determinants of curvature matrices DS,KG , and K(R)
represent the relevant Gaussian curvatures K S, KG , and K (R) of the slowness surface,
group velocity surface, and wavefront, respectively: K S = detDS, KG = detKG, K (R) =
detK(R). To find these relations, we need to know detA. The relation for detA can be
obtained by rotating 	e∗

1 and 	e∗
2 about 	U and 	e1 and 	e2 about 	p to obtain 	e2 and 	e∗

2 perpendi-
cular to the plane specified by 	U and 	p. This is always possible. The determinants of the
rotationmatrices equal unity, and the elements ofA are then A11 = 	e1 · 	e∗

1 = cos γ = C/U ,
A22 = 	e2 · 	e∗

2 = 1, and A12 = A21 = 0. This yields

detA = cos γ = C/U . (4.14.36)

Here γ is the angle between 	U and 	p. Using (4.14.29), (4.14.30), and (4.14.34) through
(4.14.36), we obtain

detB(y) = U4K S/C2, KG = C4/U4K S, (4.14.37)

and

detQ2(R, S)=U2l2K S/C2, detM(y)(R, S)= C2/U2l2K S,

K (R)= C4/U2l2K S.
(4.14.38)

Here l = l(R, S). Relations (4.14.37) do not depend on distance l(R, S), but relations
(4.14.38) do. Note that relation KG = C4/U4K S was also derived independently by
Vavryčuk and Yomogida (1996).

All these relations, of course, remain valid even for isotropic media. We take the
Hamiltonian H(x) = 1

2 (V
2 p(x)k p(x)k − 1) and choose 	e∗

1 = 	e1 and 	e∗
2 = 	e2. Then A = I,

B(y) = V 2I, and DS = V I. All other relations are straightforward.

4.14.5 Ray Jacobian and Geometrical Spreading

We shall again consider an orthonomic system of rays and wavefront orthonormal coor-
dinates yi . By dynamic ray tracing (4.14.13), we obtain the 2 × 2 matrices Q(y) and P(y).
From the 2 × 2 matrices Q(y) and P(y), we can compute the complete 3 × 3 matrices Q̂(y)

and P̂(y) (see (4.2.42)) and Q̂(x) and P̂(x) (see (4.2.47)). Consequently, Jacobians J and J (T )

and quantity �(T ) can be computed in several alternative ways:

J (T ) = det Q̂(x) = det Q̂(y) = C detQ(y),

J = J (T )
/U = U−1 det Q̂(x) = U−1 det Q̂(y) = (C/U) detQ(y), (4.14.39)

�(T ) = J (T )
/C = C−1 det Q̂(x) = C−1 det Q̂(y) = detQ(y);

see (3.10.23) and (4.2.42). Here �(T ) represents the surface scalar element cut out of the
wavefront by the ray tube, normalized with respect to γ1 and γ2; see (3.10.15).

Using (4.14.15), we can express the continuation relation for Q(y) along ray � as

Q(y)(R) = Q1(R, S)Q
(y)(S) +Q2(R, S)P

(y)(S). (4.14.40)

For a point source situated at point S, we haveQ(y)(S)= 0 so thatQ(y)(R)=Q2(R, S)P(y)(S).
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This yields

J (R) = (C(R)/U(R)) detQ2(R, S) detP
(y)(S). (4.14.41)

Similarly, for a point source situated at R, we obtain

J (S) = (C(S)/U(S)) detQT
2 (R, S) detP

(y)(R). (4.14.42)

It is obvious from (4.14.42) and (4.14.41) that the ray Jacobian is not reciprocal.
The geometrical spreading,L = |J |1/2, is obtained from the foregoing equations for J .

As we can see, Equation (4.10.3) is valid generally, even for anisotropic media. Alternative
expressions are

L(R)= ∣∣U−1(R) det Q̂(x)(R)
∣∣1/2 = ∣∣(C(R)/U(R)) detQ(y)(R)

∣∣1/2. (4.14.43)

For a point source situated at point S, we obtain

L(R) = ∣∣(C(R)/U(R)) detP(y)(S) detQ2(R, S)
∣∣1/2. (4.14.44)

As in isotropic media, we shall introduce the relative geometrical spreading, L(R, S),
corresponding to a point source situated at point S, as

L(R, S) = |detQ2(R, S)|1/2. (4.14.45)

The relative geometrical spreading is reciprocal and does not depend on the actual initial
conditions for matrix P(y)(S). The relation between geometrical spreading L(R) and the
relative geometrical spreading in anisotropic media is

L(R) = ∣∣(C(R)/U(R)) detP(y)(S)
∣∣1/2L(R, S). (4.14.46)

4.14.6 Matrix of Second Derivatives of the Travel-Time Field

For orthonomic system of rays, the 3 × 3 matrix M̂(x) of the second derivatives of the
travel-time field with respect to Cartesian coordinates xi (M

(x)
i j = ∂2T/∂xi∂x j ), is given

by the relations M̂(x) = P̂(x)Q̂(x)−1. Similarly, in wavefront orthonormal coordinates yi , we
obtain M̂(y) = P̂(y)Q̂(y)−1:

M̂(x) = P̂(x)Q̂(x)−1, M̂(y) = P̂(y)Q̂(y)−1, M̂(x) = ĤM̂(y)ĤT .

(4.14.47)

In Section 4.2.3, we have derived equations (4.2.44) and (4.2.45) for M̂(y), expressed in
terms of P(y),Q(y),U (y)

N , and η(y)n . Because U (y)
N = HinU (x)

i and η(y)n = Hinη
(x)
i are known

from ray tracing, it is sufficient to compute Q(y) and P(y) by dynamic ray tracing (4.14.13)
if we wish to determineM(y), M̂(y), and M̂(x) along the whole ray.

The matrix of the curvature of wavefront K is given by relation

K(R) = C(R)M(y)(R) = C(R)P(y)(R)Q(y)−1(R).

We denote byM(y)(R, S) the 2 × 2matrixM(y)(R) corresponding to a point source situated
at point S on ray�. Because the continuation relations forQ(y) and P(y) along�, given by
(4.6.2) and (4.6.3), also remain valid in anisotropic media, we obtain

M(y)(R, S) = P2(R, S)Q
−1
2 (R, S),

M(y)(S, R) = −Q−1
2 (R, S)Q1(R, S).

(4.14.48)
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Here Q1(R, S),Q2(R, S), and P2(R, S) are the 2 × 2 minors of ray propagator matrix
Π(R, S) for an anisotropic medium; see Section 4.14.3.

Using the dynamic ray tracing system (4.14.13), we can derive a differential equation
for the 2 × 2 matrixM(y) = P(y)Q(y)−1:

dM(y)
/
dT = −C(y) − (

A(y)TM(y) +M(y)A(y)
)−M(y)B(y)M(y). (4.14.49)

Here A(y),B(y), and C(y) are 2 × 2 matrices with elements A(y)
IJ , B

(y)
IJ , and C

(y)
IJ , given by

(4.2.32). This is a nonlinear ordinary differential equation of the first order of the Riccati
type. In isotropicmedia,we can considerHamiltonianH(x) = 1

2 (V
2 p(x)k p(x)k − 1) and obtain

A(y)
IJ = 0, B(y)

IJ = V 2δIJ, and C
(y)
IJ = V−1∂2V/∂yI∂yJ . Then (4.14.49) yields (4.1.73).

Using (4.14.49), we can easily derive Riccati equations for the 2 × 2 matrix K of
curvature of the wavefront,K = CM(y), and for the 2 × 2 matrixR of the radii of curvature
of the wavefront, R = K−1 = C−1M(y)−1. We shall present only the Riccati equation for
M(y)−1 we shall need later. Using the relation dM(y)−1/dT = −M(y)−1(dM(y)/dT )M(y)−1,
(4.14.49) yields

dM(y)−1
/
dT = M(y)−1C(y)M(y)−1 +M(y)−1A(y)T + A(y)M(y)−1 + B(y).

(4.14.50)

4.14.7 Paraxial Travel Times, Slowness Vectors, and Group

Velocity Vectors

Let us again consider ray �, fixed point R situated on �, and point R′ situated in the
vicinity of R. Because the expressions for the 3 × 3 matrices of second derivatives of
the travel-time field M̂(y)(R) and M̂(x)(R) are known, we can construct quadratic expan-
sions for paraxial travel time T (R′) in terms of yi (R′, R) and xi (R′, R); see (4.2.46)
and (4.2.48).

Linear equations for the paraxial slowness vector in terms of yi (R′, R) and xi (R′, R)
follow immediately from (4.2.46) and (4.2.48). Linear expansions can also be derived for
the paraxial group velocity vector. In the xi -p

(x)
i - phase space, we can expand ∂H(x)/∂p(x)n

in terms of xi and p
(x)
i in the vicinity of R. Transforming the expansion into yi -p

(y)
i - phase

space, we obtain

U (y)
n (R′) = U (y)

n (R) + B̄nm(R)
(
p(y)m (R′) − p(y)m (R)

)+ Ānm(R)ym(R
′, R).

(4.14.51)

Here Ānm(R) and B̄nm(R) are given by (4.2.28). Alternatively, we can express p(y)m (R′) −
p(y)m (R) in terms of y j (R′, R). This yields

U (y)
n (R′) = U (y)

n (R) + [
B̄nm(R)M

(y)
mj (R) + Ānj (R)

]
y j (R

′, R). (4.14.52)

Expansions (4.14.51) and (4.14.52) can be used to derive many other alternative or special
relations, but we shall not do this here.

It can be proved that linear expansions for p(y)n (R′) and U (y)
n (R′) yield the expected

result p(y)n (R′)U (y)
n (R′) = p(y)n (R)U (y)

n (R) = 1 with an accuracy up to the linear terms in
yi in the whole paraxial vicinity of R, because the linear terms with yi (R′, R) cancel one
another.
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4.14.8 Dynamic Ray Tracing Across a Structural Interface

We shall now discuss the transformation of matricesM(y), Q(y), and P(y) across structural
interface � in anisotropic media. We shall use the same approach and notation as in
Section 4.4. At the point of incidence Q, we introduce a local Cartesian coordinate system
z1, z2, z3 as in Section 4.4.1. Axis z3 is perpendicular to � at Q and z1 and z2 are tangent
to it. The plane of incidence is specified by the slowness vector 	p(Q) of the incident wave
at Q and by axis 	i (z)3 (normal to the interface � at Q). We shall consider the “standard
option” of the local Cartesian coordinate system given by (4.4.21) in which 	i (z)2 (Q) is
perpendicular to the plane of incidence. Consequently, the component of slowness vector
	p(Q) of the incident wave into the z2-axis vanishes that is 	p · 	i (z)2 = p(z)2 = 0. Note that
the tangent to ray � at Q may deviate from the plane of incidence in anisotropic media.
In the “quadratic” vicinity of Q, interface� is described by relation z3

.= − 1
2 zI z J DIJ(Q),

where DIJ(Q) are elements of the curvature matrixD(Q) of interface� at Q; see (4.4.14).
We shall now consider point Q ′[z1, z2, z3

.= − 1
2 zI z J DIJ(Q)], situated on interface � in

the quadratic vicinity of Q, and denote the travel time T (Q ′) at Q ′ on� by T�(z1, z2). We
must emphasize that T�(z1, z2) represents the travel time directly at the interface �, not
in plane z3 = 0. Using (4.2.48), we obtain

T�(z1, z2) = T (Q) + zI p
(z)
I (Q) + 1

2 zI z J FIJ(Q), (4.14.53)

where FIJ(Q) are elements of the 2 × 2 matrix F(Q) given by relation

F = (G− Aan)M(y)(G− Aan)T + E− p(z)3 D. (4.14.54)

All quantities in (4.14.54) are taken at point Q. The derivation of (4.14.53) and (4.14.54)
is fully analogous to the derivation of (4.4.34) and (4.4.35) for isotropic media, and the
structure of (4.14.54) is very similar to the structure of (4.4.37). The 2 × 2 matricesG and
D have exactly the same meaning as in Section 4.4.1, andM(y) = P(y)Q(y)−1 (see (4.2.45))
is computed by dynamic ray tracing. The inhomogeneity matrix E is given by relation

EIJ = C−1
[
GI3GJMη

(y)
M + GIKGJ3η

(y)
K + GI3GJ3

(
η
(y)
3 − C−1η

(y)
L U (y)

L

)]
.

(4.14.55)

Matrix E vanishes in a homogeneous medium. In an isotropic medium, U (y)
L = 0 and the

relevant term in (4.14.55) vanishes. Finally, anisotropy matrix Aan is

AanIN = C−1GI3U (y)
N = p(z)I U (y)

N . (4.14.56)

It vanishes in an isotropic medium, as U (y)
N = 0 there. In the standard option of local

Cartesian coordinates zi , quantity p
(z)
2 = 0. Then

AanIN = δI1 p
(z)
1 U (y)

N . (4.14.57)

For any reflected/transmitted wave, we can express the relevant travel time T̃ � at point Q̃
analogously to (4.14.53). Consequently, p(z)I (Q̃) = p(z)I (Q) and FIJ(Q̃) = FIJ(Q). Relation
p(z)I (Q̃) = p(z)I (Q) represents Snell’s law for anisotropic media. The tangent to the ray of
a reflected/transmitted wave at Q̃ may again deviate from the plane of incidence, whereas
the slowness vector of the R/T wave at Q̃ is confined to it.

Relation FIJ(Q̃) = FIJ(Q) implies an important equation for computing M̃(y) fromM(y):

M̃(y) = (G̃− Ãan)−1
[
(G− Aan)M(y)(G− Aan)T

+ E− Ẽ− uD
]
(G̃− Ãan)−1T . (4.14.58)
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Here u = p(z)3 − p̃(z)3 . All the quantities with a tilde correspond to the R/T point Q̃, and
the quantities without a tilde correspond to the point of incidence Q. Equation (4.14.58),
in a slightly different form, was first derived by Bakker (1996).

To derive the relation between Q̃(y) andQ(y), we require the ray to be continuous across
interface�; see Section 4.4.4. Since (∂γI/∂y3)Q �= 0 in anisotropicmedia, the result differs
from (4.4.64). We obtain

Q(y)−1(G− Aan)T = Q̃(y)−1(G̃− Ãan)T . (4.14.59)

This result yields

Q̃(y) = (G̃− Ãan)T (G− Aan)−1TQ(y). (4.14.60)

MatrixP(y) is given by relationP(y) = M(y)Q(y). Applying (4.14.58) and (4.14.59) yields

P̃(y) = (G̃− Ãan)−1
[
(E− Ẽ− uD)(G− Aan)−1TQ(y) + (G− Aan)P(y)

]
.

(4.14.61)

Note that the foregoing equations fail for rays tangent to the interface.
We shall nowbriefly discuss themeaning ofmatrixAan .We remind the reader that group

velocity vector 	U can be decomposed into unit vectors 	ei as follows: 	U = C	e3 + U (y)
I 	eI

because U (y)
3 = C. We shall now introduce auxiliary unit vectors 	eAI :

	eAI = 	eI − C−1	e3U (y)
I . (4.14.62)

Vector 	eAI coincideswith basis vector 	eI in isotropicmedia but deviates from it in anisotropic
media. If we compute vector product 	eA1 × 	eA2 and denote it 	eA3 , we obtain 	eA3 = 	eA1 × 	eA2 =
	e1 × 	e2 + C−1U (y)

I 	eI . This yields
	U = C	eA3 = C(	eA1 × 	eA2

)
. (4.14.63)

Thus, 	eAI are projections of 	eI from the plane perpendicular to slowness vector 	p to the
plane perpendicular to ray �. Using (4.14.62), we obtain

(G− Aan)IJ = 	i (z)I · 	eAJ . (4.14.64)

This is the same as GIJ for isotropic media, see (4.4.12), only 	eJ is replaced by 	eAJ . In
general, however, 	eA1 and 	eA2 are not unit vectors and are not mutually perpendicular.

Using (4.14.63), (4.14.64), and the Laplace identity;

(	a × 	b) · (	c × 	d) = (	a · 	c)(	b · 	d) − (	b · 	c)(	a · 	d);
we also obtain a useful expression:

det(G− Aan) = C−1
( 	U · 	i (z)3

) = (U/C)(	t · 	i (z)3

)
,

where 	t is the unit vector tangent to the ray.

4.14.9 The 4 × 4 Ray Propagator Matrix in Layered Anisotropic Media

Using (4.14.60) and (4.14.61), we obtain(
Q̃(y)

P̃(y)

)
= Π(Q̃, Q)

(
Q(y)

P(y)

)
, (4.14.65)

whereΠ(Q̃, Q) is the interface propagator matrix for anisotropic media. It is given by the
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relation

Π(Q̃, Q)

=
(

(G̃− Ãan)T (G− Aan)−1T 0
(G̃− Ãan)−1(E− Ẽ− uD)(G− Aan)−1T (G̃− Ãan)−1(G− Aan)

)
.

(4.14.66)

It is not difficult to prove that the interface propagator matrixΠ(Q̃, Q), given by (4.14.66),
is symplectic and that detΠ(Q̃, Q) = 1.

Consequently, the 4 × 4 ray propagator matrix corresponding to any multiply re-
flected/transmitted wave propagating in a laterally inhomogeneous layered anisotropic
medium is given by (4.4.86). The individual ray propagator matrices in (4.4.86) should, of
course, correspond to the anisotropic medium, see Section 4.14.3 and relation (4.14.66).
All relations and conclusions of Section 4.4.6 also apply to anisotropic media. Let us
emphasize that Π(R, S) is symplectic along the whole ray �, including the interfaces.
Moreover, the chain rule and the relations for the inverse of the ray propagator matrix can
be used.

4.14.10 Surface-to-Surface Ray Propagator Matrix

Matrices Q(y) and P(y) can be projected on structural interface � at the point of incidence
Q. We again consider a local Cartesian coordinate system zi with its origin at Q and with
	i (z)3 = 	n(Q). Basis vectors 	i (z)1 (Q) and 	i (z)2 (Q) may, however, be chosen arbitrarily in the
plane tangent to � at Q; they only have to form a right-handed triplet with 	i (z)3 (Q). We
consider point Q′ situated on� in the “quadratic” vicinity of Q and denote dz I = zI (Q′) −
zI (Q) and dp

(�)
I (Q) = p(�)I (Q′) − p(�)I (Q), where 	p(�) is the tangential component of the

slowness vector on �. The definition of dzI (Q) and dp(�)I (Q) is the same as in isotropic
media; see Section 4.4. In the same way as in Section 4.4.4, we obtain(

dz(Q ′)
dp(�)(Q′)

)
= Y(Q)

(
Q(y)dγ
P(y)dγ

)
. (4.14.67)

In anisotropic media, the 4 × 4 projection matrix Y(Q) is given by the relation

Y(Q) =
(

(G− Aan)−1T 0(
E− p(z)3 D

)
(G− Aan)−1T (G− Aan)

)
. (4.14.68)

The inverse of Y(Q) is

Y−1(Q) =
(

(G− Aan)T 0
−(G− Aan)−1

(
E− p(z)3 D

)
(G− Aan)−1

)
. (4.14.69)

All quantities in (4.14.68) and (4.14.69) are taken at Q. It is simple to show that matrices
Y(Q) and Y−1(Q) are symplectic. Also, Y−1(Q̃)Y(Q) = Π(Q̃, Q).

Similarly as in isotropic media, we can introduce the 4 × 4 surface-to-surface ray prop-
agator matrix T(R, S) by the relation T(R, S) = Y(R)Π(R, S)Y−1(S); see Section 4.4.7.
Point S is situated on anterior surface �a , and point R is on posterior surface �p. The
surface-to-surface ray propagator matrix connects the column matrices (dz1, dz2, dp

(�)
1 ,

dp(�)2 )T at �a and �p; see (4.4.94). All relations and conclusions of Section 4.4.7 also
apply to the anisotropic inhomogeneous layered medium, where the surface-to-surface ray
propagator matrix is again given by (4.4.96). The surface-to-surface ray propagator matrix
is symplectic along the whole ray � from S to R, including the interfaces.
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Equations (4.14.67) and (4.14.69) can also be used to derive expressions forQ(y)(S) and
P(y)(S) at point S = Q on initial surface �0, situated in the inhomogeneous anisotropic
media. Taking dγ = dz, multiplying (4.14.67) by Y−1(Q) from the left, and inserting
dp(�)(Q′) = T0(Q)dz(Q ′), Equation (4.14.67) with (4.14.69) then yields

Q(y)(S) = (G− Aan)T , P(y)(S) = (G− Aan)−1
(
T0 + p(z)3 D− E

)
.

(4.14.70)

All quantities (G,Aan,T0,D,E, p(z)3 ) are taken at S on �0. See the analogous expression
for Q(S) and P(S) in isotropic media in (4.5.32).

4.14.11 Factorization of Q2. Fresnel Zone Matrix

As in Section 4.4.8, we can factorize the 2 × 2 minors of the 4 × 4 ray propagator matrix
Π(R, S), particularly matrix Q2(R, S). We consider ray � connecting a point source at S
and receiver at R. The ray may be situated in a 3-D layered inhomogeneous anisotropic
structure and may correspond to an arbitrary, possibly converted, elementary wave. We
select any one of the interfaces and denote the point of incidence by Q and the R/T point
by Q̃. In the same way as in Section 4.4.8, we obtain

Q2(R, S) = Q2(R, Q̃)(G̃− Ãan)−1MF (Q; R, S)(G− Aan)−1TQ2(Q, S).

(4.14.71)

In the derivation, we have used (4.14.66). The 2 × 2 matrix Q2(Q, S) corresponds to the
incident branch of �,Q2(R, Q̃) corresponds to the R/T branch, and MF (Q; R, S) is the
Fresnel zone matrix at Q. It is given by the relation

MF (Q; R, S) = F(Q, S) − F(Q̃, R), (4.14.72)

where F(Q, S) corresponds to the incident branch and F(Q̃, R) corresponds to the R/T
branch. F(Q, S) is given by (4.14.54), where M(y) = M(y)(Q, S), and all other quantities
are taken at Q. F(Q̃, R) is given by the same equation, whereM(y) = M(y)(Q̃, R), and all
other quantities are taken at Q̃. For M(y)(Q, S) and M(y)(Q̃, R) see (4.14.48). Equation
(4.14.72) can be expressed in many other forms, as in Section 4.4.8. For example,

MF (Q; R, S) = (G− Aan)M(y)(Q, S)(G− Aan)T

− (G̃− Ãan)M(y)(Q̃, R)(G̃− Ãan)T + E− Ẽ− uD.

(4.14.73)

Here E is given by (4.14.55), taken at Q, and Ẽ is given by the same equation, taken at Q̃.
For Aan and Ãan , see (4.14.56).

As in isotropic media, Fresnel zonematrixMF (Q; R, S) is useful in many applications;
see Sections 4.4.8, 4.8.5, 4.10.4, 4.11.2, and 4.12.2.

4.14.12 Boundary-Value Ray Tracing for Paraxial Rays

in Anisotropic Media

Boundary-value ray tracing for paraxial rays in isotropic inhomogeneous layered structures
was investigated in Section 4.9.Most equations of Section 4.9 also apply to anisotropic me-
dia. In particular, the basic equation (4.9.24) for the two-point eikonal T (R′, S′) can also be
used in anisotropicmedia. Of course,matrices M̂(x)(R, S) and M̂(x)(S, R) in (4.9.24) should
be specified for anisotropic media; see (4.14.47), (4.14.48), and (4.2.44) with (4.2.45).
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Matrix Â(R, S) is given by (4.9.15), where Q2(R, S) corresponds to the anisotropic ray
propagator matrix; see Sections 4.14.3 and 4.14.9.

Similarly, (4.10.43) for relative geometrical spreading can be used in anisotropic media
as it is. Equation (4.10.48) for determining relative geometrical spreading from mixed
second derivatives of the travel-time field along the anterior and posterior surfaces should
be modified: G should be replaced by G− Aan .

4.14.13 Phase Shift Due to Caustics. KMAH Index

The problem of the phase shift due to caustics in anisotropic inhomogeneous media is
more complicated than in isotropic inhomogeneous media. The general reason for these
complications is that the local slowness surface need not be convex in anisotropic media.
The behavior of the slowness surface at the caustic point, expressed in terms of the 2 × 2
matrix B(y), given by (4.2.32), plays an important role in the investigation of the phase shift
due to caustics.

As in isotropic media, we shall denote the phase shift due to caustics along ray � from
S to R by T c(R, S) and compute it by means of the KMAH index k(R, S) using Equation
(4.12.1). The KMAH index k(R, S) is represented by the summation of contributions
corresponding to the individual caustic points along ray � from S to R.

We denote by �k the contribution to the KMAH index k(R, S) corresponding to one
caustic point situated between S and R. There are two main differences in the computation
of �k and of the KMAH index in isotropic and anisotropic media.

a. In isotropic media,�k = 1 when the wave passes through a caustic point of the first
order (detQ = 0, trQ �= 0) and�k = 2 when the wave passes through a focus, that
is, caustic point of the second order (detQ = 0, trQ = 0). In anisotropic media,
however, �k may also be negative, �k = −1 or �k = −2. See Lewis (1965),
Garmany (1988), Kravtsov and Orlov (1993), Chapman and Coates (1994), Klimeš
(1997a), and Bakker (1998).

b. In isotropic media, the initial value of the KMAH index is always zero at a point
source, if we compute the elastodynamic Green function. In anisotropic media,
however, the initial value of the KMAH index may be nonvanishing in this case,
depending on the local behavior of the slowness surface at S. It corresponds to −σ0
in (2.5.76); see also (2.5.74) and Burridge (1967).

We shall now discuss problem (a), that is, the determination of the KMAH index along
ray� in an inhomogeneous anisotropic medium. We consider dynamic ray tracing system
(4.2.31) in wavefront orthonormal coordinates, with the 2 × 2matricesA(y),B(y),C(y), and
D(y) given by (4.2.32). Only one of these four matrices, namely B(y), plays an important
role in determining the KMAH index. Solving dynamic ray tracing system (4.2.31) along
�, we can determine the 2 × 2 matricesQ(y) and P(y) along the whole ray�, assuming they
are known at some initial point. We can also determine the 2 × 2 matrixM(y) of the second
derivatives of the travel-time field with respect to the wavefront orthonormal coordinates
y1, y2, M(y) = P(y)Q(y)−1; see (4.2.45). We shall now consider caustic point C on ray �,
where ray � touches the caustic surface. Consequently, detQ(y)(C) = 0. As in isotropic
media, we shall consider two types of caustic points; see Section 4.12, especially Equations
(4.12.2) and (4.12.3).

a. Caustic point of the second order (also called the point caustic or focus or double
caustic point). At this point, Q(y)(C) = 0, so that rank Q(y)(C) = 0.
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b. Caustic point of the first order (also called the line caustic or a single caustic point).
At this point, rank Q(y)(C) = 1.

Now we wish to determine the contribution �k to the KMAH index when the ray
passes through caustic point C . We shall present and discuss here simple and general
criteria, which will be derived in Section 5.8.8, using the approach by Bakker (1998):

1. If B(y)(C) is positive definite, then

�k = 2 at a point caustic,
(4.14.74)

�k = 1 at a line caustic.

2. If B(y)(C) is negative definite, then

�k = −2 at a point caustic,
(4.14.75)

�k = −1 at a line caustic.

3. If B(y)(C) is neither positive definite, nor negative definite, then

�k = 0 at a point caustic,
(4.14.76)

�k = sgn
(
mT (C)B(y)(C)m(C)

)
at a line caustic.

Herem(C) is the eigenvector of matrixM(y)(C), corresponding to the singular eigenvalue
ofM(y)(C). For the derivation and a more detailed explanation, see Section 5.8.8.

Here are several notes on criteria (4.14.74)–(4.14.76).

a. In isotropic media and ray-centered coordinates, B(y)(C) = V (C)I, if monotonic
parameter u along ray � represents arclength s. Consequently, B(y)(C) is always
positive definite, and criterion (4.14.74) can be always used. This fully corresponds
to the treatment of the KMAH index in Section 4.12.

b. It can be shown (see Section 5.8.8), that the eigenvalues of matrix B(y)(C) have
the same signs as the eigenvalues of the matrix DS(C) of the curvature of the
slowness surface at C . Consequently, matrix B(y)(C) can be replaced by DS(C) in
all the three criteria (4.14.74) through (4.14.76). Then (4.14.74) corresponds to the
convex slowness surface, (4.14.75) corresponds to the concave slowness surface,
and (4.14.76) corresponds to the hyperboloidal form of the slowness surface at C .
Parabolic points of the slowness surface are not considered here; they correspond
to singular directions.

c. The cases �k = −2 and �k = 2 are fully equivalent because they yield the same
phase shift due to the caustic, exp(−iπ ) = exp(iπ ).

d. The slowness surface of the qP wave in anisotropic media is always convex for all
slowness vector directions. Consequently, criterion (4.14.74) can always be used
for qP waves in anisotropic media as in isotropic media. Thus, the criteria (4.14.75)
and (4.14.76) play an important role only for qS waves. For this reason, the case of
�k = −1 may occur only for qS waves in anisotropic media. It is also often called
the anomalous phase shift.

e. Analogous criteria for the central ray field (corresponding to a point source) were
derived by Klimeš (1997a) in a different form. These criteria are expressed in terms
of the 2 × 2 minors P2 and Q2 of the 4 × 4 propagator matrix. Bakker (1998)
showed that both criteria are equivalent if the central ray field is considered.

f. Klimeš (1997c) also proved that the KMAH index is reciprocal along ray� from S
to R. See more details in Section 5.4.5.



CHAPTER FIVE

Ray Amplitudes

The computation of ray amplitudes along a known ray � in a smooth medium is
simpler than the computation of ray� itself. The variations of ray amplitudes along
the ray are controlled by the transport equation, which can be solved analytically in

terms of geometrical spreading; see Sections 3.10.6 and 4.10.2. The geometrical spreading
can be calculated along the ray by dynamic ray tracing, as described in detail in Chapter 4.

The computation is particularly simple for acoustic waves in fluid media. In this case,
the ray amplitude has a scalar character. Let us consider ray � situated in a smooth fluid
medium and two points S and R situated on this ray. Then the ray amplitude at R equals the
ray amplitude at S, multiplied by a factor containing velocities, densities, and geometrical
spreadings at S and R. No additional computations along � are required; the relation
between the ray amplitudes at R and S contains only the preceding three quantities at
points S and R.

In elasticmedia, the ray amplitudes have a vectorial character. In addition to geometrical
spreading, it is also necessary to know polarization vectors at S and R. In isotropic elastic
medium, the polarization vector of P waves is simple: it is tangent to the ray. For S waves,
we need to know the polarization vectors 	e1 and 	e2; see Section 4.1.1. If the dynamic ray
tracing along � is performed in ray-centered coordinates, the polarization vectors 	e1 and
	e2 must also be computed. Consequently, no additional computation along the ray � is
required if we wish to determine the ray amplitudes of S waves at R. In an anisotropic
medium, the situation is similar. The polarization vectors of individual elementary waves
are represented by eigenvectors 	g (m) of the Christoffel matrix Γ̂. These eigenvectors are
needed even in ray tracing; see (3.6.10). Thus, no additional computations along � are
required either.

In layered media, the equations for ray amplitudes are not considerably more com-
plicated than those for smooth media. It is only necessary to consider relevant reflec-
tion/transmission coefficients at points at which the ray � strikes structural interfaces. In
fact, if the geometrical spreading and polarization vectors are known along the ray, the com-
putation of R/T coefficients at structural interfaces is the only additional work that should
be done if we wish to compute ray amplitudes. Thus, the R/T coefficients at structural
interfaces play a very important role in the computation of ray amplitudes of an arbitrary
multiply-reflected wave in layered structures.

The computation of vectorial ray amplitudes of S and converted waves in 3-D layered
isotropic elastic structures is slightly more complicated than the other cases. The vecto-
rial amplitudes of S waves have, in general, two complex-valued mutually perpendicular
vectorial components, polarized along unit vectors 	e1 and 	e2. The orientation of these

417



418 RAY AMPLITUDES

polarization vectors at the point of incidence at a structural interface may be arbitrary.
Thus, the traditional approach based on the decomposition of the S wave into SV and SH
components at a point of incidence (SH perpendicular to the plane of incidence and SV in
the plane of incidence) cannot be used in general in the computation of R/T coefficients in
3-D models, and both S wave components are coupled there. As we shall show, it is very
suitable to treat this problem in the matrix form.

In this chapter, we shall discuss the ray amplitudes independently for acoustic waves
in fluids (Section 5.1), elastic waves in isotropic solids (Section 5.2), and elastic waves
in anisotropic solids (Section 5.4). In all these cases, we consider an arbitrary multiply-
reflected (possibly converted) wave propagating in a general 3-D laterally varying layered
structure. We also consider important cases of the source and/or receiver situated directly
on the structural interface or on the Earth’s surface. Due to a large importance of R/T
coefficients in elastic isotropic media, all of Section 5.3 is devoted to them. In Section
5.4.6, we also briefly treat the elastic waves in weakly anisotropic media.

Great attention is also devoted to point-source solutions, to relevant radiation functions
and directivity patterns of point sources, and to the ray-theory Green functions. General
expressions for ray-theory Green functions are derived and specified for many special but
important cases such as planar rays and the 2-D case.

In all the foregoing cases, we present compact analytical expressions for ray amplitudes.
These compact expressions are easy to understand. They factorize individual effects, which
influence the ray amplitudes. They are valuable in many applications. For example, they
are useful in the investigation of the reciprocity of ray-theory Green functions. We shall
show that the ray-theory Green functions (as they are introduced here) are reciprocal for
any elementary wave propagating in a 3-D laterally varying layered structure (fluid, elastic
isotropic, elastic anisotropic). In numerical computations, however, the compact analytical
expressions are not quite necessary. The computation may be performed by a straightfor-
ward, step-by-step algorithm, passing along the ray � from one structural interface to an-
other and applying relevant transformations at individual points of reflection/transmission.
An example of such algorithm is the CRT (Complete Ray Tracing) algorithm, described in
detail in Červený, Klimeš, and Pšenčı́k (1988b).

The expressions for ray amplitudes, derived in Sections 5.1 through 5.4, can bemodified
even forweakly dissipativemedia. Themodification requires only one additional quadrature
along the ray � to compute the quantity t∗(R, S), which represents a global absorption
factor along � from S to R. The quantity t∗(R, S) can then be used to construct various
dissipative filters representing different dissipation models. See Section 5.5 for details.

The ray amplitudes, described in Sections 5.1 through 5.5, correspond to the zeroth-
order approximation of the ray method and are only approximate. They can be generalized
using the ray series. In the frequency domain, the ray series represents an asymptotic series
in inverse powers of frequencyω. The ray-seriesmethod is described in detail in Section 5.6
for the acoustic case and in Section 5.7 for the elastic case (both isotropic and anisotropic).
Methods to compute higher-order ray approximations are proposed and discussed. A great
deal of attention is devoted to higher-order waves, particularly to head waves (see Sections
5.6.7 and 5.7.10).

The accuracy of ray amplitudes is very limited in singular regions of the ray field,
such as the caustic region, the critical region, and the transition zone between shadow and
illuminated regions. In some situations, the ray amplitudes may be completely invalid. For
example, in the shadow zone, the ray amplitudes are vanishing, but directly at the caustics,
they are infinite. Moreover, certain elementary waves, such as diffracted waves, cannot be
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described by the standard ray method at all. Various extensions of the ray method have
been proposed to treat such singular regions, diffracted waves, and the like. For validity
conditions and extensions of the ray method, see a brief exposition in Section 5.9. Let
us emphasize here that the main aim of this book is to give a complete treatment of the
ray method itself, not of its extensions. Such attempts would increase the length of the
book inadmissibly. For this reason, the extensions are mostly described only qualitatively,
without a more detailed theoretical treatment. Even the references to the extensions of
the ray method are too numerous to be given here; consequently, we present only some
literature for further reading. Only three extensions of the seismic raymethod are discussed
here in a greater detail:

1. Quasi-isotropic ray theory for seismic waves propagating in weakly anisotropic
media and the qS-wave coupling. See Section 5.4.6.

2. Kirchhoff integrals, generalizing the results of the standard ray method for waves
generated at an initial surface and for waves reflected/transmitted at a curved inter-
face. See Section 5.1.11 for fluid models and Section 5.4.8 for elastic anisotropic
models.

3. Paraxial ray approximations and paraxial Gaussian beams, specifying the wave-
field not only along the ray but also in its vicinity. The construction of more general
integral solutions of the elastodynamic equation, based on the summation of parax-
ial ray approximations and on the summation of Gaussian beams. Note that the
summation of paraxial ray approximations yields integrals close or equal to the
Maslov-Chapman integrals. See Section 5.8.

The final problem that should be mentioned is the sensitivity of ray amplitudes to
minor details in the approximation of the model, for example, to artificial interfaces of
second order introduced by cell approaches, to fictitious small oscillations of the velocity
introduced by improper approximation of velocity distribution, and to triangular description
of structural interfaces. There are several ways to avoid these problems.

a. It is possible to use, globally or locally, a more sophisticated approximation of the
model that is smooth enough to suppress the artificial effects. This may be, however,
a difficult problem in certain cases.

b. It is possible to smooth the computed ray amplitudes.
c. It is possible to develop special methods that satisfactorily treat the improper ap-

proximations, for example, the triangular description of structural interfaces. See
Hanyga (1996a).

d. It is possible to use some methods that automatically include some smoothing of
amplitudes. Examples include the Maslov-Chapman method and the method of the
summation of Gaussian beams or of Gaussian wave packets. See Section 5.8.

5.1 Acoustic Case

In this section, we shall derive equations for the amplitudes of high-frequency pressure
bodywaves propagating in fluidmodelswith variable propagation velocity c(xi ) and density
ρ(xi ). The pressure wavefield p(xi , t) then satisfies acoustic wave equations (2.4.9) and the
relevant boundary conditions at the individual interfaces. As in Section 2.4.1, we express
the solution of the acoustic wave equation in the following form

p(xi , t) = P(xi )F(t − T (xi )). (5.1.1)
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Here F(ζ ) is a high-frequency analytical signal. Travel-time field T (xi ) satisfies eikonal
equation (∇T )2 = c−2(xi ), see (2.4.6), and amplitude function P(xi ) transport equation
2∇T · ∇(P/

√
ρ) + (P/

√
ρ)∇2T = 0, see (2.4.11). The computation of the travel-time

field was studied in detail in Chapters 3 and 4. Here we shall concentrate mainly on
computing amplitude function P(xi ).

For the properties of the analytical signal, see Appendix A. We only remind the reader
that the analytical signal is given by the expression F(ζ ) = exp[−i2π f ζ ] for harmonic
waves, where f is the frequency. Alternatively, we shall also use analytical signal F(ζ ) =
δ(A)(ζ ) = δ(ζ ) − i(πζ )−1, where δ(A)(ζ ) is the analytical delta function; see (2.2.12).

5.1.1 Continuation of Amplitudes Along a Ray

It was shown in Section 3.10.6 that the transport equation for P(xi ) can be solved along
ray � in terms of J , the Jacobian of transformation from ray coordinates γ 1, γ 2, γ 3 = s
to general Cartesian coordinates x1, x2, x3, that is, J = J (s) = D(x1, x2, x3)/D(γ 1, γ 2, s).
As in Chapters 3 and 4, we shall also call J the ray Jacobian. Let us consider ray� and two
points S and R situated on�. The continuation formula (3.10.53) for amplitudes along ray
� can then be expressed in the following form:

P(R) =
[
ρ(R)c(R)J (S)

ρ(S)c(S)J (R)

]1/2
P(S). (5.1.2)

After we know the amplitude at reference point S on ray�, we can calculate it at any other
point R on ray � using (5.1.2). Alternatively,

P(R) =
[
ρ(R)c(R)

ρ(S)c(S)

]1/2 L(S)
L(R) exp[iT

c(R, S)]P(S), (5.1.3)

where T c(R, S) is the phase shift due to caustics (see (3.10.64)) and L is the geometrical
spreading, L = |J |1/2 (see (4.10.1)).

These are the final equations for the continuation of amplitudes along a ray � situated
in a smooth 3-D laterally varying structure. If the ray strikes an interface, the equations
should be modified, as will be shown in Sections 5.1.3 through 5.1.5.

Inserting expressions (5.1.2) or (5.1.3) into (5.1.1), we obtain the final equations for
the continuation of pressure wave field p(xi , t) along ray �. Assume that p(S, t) is given
by relation p(S, t) = P(S)F(t − T (S)), where P(S), T (S) and analytical signal F(ζ ) are
known. Pressure wavefield p(R, t) at point R situated on ray � passing through S is then
given by the relation

p(R, t) =
[
ρ(R)c(R)

ρ(S)c(S)

]1/2 L(S)
L(R) exp[iT

c(R, S)]

× P(S)F(t − T (S) − T (R, S)); (5.1.4)

see (5.1.3). Here T (R, S) denotes the travel time from S to R along ray �.
In (5.1.2) through (5.1.4), P(S) represents the initial amplitude at reference point S

of ray �. To be able to use (5.1.2) and (5.1.3), we need to know, in addition to P(S), the
following initial quantities at S: velocity c(S), density ρ(S), and the ray Jacobian J (S), or
velocity c(S), density ρ(S), and geometrical spreading L(S). In (5.1.4), we also need to
know T (S) and the analytical signal F(ζ ).
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5.1.2 Point-Source Solutions. Radiation Function

In certain important situations, geometrical spreading L(S) vanishes at initial point S on
ray �. For example, this applies to the point source at S, to the line source at S, and to
the caustic point at S. For simplicity, we shall consider a point source. For a line source,
see Section 5.1.12. If P(S) is finite, amplitudes P(R) then vanish along the whole ray �
becauseL(S)P(S) = 0 in (5.1.3). To obtain nonvanishing amplitudes along ray�, we need
to require P(S) to be infinite at S so that

lim
S′→S

{L(S′)P(S′)} = P0(S), (5.1.5)

where P0(S) is finite. In (5.1.5), point S′ is situated on ray �, and the limit is taken along
ray �.

Using (5.1.3) and (5.1.5), we obtain

P(R) =
[
ρ(R)c(R)

ρ(S)c(S)

]1/2 exp[iT c(R, S)]

L(R) P0(S). (5.1.6)

Equation (5.1.6) with (5.1.5) is more general than (5.1.3) because it also includes the
situation with L(S) = 0.

For a point source at S, we can also use the relative geometrical spreading L(R, S)
instead of L(R). If we use (4.10.11), we obtain L(R) = L(R, S)|detP(S)|1/2, L(S′) =
L(S′, S)|detP(S)|1/2, where P(S) has the same meaning as in Section 4.10. Then (5.1.5)
and (5.1.6) yield

P(R) =
[
ρ(R)c(R)

ρ(S)c(S)

]1/2 exp[iT c(R, S)]

L(R, S) G(S; γ1, γ2), (5.1.7)

where

G(S; γ1, γ2) = lim
S′→S

{L(S′, S)P(S′)}. (5.1.8)

Function G(S; γ1, γ2) will be called here the radiation function of the wave under
consideration, generated by a point source situated at S. The limit in (5.1.8) is taken along
ray�, specified by ray parameters γ1 and γ2. Because the limit may be different for different
rays, we introduce ray parameters γ1 and γ2 among the arguments of G.

The advantage of this definition of the radiation function consists in its universality.
The same definition is applicable to homogeneous and inhomogeneous media, to acoustic
waves in fluid media and elastic waves in isotropic and anisotropic media. See Section
5.2.3 and 5.4.2.

Expression (5.1.7) for the ray-theory amplitudes P(R) simplifies in a homogeneous
medium. Then T c(R, S) = 0 andL(R, S) = cl(R, S), where l(R, S) is the distance between
R and S. Equation (5.1.7) reads

P(R) = G(S; γ1, γ2)/L(R, S) = G(S; γ1, γ2)/cl(R, S). (5.1.9)

Thus, in a homogeneous medium G(S; γ1, γ2) represents the angular distribution of am-
plitudes P(R) along a sphere with its center at S and with radius l(R, S) = 1/c(S). If
G(S; γ1, γ2) is independent of γ1 and γ2, we speak of the omnidirectional radiation func-
tion.

In seismological literature, the term directivity pattern of the wave has also been widely
used. However, the meaning of this term has not always been unique and consistent. Here
we shall introduce the directivity pattern of a wave generated by a point source in a standard
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ray-theory meaning. We assume that the medium is locally homogeneous in the vicinity of
S. The directivity pattern of the wave generated by a point source is then represented by
the distribution of ray-theory amplitudes over a unit sphere, whose center is at the source
S and radius is 1. We denote the directivity pattern of a selected wave generated by a point
source F(S; γ1, γ2) and define it by the relation

F(S; γ1, γ2) = (G(S; γ1, γ2)/L(R, S))l(R,S)=1. (5.1.10)

Here l(R, S) is the distance between S and R. We shall use this definition of the directivity
pattern also for elastic isotropic and anisotropic media. This ray-theory definition of the
directivity pattern may differ from some other seismological definitions, introduced by
other authors. In the most important cases, however, the difference consists only in a
multiplicative constant, which does not depend on γ1 and γ2. Thus, the actual angular
dependence of the generated amplitudes remains the same in all definitions.

For acoustic waves propagating in fluid media, the difference between radiation func-
tion G(S; γ1, γ2) and directivity pattern F(S; γ1, γ2) is only formal. Inserting L(R, S) =
c(S)l(R, S) into (5.1.10) yields

F(S; γ1, γ2) = G(S; γ1, γ2)/c(S). (5.1.11)

In anisotropic media, however, the directivity pattern is quite different from the radiation
function because the relative geometrical spreading L(R, S) depends on ray parameters γ1
and γ2.

In the following text, we shall prefer the term radiation function in our theoretical
treatment. The definition of radiation function (5.1.8) is quite universal and simple to
understand.Directivity patternswill be usedmerely todemonstrate the angular dependence
of the ray-theory amplitudes of waves generated by a point source.

Let us now discuss the changes in amplitudes if the positions of the point source
and receiver are interchanged (reciprocity relations). As we know, the relative geometri-
cal spreading and the phase shift due to caustics are reciprocal; L(R, S) = L(S, R) and
T c(R, S) = T c(S, R). The ray amplitudes, however, are in general not reciprocal. They
are reciprocal only if

G(S; γ 1, γ 2)

ρ(S)c(S)
= G(R; γ ′

1, γ
′
2)

ρ(R)c(R)
. (5.1.12)

Here γ 1, γ 2 and γ ′
1, γ

′
2 are the relevant ray parameters corresponding to the same ray

�, for sources at S and R.

5.1.3 Amplitudes Across an Interface

Assume that ray � strikes interface � at point Q situated between points S and R. In
addition to Q, we introduce point Q̃, coinciding with Q, but corresponding to the re-
flected/transmitted branch of the ray. Thus, S and Q are situated on the incident branch of
the ray, and Q̃ and R are located on the reflected/transmitted branch of the ray. We wish to
derive the continuation relations of amplitudes across the interface, from S to R.

Along the incident branch of the ray, we can use (5.1.3):

P(Q) =
[
ρ(Q)c(Q)

ρ(S)c(S)

]1/2 L(S)
L(Q) exp[iT

c(Q, S)]P(S).
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Across the interface, we use (2.4.68),

P(Q̃) = RP(Q),

where R is the appropriate pressure reflection/transmission coefficient. Finally, along the
reflected/transmitted branch, we can again use (5.1.3):

P(R) =
[
ρ(R)c(R)

ρ(Q̃)c(Q̃)

]1/2L(Q̃)
L(R) exp[iT

c(R, Q̃)]P(Q̃).

The three foregoing equations yield the amplitude continuation relation from S to R,

P(R) =
[
ρ(R)c(R)

ρ(S)c(S)

]1/2 L(S)
L(R)R(Q) exp[iT c(R, S)]P(S), (5.1.13)

where

T c(R, S) = T c(R, Q̃) + T c(Q, S) (5.1.14)

and

R(Q) = R(Q)

[
ρ(Q)c(Q)

ρ(Q̃)c(Q̃)

]1/2L(Q̃)
L(Q) . (5.1.15)

We shall call R(Q) the normalized pressure reflection/transmission coefficient. The nor-
malized pressure R/T coefficientsR(Q) represent the standard pressure coefficients R(Q)
normalized with respect to the energy flux across the interface. For a more detailed expla-
nation of normalized R/T coefficients, see Section 5.3.3. We now take into account the
relation

L(Q̃)/L(Q) = |detQ(Q̃)/detQ(Q)|1/2 = (cos i(Q̃)/cos i(Q))1/2,

where i(Q) is the acute angle of incidence and i(Q̃) is the acute angle of reflection/
transmission; see (4.4.66) and (4.4.50). Equation (5.1.15) then yields

R(Q) = R(Q)

[
ρ(Q)c(Q) cos i(Q̃)

ρ(Q̃)c(Q̃) cos i(Q)

]1/2
. (5.1.16)

For a real-valued ray �, cos i(Q) and cos i(Q̃) are always real-valued and nonnegative.
Note that the change of sign of det Q across the interface for reflected waves does not
influence the phase shift T c(R, S).

Equation (5.1.13) represents the final form of the continuation relation for the ampli-
tudes of reflected/transmitted waves. As in Section 5.1.2, (5.1.13) can be modified for a
point source situated at S,

P(R) =
[
ρ(R)c(R)

ρ(S)c(S)

]1/2 exp[iT c(R, S)]

L(R, S) R(Q)G(S; γ 1, γ 2). (5.1.17)

Here L(R, S) = |detQ2(R, S)|1/2. Many useful relations for the relative geometrical
spreading L(R, S) can be found in Section 4.10.2.

5.1.4 Acoustic Pressure Reflection/Transmission Coefficients

We shall use a notation similar to that in Sections 2.3.1 and 2.4.5.We denote ρ1 = ρ(Q) and
c1 = c(Q) so that ρ1 and c1 correspond to the point of incidence Q. The same parameters
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on the opposite side of the interface are denoted ρ2 and c2. Similarly, we denote the
angle of incidence i1 and the acute angle of transmission i2. Both angles are related by
Snell’s law (sin i1)/c1 = (sin i2)/c2. For the point of incidence, i(Q) = i1. For reflected
waves, point Q̃ is situated on the same side of the interface as point Q, but for transmitted
waves, it is situated on the opposite side of the interface. Thus, for the reflected wave
i(Q̃) = i1, c(Q̃) = c1 and ρ(Q̃) = ρ1, but for the transmitted waves i(Q̃) = i2, c(Q̃) = c2
and ρ(Q̃) = ρ2. We introduce ray parameter p using the relation

p = (sin i(Q))/c(Q) = (sin i1)/c1. (5.1.18)

The symbol p that we use for the ray parameter should not be confused with the symbol
for pressure. Due to Snell’s law, p = (sin i2)/c2 also.

We shall also use the notation

Pk = cos ik = (
1 − c2k p

2
)1/2
, k = 1, 2. (5.1.19)

For p > 1/ck , the square root (5.1.19) is imaginary positive,

Pk = +i
(
c2k p

2 − 1
)1/2
. (5.1.20)

This choice guarantees that the amplitudes of generated inhomogeneous waves decrease
exponentiallywith the increasingdistance from the interface.Theplus sign in the expression
for Pk in (5.1.20) corresponds to the plus sign in the expression (2.2.9) for the analytical
signal; F(ζ ) = x(ζ ) + ig(ζ ). For the analytical signal defined by F(ζ ) = x(ζ ) − ig(ζ ), it
would be necessary to write a minus sign instead of a plus sign in (5.1.20).

Using notation (5.1.19), we can express pressure reflection coefficients Rr (Q) and
pressure transmission coefficients Rt (Q) as follows:

Rr (Q) = ρ2c2P1 − ρ1c1P2
ρ2c2P1 + ρ1c1P2 , Rt (Q) = 2ρ2c2P1

ρ2c2P1 + ρ1c1P2 ; (5.1.21)

see (2.3.26). The expressions for the normalized pressure reflection/transmission coeffi-
cientsRr (Q) andRt (Q) then read

Rr (Q) = Rr (Q) = ρ2c2P1 − ρ1c1P2
ρ2c2P1 + ρ1c1P2 , Rt (Q) = 2(ρ1ρ2c1c2P1P2)1/2

ρ2c2P1 + ρ1c1P2 ;

(5.1.22)

see (5.1.16). Thus, the normalized reflection coefficientRr (Q) equals the standard reflec-
tion coefficient Rr (Q). The normalized transmission coefficient Rt (Q), however, differs
from the standard transmission coefficient Rt (Q).

Now we shall discuss the reciprocity relations for the R/T coefficients. We say that
the selected R/T coefficient is reciprocal, if it is the same for the wave propagating along
ray � from S to R and from R to S, that is, if R(Q) = R(Q̃). It is obvious that both the
pressure reflection coefficients Rr and Rr are reciprocal. For the pressure transmission
coefficients, this is not true. The standard plane-wave pressure transmission coefficient Rt

is not reciprocal, but the normalized pressure transmission coefficientRt is reciprocal. To
summarize,

Rr (Q) = Rr (Q̃), Rr (Q) = Rr (Q̃),

Rt (Q) �= Rt (Q̃), Rt (Q) = Rt (Q̃).
(5.1.23)

The reciprocity of the normalized pressure R/T coefficients is caused by the multi-
plicative square root factor in (5.1.16). In the ray method, factor [cos i(Q̃)/cos i(Q)]1/2
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has often been connected with geometrical spreading L(R, S), not with the R/T coeffi-
cients; see, for example, Červený, Molotkov, and Pšenčı́k (1977). For transmitted waves,
however, this approach yields nonreciprocal geometrical spreading and a nonreciprocal
transmission coefficient. Because the reciprocity plays an important role in many wave
propagation problems, we shall further use the normalized (reciprocal) R/T coefficients
given by (5.1.16) and (5.1.22) systematically. The additional advantage of the normal-
ized R/T coefficients consists in higher simplicity and a more compact form of the final
equations for amplitudes of acoustic waves. Note that the normalized R/T coefficients
R were introduced by Červený (1987b), who referred to them as reciprocal R/T coeffi-
cients.

In the following text, we shall consider only real-valued rays � from S to R. This
implies that both cos i(Q) and cos i(Q̃) are real-valued and nonnegative. First, we shall
discuss reflection coefficientsRr = Rr and then the coefficients of transmissionRt and Rt .

a. PRESSURE REFLECTION COEFFICIENTS
The normalized pressure reflection coefficient Rr is exactly the same as the standard

pressure reflection coefficient Rr ; see (5.1.22). Consequently, we shall only speak of re-
flection coefficients Rr ; the result also will be automatically valid forRr .

For reflected waves, i(Q) = i(Q̃) = i1, ρ(Q) = ρ(Q̃) = ρ1, and c(Q) = c(Q̃) = c1.
The square root P1 in (5.1.21) corresponds both to the incident and the reflected waves,
P1 = cos i(Q) = cos i(Q̃) = cos i1. It is always real-valued and nonnegative. Square root
P2, however, may be complex-valued. As shown in (5.1.20), it is complex-valued for
p > 1/c2, that is, for

sin i1 > c1/c2. (5.1.24)

If c1 ≥ c2, Equation (5.1.24) is not satisfied for any real-valued acute angle of incidence i1
so that reflection coefficient Rr is then always real-valued. If c1 < c2, the situation is more
complex. The range of i1 given by (5.1.24) corresponds to some real-valued acute angles
of incidence. The limiting angle of incidence

i∗1 = arcsin(c1/c2). (5.1.25)

Usually, i∗1 is called the critical angle of incidence. Reflection coefficient R
r is real-valued

only for subcritical and critical angles of incidence i1 ≤ i∗1 . For postcritical angles of
incidence i1 > i∗1 , it is complex-valued. Note that the postcritical angles of incidence are
also often called overcritical angles of incidence or supercritical angles of incidence.

It is simple to see that |Rr | = 1 in the postcritical region i1 > i∗1 . For this reason, this
case is often called the case of total reflection. In the postcritical region,

Rr = |Rr | exp[i arg Rr ], |Rr | = 1,

arg Rr = −2 arctan(ρ1c1|P2|/ρ2c2P1).
(5.1.26)

For normal incidence, i1 = 0, P1 = P2 = 1, and acoustic reflection coefficient Rr is
given by the simple relation

Rr = (Z2 − Z1)/(Z2 + Z1), (5.1.27)

where

Z = ρc (5.1.28)



426 RAY AMPLITUDES

is called the wave impedance. Wave impedances play a very important role in reflection
methods in seismic prospecting for oil. The reflection coefficient for normal incidence is
positive for Z2 > Z1, negative for Z2 < Z1, and vanishes for Z2 = Z1.

For grazing incidence, i1 = 1
2π , P1 = 0, and the reflection coefficient equals−1, Rr =

Rr = −1, independently of the values of the medium parameters.
For certain nonvanishing angles of incidence, reflection coefficient Rr may vanish.

This may happen only in the following two cases: (a) Z2 > Z1, c2 < c1, ρ2 > ρ1, and (b)
Z2 < Z1, c2 > c1, ρ2 < ρ1. Such situations are not very common in realistic structures
because the density jump across the interface must be large enough to cause the signs of
Z2 − Z1 and c2 − c1 to be opposite. In the theory of electromagnetic waves, the angle of
incidence for which the reflection coefficient vanishes is usually called the Brewster angle
of incidence. Here we shall use the same terminology and call the angle of incidence for
which the relevant R/T coefficient vanishes the Brewster angle of incidence. If we denote
the Brewster angle of incidence i B1 , (5.1.21) yields

sin i B1 = 1

c2

[
Z2
2 − Z2

1

ρ22 − ρ21

]1/2

. (5.1.29)

It is not difficult to find a simple relation for ∂Rr/∂ p, valid for real-valued P1 and P2:

∂Rr/∂ p = 2pρ1ρ2c1c2
(
c22 − c21

)/
P1P2(ρ2c2P1 + ρ1c1P2)2. (5.1.30)

As we can see, ∂Rr/∂ p is always zero for p = 0 (normal incidence), nonnegative for
c2 > c1, and nonpositive for c2 < c1. Often, we consider |Rr | instead of Rr . The derivative
of |Rr | with respect to p may have the opposite sign to ∂Rr/∂ p given by (5.1.30). With
the exception of situations (a) and (b) mentioned earlier, containing the Brewster angles,
∂|Rr |/∂ p is always nonnegative. Thus, |Rr | always increases with the increasing angle
of incidence i1 (or is constant). Only in the case of the Brewster angle is the situation
more complex. The Brewster angle divides the regions of positive and negative ∂|Rr |/∂ p.
Derivative ∂|Rr |/∂ p is always negative up to the Brewster angle of incidence (i1 < i B1 ),
and positive beyond the Brewster angle of incidence (i1 > i B1 ).

Figure 5.1 shows themodulus |Rr | and argument arg Rr of pressure reflection coefficient
Rr for one typicalmodel of an interface between two fluid halfspaces. The parameters of the
model are c1 = 2,000 m/s, ρ1 = 1,500 kg/m3, c2 = 2,500 m/s, and ρ2 = 1,661 kg/m3.
The refraction index n = c1/c2 equals 0.8, and the critical angle of incidence i∗1 is 53.13

◦.
The pressure reflection coefficient Rr equals the normalized pressure reflection coeffi-
cient Rr so that we can discuss only Rr . For subcritical angles of incidence (i1 < i∗1 =
53.13◦), Rr is real-valued and increasing. For postcritical angles of incidence (i1 > i∗1 =
53.13◦), Rr is complex-valued, with |Rr | = 1 and arg Rr negative. The phase arg Rr van-
ishes at i1 = i∗1 and decreases with i1 increasing. For i1 = 1

2π , arg R
r = −π . The wave

impedances for both media follow: Z1 = 3 · 106 kg/m2s, Z2 = 4 · 15 106 kg/m2s. Con-
sequently, Z2 > Z1 and c2 > c1, so that the Brewster angle does not exist. The normal
incidence reflection coefficient Rr is positive and equals Rr = 0.161; see (5.1.27).

In seismic exploration for oil, particularly in theAVO (amplitude-versus-offset) studies,
it is often very useful to use simple approximations for reflection coefficient Rr , sufficiently
accurate for small angles of incidence. The standard expansion of Rr in terms of p does
not yield sufficiently accurate results. A most convenient approximation is

Rr = Z2 − Z1P2/P1
Z2 + Z1P2/P1

.= 1

2

(
Z2 − Z1

Z1
+ c2 − c1

c1
tg2i1

)
. (5.1.31)
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Figure 5.1. Pressure reflection coefficient at an interface between two fluid media. Model: c1 =
2,000 m/s, ρ1 = 1,500 kg/m3, c2 = 2,500 m/s, ρ2 = 1,661 kg/m3. Critical angle i∗1 = 53.13◦. The
curves also represent the normalized pressure reflection coefficient and the particle-velocity reflec-
tion coefficient; see Section 5.2.11.

To derive (5.1.31), we have taken into account the following relations:

P2
P1

=
[
1 − (

c22/c
2
1

)
sin2 i1

cos2 i1

]1/2
=
[
1 − sin2 i1 + (

1 − c22/c
2
1

)
sin2 i1

cos2 i1

]1/2
= [

1 + (
1 − c22/c

2
1

)
tg2i1

]1/2 .= 1 + 1
2

(
1 − c22/c

2
1

)
tg2i1.

b. PRESSURE TRANSMISSION COEFFICIENTS
We shall discuss pressure transmission coefficients Rt and Rt for real-valued rays �.

Thus, inhomogeneous waves are excluded from our treatment. Hence, i(Q) = i1, c(Q) =
c1, ρ(Q) = ρ1, and i(Q̃) = i2, c(Q̃) = c2, ρ(Q̃) = ρ2. Because i1 and i2 are always real-
valued acute angles for a real-valued ray �, square roots P1 and P2 are also real-valued
and positive. This implies that transmission coefficients Rt andRt are also real-valued and
positive.

For normal incidence, i1 = 0,

Rt = 2Z2/(Z1 + Z2), Rt = 2
√
Z1Z2/(Z1 + Z2). (5.1.32)

It is very simple to see in (5.1.32) that the normalized pressure transmission coefficientRt

is reciprocal, but that Rt is not.
In the following treatment, we shall distinguish two cases: c1 > c2 and c1 < c2.

a. If c1 > c2, the real-valued ray� of the transmittedwave exists for any acute angle of
incidence, 0 ≤ i1 ≤ 1

2π . For the grazing angle of incidence, and i1 = 1
2π , P1 = 0,

and P2 �= 0 so that Rt = Rt = 0.
b. If c1 < c2, the real-valued ray � of the transmitted ray exists only for subcritical

and critical angles of incidence i1, 0 ≤ i1 ≤ i∗1 , where i
∗
1 is given by (5.1.25). Be-

cause sin i2 = (c2/c1) sin i1, i2 = 1
2π for the critical angle of incidence. Thus, the
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transmitted branch of ray� grazes the interface if the angle of incidence is critical.
This implies P1 �= 0, P2 = 0, and Rt = 2, butRt = 0.

Figure 5.2 shows the standard and normalized pressure transmission coefficients Rt and
Rt , for the same model parameters as in Figure 5.1. Because c1 < c2, the real-valued rays
of transmitted waves exist only for subcritical angles of incidence, i1 < i∗1 = 53.13◦. For
postcritical angles of incidence, the transmitted wave is inhomogeneous. Standard pressure
transmission coefficient Rt is real-valued, larger than 1, and increases in the whole range
of angles of incidence. For normal incidence, it equals 1.161, and for the critical incidence,
Rt = 2. The normalized pressure transmission coefficient Rt is again real-valued, but it
is less than unity. It equals 0.986 for the normal incidence and changes only very little
with increasing angle of incidence i1. Only very close to the critical angle of incidence, it
decreases abruptly to zero. If we compare Rt with Rt , we can see that Rt (but not Rt ) is
very close to unity in a broad range of angles of incidence. This fact remains valid even
for c2 < c1.

5.1.5 Amplitudes in 3-D Layered Structures

Equations (5.1.13) and (5.1.17) can be simply generalized for a layered medium. Let us
consider ray � situated in a 3-D layered structure and two points S and R situated on
this ray. We assume that ray � strikes various structural interfaces between S and R N -
times.We denote the points of incidence Qi , i = 1, 2, . . . , N , and the corresponding points
of reflection/transmission Q̃i , i = 1, 2, . . . , N . Point Qi , of course, coincides with point
Q̃i (i = 1, 2, . . . , N ), but they correspond to the incident and reflected/transmitted wave,
respectively, and may be situated on different sides of the relevant interface.

The continuation relation for the amplitudes of acoustic waves then reads

P(R) =
[
ρ(R)c(R)

ρ(S)c(S)

]1/2 L(S)
L(R)R

C exp[iT c(R, S)]P(S), (5.1.33)

where

T c(R, S) =
N+1∑
k=1

T c(Qk, Q̃k−1), (5.1.34)

RC =
N∏
k=1

Rk =
N∏
k=1

Rk

[
ρ(Qk)c(Qk) cos i(Q̃k)

ρ(Q̃k)c(Q̃k) cos i(Qk)

]1/2
. (5.1.35)

In (5.1.34), we have denoted S = Q̃0 and R = QN+1. Quantity Rk denotes the standard
reflection/transmission coefficient at the point Qk (see (5.1.21)), and Rk denotes the cor-
responding normalized reflection/transmission coefficient (see (5.1.22)). We shall callRC

the complete reflection/transmission coefficient. It equals the product of the normalized
reflection/transmission coefficients at all points of incidence between S and R. It is ob-
vious that the complete reflection/transmission coefficient RC is reciprocal because the
individualRk in (5.1.35) are reciprocal.

For a point source situated at S,

P(R) =
[
ρ(R)c(R)

ρ(S)c(S)

]1/2 exp[iT c(R, S)]

L(R, S) RCG(S; γ 1, γ 2). (5.1.36)

All the symbols have the same meaning as in (5.1.33) and in (5.1.17).
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Figure 5.2. Transmission coefficients P1P2 at an interface between two fluid media. The model is
the same as in Figure 5.1. Upper part: pressure transmission coefficients; lower part: particle velocity
transmission coefficients (see Section 5.2.11). Continuous lines denote standard coefficients, and dashed
lines represent the normalized coefficients. Note that the normalized transmission coefficients are the
same for both pressure and particle velocity and are very close to unity for a broad range of angles of
incidence. For i1 > 53.13◦, the transmitted wave is inhomogeneous, and the relevant coefficients are
not shown.
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5.1.6 Amplitudes Along a Planar Ray

Equations (5.1.33) and (5.1.36) remain valid even for a planar ray�. The only simplification
is that the geometrical spreading can be factorized into in-plane and transverse geometrical
spreading. Equation (5.1.36) for a point source situated at S then reads

P(R) =
[
ρ(R)c(R)

ρ(S)c(S)

]1/2 exp[iT c(R, S)]

L‖(R, S)L⊥(R, S)
RCG(S; γ 1, γ 2). (5.1.37)

For details on L‖ and L⊥ and their computation, see Section 4.13.4.
The transverse relative geometrical spreading L⊥(R, S) can be calculated analytically

in many important situations. Consider a 2-D model with a velocity constant along any
normal to the plane of the ray. Then L⊥(R, S) = (σ (R, S))1/2 = (

∫ R
S cds)1/2, where the

integral is taken along �, see (4.13.54). This situation is usually called the 2.5-D case.
If we consider a planar ray field in which all the rays are situated in the same plane,

the ray field can be parametrized by a single ray parameter γ 1. Then we write G(S; γ 1)
instead of G(S; γ 1, γ 2) in (5.1.37). For a line source perpendicular to the plane of the ray
and intersecting it at S, see Section 5.1.12.

5.1.7 Pressure Ray-Theory Green Function

In this section, we shall derive expressions for the pressure ray-theory Green function,
corresponding to the point source situated at S. A general laterally varying layered structure
is considered.

In inhomogeneous layered structures, there may be a finite or infinite number of rays�
connecting point source S with receiver R. These rays correspond to different elementary
waves (direct, reflected, multiply reflected, and the like). All the expressions derived in
this section have been related to an elementary wave, propagating along the ray � being
considered. The complete wavefield is then given by the superposition of all elementary
waves, propagating from S to R along different rays.

Similarly, the complete ray-theory Green function can be expressed as a superposition
of elementary Green functions, corresponding to different rays � connecting S and R.
Here we shall consider only the elementary ray-theory Green function, corresponding to
one elementary wave.

To obtain the amplitude of the elementary ray-theoryGreen function, we need to specify
the radiation function G(S; γ 1, γ 2) in (5.1.36) properly. Using (2.5.28), we obtain

G(S; γ 1, γ 2) = (4π )−1ρ(S)c(S). (5.1.38)

Thus, the radiation function corresponding to the elementary acoustic ray-theory Green
function is omnidirectional and satisfies reciprocity condition (5.1.12). Inserting (5.1.38)
into (5.1.36) yields

P(R) = (ρ(S)ρ(R)c(S)c(R))1/2

4πL(R, S) exp[iT c(R, S)]RC . (5.1.39)

It is simple to see that the amplitude of the elementary ray-theory Green function is recip-
rocal. If we interchange the source and receiver, the amplitude remains the same.

For the reader’s convenience, we shall give the final expressions for the elementary
acoustic ray-theory Green function, corresponding to the selected ray � connecting the
point source at S and the receiver at R.
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In the frequency domain, the elementary Green function is expressed as

G(R, S, ω) = (ρ(S)ρ(R)c(S)c(R))1/2

4πL(R, S) RC exp[iωT (R, S) + iT c(R, S)].

(5.1.40)

Similarly, in the time domain,

G(R, t ; S, t0) = (ρ(S)ρ(R)c(S)c(R))1/2

4πL(R, S) RC

× exp[iT c(R, S)]δ(A)(t − t0 − T (R, S)). (5.1.41)

It is obvious that both expressions are reciprocal in the following sense:

G(R, S, ω) = G(S, R, ω); G(R, t ; S, t0) = G(S, t ; R, t0). (5.1.42)

5.1.8 Receiver on an Interface

The equations derived for the pressure amplitudes are valid if the medium in the vicinity of
source S and receiver R is smooth. If the source and/or receiver are situated on an interface,
the derived equations need to be modified.

Let us first study the pressure amplitudes at the receiver situated on interface �R

passing through the point R. We shall use the following notation: if there is no interface
at R, the pressure amplitude at R is PSM (R). We shall call PSM (R) the smooth medium
pressure amplitude at R. This amplitude can be calculated using an equation derived in
the previous sections. From PSM (R), we wish to determine P(R) if receiver R is situated
on structural interface �R passing through R. We assume that point R is situated on �R

from the side of the incident wave, and introduce point R+, situated on the opposite side
of interface �R . Otherwise, both points R and R+ coincide. We also denote

c1 = c(R), ρ1 = ρ(R), c2 = c(R+), ρ2 = ρ(R+). (5.1.43)

At interface �R , two new waves are generated from the incident PSM (R): the reflected
wave shown in Figure 5.3(a), and the transmitted wave shown in Figure 5.3(b). As usual,
we denote the initial point of the generated wave being considered at interface �R by
R̃. It is obvious that R̃ coincides with R+ for the transmitted wave and with R for the
reflected wave. The travel times and analytical signals of all the three waves (incident,
reflected, transmitted) coincide at R and R̃. At point R, two waves exist: the incident,
smooth medium wave with amplitude PSM (R), and the reflected wave with amplitude
Pr (R̃). At point R+ situated on the opposite side of interface�R , only one wave exists: the
transmitted wave, with amplitude Pt (R̃). The amplitude of the total wavefield at interface
�R can be calculated in two ways

a. At the point R, as a superposition of amplitudes of incident and reflected waves,
P(R) = PSM (R) + Pr (R̃).

b. At the point R+, as the amplitude of the transmittedwave, P(R+) = Pt (R̃). Because
pressure amplitude is continuous across the interface, it must hold that P(R) =
P(R+).

We shall use both approaches and check that the results are the same.
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Figure 5.3. Explanation of symbols for
the receiver situated on interface �R .
Point R corresponds to the wave inci-
dent on �R; point R̃ corresponds to the
generated R/T wave on �R . Point R+ is
situated on the side of interface �R op-
posite R.

At point R+,

P(R+) = Pt (R̃) = Rt (R)PSM (R), (5.1.44)

where Rt (R) is the transmission coefficient,

Rt (R) = 2ρ2c2 cos i1
ρ2c2 cos i1 + ρ1c1 cos i2 ; (5.1.45)

see (5.1.21). Transmission coefficient Rt (R) corresponds to the transmittedwave generated
by a wave incident at interface�R at point R. In (5.1.45), i1 is the acute angle of incidence,
and i2 is the acute angle of transmission. Both angles i1 and i2 are connected by Snell’s
law. Note that Rt (R) �= Rt (R̃), where Rt (R̃) is the transmission coefficient corresponding
to the transmitted wave generated by the wave incident at interface �R from the side of
point R+ ≡ R̃.

The second approach in deriving (5.1.44) takes into account the incident and reflected
waves at R. At point R, the complete wavefield is given by the relation

P(R) = PSM (R) + Pr (R̃) = (1 + Rr (R))PSM (R). (5.1.46)

Here the reflection coefficient is

Rr (R) = ρ2c2 cos i1 − ρ1c1 cos i2
ρ2c2 cos i1 + ρ1c1 cos i2 . (5.1.47)

Reflection coefficient Rr (R) corresponds to the reflected wave generated by the wave
incident at interface�R at point R. It is simple to see that 1 + Rr (R) = Rt (R) (see (5.1.45))
and (5.1.47) so that both expressions (5.1.44) and (5.1.46) yield equivalent results.

From a physical point of view, it may seem strange that the amplitudes are discontinuous
along the ray� under consideration at point R, where� strikes an interface�R . At a point
R, situated close to �R , but not on it, the amplitude is PSM (R). Just at the interface,
however, the amplitude jumps discontinuously and increases to (1 + Rr (R))PSM (R). The
explanation is simple. Close to interface �R , the complete wavefield is also obtained as a
superposition of the incident wave and of the reflected wave, not by the incident wave only.

In the foregoing treatment, we have used the letter R to denote the point at which the
receiver is situated as well as the R/T coefficients. They are not to be confused.

We shall now introduce the pressure conversion coefficient D(R) as
D(R) = 1 (5.1.48)
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if point R is situated in a smooth medium, and

D(R) = 1 + Rr (R), D(R+) = Rt (R) (5.1.49)

if points R and R+ are situated on interface �R . Note again that D(R) = D(R+) in the
case of pressure waves. The terminology “pressure conversion coefficients” is analogous
to “elastic conversion coefficients,” which will be introduced in Section 5.2.7.

Thegeneral expressions for amplitudes (5.1.33), (5.1.36), (5.1.37), and (5.1.39) can then
be generalized by including the pressure conversion coefficients D(R) or D(R+) given by
(5.1.48) and (5.1.49). The expressions are then valid generally, both for the receiver situated
in a smooth medium and on an interface. See Section 5.1.10 for the final equations for a
point source.

5.1.9 Point Source at an Interface

We shall now discuss the pressure amplitudes at R due to a point source at S, situated on
interface �S .

First, we shall consider an auxiliary problem of a wave reflected/transmitted at interface
�S . This problem was discussed in Section 5.1.3. Here, however, we shall use a different
notation, suitable for the purposes of this section. Consider a point source situated at point
S0 and a ray �0 of a reflected/transmitted wave connecting S0 with the receiver situated
at R. We denote the point of incidence of ray �0 at the interface S̃, and the point of
reflection/transmission S. Thus, points S̃ and S0 are situated on the incident branch of ray
�0, and points S and R are located on the reflected/transmitted branch of the ray. In addition
to S, we also introduce point S+, situated on the side of �S opposite to S, and denote

c1 = c(S), ρ1 = ρ(S), c2 = c(S+), ρ2 = ρ(S+); (5.1.50)

see Figure 5.4. Using (5.1.17), we obtain the general expression for P(R):

P(R) =
[
ρ(R)c(R)

ρ(S0)c(S0)

]1/2 exp[iT c(R, S0)]

L(R, S0) R(S̃)GSM (S0; γ 1, γ 2). (5.1.51)

HereR(S̃) is the normalized R/T coefficient, and GSM (S0; γ 1, γ 2) is the “smoothmedium”
radiation function. As we know, the normalized R/T coefficientR(S̃) is reciprocal so that

R(S̃) = R(S) = R(S)

[
ρ(S)c(S) cos i(S̃)

ρ(S̃)c(S̃) cos i(S)

]1/2
,

where R(S) is the standard R/T coefficient. Equation (5.1.51) then yields

P(R) =
[
ρ(R)c(R)ρ(S)c(S) cos i(S̃)

ρ(S0)c(S0)ρ(S̃)c(S̃) cos i(S)

]1/2

×exp[iT c(R, S0)]

L(R, S0) R(S)GSM (S0; γ 1, γ 2). (5.1.52)

Nowweshift point S0 along ray�0 to point S̃. Taking into account thatT c(R, S̃) = T c(R, S)
and L(R, S̃) = L(R, S)(cos i(S̃)/cos i(S))1/2, (5.1.52) yields

P(R) =
[
ρ(R)c(R)

ρ(S)c(S)

]1/2 exp[iT c(R, S)]

L(R, S) R(S)GSM (S̃; γ 1, γ 2)
ρ(S)c(S)

ρ(S̃)c(S̃)
.

(5.1.53)
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Figure 5.4. Explanation of symbols for the derivation of the pressure wavefield generated by a point
source situated on interface �S . The receiver is situated at R, an auxiliary point source is at S0, the
point of incidence is at S̃, and the point of reflection/transmission is at S. Point S+ is situated on the
opposite side of interface�S than S. In the derivation, auxiliary source S0 is shifted to S̃. (a) Auxiliary
source S0 and R are situated on the same side of�S . (b) Auxiliary source S0 and receiver R are situated
on opposite sides of �S .

This is the final expression of our auxiliary problem. We shall first specify it for the
transmitted wave. Point S̃ is then situated at S+, on the side of�S opposite to S. Moreover,
R(S) = Rt (S), and is given by (5.1.45). It corresponds formally to the wave transmitted
from S to S+, not from S+ to S. Angles i1 and i2 are given by relations i1 = i(S) and
i2 = i(S+) and are related by Snell’s law sin i1 = (c1 sin i2)/c2.

Expression (5.1.53) can be rewritten in standard form as

P(R) =
[
ρ(R)c(R)

ρ(S)c(S)

]1/2 exp[iT c(R, S)]

L(R, S) G(S+; γ 1, γ 2), (5.1.54)

where G(S+; γ 1, γ 2) is the generalized radiation function, corresponding to the source
situated on interface �S:

G(S+; γ 1, γ 2) = Rt (S)
ρ(S)c(S)

ρ(S+)c(S+)
GSM(S+; γ t1, γ

t
2

)
. (5.1.55)

Here GSM (S+; γ t1, γ
t
2) is the “smooth medium” radiation function, corresponding to the

point S+ situated on the side of �S opposite to S. Ray parameters γ t1 and γ
t
2 correspond

to the transmission from S+ to S (along ray �0). Similarly, γ 1 and γ 2 correspond to the
ray � from S to R. Using Snell’s law, we can relate γ t1 and γ

t
2 to γ 1 and γ 2.

Now we shall specify (5.1.53) for reflected waves. To obtain the complete wavefield at
S, we need to add the reflected wave to the direct wave. The travel time and the analytical
signals of the reflected and direct wave are the same in this case, so that we can add the
amplitudes. This again yields

P(R) =
[
ρ(R)c(R)

ρ(S)c(S)

]1/2 exp[iT c(R, S)]

L(R, S) G(S; γ 1, γ 2), (5.1.56)

where the radiation function G(S; γ 1, γ 2) is given by the relation

G(S; γ 1, γ 2) = GSM (S; γ 1, γ 2) + Rr (S)GSM(S; γ r1, γ r2). (5.1.57)

Ray parameters γ r1 and γ
r
2 correspond to ray �0 of the reflected wave.

As we can see from (5.1.55) and (5.1.57), the generalized radiation function of the
source situated on interface �S is different from the “smooth medium” radiation function
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of the source situated in a smooth medium. We even obtain different generalized radia-
tion functions if the source is approaching the interface from different sides; see (5.1.55)
for G(S+; γ1, γ2) and (5.1.57) for G(S; γ1, γ2). This is not surprising given that a very
general, possibly nonomnidirectional radiation function GSM is being considered. In cer-
tain important situations, the generalized radiation functions simplifies. For example, for
omnidirectional radiation functions, (5.1.57) yields

G(S; γ 1, γ 2) = (1 + Rr (S))GSM (S; γ 1, γ 2) = D(S)GSM (S; γ 1, γ 2),

(5.1.58)

where D(S) is the pressure conversion coefficient, introduced by (5.1.48) and (5.1.49). In
this case, Equation (5.1.55) yields

G(S+; γ 1, γ 2) = ρ(S)c(S)

ρ(S+)c(S+)
D(S+)GSM (S+; γ 1, γ 2). (5.1.59)

HereD(S+) is again given by (5.1.49), where R and R+ are replaced by S and S+. Equations
(5.1.58) and (5.1.59) yield particularly simple results if we consider the smooth medium
radiation functions corresponding to the acoustic ray-theory Green functions; see (5.1.38).
Both (5.1.58) and (5.1.59) then yield the same, very simple result

G(S; γ 1, γ 2) = G(S+; γ 1, γ 2) = ρ(S)c(S)

4π
D(S). (5.1.60)

This result is valid both for the source situated in a smooth medium and on an interface.
Moreover, if the source is situated on the interface�S , it is irrelevant whether it is situated
at S or at S+. Even if it is situated at S+, we take the parameters in (5.1.60) at S.

5.1.10 Final Equations for a Point Source

We shall now write final equations for the ray amplitudes of the pressure waves in 3-D
layered structures, valid for any position of point source S and receiver R. Both points may
be situated either in a smooth medium or on an interface. Taking into account (5.1.36) and
the relations derived in Sections 5.1.8 and 5.1.9, we obtain

P(R) =
[
ρ(R)c(R)

ρ(S)c(S)

]1/2 exp[iT c(R, S)]

L(R, S) D(R)RCG(S; γ 1, γ 2). (5.1.61)

Here D(R) is the pressure conversion coefficient, given by (5.1.48) and (5.1.49). If point
S is situated in a smooth medium, G(S; γ 1, γ 2) represents the standard smooth medium
radiation function. If S is situated on an interface, G(S; γ 1, γ 2) represents the general-
ized radiation function, given by (5.1.57). For omnidirectional smooth medium radiation
functions, the generalized radiation functions are given by (5.1.58).

Equation (5.1.61) yields particularly simple results if we compute the amplitudes of an
elementary pressure Green function. We can then use (5.1.60) to obtain

P(R) = [ρ(S)ρ(R)c(S)c(R)]1/2

4πL(R, S) exp[iT c(R, S)]D(R)D(S)RC . (5.1.62)

Here D(R) and D(S) represent the pressure conversion coefficients, see (5.1.48) and
(5.1.49).

For the reader’s convenience, we shall give the final equations for the elementary pres-
sure ray-theory Green function, corresponding to any elementary (multiply reflected) wave
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in a 3-D layered fluid medium. In the frequency domain,

G(R, S, ω) = [ρ(S)ρ(R)c(S)c(R)]1/2

4πL(R, S) D(R)D(S)RC

× exp[iωT (R, S) + iT c(R, S)]. (5.1.63)

Similarly, in the time domain

G(R, t ; S, t0) = [ρ(S)ρ(R)c(S)c(R)]1/2

4πL(R, S) D(R)D(S)RC

× exp[iT c(R, S)]δ(A)(t − t0 − T (R, S)). (5.1.64)

Aswe can see from (5.1.63) and (5.1.64), the elementaryGreen functions remain reciprocal
even if the source and/or receiver are/is situated on an interface, in the sense of equations
(5.1.42).

In equations (5.1.61) through (5.1.64), we can substitute R and/or S in the expressions
forD(R),D(S), andG(S; γ 1, γ 2) by R+ and/or S+, if the receiver and/or source are situated
on opposite sides of the relevant interfaces. In the case of pressure waves, this change may
affect only Equation (5.1.61) becauseD(R+) = D(R) andD(S+) = D(S), butG(S; γ 1, γ 2)
may be different from G(S+; γ 1, γ 2).

5.1.11 Initial Ray-Theory Amplitudes at a Smooth Initial Surface.

Acoustic Kirchhoff Integrals

We shall consider a smooth initial surface �0. The initial surface may correspond to an
interface between two fluid media, to a boundary of a fluid medium, to a wavefront, or to
an auxiliary surface situated in a smooth medium. We assume that the initial time T 0 is
specified along �0. We can then determine the initial slowness vectors (see Section 4.5.1)
and initial values of matricesQ and P of the waves generated at�0 (see Sections 4.5.2 and
4.5.3). Consequently, we can start ray tracing and dynamic ray tracing at any point of �0.
To determine the ray amplitudes along the rays, however, we must also know the initial
amplitudes along �0, see P(S) in (5.1.33). The determination of the initial ray-theory
amplitudes is the main purpose of this section.

We shall start the treatment with the Kirchhoff integral (2.6.11) and use the same
notation as in Section 2.6.1. The boundary surface S of volume V containing point 	x runs
along initial surface �0 and along a spherical surface C of an infinite radius. We assume
that there are no sources in volume V so that f p = 0. The volume integral in (2.6.11) then
vanishes and the Kirchhoff integral in (2.6.11) over S reduces to the surface integral over
�0. The unit normal 	n is oriented outward of V .

As we can see in (2.6.11), we must know the distribution of pressure p and of the
time derivative of the normal component of the particle velocity v̇(n) along �0 to be able
to determine p(	x, ω). We shall now specify p(	x ′, ω) and v̇(n)(	x ′, ω) along �0 in greater
detail. We assume that the distribution of p(	x ′, ω) and v̇(n)(	x ′, ω) along �0 is given by the
relations

p(	x ′, ω) = P0(	x ′) exp[iωT 0(	x ′)],

v̇(n)(	x ′, ω) = −iωV (n)0(	x ′) exp[iωT 0(	x ′)].
(5.1.65)

Here P0(	x ′) is the amplitude of pressure p(	x ′, ω) and V (n)0(	x ′) the amplitude of the normal
component of particle velocity v(n)(	x ′, ω) along initial surface �0, and T 0(	x ′) is the initial
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travel time along �0. We assume that P0, V (n)0, and T 0 are independent of frequency and
that the initial travel time T 0(	x ′) is the same for p(	x ′, ω) and v(n)(	x ′, ω). Inserting (5.1.65)
into (2.6.11) yields

p(	x, ω) =
∫
�0

[P0(	x ′)h(	x ′, 	x, ω) + iωV (n)0(	x ′)G(	x ′, 	x, ω)]
× exp[iωT 0(	x ′)]d�0(	x ′). (5.1.66)

The Kirchhoff integral (5.1.66) is still exact, subject to assumption (5.1.65). In the follow-
ing, however, we shall treat (5.1.66) asymptotically, for ω → ∞. We can then insert the
asymptotic ray-theory expressions for the Green function G(	x ′, 	x, ω) and for the relevant
h(	x ′, 	x, ω). As an approximation, only smooth-medium Green functions G(	x ′, 	x, ω) and
h(	x ′, 	x, ω) will be used here. They correspond to the ray �̃(	x ′, 	x) connecting points 	x and
	x ′. Note that �̃(	x ′, 	x), G(	x ′, 	x, ω), and h(	x ′, 	x, ω) do not depend at all on the shape of �0

and on T 0(	x ′) at point 	x ′, but only on the position of points 	x ′ and 	x . For any elementary
ray-theory Green function G(	x ′, 	x, ω) and relevant h(	x ′, 	x, ω),

G(	x ′, 	x, ω) = GA(	x ′, 	x) exp[iωT (	x ′, 	x)],
h(	x ′, 	x, ω) = −iωρ̃−1(	x ′)( 	̃p(	x ′) · 	n(	x ′))GA(	x ′, 	x) exp[iωT (	x ′, 	x)].

(5.1.67)

Here GA(	x ′, 	x) is the amplitude of the elementary Green function under consideration,
T (	x ′, 	x) is its travel time, and 	̃p(	x ′) is its slowness vector at 	x ′. The tilde above the letters
ρ and 	p is used to emphasize that these quantities correspond to the Green function
G(	x ′, 	x, ω) at point 	x ′ on the ray �̃(	x ′, 	x) connecting 	x ′ and 	x . Density ρ̃ should always
be taken at �0 on the side of volume V . Inserting (5.1.67) into (5.1.66) yields

p(	x, ω) = −iω
∫
�0

a(	x ′)GA(	x ′, 	x) exp[iω(T 0(	x ′) + T (	x ′, 	x))]d�0(	x ′),

(5.1.68)

where

a(	x ′) = P0(	x ′)ρ̃−1(	x ′)( 	̃p(	x ′) · 	n(	x ′)) − V (n)0(	x ′). (5.1.69)

This is the final form of the Kirchhoff integral we shall use here. The form of (5.1.68) is, of
course, considerably influenced by assumption (5.1.65) regarding the form of p(	x ′, ω) and
v̇(n)(	x ′, ω) along�0. Note that GA, T , and 	̃p depend on the position of points 	x and 	x ′, but
not on the initial conditions along �0. On the other hand, the quantities T 0, P0, V (n)0, ρ̃,
and 	n, depend on the position of 	x ′ only, not on 	x .

As we have used the asymptotic expressions (5.1.67) for the Green function in (5.1.68),
the Kirchhoff integral (5.1.68) represents only a high-frequency approximation. The two
basic ways of treating the Kirchhoff integral (5.1.68) follow.

a. Numerical evaluation. Although (5.1.68) contains the ray-theory Green functions,
the accuracy of the numerical treatment may be high. It, however, requires extensive
two-point ray tracing from point 	x to all points 	x ′ along �0. The family of rays
�̃(	x ′, 	x) is two-parameteric. The relevant travel time T (	x ′, 	x) and theGreen function
amplitude GA(	x ′, 	x) should be computed along each ray �̃. In addition, slowness
vector 	̃p(	x ′) should also be determined at 	x ′. Slowness vector 	̃p(	x ′) corresponds to
the direction from 	x to 	x ′ along �.
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b. Method of stationary phase. The high-frequency (ω → ∞) asymptotic methods
can be further used to treat (5.1.68). The simplest is the method of stationary phase;
see Bleistein (1984). It reduces the two-parameteric system of rays �̃ to one (or a
few) rays �0. The price we pay for this is the lower accuracy of the results.

There are also some other methods of treating (5.1.68) and similar integrals, such as
the expansion into Gaussian beams or Gaussian packets, the isochrone method, and the
Maslov method. We shall not discuss these other methods here; for a description and many
other references, see Spudich and Frazer (1984), Madariaga and Bernard (1985), Červený
et al. (1987), and Huang,West, and Kendall (1998). See also Spencer, Chapman, andKragh
(1997) and Chapman (in press) for a very efficient approach to time-domain computations.

1. THE KIRCHHOFF INTEGRAL FOR A WAVE INCIDENT AT Σ0

Equations (5.1.66) with (5.1.67) are very general and can be used for various initial
conditions P0 and V (n)0 along �0. We now shall consider this important special case: P0

and V (n)0 correspond to some elementary body wave incident at�0. Both P0 and V (n)0 can
then be expressed in terms of the pressure amplitudes Pinc of the incidentwave along�0.We
shall consider awave incident from thefirstmedium,withmediumparametersρ1 and c1, and
denote the medium parameters in the second medium by ρ2 and c2. All medium parameters
may depend on coordinates. Quantities P0 and V (n)0 along �0 are given by relations

P0 = Rt Pinc, V (n)0 = ρ−1
2 (	n · 	p t )Rt Pinc, (5.1.70)

or, alternatively,

P0 = (1 + Rr )Pinc, V (n)0 = ρ−1
1 [(	n · 	pinc) + (	n · 	p r )Rr ]Pinc;

(5.1.71)

see (5.1.49) and (2.2.7). All quantities in (5.1.70) and (5.1.71) are taken at�0, Pinc denotes
the smooth medium pressure amplitude of the incident wave (not influenced by �0), Rr

and Rt are the pressure R/T coefficients given by (5.1.21), and 	pinc, 	p r , and 	p t are the
slowness vectors of the incident, reflected, and transmitted waves, respectively. Inserting
(5.1.70) and (5.1.71) into (5.1.69) yields

a(	x ′) = A(	x ′)Pinc(	x ′), (5.1.72)

where A(	x ′) is given by two alternative expressions:

A(	x ′) = [
ρ̃−1(	n · 	̃p) − ρ−1

2 (	n · 	p t )]Rt
= ρ̃−1(	n · 	̃p) − ρ−1

1 (	n · 	pinc) + (ρ̃−1(	n · 	̃p) − ρ−1
1 (	n · 	p r ))Rr .

(5.1.73)

Again, all quantities in (5.1.73) are taken at 	x ′. The expressions in (5.1.73) are fully equiv-
alent and can be used for both reflected and transmitted waves.

The Kirchhoff integral (5.1.68) corresponding to a wave incident at �0 is then given
by the expression

p(	x, ω) = −iω
∫
�0

A(	x ′)Pinc(	x ′)GA(	x ′, 	x)
× exp[iω(T 0(	x ′) + T (	x ′, 	x))]d�0(	x ′), (5.1.74)

where the weighting functionA(	x ′) is given by any of the two expressions in (5.1.73). Thus,
it is not necessary to store two quantities, P0 and V (n)0, along �0, but only one quantity
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Pinc. It should again be emphasized that the unit normal 	n to �0 is oriented outward of the
medium in which point 	x is situated.

Kirchhoff integral (5.1.74) is applicable to any wave incident at �0 from the first
medium. (The numbering of the media, however, is arbitrary.) Now we shall consider a
special, but important case wherein the wave incident on�0 is generated by a point source
situated at 	x0 in the first medium, with the Green-function radiation function given by
(5.1.38). The incident wave is then represented by the Green function G(	x ′, 	x0, ω), with
Pinc(	x ′) = GA(	x ′, 	x0) and T 0(	x ′) = T (	x ′, 	x0). Consequently, (5.1.74) yields the acoustic
“Kirchhoff Green function” GK (	x, 	x0, ω):

GK (	x, 	x0, ω) = −iω
∫
�0

A(	x ′)G(	x ′, 	x0, ω)G(	x ′, 	x, ω)d�0(	x ′). (5.1.75)

Let us emphasize that both pressure ray-theory Green functions in the integral represent
smooth medium Green functions, not influenced by �0. FunctionA(	x ′) is given by any of
the two expressions (5.1.73). All quantities in (5.1.73) are taken at 	x ′ on �0.

The function A(	x ′) may be specified for the reflected waves, with both incident wave
and point 	x situated in the first medium, and for the transmitted waves, with point 	x situated
in the second medium, and the wave incidents at �0 from the first medium.

For reflected waves (point 	x in the first medium), unit normal 	n is oriented into the
second medium. We have ρ̃ = ρ1, c̃ = c1, 	n · 	pinc = (cos i1)/c1, 	n · 	p r = −(cos i1)/c1,
	n · 	p t = (cos i2)/c2, and 	n · 	̃p = (cos ĩ)/c1. Angles i1, i2, and ĩ have an obvious meaning,
with (sin i2)/c2 = (sin i1)/c1. In general, angle ĩ is different from the specular angle i1.
Using any of the two expressions of (5.1.73), we obtain the weighting function of the
reflection Kirchhoff integral:

A(	x ′) = 2 cos i1
ρ1c1

ρ2c2 cos ĩ − ρ1c1 cos i2
ρ2c2 cos i1 + ρ1c1 cos i2

. (5.1.76)

The second factor in (5.1.76) resembles the pressure reflection coefficients Rr . However,
it is only equal to it if ĩ equals the specular angle i1. Otherwise, for ĩ �= i1, the factor is
different from Rr .

For transmitted waves (point 	x in the second medium), unit normal 	n is oriented into
the first medium. We have ρ̃ = ρ2, c̃ = c2, 	n · 	pinc = −(cos i1)/c1, 	n · 	p r = (cos i1)/c1,
	n · 	p t = −(cos i2)/c2, and 	n · 	̃p = (cos ĩ)/c2. Any of the two expressions of (5.1.73) then
yields the weighting function of the transmission Kirchhoff integral:

A(	x ′) = 2 cos i1( cos ĩ + cos i2)

ρ2c2 cos i1 + ρ1c1 cos i2
= cos ĩ + cos i2

ρ2c2
Rt . (5.1.77)

Here Rt is the pressure transmission coefficient.
It may be of some interest to specify the Kirchhoff integrals (5.1.74) and (5.1.75) for

a wave incident at an auxiliary surface �0 situated in a smooth medium. The expression
forA(	x ′), given by (5.1.73), simplifies because ρ1 = ρ2 = ρ̃, c1 = c2 = c̃, and i1 = i2. For
the transmitted wave, we then obtain

A(	x ′) = (ρ1c1)
−1(cos ĩ + cos i1); (5.1.78)

see (5.1.77). If we wish to apply the Kirchhoff integral (5.1.74) or (5.1.75) to�0 represent-
ing a wavefront in a smooth medium, we can use (5.1.78) with i1 = 0 for the transmitted
wave:

A(	x ′) = (ρ1c1)
−1(cos ĩ + 1). (5.1.79)
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2. INITIAL RAY THEORY AMPLITUDES AT Σ0

We shall now derive expressions for the initial ray-theory amplitudes at the initial
surface �0. To do this, we shall apply the method of stationary phase to the Kirchhoff
integral (5.1.68). The distribution of P0(	x ′) and V (n)0(	x ′) along initial surface �0 may be
arbitrary (but smooth).

Let us first briefly discuss several important aspects of the problem. We denote by S
any point on �0. Using the methods of Section 4.5, we can determine the initial slowness
vector 	p(S) and the initial values of 2 × 2 matricesQ(S) and P(S) at S and start ray tracing
and dynamic ray tracing at S. Denote the relevant ray with the initial point at S on �0 by
�0 and choose an arbitrary point R �= S on it. We wish to determine the initial ray-theory
amplitude P(S) at S, assuming P0(S) and V (n)0(S) are known. Thus, we are discussing the
initial-value ray tracing problem; the position of R on �0 plays no important part in it.

In the Kirchhoff integral computations, the situation is different because the position
of receiver point 	x is fixed in advance. To calculate the Kirchhoff integral, it is necessary
to determine rays �̃(	x ′, 	x) connecting receiver point R with all points 	x ′ along �0. These
rays should be calculated by two-point ray tracing, not by initial-value ray tracing from�0.
For high frequencies, however, the situation simplifies. We can use the stationary phase
method, see Bleistein (1984, p. 88), which reduces the Kirchhoff integral computation to
the computation of contributions from one (or several) stationary point(s). Any stationary
point S of the Kirchhoff integral (5.1.68) is defined in such a way that the partial derivatives
of T 0(	x ′) + T (	x ′, 	x) along �0 vanish at S. There may be several such stationary points
along �0, corresponding to several multiple rays from �0 to R, as described in Section
3.10.1.c. The individual stationary points, however, can be treated independently. Here we
shall consider only one of these stationary points. We shall again denote the position of the
stationary point on�0 by S and the relevant ray passing from S to R by�0. It is obvious that
the slowness vector 	p(S) of the elementarywave generated on�0 is tangent to ray�0 at S in
a fluidmediumand is related to 	̃p(S) as 	p(S) = − 	̃p(S). Because the problemof determining
the initial slowness vector 	p(S) and the 2 × 2 matrices Q(S) and P(S) at point S of initial
surface �0 was treated in great detail in Section 4.5, we shall not repeat the discussion
here, but we shall concentrate only on determining the initial ray-theory amplitudes P(S).

As in Section 4.4.1, we introduce the local Cartesian coordinate system zi with its
origin at S and with the z3-axis perpendicular to �0 at S. Coordinates z1 and z2 also play
the role of ray parameters, γ1 = z1 and γ2 = z2. For more details and for the specification
of the basis vectors 	e1(S) and 	e2(S), see Section 4.5.3.

Theproblemofdetermining the initial ray-theory amplitudes P(S) has a local character,
similar to the problemof determining the reflection/transmission amplitudes on an interface
in the zeroth-order approximation of the ray method. The initial ray-theory amplitudes
P(S) do not depend on factors such as the curvature of �0 at S, the gradients of medium
parameters on both sides of�0 at S, and the second tangential derivatives of the initial travel
time T 0(	x ′) at S. Consequently, we can consider a planar surface �0, the homogeneous
halfspaces on both sides of �0, and ∂2T 0/∂z I∂zJ = 0 at S. It should be emphasized that
the foregoing factors influence the ray-theory amplitudes at R as a result of geometrical
spreading. They also influence the initial values of the 2 × 2 matrices Q(S) and P(S) for
dynamic ray tracing, and, consequently, Q(R) and P(R). They, however, do not influence
the initial ray-theory amplitudes P(S).

The stationary point contribution of the Kirchhoff integral (5.1.68) follows:

p(R, ω) = −iωa(S)GA(S, R) exp[iω(T 0(S) + T (S, R))]

×(2π/ω)|detM(S, R)|−1/2 exp
[
iπ4 SgnM(S, R)

]
; (5.1.80)
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see Bleistein (1984, Equation (2.8.23)). Here GA(S, R) = ρ̃(S)/4πr , where r is the dis-
tance between S and R. M(S, R) is a 2 × 2 Hessian matrix with components

MI J (S, R) = [∂2(T 0 + T )/∂z I∂zJ ]S.

Due to the local principle, (∂2T 0/∂zI∂z J )S = 0, andMI J (S, R) can be calculated using
(4.4.37). We obtain

M(S, R) = G(S)M(S, R)GT (S) = 1

c̃r

(
cos2 ĩ(S) 0
0 1

)
.

This yields

|detM(S, R)|−1/2 = c̃r/cos ĩ(S), SgnM(S, R) = 2. (5.1.81)

Inserting (5.1.81) into (5.1.80) yields

p(R, ω) = (ρ̃(S)c̃(S)/2 cos ĩ(S))a(S) exp[iω(T 0(S) + T (S, R)]. (5.1.82)

Because (5.1.82) actually represents a plane wave generated on�0 in our simplifiedmodel,
its amplitude is constant along the ray, P(R) = P(S). Thus, the initial-value ray-theory
amplitude is given by the simple relation

P(S) = ρ̃(S)c̃(S)a(S)

2 cos ĩ(S)
= 1

2

[
P0(S) − ρ̃(S)c̃(S)

cos ĩ(S)
V (n)0(S)

]
. (5.1.83)

This is the final result.
The minus sign in (5.1.83) may seem surprising because it would yield P(S) = 0 for

�0 situated in a smooth medium, if V (n)0 = P0(cos ĩ)/ρ̃c̃. We must, however, remember
that the normal 	n to�0 is oriented outward of the volume in which the receiver is situated.
If P0(S) and V (n)0(S) correspond to an elementary wave propagating toward R, V (n)0(S) =
−P0(cos ĩ)/ρ̃c̃ and (5.1.83) yields P(S) = P0(S).

Although we have derived (5.1.83) using the local principle, it is valid generally, as
well as for a curved �0 at S, for nonvanishing gradients of medium parameters on both
sides of �0 at S, and for [∂2T 0/∂zI ∂zJ ]S �= 0. This can be verified by direct derivation,
which is, however, more cumbersome than that presented here.

For completeness, we shall now present the final initial-value ray-theory expression for
the pressure wavefield, generated at the initial surface �0 situated in a laterally varying
fluid medium containing interfaces. Consider point S on �0, and construct ray �0 from
S, as described in Section 4.5. Also determine Q(S) and P(S) and perform dynamic ray
tracing along �0. We can then determine the geometrical spreading L = |detQ|1/2 along
the whole ray �. The pressure wavefield at point R situated on �0 is given by the relation

p(R, ω) = P(R) exp[iω(T 0(S) + T (R, S))]

P(R) =
[
ρ(R)c(R)

ρ(S)c(S)

]1/2 L(S)
L(R)R

C exp[iT c(R, S)]P(S).
(5.1.84)

Here P(S) is given by (5.1.83). All symbols have the same meaning as in (5.1.33). For R
situated on an interface, P(R) should be multiplied by the conversion coefficient D(R);
see Section 5.1.8.

Relations (5.1.83) and (5.1.84) can also be used if P0(S) and V (n)0(S) correspond to
some elementary body wave incident at �0. We again denote the angle of incidence at S
by i1(S). Angle ĩ(S) satisfies Snell’s law, c̃

−1(S) sin ĩ(S) = c−1
1 (S) sin i1(S). For reflected

waves, we have ĩ1 = i1, c̃ = c1, and ρ̃ = ρ1. Similarly, for the transmitted wave ĩ = i2,
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c̃ = c2, and ρ̃ = ρ2. We can then use (5.1.76) for reflected waves and obtain A(S) =
(2 cos i1/ρ1c1)Rr (S). Similarly, for transmitted waves we use (5.1.77) and obtain A(S) =
(2 cos i2/ρ2c2)Rt (S). Equations (5.1.72) and (5.1.83) yield very simple relations:

P(S) = Rr (S)Pinc(S) for reflected waves,

P(S) = Rt (S)Pinc(S) for transmitted waves.
(5.1.85)

Thus, we can use the ray-theory amplitude of the incident wave Pinc(S), multiplied by
the appropriate pressure R/T coefficient, to represent the initial ray-theory amplitude in
(5.1.84). This result is not surprising; it fully corresponds to seismological intuition.

Equations (5.1.85) simplify further if initial surface �0 is not an interface, but rather
merely an auxiliary surface in a smooth medium. Then c1 = c2, ρ1 = ρ2, Rr = 0, and
Rt = 1. Consequently, (5.1.85) yields

P(S) = 0 for reflected waves,

P(S) = Pinc(S) for transmitted waves.
(5.1.86)

Relations (5.1.86) have an obvious meaning. There is no reflection at auxiliary surface�0,
and the transmission amplitude equals the incident amplitude. Otherwise, all equations
remain the same. If �0 corresponds to a wavefront in a smooth medium, we can again use
(5.1.86) for the initial amplitude P(S). Reflections are not generated, and for transmissions
P(S) = Pinc(S). Even the solution of the kinematic part of the problem, described in
Sections 4.5.1 through 4.5.3, simplifies considerably because T 0(γ1, γ2) is constant along
the wavefront. The rays are then normal to �0.

Consequently, intermediate ray-theory solutions can be stored along auxiliary reference
surfaces�0 and used further for ray computations. We would proceed as follows. Consider
an arbitrary elementary wave incident on�0.We can parameterize�0 by ray parameters γ1
and γ2 of the incident wave. Each point of incidence on �0 then has parameters γ1 and γ2,
corresponding to the parameters of the incident ray at that point.We can then store the travel
time of incident wave T 0(γ1, γ2) and the “smoothmedium” pressure amplitude Pinc(γ1, γ2).
The values of T 0(γ1, γ2) and Pinc(γ1, γ2), stored along�0, together with the information on
which side of �0 the wave is incident at �0, are quite sufficient to recover completely the
reflected and transmitted wavefields in the zeroth-order approximation of the ray method.

Because the computation of the initial slowness vectors and initial values of Q(S) and
P(S) from T 0(γ1, γ2), using the general methods described in Sections 4.5.1 through 4.5.3,
may be time-consuming, it may be convenient to store along�0 also some other quantities
related to the incident wave (slowness vector, matrices Q and P, and the like). For more
details, refer to Section 5.5 of Červený, Klimeš, and Pšenčı́k (1988b).

3. REDUCTION TO THE RAY-THEORY SOLUTIONS – GENERAL CASE
In the previous derivation, we determined expressions for the initial ray-theory am-

plitudes on the initial surface �0, using the principle of locality. Here we shall consider
a quite general case of a curved surface �0, laterally varying layered structures on both
sides of �0, and an arbitrary distribution of T 0 along �0. We shall consider an elemen-
tary incident wave, generated by a point source situated at 	x0, and the receiver situated
at 	x . Both the incident and R/T waves may be arbitrarily multiply reflected/transmitted.
We shall calculate the wavefield of a selected elementary wave, specified by a proper ray
code, using two methods. First, we shall use the standard zeroth-order approximation of
the ray method; see (5.1.36). Second, we shall apply the method of stationary phase to
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the Kirchhoff integral (5.1.74). We shall prove that both methods yield exactly the same
results, even for the general model under consideration. In the derivation, it will be very
convenient to use certain general properties of the Fresnel zone matrix.

We shall use the Kirchhoff integral (5.1.74), with Pinc(	x ′) = Pinc(	x ′, 	x0) and GA(	x ′, 	x)
given by the relations:

Pinc(	x ′, 	x0) =
[
ρ(	x ′)c(	x ′)
ρ(	x0)c(	x0)

]1/2 exp[iT c(	x ′, 	x0)]
L(	x ′, 	x0) RC (	x ′, 	x0)G(	x0; γ1, γ2),

GA(	x ′, 	x) = [ρ(	x ′)c(	x ′)ρ(	x)c(	x)]1/2
4πL(	x ′, 	x) exp[iT c(	x ′, 	x)]RC (	x ′, 	x).

The individual symbols have the same meaning as in (5.1.36) and (5.1.40). RC (	x ′, 	x0)
denotes the complete R/T coefficient along the ray from 	x0 to 	x ′, and RC (	x ′, 	x) denotes
the complete R/T coefficient along the ray from 	x to 	x ′. Quantities ρ(	x ′) and c(	x ′) are
taken at the appropriate side of �0.

At the stationary point, the tangential components of the slowness vectors of the incident
and generated R/T waves are equal. Consequently, Snell’s law is satisfied there. We denote
the position of the stationary point on �0 by two symbols, Q and Q̃, corresponding to the
point of incidence (Q), and to the relevant R/T point (Q̃). We also denote source point 	x0
by S and receiver point 	x by R. At the point of incidence Q, we introduce local Cartesian
coordinates zi using the standard option (4.4.21). The basis vectors 	e1(Q̃) and 	e2(Q̃) of the
ray-centered coordinate system at the R/T point Q̃ are determined by the standard option
(2.3.45).

The stationary point contribution of the Kirchhoff integral (5.1.74) is then as follows:

p(R, ω) = −iωA(Q̃)Pinc(Q, S)GA(Q̃, R) exp[iω(T 0(Q, S) + T (Q̃, R))]

×(2π/ω)|detM(Q; R, S)|−1/2 exp
[
iπ4 SgnM(Q; R, S)

]
.

(5.1.87)

see Bleistein (1984) and (5.1.80). Here M(Q; R, S) = M(Q̃; R, S) is the 2 × 2 Hessian
matrix with components

MI J (Q; R, S) = [∂2(T 0(zK ) + T (zK ))/∂z I∂zJ ]Q = MF
I J (Q; R, S).

(5.1.88)

Function T 0(z I ) represents the distribution of the travel time of the incident wave (with a
point source at S) along �0, and T (z I ) represents the distribution of the travel time along
�0 due to a point source at R. As shown in Section 4.4.8, M(Q; R, S) equals the Fresnel
zone matrixMF (Q; R, S); see (4.4.105). Sgn M denotes the signature of M, that is, the
number of positive eigenvalues of M minus the number of its negative eigenvalues.

Inserting expressions for Pinc(Q, S) and GA(Q̃, R) into (5.1.87) yields

P(R, ω) = − 1
2 iA(Q̃)

[
ρ(R)c(R)

ρ(S)c(S)

]1/2
G(S; γ1, γ2)

× exp[iω(T 0(Q, S) + T (R, Q̃))]

× [ρ(Q)c(Q)ρ(Q̃)c(Q̃)]1/2RC (Q̃, R)RC (Q, S)

× exp
[
iT c(Q, S) + iT c(Q̃, R) + i π4 SgnM

F (Q; R, S)
]

L(Q, S)L(Q̃, R)|detMF (Q; R, S)|1/2 .

(5.1.89)
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The expression appears to be very cumbersome, but it can be simplified considerably. Using
(4.8.30), we obtain

L(Q, S)L(Q̃, R)|detMF (Q; R, S)|1/2 = (cos i(Q) cos i(Q̃))1/2L(R, S).
(5.1.90)

Here i(Q) is the angle of incidence, and i(Q̃) is the angle of R/T. Equation (4.12.11) with
(4.12.12) yields

T c(Q, S) + T c(Q̃, R) + π
4 SgnM

F (Q; R, S) = π
2 + T c(R, S). (5.1.91)

Both relations indicate the importance of the Fresnel zone matrix MF (Q; R, S) in trans-
forming the results obtained from the Kirchhoff integral by the stationary phase method to
the ray-theory expressions. We take into account A(Q̃) = (2 cos i(Q̃)/ρ(Q̃)c(Q̃))R(Q),
where R(Q) is the appropriate pressure R/T coefficient at Q on �0(see (5.1.76) and
(5.1.77)) and obtain

RC (R, Q̃)

[
ρ(Q)c(Q) cos i(Q̃)

ρ(Q̃)c(Q̃) cos i(Q)

]1/2
R(Q)RC (Q, S)

= RC (R, Q̃)R(Q)RC (Q, S) = RC (R, S). (5.1.92)

Thus, the complete R/T coefficient RC (R, S) now also includes the normalized R/T co-
efficientR(Q) at Q on�0, which was not included inRC (R, Q̃) andRC (Q, S). Inserting
(5.1.90) through (5.1.92) into (5.1.89) yields the final, well-known ray-theory expressions:

p(R, ω) =
[
ρ(R)c(R)

ρ(S)c(S)

]1/2RC (R, S)

L(R, S) G(S; γ1, γ2)

× exp[iωT (R, S) + iT c(R, S)]; (5.1.93)

see (5.1.36) for comparison.Herewehaveused the standardnotationT (R, S) = T (R, Q̃) +
T (Q, S). Consequently, the application of the stationary phase method to the Kirchhoff
integral yields the same result as the zeroth-order ray method.

An important remark. The ray-theory solution (5.1.93) can also be obtained from
(5.1.84), using (5.1.85) and an appropriate relation for Pinc(S).

5.1.12 Initial Ray-Theory Amplitudes at a Smooth Initial Line

in a Fluid Medium

The initial directions of rays generated at an initial line C0 and relevant initial values of
matrices Q and P were determined in Section 4.5.5. Thus, ray tracing and dynamic ray
tracing from an initial line C0 can be performed. To obtain complete ray-theory solutions,
we must also specify the initial ray-theory amplitudes at an initial line C0.

In the same way as for a point source, geometrical spreading vanishes at the initial line
because detQ = 0 there; see (4.5.57). Thus, we obtain nonvanishing ray-theory amplitudes
along the ray� from the initial line only if the initial ray-theory amplitude is infinite at the
initial line. The product of initial ray-theory amplitude and geometrical spreading, however,
must be finite there. As in the case of a point source, it will be useful to introduce some sort
of line source radiation functions.Wemust, however, remember that QI J = 0 for all I, J at
a point source, but Q22 �= 0 at the initial line; see (4.5.57). Consequently, the point-source
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radiation functions and the line-source radiation functions differ. The line-source radiation
function at point S of the line source C0 does not depend on the curvature and torsion of
the initial line C0 at S, on the inhomogeneity of the medium in the vicinity of S, and on the
second derivatives of the initial travel time T 0 at S on C0. All these factors are included
in Q(S) and P(S) and influence the geometrical spreading but not the radiation function.
Thus, in the computation of radiation function at S, we can consider a straight initial line
C0 situated in a homogeneous medium, with T 0′′ = 0, where T 0 is the initial travel time
along C0 and the primes denote the derivatives along C0.

A similar problem was treated in Section 2.6.3, using the representation theorem.
Here we shall consider a more general situation than in Section 2.6.3, considering initial
line amplitudes P0 and initial travel times T 0 varying along the initial line C0 (with
T 0′′ = 0). The relevant results will be derived using the representation theorem and the
method of stationary phase. The final expressions for the line-source radiation functions
will be obtained by matching these solutions with the ray-theory solutions for the same
case. These radiation functions will be used to derive general ray-theory solutions for an
arbitrary initial line C0, situated in a general laterally varying 3-D layered structure, with
nonvanishing curvature and torsion and with an arbitrary distribution of initial travel times
along C0.

1. REPRESENTATION THEOREM SOLUTIONS
We shall closely follow the treament of Section 2.6.3. The straight initial line C0 is

parallel to the x2-axis in a homogeneous medium. We consider, however, a more general
source term than (2.6.22):

f p(x j , ω) = δ(x1 − x01)δ(x3 − x03)P
0(x2) exp[iωT

0(x2)]. (5.1.94)

We shall call P0(x2) the initial line amplitude along C0 and T 0(x2) the initial travel time
along C0. We shall consider a receiver R situated in the plane x2 = 0, at a distance rl from
the initial line C0. Then the exact solution for the pressure wavefield at point R is given by
the representation theorem,

p(R, ω) = 1
4ρπ

−1

∫ ∞

−∞
P0(l)

(
l2 + r2l

)−1/2

× exp
[
iω
((
l2 + r 2l

)1/2
/c + T 0(l)

)]
dl; (5.1.95)

see (2.6.7) and (2.6.23). Here we have used l instead of x2 as the arclength along C0. (The
results will be modified for an arbitrary monotonous variable γ2 along C0 at the end of this
section.)

Now we shall apply the method of stationary phase to (5.1.95), assuming ω → ∞. The
stationary point l = l0 is defined by the relation φ

′
(l0) = 0, where φ(l) = (l2 + r2l )

1/2/c +
T 0(l):

φ′(l0) = l0/cR0 + T 0′
(l0) = 0, R0 = (

l20 + r2l
)1/2
. (5.1.96)

We denote the stationary point l = l0 situated on the initial line C0 by S. For T 0′
(l0) �= 0,

the stationary point S is not situated in the plane x2 = 0 as R but rather at a distance l0
from it. The ray � generated at S and passing through R is inclined with respect to the
plane x2 = 0. The quantity R0 denotes the distance between S and R. We introduce the
acute angle ϕ between ray � and the plane perpendicular to C0 at S. From (5.1.96), we
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obtain

cos ϕ = rl/R0 = (1 − c2T 0′2)1/2. (5.1.97)

For T 0′ = 0 (exploding initial line C0), we obtain ϕ = 0 and R0 = rl . The one-parameteric
system of rays generated at S on C0 then forms a central ray field in a plane perpendicular
toC0 at S. In all other cases, the one-parameteric system of rays generated at S onC0 forms
a conical surface, with the apex angle given by π/2 − ϕ at S. Note that |T 0′ | is constant
in our model and equals 1/b, where b is the apparent velocity along C0. For c > b, the
generated waves would be inhomogeneous. Consequently, we consider only c < b.

As T 0′′ = 0 in our treatment, (5.1.96) yields immediately φ′′(l0) = r2l /cR
3
0 . The method

of stationary phase then yields

p(R, ω)
.= ρ

4π

P0(S)√
R0

√
c

cosϕ
F(ω) exp[iω(R0/c + T 0(S))]. (5.1.98)

Here F(ω) is a two-dimensional frequency filter, given by (2.6.29) and R0 is the distance
between S and R. This is the final expression for the pressure wavefield generated by
a straight line source C0 situated in a homogeneous medium, assuming T 0′′ = 0. For
P0(S) = 1 and T 0(S) = 0, we obtain ϕ = 0 and R0 = rl and (5.1.98) yields the 2-D acous-
tic Green function (2.6.24).

2. RAY-THEORY SOLUTIONS
Now we shall derive an alternative expression to (5.1.98) for the pressure wavefield

p(R, ω) by the standard raymethod.The solution contains the line-source radiation function
GL (S; γ1), which cannot be determined by the ray method itself. Matching the ray-theory
solution with the representation theorem solution for the same model, we shall express
GL (S; γ1) in terms of initial line amplitudes P0(S).

We shall use the same approach as in Section 5.1.2 and introduce an auxiliary point S′

on the ray � between S and R, close to S. Then,

P(R) =
[
ρ(R)c(R)

ρ(S′)c(S′)

]1/2L(S′)
L(R) exp[iT

c(R, S′)]P(S′); (5.1.99)

see (5.1.3). This is a general relation, valid even for inhomogeneousmedia. Nowwe assume
that the medium close to S is locally homogeneous. Then we can use (4.6.2) and (4.8.3) to
obtain

L(S′) = |detQ(S′)|1/2 = |det [Q(S) + cR0P(S)]|1/2.
Here R0 = R0(S′, S) is the distance between S′ and S, and Q(S) and P(S) are given by
(4.5.57). Because we use the parameter γ2 = l (arclength) along the line sourceC0, we can
use G = 1 and σ = c−1cosϕ in (4.5.57). Then we obtain

L(S′) = cosϕ |R0(S
′, S)(1 + R0(S

′, S)σ−1P22)|1/2, (5.1.100)

where P22 is given by (4.5.58). Inserting (5.1.100) into (5.1.99) and taking the limit S′ → S,
we obtain

P(R) =
[
ρ(R)c(R)

ρ(S)c(S)

]1/2 exp[iT c(R, S)]

L(R) GL (S; γ1), (5.1.101)
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where GL (S; γ1) is the line-source radiation function given by the relation

GL (S; γ1) = lim
S′→S

(L(S′)P(S′)) = lim
S′→S

(cosϕ(S′)
√
R0(S′, S)P(S′)).

(5.1.102)

The relation (5.1.101) is general and valid for initial lines C0 with nonvanishing curvature
and torsion, situated in an inhomogeneous medium, with T 0′

(S) �= 0 and T 0′′
(S) �= 0.

To match it with the representation theorem solution (5.1.98), we must specify it for a
homogeneous medium, for a straight line source C0 and for T 0′′

(S) = 0. It is simple to
express L(R) for such a case because we can use (5.1.100), only we replace R0(S′, S) by
R0(R, S). In our model, we also have P22 = 0. Consequently,

P(R) = GL (S; γ1)/
√
R0(R, S) cosϕ(S), (5.1.103)

and the pressure wavefield at point R is given by the relation

p(R, ω) = P(R) exp[iωT (R, S)], with T (R, S) = R0(R, S)/c.

(5.1.104)

Equation (5.1.103) nicely shows the physical meaning of the line-source radiation function
GL (S; γ1). Consider a one-parameteric system of rays generated at a point S situated on an
initial lineC0, parameterized by the ray parameter γ1. As we know, the system of rays forms
a conical surface, with the apex angle π/2 − ϕ. Then the line-source radiation function
GL (S; γ1) represents the amplitude at a distance 1/cos2ϕ(S) from S, measured along ray
� generated at S on C0, parameterized by the ray parameter γ1. In other words, GL (S; γ1)
represents a distribution of amplitudes along a circular intersection of the ray conical
surface with a plane perpendicular to the cone axis, situated at a distance 1/cos2ϕ from
S (measured along rays). If the initial travel time T 0 is constant along C0, the line-source
radiation function GL (S; γ1) represents the amplitude at a unit distance fromC0 in the plane
perpendicular to C0 at S. Note that the position of the point S may be parameterized by
the ray parameter γ2; see Sections 3.10.1 and 4.5.5. Consequently, GL (S; γ1) represents a
two-parameteric radiation function.

3. GENERAL INITIAL LINE RAY-THEORY SOLUTIONS IN 3-D MODELS
Matching (5.1.104) with (5.1.98) offers three conclusions.

a. First, the ray-theory solutions should be multiplied by the two-dimensional fre-
quency filter F(ω), given by (2.6.29).

b. The travel time T (R, S) in the exponent of (5.1.104) should be supplemented by
the initial travel time T 0(S).

c. The initial-line radiation function GL (S; γ1) is related to the initial line amplitude
P0(S) as follows:

GL (S; γ1) = 1
4π

−1ρ(S)
√
c(S)P0(S). (5.1.105)

Now we shall present final ray-theory expressions for the pressure wavefield generated
at a line source C0. We consider a smooth 3-D initial line C0 with a (possibly) nonvan-
ishing curvature and torsion. We shall specify the initial line by relations 	x = 	x(γ2), as
in Section 4.5.5 (see (4.5.40)), where γ2 is an arbitrary monotonous parameter along C0

(not necessarily the arclength l). We also use G = ∂	x/∂γ2 · ∂	x/∂γ2; see (4.5.41). The dis-
tribution of the initial travel time T 0(γ2) and the line-source amplitudes P0(γ2) along C0

may be arbitrary; we only assume that P0(γ2) is smooth and that T 0′
(γ2) = ∂T 0(γ2)/∂γ2



448 RAY AMPLITUDES

and T 0′′
(γ2) = ∂2T 0(γ2)/∂γ 2

2 are continuous. Finally, we consider an arbitrary multiply
reflected/transmitted elementary wave in a 3-D laterally varying layered structure. Then
(5.1.101) and (5.1.105) yield

p(R, ω) = P(R)F(ω) exp[iω(T (R, S) + T 0(S))], (5.1.106)

with

P(R) =
[
ρ(R)c(R)

ρ(S)c(S)

]1/2 exp[iT c(R, S)]

L(R) RCD(R)GL (S; γ1). (5.1.107)

HereRC is the complete R/T coefficient (see (5.1.35)),D(R) is the pressure conversion co-
efficient (see (5.1.48) or (5.1.49)), T c(R, S) is the phase shift due to caustics (see (5.1.34)),
and GL (S; γ1) is the line-source radiation function given by (5.1.105). The relation (5.1.97)
for cosϕ(S) should be modified here for a general parameter γ2 along the initial line C0:

cosϕ(S) = [1 − c2(S)G−1(S)T 0′2(S)]1/2, (5.1.108)

with G = ∂	x/∂γ2 · ∂	x/∂γ2. Geometrical spreading L(R) in (5.1.107) can be computed
using standard relations (4.6.2),

L(R) = |detQ(R)|1/2 = |det (Q1(R, S)Q(S) +Q2(R, S)P(S))|1/2,
with Q(S) and P(S) given by (4.5.57).

4. 2-D COMPUTATIONS WITH A LINE SOURCE
Nowwe shall discuss a situation that has found useful applications in 2-D computations.

Consider a 2-D laterally varying layered model in which the velocity and density are
constant along any normal to the plane of rays�‖. Moreover, let us consider a straight line
source C0 perpendicular to �‖ and intersecting �‖ at point S, with the initial travel time
T 0 = 0 along C0. Note that the computations would not be two-dimensional if we allowed
T 0′ �= 0 because the rays generated at S would form a conical surface not confined to �‖.
We shall use the notation of Section 4.13 and specify the unit basis vectors 	e1, 	e2, and 	e3
as explained there. The rays in the plane �‖ form a central ray field. To compute P(R),
we can then use L(R) = c−1/2(S)L‖(R, S) where L‖(R, S) = |Q‖

2(R, S)|1/2. This relation
follows from (4.13.46), (4.13.55), and (4.13.56), taking into account that P‖(S) = c−1(S);
see (4.5.60). Consequently,

P(R) =
[
ρ(R)c(R)

ρ(S)

]1/2 exp[iT c(R, S)]

L‖(R, S)
RCD(R)GL (S; γ1)

= [ρ(R)c(R)c(S)ρ(S)]1/2

4πL‖(R, S)
exp[iT c(R, S)]RCD(R)P0(S).

(5.1.109)

5. 2-D PRESSURE RAY-THEORY GREEN FUNCTION
The amplitude of the 2-D pressure ray-theory Green function G2D(R, S, ω) is obtained

from (5.1.109), ifwe insert there P0(S) = 1; see Section 2.6.3. Consequently,G2D(R, S, ω)
is given by the relation

G2D(R, S, ω) = [ρ(S)ρ(R)c(S)c(R)]1/2

4πL‖(R, S)
RCD(R)F(ω)

× exp[iωT (R, S) + iT c(R, S)]; (5.1.110)
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see (5.1.106) and (5.1.109). In the time domain, we obtain

G2D(R, t ; S, t0) = [ρ(S)ρ(R)c(S)c(R)]1/2

4πL‖(R, S)
RCD(R)

× exp[iT c(R, S)](
√
2H (ζ )ζ−1/2)(A), (5.1.111)

where ζ = t − t0 − T (R, S). See (A.3.9) for (H (ζ )ζ−1/2)(A).

5.2 Elastic Isotropic Structures

In this section, we shall derive equations for the amplitudes and for the components of
the displacement vector of high-frequency elastic body waves propagating in isotropic
media with variable Lamé’s elastic parameters λ(xi ) and µ(xi ) and density ρ(xi ). The
displacement vector 	u(xi , t) of an elastic wave propagating in the medium can be expressed
in the following general form:

	u(xi , t) = 	U (xi )F(t − T (xi )); (5.2.1)

see (2.4.14). Here F(ζ ) is a high-frequency analytical signal, 	U (xi ) is a vectorial ray-
theory complex-valued amplitude function, and T (xi ) is the travel time of the wave.
For more details on analytical signal F(ζ ), see the introduction to Section 5.1 and Ap-
pendix A.3.

As we know from Section 2.4.2, two high-frequency seismic body waves can propagate
in a smoothly inhomogeneous isotropic medium.

a. P waves. The travel time T (xi ) of the P wave satisfies the P-wave eikonal equa-
tion∇T (xi ) · ∇T (xi ) = 1/α2(xi ), where α(xi ) is the position-dependent velocity of
the P wave, α(xi ) = [(λ(xi ) + 2µ(xi ))/ρ(xi )]1/2. The vectorial amplitude function
	U (xi ) of P waves is given as

	U (xi ) = A(xi ) 	N (xi ); (5.2.2)

see (2.4.26). Here 	N (xi ) denotes the unit vector perpendicular to the wavefront. It
can be expressed in termsof slowness vector 	p(xi ) = ∇T (xi ) using relation 	N (xi ) =
α(xi ) 	p(xi ). Function A(xi ) represents the scalar ray-theory complex-valued ampli-
tude function of P waves. To simplify the terminology, we shall call it simply the
amplitude function of P waves, or also the amplitude of P waves.

b. S waves. The travel time T (xi ) of the S wave satisfies the S-wave eikonal equa-
tion ∇T (xi ) · ∇T (xi ) = 1/β2(xi ), where β(xi ) is the position-dependent velocity
of the S wave, β(xi ) = (µ(xi )/ρ(xi ))1/2. The vectorial complex-valued ray-theory
amplitude function 	U (xi ) of S waves reads

	U (xi ) = B(xi )	e1(xi ) + C(xi )	e2(xi ); (5.2.3)

see (2.4.28). Here 	e1 and 	e2 are the ray-centered basis vectors (see Section 4.1.2),
also called polarization vectors of S waves. The algorithms for their evaluation
along rays are discussed in Section 4.1.3. Functions B(xi ) andC(xi ) represent scalar
complex-valued ray-centered components of the vectorial amplitude function 	U (xi )
of S waves. We shall call B(xi ) the S1 component and C(xi ) the S2 component
of the S wave. Thus, the S1 component represents the component of amplitude
vector 	U along 	e1, and the S2 component represents the component of 	U along
	e2. We shall again simplify the terminology and refer to B(xi ) as the amplitude
function (or amplitude) of the S1 wave and to C(xi ) as the amplitude function (or
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amplitude) of the S2 wave. We remind the reader, however, that S1 and S2 are not
two independent waves; they merely represent two ray-centered components of the
vectorial complex-valued amplitude function of the S wave.

5.2.1 Vectorial Complex-Valued Amplitude Functions of P and S Waves

We can also express (5.2.1) through (5.2.3) in a more general form, valid both for P and S
waves:

	u = u(q)1 	e1 + u(q)2 	e2 + u(q)3 	e3,
	U = U (q)

1 	e1 +U (q)
2 	e2 +U (q)

3 	e3.
(5.2.4)

Unit vectors 	e1, 	e2, and 	e3 ≡ 	N are the polarization vectors, introduced in Section 4.1.2,
and form a triplet of basis vectors of the ray-centered coordinate system.

Quantities u(q)1 , u
(q)
2 , and u(q)3 represent the ray-centered components of displace-

ment vector 	u, andU (q)
1 ,U

(q)
2 , andU (q)

3 represent the ray-centered components of vectorial
amplitude function 	U . Thus, Equation (5.2.1) can be expressed in ray-centered coordinate
component form as

u(q)i (x j , t) = U (q)
i (x j )F(t − T (x j )). (5.2.5)

It is obvious that U (q)
i , i = 1, 2, 3, have different meanings for P and S waves:

a. For P waves,

U (q)
1 = U (q)

2 = 0, U (q)
3 = A. (5.2.6)

b. For S waves,

U (q)
1 = B, U (q)

2 = C, U (q)
3 = 0. (5.2.7)

In the following, we shall also use the matrix notation. We introduce two 3 × 1 matrices
û(q) and Û(q), related to the ray-centered components of the displacement vector and to the
ray-centered components of the vectorial amplitude function:

û(q) ≡ (
u(q)1 , u

(q)
2 , u

(q)
3

)T
, Û(q) ≡ (

U (q)
1 , U

(q)
2 , U

(q)
3

)T
. (5.2.8)

Equations (5.2.1) and (5.2.5) can then be expressed in matrix form,

û(q) = Û(q)F(t − T ). (5.2.9)

We again emphasize the validity of relations (5.2.6) for P waves and of (5.2.7) for S waves.
If we denote Û(q) = Û(q)

P for P waves, and Û(q) = Û(q)
S for S waves,

Û(q)
P = (0, 0, A)T , Û(q)

S = (B, C, 0)T . (5.2.10)

As we have seen, it is very convenient to express vectorial amplitude function 	U in
terms of ray-centered components. In the case of Pwaves, two components of 	U vanish, and
in the case of Swaves, one component of 	U vanishes. Nevertheless, it will prove convenient
inmany applications to express displacement vector 	u and vectorial amplitude function 	U in
terms of components in other coordinate systems, mainly in general Cartesian components
or in some local Cartesian components. If we use the matrix notation, it is necessary to
distinguish between components in different coordinate systems by special notation. We
shall do this by including appropriate coordinate system in brackets in the superscript in the
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sameway that (q) has been used to emphasize the ray-centered coordinate system q1, q2, q3
in (5.2.4).

Thus, in general Cartesian coordinate system x1, x2, x3, we shall use the notation

û(x) = (
u(x)1 , u

(x)
2 , u

(x)
3

)T
, Û(x) = (

U (x)
1 , U

(x)
2 , U

(x)
3

)T
. (5.2.11)

As in (5.2.9), we can write

û(x) = Û(x)F(t − T ). (5.2.12)

In any other curvilinear orthogonal coordinate systems ξ 1, ξ 2, ξ 3,

û(ξ ) = (
u(ξ )1 , u

(ξ )
2 , u

(ξ )
3

)T
, Û(ξ ) = (

U (ξ )
1 , U

(ξ )
2 , U

(ξ )
3

)T
, (5.2.13)

and

û(ξ ) = Û(ξ )F(t − T ). (5.2.14)

To transform mutually Û(q), Û(x), and Û(ξ ), we can use the 3 × 3 transformation matrices Ĥ
and Ĥ(ξ ). Here Ĥ is the transformationmatrix from the ray-centered to the general Cartesian
coordinate system; see Section 4.1.5. We remind the reader that Hkl = elk , where elk is the
k th Cartesian component of unit basis vector 	el . Similarly, Ĥ(ξ ) is the transformationmatrix
from the curvilinear coordinate system ξ1, ξ2, ξ3 to the general Cartesian coordinate system
x1, x2, x3. The transformation relations are

Û(x) = ĤÛ(q), Û(q) = ĤT Û(x),

Û(x) = Ĥ(ξ )Û(ξ ), Û(ξ ) = Ĥ(ξ )−1Û(x), (5.2.15)

Û(q) = ĤT Ĥ(ξ )Û(ξ ), Û(ξ ) = Ĥ(ξ )−1ĤÛ(q).

Relations similar to (5.2.15) are, of course, valid also for the displacement vector compo-
nents.

It is obvious that all the components of matrices Û(ξ ) and Û(x) are, in general, nonvan-
ishing, even though certain elements of matrix Û(q) vanish; see (5.2.6) and (5.2.7).

Some local Cartesian coordinates z1, z2, and z3 will often be used as ξ1, ξ2, and ξ3. We
denote by Ẑ the 3 × 3 transformation matrix from the local Cartesian coordinate system
z1, z2, z3 to the general Cartesian coordinate system x1, x2, x3. A detailed specification of
transformationmatrices Ẑ for local Cartesian coordinate systems connectedwith interfaces
can be found in Section 4.4.1. The transformation relations are then as follows:

Û(x) = ẐÛ(z), Û(z) = ẐT Û(x),

Û(q) = ĜT Û(z), Û(z) = ĜÛ(q),

(5.2.16)

where Ĝ is a 3 × 3 transformation matrix given by the relation Ĝ = ẐT Ĥ.

5.2.2 Continuation of Amplitudes Along a Ray

The simplest continuation relations are obtained for the ray-centered components U (q)
1 ,

U (q)
2 , andU (q)

3 of the vectorial amplitude function 	U . Let us consider ray� and two points
S and R situated on �. Using Equations (3.10.56) and (3.10.58), we obtain the general
relation

Û(q)(R) =
[
V (S)ρ(S)J (S)

V (R)ρ(R)J (R)

]1/2
Û(q)(S). (5.2.17)
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Here ρ is the density, V is the propagation velocity, and J is the ray Jacobian. For P waves,
V = α, and for S waves, V = β in (5.2.17).

An alternative continuation relation uses geometrical spreading L = |J |1/2, and the
phase shift due to caustics T c(R, S) instead of J ,

Û(q)(R) =
[
V (S)ρ(S)

V (R)ρ(R)

]1/2 L(S)
L(R) exp[iT

c(R, S)]Û(q)(S). (5.2.18)

As in the acoustic case, we can write the continuation relation also for the ray-centered
components u(q)1 , u

(q)
2 , and u(q)3 of displacement vector 	u(q). Assume that û(q) is given by

the following relation at the point S,

û(q)(S, t) = Û(q)(S)F(t − T (S)),

where F(ζ ), Û(q)(S), and T (S) are known. We then obtain a simple relation for û(q)(R, t),

û(q)(R, t) =
[
V (S)ρ(S)

V (R)ρ(R)

]1/2 L(S)
L(R)

× exp[iT c(R, S)]Û(q)(S)F(t − T (S) − T (R, S)). (5.2.19)

Here T (R, S) is the travel time from S to R along ray �.

5.2.3 Point-Source Solutions. Radiation Matrices

As in the acoustic case (see Section 5.1.2), Equations (5.2.17) through (5.2.19) cannot be
used if a point source is situated at point S because L(S)Û(q)(S) = 0 for finite Û(q)(S). At
least one component of Û(q)(S) has to be infinite so that

lim
S′→S

{L(S′)Û(q)(S′)} = Û(q)0(S), (5.2.20)

where Û(q)0(S) is finite. Point S′ is situated on �, and limit (5.2.20) is taken along �.
The modified equation (5.2.18), valid also for a point source situated at S, then reads

Û(q)(R) =
[
V (S)ρ(S)

V (R)ρ(R)

]1/2 exp[iT c(R, S)]

L(R) Û(q)0(S). (5.2.21)

It is now convenient to introduce the relative geometrical spreading L(R, S) instead of
L(R); see Section 5.1.2. Then (5.2.20) and (5.2.21) yield

Û(q)(R) =
[
V (S)ρ(S)

V (R)ρ(R)

]1/2 exp[iT c(R, S)]

L(R, S) Ĝ(q)
(S; γ1, γ2). (5.2.22)

where

Ĝ(q)
(S; γ1, γ2) = lim

S′→S
{L(S′, S)Û(q)(S′)}. (5.2.23)

The limit in (5.2.23) is taken along ray � specified by ray parameters γ1 and γ2.
The 3 × 1 columnmatrix Ĝ(q)

(S; γ1, γ2) will be referred to as the ray-centered radiation
matrix, or simply the radiationmatrix. Alternatively, we can also call it the radiation vector.
The components of radiation matrix G(q)

k (S; γ1, γ2) will be called radiation functions, as
in the acoustic case. In fact, all the terminology and explanations related to the acoustic
radiation function also apply to the elastic isotropic radiation functions; see Section 5.1.2.
The only difference is that the radiation matrix has three components, corresponding to
S1, S2, and P waves.
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We shall now express (5.2.22) and (5.2.23) for a homogeneous medium. As for the
acoustic medium in (5.1.9), we obtain

Û(q)(R) = Ĝ(q)
(S; γ 1, γ 2)/V (S)l(R, S),

Ĝ(q)
(S; γ 1, γ 2) = V (S)

[
lim
S′→S

{l(S′, S)Û(q)(S′)}
]
γ 1,γ 2

.

Here l(R, S) is the distance between S and R, and γ 1 and γ 2 are parameters of the ray under
consideration. Thus, in a locally homogeneous medium, the i th component of the radiation
matrix, G(q)

i (S; γ 1, γ 2), represents the distribution of the i th ray-centered component U (q)
i

of vectorial amplitude function 	U along a sphere whose center is at S and radius l(R, S) =
1/V (S).

In addition to radiation functions G(q)
k (S; γ1, γ2), we can again introduce directivity pat-

terns F (q)
k (S; γ1, γ2). In a locally homogeneous medium, G(q)

k (S; γ1, γ2) and F (q)
k (S; γ1, γ2)

are related as follows:

F (q)
k (S; γ1, γ2) = (G(q)

k (S; γ1, γ2)/L(R, S)
)
l(R,S)=1

. (5.2.24)

See the relevant relation (5.1.10) and its discussion in the acoustic case. In the following
text, we shall only use the radiation functions G(q)

k (S; γ1, γ2), and not directivity patterns
F (q)
k (S; γ1, γ2). In isotropic media, the differences between both are only formal because

L(R, S) = V (S)l(R, S). Thedifferenceswill be important in anisotropicmedia; seeSection
5.4.2.

Because the P and S waves generated by the point source must be investiga-
ted independently by the ray method, radiation matrix Ĝ(q)

also must be expressed in-
dependently for P and S waves, much like matrix Û(q) in (5.2.10). Hence,

Ĝ(q)

P = (
0, 0, G(q)

P

)T
, Ĝ(q)

S = (G(q)
S1 , G(q)

S2 , 0
)T
, (5.2.25)

where

G(q)
P (S) = lim

S′→S
{L(S′, S)A(S′)},

G(q)
S1 (S) = lim

S′→S
{L(S′, S)B(S′)}, (5.2.26)

G(q)
S2 (S) = lim

S′→S
{L(S′, S)C(S′)}.

The ray-centered radiation matrix can be transformed to different coordinate systems sim-
ilar to Û(q); see (5.2.15) and (5.2.16). If we denote the radiation matrix in the general
coordinate system x1, x2, x3 by Ĝ(x)

and the radiation matrix in the orthogonal coordinate
system ξ1, ξ2, ξ3 by Ĝ(ξ )

, we can write

Ĝ(x) = ĤĜ(q)
, Ĝ(q) = ĤT Ĝ(x)

,

Ĝ(x) = Ĥ(ξ )Ĝ(ξ )
, Ĝ(ξ ) = Ĥ(ξ )−1Ĝ(x)

. (5.2.27)

Ĝ(q) = ĤT Ĥ(ξ )Ĝ(ξ )
, Ĝ(ξ ) = Ĥ(ξ )−1ĤĜ(q)

.

Here the 3 × 3 transformation matrices Ĥ and Ĥ(ξ ) have the same meaning as in (5.2.15).
Similarly, if we consider local Cartesian coordinates z1, z2, and z3, we obtain

Ĝ(x) = ẐĜ(z)
, Ĝ(z) = ẐT Ĝ(x)

,

Ĝ(q) = ĜT Ĝ(z)
, Ĝ(z) = ĜĜ(q)

.
(5.2.28)
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Transformation matrices Ẑ and Ĝ have the same meaning as in (5.2.16). It should be em-
phasized that G(q)

1 = G(q)
2 = 0 for P waves, and G(q)

3 = 0 for S waves. In all other coordinate
systems, the three components of the radiation matrix are, in general, nonvanishing.

Thus the final equation for the ray-centered components of the vectorial amplitude
function 	U of the elastic wave generated by a point source at S is

Û(q)(R) =
[
ρ(S)V (S)

ρ(R)V (R)

]1/2 exp[iT c(R, S)]

L(R, S) Ĝ(q)
(S; γ 1γ 2). (5.2.29)

Equation (5.2.29) is valid for any 3-D smooth elastic isotropic laterally varying medium.
Point R is situated on the ray � passing through the point source situated at S; γ 1 and γ 2

denote the ray parameters of ray �.
Equation (5.2.29) can be simply written also for vectors Û(x) and Ĝ(x)

. Using (5.2.15)
and (5.2.27), we obtain

Û(x)(R) =
[
ρ(S)V (S)

ρ(R)V (R)

]1/2 exp[iT c(R, S)]

L(R, S) Ĥ(R)ĤT (S)Ĝ(x)
(S; γ 1γ 2),

(5.2.30)

where Ĥ(R) and Ĥ(S) are the relevant transformationmatrices at R and S.Note thatmatrices
Ĥ(R) and Ĥ(S) are different in inhomogeneous media because the rays are curved.

We shall nowgive the expressions for three seismologically important radiationmatrices
G(q)
i (S; γ 1, γ 2).

a. OMNIDIRECTIONAL POINT SOURCE
The omnidirectional radiation matrix does not depend on ray parameters γ1 and γ2:

G(q)
i (S; γ 1, γ 2) = ai (S), (5.2.31)

where ai are independent of γ1 and γ2.

b. SINGLE-FORCE POINT SOURCE
Assume a single force

	f (	x, t) = δ(	x − 	x(S))F(t) 	f 0. (5.2.32)

acting at point S. Here F(t) is an analytical signal and δ the delta function. The radiation
matrix then reads

Ĝ(q)
(S; γ 1, γ 2) = 1

4πρ(S)V (S)
ĤT (S)f̂

(x)

0 (S), (5.2.33)

where f̂
(x)

0 denotes the column matrix of the Cartesian components of 	f 0,

f̂
(x)

0 (S) = (
f (x)01 (S), f (x)02 (S), f (x)03 (S)

)T
.

This expression for the radiation matrix may be obtained from relations (2.5.38) and
(2.5.40). Relation (5.2.33) can also be expressed in an alternative form, separately for
P and S waves,

Ĝ(q)

P (S; γ 1, γ 2) = [4πρ(S)α(S)]−1
(
0, 0, 	N (S) · 	f (x)

0

)T
,

Ĝ(q)

S (S; γ 1, γ 2) = [4πρ(S)β(S)]−1(	e1(S) · 	f 0, 	e2(S) · 	f 0, 0)T .
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Here 	e1(S), 	e2(S), and 	e3(S) ≡ 	N (S) are the polarization vectors at S, corresponding to
the ray specified by the ray parameters γ1 and γ2.

c. MOMENT-TENSOR POINT SOURCE
Moment-tensor point sources play an important role in physics of earthquakes. They

were investigated in detail by Aki and Richards (1980), Ben-Menahem and Singh (1981),
and Kennett (1983), among others. Using the ray method, only high-frequency radiation
of moment-tensor point sources can be investigated. In a high-frequency asymptotic so-
lution, the general expressions for the radiation matrices of moment-tensor point sources
simplify; see Červený, Pleinerová, Klimeš, and Pšenčı́k (1987). In the frequency domain,
they can again be expressed in the form of (5.2.33); only f̂

(x)

0 (S) should be replaced by
−iωM̂(x)

0 (S)p̂(x)0 (S). (This can be directly derived if we use the equivalent force system
fi = −mi j, j ; see Section 2.1.2 and Equation (2.5.41).) Here the 3 × 3 matrix M̂(x)

0 rep-
resents the seismic moment tensor, and the 3 × 1 column matrix p̂(x)0 (S) represents the
initial slowness vector; both are expressed in Cartesian coordinates. The factor −iω may
be connected with the spectrum of the analytical signal F(ζ ), and yields a new analytical
signal Ḟ(ζ ) in the time domain. Consequently, the moment-tensor radiation function is

Ĝ(q)
(S; γ1, γ2) = [4πρ(S)V (S)]−1ĤT (S)M̂(x)

0 (S)p̂(x)0 (S). (5.2.34)

The difference between the analytical signals F(ζ ) and Ḟ(ζ ) does not play any role if
the single-force and moment-tensor point sources are treated independently. If, however,
both sources are treated together, it is actually necessary to consider the relevant analytical
signals F(ζ ) and Ḟ(ζ ) for both types of sources. For alternative expressions for moment-
tensor point sources, see also Červený, Klimeš, and Pšenčı́k (1988b).

In (5.2.34), matrix ĤT (S) should again be treated separately for P and S waves, as in
the case of the single-force radiation pattern.

For (M(x)
0 )i j = Mδi j , the point source is called the center of dilatation. From a physical

point of view, the center of dilatation consists of three couples without a torque moment
acting along threemutually perpendicular axes. The quantityM is called the scalar moment
and characterizes the strength of the source. The relevant radiation matrices are given by
relations

G(q)
3 (S; γ1, γ2) = M(S)/4πρ(S)α2(S), G(q)

1 = G(q)
2 = 0. (5.2.35)

Thus, the center of dilatation generates only P waves (see G(q)
3 ) and no S waves (see

G(q)
1 = G(q)

2 = 0). Moreover, the radiation function of P waves is omnidirectional. The
dilatational source is also often called the explosive source. The relevant directivity pattern
is given by the relation F (q)

3 (S; γ1, γ2) = M(S)/4πρ(S)α3(S); see (5.2.24).

5.2.4 Amplitudes Across an Interface

Let us consider ray�, which strikes interface� at point Q. As in Section 5.1.3, we denote
by Q̃ the point of reflection/transmission that is situated on � at Q but on the side of the
selected R/T wave. Assume that point S is situated on the incidence branch of ray �. We
can then use (5.2.18) to obtain

Û(q)(Q) =
[
V (S)ρ(S)

V (Q)ρ(Q)

]1/2 L(S)
L(Q) exp[iT c(Q, S)]Û(q)(S). (5.2.36)
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Across interface �, we can use the relation

Û(q)(Q̃) = R̂T (Q)Û(q)(Q). (5.2.37)

Here R̂denotes the 3 × 3matrix of the plane-wave reflection and transmission displacement
coefficients Rmn, introduced in Section 2.3.2, and superscript T stands for the transpose.

Because Û(q)(Q̃) represents a selected reflected/transmitted wave, certain of its com-
ponents vanish. For a P R/T wave,U (q)

1 (Q̃) = U (q)
2 (Q̃) = 0. Similarly, for an S R/T wave,

U (q)
3 (Q̃) = 0. Relation (5.2.37), however, would give all components of Û(q)(Q̃) non-

vanishing. Thus, if we apply (5.2.37) for selected elementary waves, we must put cer-
tain components of Û(q)(Q̃) or certain elements of R̂(Q) equal to zero. The simplest way
is to introduce four types of R/T matrices (P → P, P → S, S → P, and S → S) and to
choose the proper matrix according to the alphanumerical code of the elementary wave.
The relevant R/T matrices are given by relations

R̂P→P (Q) =

0 0 0
0 0 0
0 0 R33(Q)


 , R̂P→S(Q) =


 0 0 0

0 0 0
R31(Q) R32(Q) 0


 ,

R̂S→P (Q) =

0 0 R13(Q)
0 0 R23(Q)
0 0 0


 , R̂S→S(Q) =


R11(Q) R12(Q) 0
R21(Q) R22(Q) 0

0 0 0


 .

(5.2.38)

The first index always indicates the incident wave; the second indicates the generated wave.
These four matrices must be constructed both for reflected waves (R̂r

P→P (Q), R̂
r
P→S(Q),

R̂r
S→P (Q), and R̂r

S→S(Q)) and for transmitted waves (R̂t
P→P (Q), R̂

t
P→S(Q), R̂

t
S→P (Q),

and R̂t
S→S(Q)).

Finally, at point R situated on the reflected/transmitted branch of ray �, we obtain

Û(q)(R) =
[
V (Q̃)ρ(Q̃)

V (R)ρ(R)

]1/2L(Q̃)
L(R) exp[iT c(R, Q̃)]Û(q)(Q̃). (5.2.39)

The three relations (5.2.36), (5.2.37), and (5.2.39) yield the continuation relations for Û(q)

across the interface from S to R:

Û(q)(R) =
[
V (S)ρ(S)

V (R)ρ(R)

]1/2 L(S)
L(R)R̂

T
(Q) exp[iT c(R, S)]Û(q)(S). (5.2.40)

Here

T c(R, S) = T c(R, Q̃) + T c(Q̃, S). (5.2.41)

The 3 × 3 matrix R̂(Q) represents the matrix of normalized reflection/transmission coef-
ficients. The elements of the matrix,Ri j (Q), satisfy the relation

Ri j (Q) = Ri j (Q)

[
V (Q̃)ρ(Q̃)

V (Q)ρ(Q)

]1/2L(Q̃)
L(Q) . (5.2.42)

If we take into account the equation preceding (5.1.16), which is valid even for elastic
waves, we obtain the final relation between standard displacement (Ri j ) and normalized
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displacement (Ri j ) R/T coefficients,

Ri j (Q) = Ri j (Q)

[
V (Q̃)ρ(Q̃) cos i(Q̃)

V (Q)ρ(Q) cos i(Q)

]1/2
. (5.2.43)

Here i(Q) is the acute angle of incidence, and i(Q̃) is the acute angle of reflection/trans-
mission, corresponding to the selected elementarywave. For the real-valued ray�, cos i(Q)
and cos i(Q̃) are always real-valued and nonnegative. Propagation velocities V (Q̃) and
V (Q) are taken according to the elementary wave under consideration: V = α for the P
wave, and V = β for the S wave.

Note one important point. The square-root modification factors for acoustic and elastic
normalized reflection/transmission coefficients (see (5.1.16) and (5.2.43)) are different.
This is due to the fact that the pressure R/T coefficients are considered in acoustics, and
displacement R/T coefficients are considered in elastodynamics. Thus, we must be careful
to use the correct modification factor to construct the normalized R/T coefficients. For a
detailed discussion of normalized R/T coefficients, see Section 5.3.

Equation (5.2.40) represents the final relation for the continuation of the matrix of the
ray-centered components of the vectorial amplitude factor across the interface. As in the
acoustic case, the change of sign of detQ across the interface for reflected waves does not
influence the phase shift due to caustics T c(R, S).

Themodification of (5.2.40) for a point source situated at S is simple. The final equation
reads

Û(q)(R) =
[
V (S)ρ(S)

V (R)ρ(R)

]1/2 exp[iT c(R, S)]

L(R, S) R̂T
(Q)Ĝ(q)

(S; γ 1, γ 2).

(5.2.44)

Here L(R, S) = |detQ2(R, S)|1/2 is the relative geometrical spreading. Many useful re-
lations for detQ2(R, S) for the problem of reflection/transmission at a curved structural
interface can be found in Section 4.8.5. See also Section 4.10.2.

5.2.5 Amplitudes in 3-D Layered Structures

Let us consider a ray � of an arbitrary multiply reflected, possibly converted, elementary
elastic wave propagating in a 3-D isotropic layered structure. We also consider two points,
S and R, situated on� and assume that ray� strikes various structural interfaces N times
between S and R. The points of incidence are succesively denoted Q1,Q2, . . . , QN , and
the relevant points of R/T are denoted by Q̃1,Q̃2, . . . , Q̃N . We assume that the ray code
of the elementary wave under consideration is strictly specified. In other words, the type
of wave (P or S) along any element of the ray is known.

The continuation relations for the ray-centered amplitude matrix can be obtained by
simple generalization of (5.2.40)

Û(q)(R) =
[
V (S)ρ(S)

V (R)ρ(R)

]1/2 L(S)
L(R)R̂

C
exp[iT c(R, S)]Û(q)(S). (5.2.45)

where

T c(R, S) =
N+1∑
i=1

T c(Qk, Q̃k−1), R̂C =
1∏

k=N

R̂T
(Qk). (5.2.46)
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Here
∏1

k=N R̂T
(Qk) = R̂T

(QN )R̂T
(QN−1) . . . R̂T

(Q1). In (5.2.46), we have also
used Q̃0 = S and QN+1 = R. We shall call R̂C

the complete matrix of normalized R/T
coefficients along ray � between S and R.

For a point source at S, (5.2.45) yields

Û(q)(R) =
[
V (S)ρ(S)

V (R)ρ(R)

]1/2 exp[iT c(R, S)]

L(R, S) R̂C Ĝ(q)
(S; γ 1, γ 2). (5.2.47)

Here Ĝ(q)
(S, γ 1, γ 2) is the ray-centered radiation matrix.

It is again necessary to emphasize an important point. Velocities V and the matrices of
normalized R/T coefficients must be specified according to the ray code of the elementary
wave under consideration. There are eight options for R̂(Qk) at any R/T point Qk . It may
equal R̂r

(Qk) (reflection) or R̂t
(Qk) (transmission) and may correspond to P→ P, P→ S,

S→ P, or S→ S.
Equations (5.2.45) and (5.2.47) are very general, valid for any multiply reflected con-

verted wave. In Sections 5.2.10 through 5.2.13, we shall discuss special cases of these
equations, corresponding to unconverted P and S waves and to any multiply reflected,
converted, elementary wave with a plane ray �.

5.2.6 Elastodynamic Ray-Theory Green Function

The complete elastodynamic ray-theory Green function can be expressed as the superposi-
tion of elementary ray-theory Green functions, corresponding to different rays connecting
the source and receiver. Here we shall consider only one elementary ray-theory Green
function.

The elastodynamic Green function Gin(R, t ; S, t0) was defined in Section 2.5.4. We
remind the reader that it represents the i th Cartesian component of the displacement vector
at location R and time t , due to the point source situated at S, representing a single unit
force oriented along the nth Cartesian axis, with the time dependence corresponding to an
impulse delta function applied at time t0.

Toderive the expression for the elastodynamic ray-theoryGreen function corresponding
to the ray � connecting S and R, we use (5.2.47). First, we transform it into Cartesian
coordinates

Û(x)(R) =
[
V (S)ρ(S)

V (R)ρ(R)

]1/2
exp[iT c(R, S)]

L(R, S) Ĥ(R)R̂C Ĝ(q)
(S; γ 1, γ 2).

Now we specify the radiation function Ĝ(q)
(S; γ 1, γ 2) for a unit single-force source at S,

oriented along the nth Cartesian axis. From (5.2.33), we obtain

G(q)
i (S; γ 1, γ 2) = 1

4πρ(S)V (S)
Hni (S). (5.2.48)

As explained earlier, we put i = 3 for P waves and i = 1, 2 for S waves.
This finally yields the amplitude function of Green function Gin(R, t ; S, t0),

U (x)
i (R) = exp[iT c(R, S)]

4π [V (S)V (R)ρ(S)ρ(R)]1/2L(R, S)Hik(R)RC
kl Hnl(S).

(5.2.49)

In this expression, the summation over k and l must be specified properly. If the first element
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of the ray (close to S) is P, we put l = 3, and if it is S, we put l = L , where L = 1, 2.
Similarly, if the last element of the ray (close to R) is P, we put k = 3; however, if it is S,
we put k = K (K = 1, 2). The Einstein summation convention is applied to K = 1, 2 and
L = 1, 2.

Thus, we have four specific alternatives for the amplitude function of Green function
Gin(R, t ; S, t0).

1. The first element of the ray is P (P wave source) and the last element is also P:

U (x)
i (R) = exp[iT c(R, S)]

4π [α(S)α(R)ρ(S)ρ(R)]1/2L(R, S)Hi3(R)RC
33Hn3(S).

(5.2.50)

2. The first element of the ray is P (P wave source) and the last element is S:

U (x)
i (R) = exp[iT c(R, S)]

4π [α(S)β(R)ρ(S)ρ(R)]1/2L(R, S)HiK(R)RC
K3Hn3(S).

(5.2.51)

3. The first element of the ray is S (S wave source) and the last element is P:

U (x)
i (R) = exp[iT c(R, S)]

4π [β(S)α(R)ρ(S)ρ(R)]1/2L(R, S)Hi3(R)RC
3L HnL(S).

(5.2.52)

4. The first element of the ray is S (S wave source) and the last element is S:

U (x)
i (R) = exp[iT c(R, S)]

4π [β(S)β(R)ρ(S)ρ(R)]1/2L(R, S)HiK(R)RC
KLHnL(S).

(5.2.53)

All these equations are valid for any multiply reflected, possibly converted wave in a 3-D
layered structure. In all cases, we can put Hi j = e ji , where e ji represents the i th Cartesian
component of polarization vector 	e j . We also remind the reader that 	e3 ≡ 	N , the unit vector
tangent to ray �. The summation for uppercase indices runs over 1 and 2.

For the reader’s convenience, we shall present the final equations for the elementary
ray-theory elastodynamic Green function Gin(R, t ; S, t0), which is valid for any multiply
reflected, possibly converted, elementary wave propagating in a 3-D isotropic layered
structure.

In the frequency domain:

Gin(R, S, ω) = 1

4π [ρ(S)ρ(R)V (S)V (R)]1/2L(R, S)Hik(R)RC
kl Hnl(S)

× exp[iωT (R, S) + iT c(R, S)]. (5.2.54)

In the time domain:

Gin(R, t ; S, t0) = exp[iT c(R, S)]

4π [ρ(S)ρ(R)V (S)V (R)]1/2L(R, S)Hik(R)RC
kl Hnl(S)

×δ(A)(t − t0 − T (R, S)). (5.2.55)

The summation over k and l in (5.2.54) and (5.2.55) must be specified as shown in (5.2.50)
through (5.2.53).

It will be shown in Section 5.3 that matrix R̂C
, computed along � from R to S, is a

transpose of the same matrix, computed along� from S to R. This immediately yields the
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following relation:

Gin(R, t ; S, t0) = Gni (S, t ; R, t0). (5.2.56)

This is the famous reciprocity relation of the elastodynamic Green function. As we can
see from (5.2.56), it is valid for the elementary ray-theory elastodynamic Green function,
corresponding to any multiply reflected converted wave propagating in a 3-D laterally
varying layered structure.

5.2.7 Receiver at an Interface. Conversion Coefficients

The foregoing equations for amplitude matrix Û(q)(R) are valid only if the receiver (point
R) is situated in a smooth medium. As in the acoustic case, the derived equations must be
modified if the receiver is situated on an interface.

Let us consider interface �R passing through point R. We shall use the following
notation. If there is no interface at R, the amplitude matrix at R is denoted by Û(q)SM (R)
and called the smooth medium amplitude matrix (in ray-centered components) at R. It can
be calculated by equations of the foregoing sections. We assume that point R is situated on
�R from the side of the incident wave. In addition to R, we introduce point R+, situated
on the opposite side of interface �R . We denote

λ1 = λ(R), µ1 = µ(R), ρ1 = ρ(R),

λ2 = λ(R+), µ2 = µ(R+), ρ2 = ρ(R+),
(5.2.57)

In a similar way, we can introduce α1, β1 and α2, β2. When quantities (5.2.57) are known,
we can construct the 3 × 3 matrices of the standard (nonnormalized) R/T displacement
coefficients Rr (R) and Rt (R). Two reflected waves (P and S) are generated if the incident
wave strikes interface �R at point R. The complete wavefield at the point of incidence
R is composed of the incident, reflected P, and reflected S waves. On the opposite side
of interface �R (at point R+), the complete wavefield is composed of transmitted P and
transmitted S waves. The amplitude matrix of the complete displacement wavefield is
continuous across interface �R . Thus, we have two options of evaluating the complete
wavefield at interface �R: either at R or at R+.

Because we wish to compute the amplitudes of the complete wavefield at �R , we need
to express the individual elementary waves forming this wavefield in the same coordinate
system. We shall use a general Cartesian coordinate system for this purpose. The trans-
formation matrices Ĥ from ray-centered to Cartesian coordinates are, of course, different
for the individual elementary waves. We denote them by ĤSM (R) for the incident (smooth
medium) wave, Ĥr P (R) and Ĥr S(R) for reflected P and S waves, Ĥt P (R+) and Ĥt S(R+)
for transmitted P and S waves.

The amplitude matrix of the complete wavefield (in Cartesian coordinates) at the point
of incidence R on �R is then given by the relation

Û(x)(R) = [ĤSM (R) + Ĥr P (R)(R̂r (R))T + Ĥr S(R)(R̂r (R))T ]Û(q)SM (R).

(5.2.58)

Alternatively, at the point R+ on the opposite side of �R ,

Û(x)(R+) = [Ĥt P (R+)(R̂t (R))T + Ĥt S(R+)(R̂t (R))T ]Û(q)SM (R). (5.2.59)

In the symbols for the matrices of R/T coefficients, the superscript (r or t) indicates the
reflected or transmitted wave. The appropriate matrices P → P, P → S, S → P, or S → S
should be considered, see (5.2.38). Capital T stands for the transpose.
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Expressions (5.2.58) and (5.2.59) can be written in the following form:

Û(x)(R) = D̂(R)Û(q)SM (R), Û(x)(R+) = D̂(R+)Û(q)SM (R), (5.2.60)

or, alternatively, in component form,

U (x)
i (R) = Dik(R)U

(q)SM
k (R), U (x)

i (R+) = Dik(R
+)U (q)SM

k (R).

(5.2.61)

Here Dik(R) and Dik(R+) are given by the following relations:

Dik(R) = HSM
ik (R) + HrP

i3 (R)Rrk3(R) + HrS
i J (R)R

r
k J (R), (5.2.62)

Dik(R
+) = HtP

i3 (R+)Rtk3(R) + HtS
i J (R

+)Rtk J (R); (5.2.63)

see (5.2.58) and (5.2.59). Both the expressions (5.2.62) and (5.2.63) are equivalent because
Û(x) is continuous across interface �R such that Û(x)(R) = Û(x)(R+).

In case of a smooth medium at R (without an interface �R at R), Equations (5.2.60)
and (5.2.61) remain valid, if we put

Dik(R) = HSM
ik (R). (5.2.64)

Thus, (5.2.60) and (5.2.61) can be used universally. We shall call the 3 × 3 matrix D̂ the
interface conversion matrix, or simply the conversion matrix. The elements of the conver-
sion matrix will be called the interface conversion coefficients, or simply the conversion
coefficients.

We shall now specify conversion matrix D̂ for the incident (smooth medium) P wave
(U (q)SM

1 (R) = U (q)SM
2 (R) = 0) and for the incident (smoothmedium)Swave (U (q)SM

3 (R) =
0). For the incident P wave, we have

Di1(R) = Di2(R) = 0, Di3(R) �= 0. (5.2.65)

Similarly, for the incident S wave, we can use

Di1(R) �= 0, Di2(R) �= 0, Di3(R) = 0. (5.2.66)

The same relations as (5.2.65) and (5.2.66) can also be written at the point R+.
Equations (5.2.62) and (5.2.63) for the interface conversion coefficients can also be

expressed in terms of polarization vectors 	e1, 	e2, and 	e3 ≡ 	N , if we take into account
Hi j = e ji . Hence,

a. For the incident P wave:

Di1(R) = Di2(R) = Di1(R
+) = Di2(R

+) = 0,

Di3(R) = N SM
i (R) + NrP

i (R)Rr33(R) + erS1i (R)R
r
31(R) + erS2i (R)R

r
32(R),

Di3(R
+) = NtP

i (R+)Rt33(R) + etS1i (R
+)Rt31(R) + etS2i (R

+)Rt32(R).

(5.2.67)

b. For the incident S wave:

Di3(R) = Di3(R
+) = 0,

Di1(R) = eSM1i (R) + NrP
i (R)Rr13(R) + erS1i (R)R

r
11(R) + erS2i (R)R

r
12(R),

Di1(R
+) = NtP

i (R+)Rt13(R) + etS1i (R
+)Rt11(R) + etS2i (R

+)Rt12(R),

Di2(R) = eSM2i (R) + NrP
i (R)Rr23(R) + erS1i (R)R

r
21(R) + erS2i (R)R

r
22(R),

Di2(R
+) = NtP

i (R+)Rt23(R) + etS1i (R
+)Rt21(R) + etS2i (R

+)Rt22(R).

(5.2.68)
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Let us briefly discuss the physical meaning of conversion matrix D̂. It performs two
operations. First, it projects ray-centered amplitudematrix Û(q)(R) intoCartesian amplitude
matrix Û(x)(R); see (5.2.60). Thus, it has a goodphysicalmeaning even in a smoothmedium,
where it equals transformation matrix ĤSM ; see (5.2.64). Second, it also takes into account
the effects of the interface if the receiver is situated directly on this interface at point
R or R+; see (5.2.62) and (5.2.63). The most important application is for the receiver
situated on the Earth’s surface. The elements of the conversion matrix are then called the
free-surface conversion coefficients, or simply conversion coefficients. See Červený and
Ravindra (1971) and Červený, Molotkov, and Pšenčı́k (1977). The explicit formulae for
Di j , both for the structural interface and for the Earth’s surface, will be given in Section
5.3.8. Note that the “conversion coefficients” represent quite different quantities from “R/T
coefficients of converted waves.”

The general Cartesian coordinate system x1, x2, x3 used in this section is in general
different from the local Cartesian coordinate system z1, z2, z3 connected with the interface.
The results, however, can be transformed to the local Cartesian coordinate system. We
merely use transformation matrix Ẑ and (5.2.16):

Û(z)(R) = ẐT (R)D̂(R)Û(q)SM (R),

Û(z)(R+) = ẐT (R+)D̂(R+)Û(q)SM (R).
(5.2.69)

All equations for ray-centered amplitude matrix Û(q)(R), derived in the previous sec-
tions, can be generalized for the case of a receiver situated on interface�R passing through
R. Cartesian amplitude matrix Û(x)(R) is in this case obtained from Û(q)(R) by multiplying
it from the left by conversion matrix D̂. For the final equations, see Section 5.2.9.

5.2.8 Source at an Interface

In this section, we shall derive equations for the radiation matrix if the point source is
situated on a structural interface �S . For a more detailed treatment and many numerical
examples see Jı́lek and Červený (1996). See also White (1983) for some special cases.

As in Section 5.1.9, we shall first consider the auxiliary problem of an elementary wave
reflected/transmitted at interface�S . This problem was treated in Section 5.2.4, but in this
section we shall use slightly different notation that is more useful here. As in Section 5.1.9,
we shall consider a point source situated at point S0, and ray �0 of a selected R/T wave
connecting S0 with a receiver situated at R. We denote the point of incidence of ray �0 at
�S by S̃ and the point of R/T at �S by S. (This notation is different from the notation of
Section 5.2.4.) Thus, points S0 and S̃ are situated on the same incident branch of ray�0, and
points S and R on the R/T branch of ray�0. See Figure 5.4. As usual, we also denote the ray
connecting S and R by�. Ray�0 is then an extension of ray� outside point S. In addition to
S, we also introduce point S+ situated on�S , but on the side opposite to S. Then we denote

λ1 = λ(S), µ1 = µ(S), ρ1 = ρ(S),

λ2 = λ(S+), µ2 = µ(S+), ρ2 = ρ(S+).
(5.2.70)

The general relation (5.2.44) for the ray-centered amplitude matrix Û(q)(R), related to the
selected R/T wave, then reads

U (q)
i (R) =

[
ρ(S0)V (S0)

ρ(R)V (R)

]1/2 exp[iT c(R, S0)]

L(R, S0) R j i (S̃)G(q)SM
j (S0; γ 1, γ 2).

(5.2.71)
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Here G(q)SM
j is a “smooth medium” ray-centered radiation function that is not affected by

the existence of interface �S , and R j i (S̃) is the appropriate normalized R/T coefficient.
Let us emphasize that the normalized R/T coefficient R j i (S̃) in (5.2.71) corresponds to
the “positive” direction of propagation of the elementary wave under consideration along
ray �0 from S0 through S̃ and S to R. Using (5.2.43), we can write

R j i (S̃) = Rji (S̃)

[
V (S)ρ(S) cos i(S)

V (S̃)ρ(S̃) cos i(S̃)

]1/2
. (5.2.72)

Here Rji (S̃) is a standard displacement R/T coefficient. Now we insert (5.2.72) into
(5.2.71), shift point S0 along ray �0 to point S̃, and take into account that T c(R, S̃) =
T c(R, S) and L(R, S̃) = (cos i(S̃)/ cos i(S))1/2L(R, S). Then (5.2.71) yields

U (q)
i (R) =

[
ρ(S)V (S)

ρ(R)V (R)

]1/2 exp[iT c(R, S)]

L(R, S)
cos i(S)

cos i(S̃)

× Rji (S̃)G(q)SM
j (S̃; γ 1, γ 2). (5.2.73)

This is the final solution of the auxiliary problem, corresponding to the selected elementary
wave.

We shall now compute the wavefield due to a point source situated at interface �S . We
assume that the type of the wave propagating from S to R (along ray �) is fixed. It may,
of course, be either P or S. We have two options of computing the wavefield. In the first
option, we shall consider the point source situated at point S+, on the side of �S opposite
to S. See Figure 5.4(b). The source may generate both P and S waves. Both waves cross
interface �S as transmitted waves, from S̃ to S. The travel times of both waves from S̃ to
R coincide and equal travel time T (R, S). We also assume that the analytical signals of
both generated waves are the same; otherwise, it would be necessary to treat both sources
fully independently. We can then compute the ray-centered amplitude matrices of both
“transmitted ” waves. The final expression (see (5.2.73)) is

U (q)
i (R) =

[
ρ(S)V (S)

ρ(R)V (R)

]1/2 exp(iT c(R, S))

L(R, S) G(q)
i (S+; γ 1, γ 2), (5.2.74)

where G(q)
i (S+, γ 1, γ 2) is the generalized radiation function corresponding to the point

source situated on interface �S:

G(q)
i (S+; γ 1, γ 2) = (cos i(S)/ cos i P (S+))Rt3i (S

+)G(q)SM
3

(
S+; γ t P1 , γ

t P
2

)
+ (cos i(S)/ cos i S(S+))RtJi (S

+)G(q)SM
J

(
S+; γ t S1 , γ

t S
2

)
.

(5.2.75)

Here i P (S+) and i S(S+) are angles of incidence of P and S waves at S+. The ray-centered
components G(q)

i (S+; γ 1, γ 2) of generalized radiation matrix Ĝ(q)
(S+, γ 1, γ 2) correspond

to the polarization vectors 	e1(S), 	e2(S), and 	e3(S) ≡ 	N (S) of the elementary wave prop-
agating from S to R. (5.2.75) yields the generalized radiation function of P waves for
i = 3 and the generalized radiation pattern of S waves for i = 1 or 2. We also need to put
i(S) = i P (S) for i = 3, and i(S) = i S(S) for i = 1, 2. The ray parameters γ t P1 , γ

t P
2 and

γ t S1 , γ
t S
2 in the expressions for the smooth radiation functions correspond to the type of

wave generated by the smooth-medium source. They are, of course, related to the ray pa-
rameters γ1 and γ2 of generalized radiation function G(q)

i (S; γ 1, γ 2), and can be calculated
from them using reflection/transmission laws (including Snell’s law). Similarly, i P (S+) and
i S(S+) should be calculated from i(S).
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In the second option, we shall consider the point source situated on the same side
of interface �S as S. See Figure 5.4(a). We then have to sum the direct wave and the
two reflected waves. We again arrive at (5.2.74), where generalized radiation function
G(q)
i (S+; γ 1, γ 2) is replaced by generalized radiation function G(q)

i (S; γ1, γ2):

G(q)
i (S; γ 1, γ 2) = G(q)SM

i (S̃; γ 1, γ 2) + (cos i(S)/ cos i P (S̃))

× Rr3i (S̃)G(q)SM
3

(
S̃; γ r P1 , γ

r P
2

)+ (cos i(S)/ cos i S(S̃))

× RrJi (S̃)G(q)SM
J

(
S̃; γ r S1 , γ

r S
2

)
. (5.2.76)

As in (5.2.75), i P (S̃) and i S(S̃) are angles of incidence of P andSwaves at S̃. The generalized
radiation function of P waves is obtained for i = 3; then also i(S) = i P (S). Similarly, the
generalized radiation function of S waves is obtained for i = 1, 2; then also i(S) = i S(S).
The ray parameters γ r P1 , γ

r P
2 and γ r S1 , γ

r S
2 in the expressions for smooth-medium radiation

functions correspond to the type of wave generated by the smooth-medium source and may
be calculated from γ1 and γ 2 using the laws of reflection/transmission.

Equations (5.2.75) and (5.2.76) give two different relations for the generalized radiation
matrices of a point source situated on an interface. If the point source is situated in a
smoothmedium, the generalized radiation function reduces to the smoothmedium radiation
function, corresponding to the first term in (5.2.76). The reflection coefficients in the second
and third terms of (5.2.76) vanish for ρ1 = ρ2, λ1 = λ2, and µ1 = µ2.

It would be useful to add several remarks to the equations for the generalized radiation
matrices (5.2.75) and (5.2.76). In general, these equations may give different results for
sources of the same type approaching interface �S from the two opposite sides. This
is, of course, natural because smooth medium radiation functions depend, in general, on
the medium parameters and ray parameters. Later on, however, we shall discuss a point
source forwhich generalized radiation functions (5.2.75) and (5.2.76) are continuous across
interface �S . This point source corresponds to a single force, which plays an important
role in many applications and in the definition of the elastodynamic Green function.

The ray-centered components of the smooth medium radiation matrices in expressions
(5.2.75) and (5.2.76) depend, of course, on the choice of polarization vectors 	e1, 	e2, and
	e3 ≡ 	N at points S̃. The choice of 	N (S̃) must correspond to the positive direction of prop-
agation of the wave under consideration from S to R. Slowness vectors 	p(S̃) ≡ V (S̃) 	N (S̃)
and 	p(S) = V (S) 	N (S) must satisfy the generalized Snell’s law (2.4.70) for any of the ele-
mentary waves under consideration. Polarization vectors 	e1(S̃) and 	e2(S̃) must be mutually
perpendicular, as well as perpendicular to 	N (S̃). Otherwise, they can be chosen arbitrarily,
but the R/T coefficients used must be consistent with this choice.

We shall now specify the generalized radiation matrix for a single-force point source
situated at point S. We use (5.2.33) and obtain

G(q)SM
3 (S; γ 1, γ 2) = 1

4πρ(S)α(S)
Hk3(S) f

(x)
0k (S),

G(q)SM
J (S; γ 1, γ 2) = 1

4πρ(S)β(S)
HkJ (S) f

(x)
0k (S).

(5.2.77)

Here f (x)0k (S) are Cartesian components of the single force 	f 0(S), applied at point S. Exactly
the same relations are obtained at point S̃.
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For the single force 	f 0 situated at point S, we insert (5.2.77) into (5.2.76) and obtain

G (q)
i (S; γ 1, γ 2) = 1

4πρ(S)V (S)
Dki (S) f

(x)
0k (S), (5.2.78)

with the 3 × 3 matrix Dki (S) given by the relation,

Dik(S) = HSM
ik (S) + [V (S) cos i(S)/α(S̃) cos i P (S̃)]HrP

i3 (S̃)Rr3k(S̃)

+ [V (S) cos i(S)/β(S̃) cos i S(S̃)]HrS
i J (S̃)R

r
Jk(S̃). (5.2.79)

Similarly, for the single force 	f 0 situated at point S+, we can insert (5.2.77) into (5.2.75)
and obtain

G(q)
i (S+; γ 1, γ 2) = 1

4πρ(S)V (S)
Dki (S

+) f (x)0k (S
+), (5.2.80)

with

Dik(S
+) = [ρ(S)V (S) cos i(S)/ρ(S+)α(S+) cos i P (S+)]HtP

i3 (S+)

×Rt3k(S
+) + [ρ(S)V (S) cos i(S)/ρ(S+)β(S+) cos i S(S+)]

×HtS
i J (S

+)RtJk(S
+). (5.2.81)

The equations (5.2.79) and (5.2.81) can be expressed in many alternative forms. Suit-
able formulae for them will be derived in Section 5.3.8. It is possible to show that both
expressions are equivalent. Thus, it does not matter whether we use (5.2.79) or (5.2.81).
Moreover, we can use the reciprocity relations for the R/T coefficient (5.3.31) and find that
they are also equivalent to the conversion matrices (5.2.62) and (5.2.63) and that Dik rep-
resent the conversion coefficients. This plays an important role in the proof of reciprocity
of the elastodynamic ray-theory Green function for a point source and/or receiver situated
at structural interfaces.

In a matrix form, Equations (5.2.78) and (5.2.80) can be written as

Ĝ(q)
(S; γ 1, γ 2) = 1

4πρ(S)V (S)
D̂T

(S)f̂
(x)

0 (S). (5.2.82)

5.2.9 Final Equations for Amplitude Matrices

In this section, we shall summarize the final equations for the amplitude matrices Û(x),
expressed in general Cartesian components. The elementary wave being considered may
be any multiply-reflected, possibly converted, seismic body wave propagating in a general
3-D isotropic laterally varying layered structure. The source and/or receivermay be situated
at any point of the medium, including the structural interfaces and the surface of the model.

We consider points S and R and the ray of the elementary wave involved connecting
both these points. The receiver is situated at point R. The initial point S of ray� corresponds
to a point source or merely to an arbitrarily selected point on the ray where the amplitude
matrix is known.

In all the presented equations, we shall use the Einstein summation convention over
1, 2, 3 for lowercase indices i, j, k, and over 1, 2 for the uppercase indices I, J, K . We
shall also use the following important convention for the first and last elements of ray �:

a. If the first element of ray� (starting at point S) is P, we put j = 3. If it is S, we put
j = J .
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b. If the last element of ray � (ending at point R) is P, we put k = 3. If it is S, we put
k = K .

The final equations for U (x)
i (R) are then as follows.

a. The continuation relation:

U (x)
i (R) =

[
V (S)ρ(S)

V (R)ρ(R)

]1/2 L(S)
L(R) exp[iT c(R, S)]Dik(R)RC

kjU
(q)
j (S).

(5.2.83)

b. The point source at S:

U (x)
i (R) =

[
V (S)ρ(S)

V (R)ρ(R)

]1/2 exp[iT c(R, S)]

L(R, S) Dik(R)RC
kjG(q)

j (S; γ 1, γ 2).

(5.2.84)

c. A single-force point source at S:

U (x)
i (R) = exp[iT c(R, S)]

4π [ρ(S)ρ(R)V (S)V (R)]1/2
1

L(R, S)Dik(R)RC
kjDnj (S) f

(x)
0n (S).

(5.2.85)

d. Elementary ray-theory Green function in the time domain:

Gin(R, t ; S, t0) = exp[iT c(R, S)]

4π [ρ(S)ρ(R)V (S)V (R)]1/2
1

L(R, S)Dik(R)RC
kjDnj (S)

× δ(A)(t − t0 − T (R, S)). (5.2.86)

In (5.2.83) through (5.2.86), all the expressions have the same meaning as in the foregoing
sections. Velocities V (S) and V (R) are specified as α or β according to the type of wave
at S or R.RC

kj are the elements of the complete matrix of the normalized R/T coefficients
along the ray � from S to R. The complete matrix of normalized R/T coefficients is a
product of the transposedmatrices of normalized R/T coefficients along ray� from S to R.
Dik(R) and Dik(S) are the conversion coefficients. If the source and/or receiver is situated
in a smooth medium, the conversion coefficient Dik reduces to Hik . If the source and/or
receiver is situated on an interface, the relevant equations of Sections 5.2.7 and 5.2.8 should
be used. ExpressionsDik(R) andDik(S) in (5.2.83) through (5.2.85) should be replaced by
Dik(R+) andDik(S+) if the receiver and/or source are situated on the sides of the interfaces
opposite to R and S. Finally, G(q)

j (S; γ 1, γ 2) is the smooth medium radiation function if S
is situated in a smooth medium. If the source is situated on the interface, G(q)

j (S; γ 1, γ 2) is
given by (5.2.76). It should again be replaced by G(q)

j (S+; γ 1, γ 2) if the source is situated
on the side of the interface opposite to S; see (5.2.75).

Equation (5.2.86) determines the elementary elastodynamic ray-theory Green function
in the time domain. The elementary elastodynamic ray-theory Green function Gin(R, S, ω)
in the frequency domain is again given by (5.2.86); only the analytic delta function δ(A)(t −
t0 − T (R, S)) is replaced by exp(iωT (R, S)).

5.2.10 Unconverted P Waves

General expressions (5.2.83) through (5.2.86) are simplified for unconverted P waves. In
this case, we can put j = k = 3, and the only nonvanishing element of the matrix R̂C



5.2 ELASTIC ISOTROPIC STRUCTURES 467

is RC
33, corresponding to the complete normalized P→ P reflection/transmission coeffi-

cient. It represents a product of the individual normalized P→ P R/T coefficients at points
Q1, Q2, . . . , QN . All these normalized P→ P R/T coefficients and the complete normal-
ized P→ P R/T coefficient have a fully scalar character, as in the case of acoustic waves.
To simplify the notation, we shall denoteRC

33 byRC .
Equations (5.2.83) through (5.2.86) then simplify considerably and read as follows:

a. The continuation relation:

U (x)
i (R) =

[
α(S)ρ(S)

α(R)ρ(R)

]1/2 L(S)
L(R) exp[iT c(R, S)]Di3(R)RCU (q)

3 (S).

(5.2.87)

b. The point source at S:

U (x)
i (R) =

[
α(S)ρ(S)

α(R)ρ(R)

]1/2 exp[iT c(R, S)]

L(R, S) Di3(R)RCG(q)
3 (S; γ 1, γ 2).

(5.2.88)

c. The single-force point source at S:

U (x)
i (R) = exp[iT c(R, S)]

4π [ρ(S)ρ(R)α(S)α(R)]1/2
1

L(R, S)Di3(R)RCDn3(S) f
(x)
0n (S).

(5.2.89)

d. The elementary ray-theory P-wave Green function in the time domain:

Gin(R, t ; S, t0) = exp[iT c(R, S)]

4π [ρ(S)ρ(R)α(S)α(R)]1/2
1

L(R, S)Di3(R)RCDn3(S)

× δ(A)(t − t0 − T (R, S)). (5.2.90)

The reader is reminded that Di3(R) = Hi3(R) = Ni (R) if the receiver is situated in a
smooth medium, and an analogous relation is valid forDn3(S). Here Ni (R) is the Cartesian
component of the unit vector tangent to the ray. Thus, in this case, the productDi3(R)Dn3(S)
in (5.2.89) and (5.2.90) yields Ni (R)Nn(S). If the receiver and/or source are situated on
the interface, we can use (5.2.67). The meaning of all other symbols is the same as in the
foregoing section.

5.2.11 P Waves in Fluid Media. Particle Velocity Amplitudes

Equations (5.2.87) through (5.2.90) remain valid even for P elastic waves propagating in
fluid media. In all equations, we merely put β = 0. This substitution applies mainly to the
expressions forRC , Di3(R), and Dn3(S).

The results presented in this section are closely connected with those presented in
Section 5.1 for scalar pressure waves p(xi , t). Here, however, we shall study the behavior
of the vectorialwavefield 	u(xi , t),which is related to the displacement vector. In the acoustic
case, it is more common to consider particle velocity vector 	v(xi , t) = ∂	u(xi , t)/∂t than
displacement vector 	u(xi , t). For this reason, we shall also give the relevant equations for
the amplitudes of the particle velocity vector.

It would be more natural to include this paragraph in Section 5.1, “Acoustic Case.” This
would, however, require extending Section 5.1 considerably and deriving all the equations
there related to the vectorial wavefield. At this point, we do not need to derive anything
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new, we merely insert β = 0 into the general equations for the vectorial elastic wavefields
in solid media, derived in Sections 5.2.1 through 5.2.10.

First, we shall briefly discuss the complete R/T coefficientRC . Section 5.3.1 will show
that the limiting process β1 → 0 and β2 → 0 in the expressions for the displacement R/T
P → P coefficients yields the following relations:

Rr = ρ2α2P1 − ρ1α1P2
ρ2α2P1 + ρ1α1P2 , Rt = 2ρ1α1P1

ρ2α2P1 + ρ1α1P2 . (5.2.91)

Here we have used the following notation: Pk = cos ik = (1 − α2k p2)1/2, for k = 1, 2. If
we compare (5.2.91) with (5.1.21), we can see that reflection coefficient (5.2.91) is exactly
the same as the acoustic reflection coefficient but that the transmission coefficients are
different. The explanation of this difference is simple: (5.2.91) represents the displacement
R/T coefficients, but (5.1.21) the pressure R/T coefficients. We can, however, prove that
the normalized R/T coefficientsR are the same, both for displacement and pressure. If we
use (5.2.43) and (5.2.91), we obtain the normalized displacement transmission coefficient
as follows:

Rt = 2(ρ1ρ2α1α2P1P2)1/2

ρ2α2P1 + ρ1α1P2 . (5.2.92)

This exactly corresponds to the normalized pressure transmission coefficient; see (5.1.22).
We conclude that, although the pressure and displacement transmission coefficients in fluid
media differ, the normalized pressure and displacement transmission coefficients are the
same.

Because the complete R/T coefficientRC is a product of normalized R/T coefficients
at the individual points of reflection and transmission between S and R, the complete
displacement coefficientRC in fluid media is the same as the complete pressure coefficient
RC , introduced in Section 5.1.5; see (5.1.35).

Now we shall discuss the elements Di3 of conversion matrix D̂ in fluid media. We use
(5.2.67) and consider only P waves. We then obtain Di3(R) = NSM

i (R) + NrP
i (R)Rr33(R),

or, alternatively, Di3(R+) = NtP
i (R+)Rt33(R). Here N

SM
i (R) corresponds to the incident

wave; NrP
i (R) and NtP

i (R) correspond to the reflected and transmitted waves. If we use
(2.4.70), we arrive at

NrP
i (R) = α1 p

r P
i (R) = α1 pi (R) − 2P1εni (R),

NtP
i (R+) = α2 p

t P
i (R+) = α2 pi (R) − α2

(
α−1
1 P1 − α−1

2 P2
)
εni (R).

Here P1 and P2 are given by (5.1.19). This finally yields the expressions for Di3(R) and
Di3(R+) in fluid media:

Di3(R) = α1 pi (R) + (α1 pi (R) − 2P1εni (R))
ρ2α2P1 − ρ1α1P2
ρ2α2P1 + ρ1α1P2 ,

(5.2.93)

or, alternatively,

Di3(R
+) = [α1α2 pi (R) − (α2P1 − α1P2)εni (R))] 2ρ1P1

ρ2α2P1 + ρ1α1P2 .
(5.2.94)

Equations (5.2.93) and (5.2.94) are valid for a receiver situated on two opposite sides of
interface �R with normal 	n at points R and R+. If the receiver is situated in a smooth
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medium, (5.2.93) and (5.2.94) yield the same result:

Di3(R) = Di3(R
+) = α1 pi (R) = Ni (R). (5.2.95)

Assume now that the general Cartesian coordinate system is introduced so that the
origin is situated at R and axis x3 coincides with normal 	n. Moreover, axis x1 is situated
in the plane of incidence. In this case, (5.2.93) yields

D13(R) = 2α1α2ρ2 pP1
ρ2α2P1 + ρ1α1P2 , D23(R) = 0,

D33(R) = 2ρ1α1P1P2ε

ρ2α2P1 + ρ1α1P2 .
(5.2.96)

Alternatively, (5.2.94) yields

D13(R
+) = 2α1α2ρ1 pP1

ρ2α2P1 + ρ1α1P2 , D23(R
+) = 0,

D33(R
+) = 2ρ1α1P1P2ε

ρ2α2P1 + ρ1α1P2 .
(5.2.97)

As we can see, the normal components D33(R) and D33(R+), obtained from (5.2.93) and
(5.2.94) are exactly the same. This was expected, of course, because the normal compo-
nent of the displacement is continuous across the interface, even in fluid media. Tangential
components D13(R) and D13(R+), however, are not the same. In fluid media, the tangen-
tial component recorded at the top of interface �R will be different from the tangential
component recorded on the bottom of the interface, if ρ1 �= ρ2.

Let us now consider values of Di3 at free surface �R . If we put ρ2 → 0 and α2 → 0,
(5.2.96) or (5.2.97) yields

D13(R) = D23(R) = 0, D33(R) = D33(R
+) = 2εP1. (5.2.98)

Thus, the tangential components of the displacement vector vanish at a free surface. The
normal component of the displacement is, however, nonvanishing. This is the great differ-
ence with respect to the pressure waves. The pressure wavefield vanishes at the free surface
of a fluid medium, but the normal displacement component does not.

Finally, we should specify radiation functions G(q)
3 (S; γ 1, γ 2) and Dn3(S). The general

relations for the radiation function G(q)
3 (S; γ 1, γ 2) are given by (5.2.76), which yield the

following relations for fluid media:

G(q)
3 (S, γ 1, γ 2) = G(q)SM

3 (S̃; γ 1, γ 2) + Rr (S)G(q)SM
3

(
S̃; γ r P1 , γ

r P
2

)
,

(5.2.99)

where Rr (S) is given by (5.2.91). Similarly, for a source situated at S+, on the side of
interface �S opposite to S, (5.2.75) yields

G(q)
3 (S+; γ 1, γ 2) = (ρ2d2/ρ1d1)R

t (S)G(q)SM
3

(
S+; γ t P1 , γ

t P
2

)
. (5.2.100)

Here Rt is again given by (5.2.91). For a single-force point source situated at S or S+, we
obtain

G(q)
3 (S; γ 1, γ 2) = (4πρ1α1)−1Dk3(S) f

(x)
0k (S),

G(q)
3 (S+; γ 1, γ 2) = (4πρ1α1)−1Dk3(S+) f (x)0k (S

+).
(5.2.101)
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HereDk3(S) andDk3(S+) are given by equations (5.2.93) through (5.2.98); only R and R+

should be replaced by S and S+.
In fluid media, it is common to consider particle velocity 	v(x j , t) = 	̇u(x j , t), instead of

	u(x j , t). From (5.2.1), we obtain

	v(x j , t) = 	̇u(x j , t) = 	U (x j )Ḟ(t − T (x j )). (5.2.102)

Thus, 	U (x j ) again represents a vectorial amplitude function of the particle velocity wave-
field, and all the relations derived for 	U (xi ) remain valid. Only the analytical signal for
the particle velocity wavefield Ḟ(ζ ) is different from the analytical signal of displacement
F(ζ ). For 	U (x j ), we can write 	U = U (q)

3
	N , where 	N is the unit vector perpendicular to

the wavefront. The other two ray-centered components of 	U , U (q)
1 and U (q)

2 , vanish. Ra-
diation matrix Ĝ(q)(S, γ 1, γ 2) also has only one nonvanishing component, G(q)

3 (S, γ 1, γ 2),
defined in (5.2.26), where A = U (q)

3 .We need tomodify, however, the single-force radiation
function: instead of the single force 	f (x j , t), given by (5.2.32), we must consider the time
derivative of the single force ∂ 	f (xi , t)/∂t :

∂ 	f (xi , t)/∂t = δ(	x − 	x(S)) 	̇f 0dF(t)/dt. (5.2.103)

Here 	̇f 0 is a constant vector, specifying the direction and magnitude of ∂ f (xi , t)/∂t . The
dot above the letter is introduced to distinguish it from 	f 0; see (5.2.32). Then, f (x)0k in
(5.2.101) should be replaced by ḟ

(x)
0k . Otherwise, all the equations remain the same.

5.2.12 Unconverted S Waves

In the case of unconverted S waves along the whole ray �, the only simplification is that
the 3 × 3 and 3 × 1 matrices are reduced to 2 × 2 and 2 × 1 matrices. Equations (5.2.83)
through (5.2.86) in this case read:

a. The continuation relation:

U (x)
i (R) =

[
β(S)ρ(S)

β(R)ρ(R)

]1/2 L(S)
L(R) exp[iT c(R, S)]DiK(R)RC

K JU
(q)
J (S).

(5.2.104)

b. The point source at S:

U (x)
i (R) =

[
β(S)ρ(S)

β(R)ρ(R)

]1/2 exp[iT c(R, S)]

L(R, S) DiK(R)RC
K JG(q)

J (S; γ 1, γ 2).

(5.2.105)

c. A single-force point source at S:

U (x)
i (R) = exp[iT c(R, S)]

4π [ρ(S)ρ(R)β(S)β(R)]1/2
1

L(R, S)DiK(R)RC
K JDnJ (S) f

(x)
0n (S).

(5.2.106)

d. Elementary ray-theory S-wave Green function:

Gin(R, t ; S, t0) = exp[iT c(R, S)]

4π [ρ(S)ρ(R)β(S)β(R)]1/2
1

L(R, S)DiK(R)RC
K JDnJ (S)

× δ(A)(t − t0 − T (R, S)). (5.2.107)

Thus, we need to compute only the 2 × 2 complete matrix RC of the normalized R/T
coefficients. This represents a 2 × 2 upper-left-corner submatrix of the 3 × 3 matrix R̂C

.
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The 2 × 2 matrix RC is a product of the 2 × 2 matrices RT at points Q1, Q2, . . . , QN . If
the receiver is situated in a smooth medium, then DiK(R) = HiK(R) = eKi (R). The same
relation is valid forDnJ (S). Thus, the productDiK(R)DnJ (S) equals eKi eJn(S). If the source
and/or receiver are situated on an interface, we can use (5.2.68) to compute DiK(R) and
DnJ (S). The meaning of all the other symbols is the same as in Section 5.2.9.

5.2.13 Amplitudes Along a Planar Ray. 2-D Case

The relations (5.2.83) through (5.2.86), valid for a general 3-D ray �, simplify for the
planar ray�. We denote the plane in which the ray is situated�‖. At the initial point S, we
choose basis vector 	e2 perpendicular to�‖. Then 	e2 is perpendicular to�‖ along the whole
ray �, and basis vectors 	e1 and 	e3 are confined to plane �‖. For a detailed specification of
the individual quantities in this case, see the introduction to Section 4.13.

Without loss of generality, we shall introduce general Cartesian coordinate system
x1, x2, x3 so that the x2-axis is perpendicular to plane �‖, which is specified by equation
x2 = 0. Conditions (2.3.45) are then satisfied at all R/T points. In this case, the matrix of
R/T coefficients R̂ simplifies. R/T coefficients R12, R21, R23 and R32 vanish; see (2.3.44).
We shall use special terminology for the five remaining R/T coefficients:� R22 will be called the SH R/T coefficients.� R11, R13, R31, and R33 will be called the P-SV R/T coefficients.

Individually, R11 is the SV→ SV coefficient, R13 the SV→ P coefficient, R31 the P→ SV
coefficient, and R33 the P→ P R/T coefficient. Detailed analytical expressions for SH and
P-SV R/T coefficients will be given in Section 5.3.1.

From the general relations for amplitudes, we can see that componentU (q)
2 is no longer

coupled with components U (q)
1 and U (q)

3 along planar ray �. It is common in seismology
to call component U (q)

2 the SH component of the S wave (S horizontal) and U (q)
1 the SV

component of the S wave (S vertical). This terminology corresponds to the seismological
convention in which the x3-axis of the general Cartesian coordinate system represents the
vertical (depth) axis. Plane �‖ is then vertical, and the SH component of the S wave,U (q)

2 ,
is horizontal. The terminology, however, may be confusing because the SV component of
the S wave,U (q)

1 , is not necessarily vertical. It only means that the SV component is always
confined to the vertical plane �‖, which contains ray � and is specified by the x1- and
x3-axes of the general Cartesian coordinate system. In our treatment in this section, we do
not assume that plane �‖ of ray � is vertical; nevertheless, we shall use the previously
described standard seismological terminology. Because the SH and SV components are
not coupled in our case of a planar ray �, we also often speak of the SV and SH waves,
and not of the SV and SH components of the S wave.

We shall also take into account that geometrical spreading factor L(R, S) can be fac-
torized into the in-plane and transverse factor along the planar ray �. The same is valid
also for L(R) and L(S):

L(R) = L‖(R)L⊥(R), L(S) = L‖(S)L⊥(S),

L(R, S) = L‖(R, S)L⊥(R, S).

For a detailed discussion and the relevant equations for the in-plane and transverse geo-
metrical spreading factors, see Section 4.13.
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1. SH WAVES
In the case of SH waves, we shall evaluate Cartesian component U (x)

2 (R) = U (q)
2 (R).

The SH wave is an unconverted S wave along the whole ray � so that we can use the
equations of Section 5.2.12. The complete 2 × 2 matrix of normalized R/T coefficients
RC is diagonal in this case so that the resulting element RC

22 equals the product of the
scalar normalized SH R/T coefficients. To emphasize this fact, we shall denote RC

22 by
RC

SH and call it the complete normalized SH reflection/transmission coefficient along ray
� between S and R. The individual equations then read:

a. The continuation relation:

U (x)
2 (R) =

[
β(S)ρ(S)

β(R)ρ(R)

]1/2 L‖(S)L⊥(S)
L‖(R)L⊥(R)

× exp[iT c(R, S)]D22(R)RC
SHU

(q)
2 (S). (5.2.108)

b. The point source at S:

U (x)
2 (R) =

[
β(S)ρ(S)

β(R)ρ(R)

]1/2 exp[iT c(R, S)]

L‖(R, S)L⊥(R, S)
D22(R)RC

SHG(q)
2 (S; γ 1, γ 2).

(5.2.109)

c. A single-force point source at S:

U (x)
2 (R) = exp[iT c(R, S)]

4π [ρ(S)ρ(R)β(S)β(R)]1/2

× 1

L‖(R, S)L⊥(R, S)
D22(R)D22(S)RC

SH f
(x)
02 (S). (5.2.110)

d. Elementary ray-theory SH Green function:

G22(R, t ; S, t0) = exp[iT c(R, S)]

4π [ρ(S)ρ(R)β(S)β(R)]1/2
1

L‖(R, S)L⊥(R, S)

×D22(R)D22(S)RC
SHδ

(A)(t − t0 − T (R, S)). (5.2.111)

In all these expressions, components D22(R) and D22(S) of the conversion matrices
D̂(R) and D̂(S) are given by the following relations:� If point R is situated in a smooth medium:

D22(R) = 1.� If point R is situated on an interface:

D22(R) = 1 + Rr22(R), D22(R
+) = Rt22(R).

The relation for component G(q)
2 (S; γ 1, γ 2) in (5.2.109) can also be simplified. From

general equations (5.2.75) and (5.2.76), we obtain

G(q)
2 (S+; γ 1, γ 2) = (cos i1/ cos i2)R

t
22(S)G(q)SM

2

(
S+; γ t S1 , γ

t S
2

)
,

G(q)
2 (S; γ 1, γ 2) = G(q)SM

2 (S̃; γ 1, γ 2) + Rr22(S)G(q)SM
2

(
S; γ r S1 , γ

r S
2

)
.

Otherwise, all the symbols in (5.2.108) through (5.2.111) have their standard meaning.

2. P-SV WAVES
Here we shall consider an arbitrary multiply reflected, possibly converted wave, prop-

agating along planar ray �. Because the SH component of the S wave is fully separated,
we can consider only the SV component of the S wave, polarized in plane �‖ of ray �.
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In ray-centered coordinates, the SV component is represented by U (q)
1 , and the P wave is

represented by U (q)
3 . We can again use general relations (5.2.83) through (5.2.86), but all

the indices i, j, k, and n will only take values 1 or 3. The convention for the first and last
element of ray �, formulated in Section 5.2.9, now simplifies:

a. If the first element of ray� (starting at the point S) is P, we put j = 3. If it is S, we
put j = 1.

b. If the last element of ray � (ending at the point R) is P, we put k = 3. If it is S, we
put k = 1.

As we can see from (5.2.83) through (5.2.86), this convention removes fully the sum-
mations due to the Einstein summation convention from these equations because indices
k and j are fixed.

Let us now discuss elementRC
kj of the complete matrix of normalized R/T coefficients

R̂C . As we can check in Equations (5.2.38), each of the R/T matrices has only one non-
vanishing element in our case, corresponding to the relevant P-SV R/T coefficient. Thus,
matrix multiplication is not required to compute RC

kj ; RC
kj is merely a product of scalar

normalized P-SV R/T coefficients. To emphasize this fact, we shall denoteRC
kj byRC

P,SV

and call it the complete normalized P-SV R/T coefficient. The product may contain P-SV
reflection and transmission coefficients of four types: R11 (SV → SV), R13 (SV → P),
R31 (P → SV), and R33 (P → P). The choice of the proper R/T coefficient must be con-
sistent with the alphanumeric code of the wave.

The final equations are as follows:

a. The continuation relation:

U (x)
i (R) =

[
V (S)ρ(S)

V (R)ρ(R)

]1/2 L‖(S)L⊥(S)
L‖(R)L⊥(R)

× exp[iT c(R, S)]Dik(R)RC
P,SVU

(q)
j (S). (5.2.112)

b. The point source at S:

U (x)
i (R) =

[
V (S)ρ(S)

V (R)ρ(R)

]1/2

× exp[iT c(R, S)]

L‖(R, S)L⊥(R, S)
Dik(R)RC

P,SVG(q)
j (S; γ 1, γ 2). (5.2.113)

c. A single-force point source at S:

U (x)
i (R) = exp[iT c(R, S)]

4π [ρ(S)ρ(R)V (S)V (R)]1/2

× 1

L‖(R, S)L⊥(R, S)
Dik(R)Dnj (S)RC

P,SV f
(x)
0n (S). (5.2.114)

d. Elementary ray-theory P-SV Green function:

Gin(R, t ; S, t0) = exp[iT c(R, S)]

4π [ρ(S)ρ(R)V (S)V (R)]1/2
1

L‖(R, S)L⊥(R, S)
×Dik(R)Dnj (S)RC

P,SV δ
(A)(t − t0 − T (R, S)). (5.2.115)

We again remind the reader that i, j, k, and nmay take only values 1 or 3 and that k and j are
strictly determined by the convention for the first and last element of ray� (3 for P, 1 for SV).

Equations (5.2.112) through (5.2.115) contain four elements of conversion matrix D̂:
D11, D13, D31, and D33. The conversion coefficients D11, D13, D31, and D33 are given by
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simpler relations than (5.2.67) and (5.2.68) because certain R/T coefficients vanish. For
the reader’s convenience, we shall present these simplified equations for the conversion
coefficients here:

D11(R) = eSM11 (R) + NrP
1 (R)Rr13(R) + erS11 (R)R

r
11(R),

D11(R+) = NtP
1 (R+)Rt13(R) + etS11(R

+)Rt11(R),

D13(R) = NSM
1 (R) + NrP

1 (R)Rr33(R) + erS11 (R)R
r
31(R),

D13(R+) = NtP
1 (R+)Rt33(R) + etS11(R

+)Rt31(R),

D31(R) = eSM13 (R) + NrP
3 (R)Rr13(R) + erS13 (R)R

r
11(R),

D31(R+) = NtP
3 (R+)Rt13(R) + etS13(R

+)Rt11(R),

D33(R) = NSM
3 (R) + NrP

3 (R)Rr33(R) + erS13 (R)R
r
31(R),

D33(R+) = NtP
3 (R+)Rt33(R) + etS13(R

+)Rt31(R).

(5.2.116)

Further specifications of D11, D13, D31, and D33 will be given in Section 5.3.8. The same
equation can also be used for Di j (S) and Di j (S+), if we replace R and R+ by S and S+ in
(5.2.116).

The equation for the components of radiation functionsG(q)
j (S; γ 1, γ 2) (orG(q)

j (S+; γ 1,

γ 2)) in (5.2.113) can also be simplified. The general relations for the radiation matrix, if
the source is situated on interface �S , are given by (5.2.75) and (5.2.76), where J is fixed,
J = 1.

Finally, in Equations (5.2.112) through (5.2.116), V (S) and V (R) are specified as α or
β at S or R depending on the type of the wave at S or R.

5.2.14 Initial Ray-Theory Amplitudes at a Smooth Initial Surface

in a Solid Medium

To solve the problem of initial ray-theory amplitudes at a smooth initial surface �0, it
would be natural to use the elastic Kirchhoff integral just as we used the acoustic Kirchhoff
integral in Section 5.1.11. Moreover, the elastic Kirchhoff integral itself plays a very
important role in various applications and extensions of the ray method. For anisotropic
media, the Kirchhoff integral will be discussed in more detail in Section 5.4.8. All results
thatwill be derived there are also immediately applicable to isotropicmedia. For this reason,
we shall not discuss it here. We shall present only two important equations related to the
initial ray-theory amplitudes on �0, assuming that an elementary P or S wave is incident
at it.

We shall consider a smooth initial surface �0, situated inside or on the boundary of an
elastic isotropic medium. The initial surface �0 may represent, among others, a structural
interface, a free surface, an auxiliary surface in a smooth medium, or a wavefront of a P or
an S wave. The incident wave may be of any type (P or S) and may approach the surface
�0 from any side.

In Section 4.5, the problem of initial conditions along�0 was solved from the kinematic
point of view. It was shown there that P and S waves are generated at both sides of �0.
The initial values of slowness vector and of dynamic ray tracing matrices Q and P of
these generated waves were determined from the distribution of travel time T 0 of the
incident wave along�0. To simplify the treatment, we shall formally consider two vectorial
components of S waves independently, as S1 and S2 waves. Both components can be
combined to give the complete S wave.
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We denote the ray-centered displacement amplitude of the incident elementary wave
along�0 byU (q)inc

i (S), where i = 1 corresponds to the S1 wave, i = 2 to the S2 wave, and
i = 3 to the P wave. Then the initial ray-centered displacement amplitude U (q)

k (S) of any
generated wave is given by the relation

U (q)
k (S) = Rik(S)U

(q)inc
i (S) (5.2.117)

(no summation over i). Here Rik(S) is the relevant displacement R/T coefficient. It corre-
sponds to the reflection coefficient Rrik(S) if the generated wave exists on the same side of
�0 as the incident wave and to the transmission coefficient Rtik(S) if these waves exist on
opposite sides of�0. Thus, the determination of the initial ray-theory amplitudes on�0 is
simple. It is only necessary to multiply the smooth medium amplitude of the incident wave
U (q)inc
i by the relevant displacement R/T coefficient.
Equation (5.2.117) is simplified if �0 represents an auxiliary surface in a smooth

medium (not a structural interface). Then only the transmission coefficient of the uncon-
verted transmitted wave is nonvanishing and equals unity; all other R/T coefficients vanish.
The initial amplitudes of the unconverted transmitted wave are given by a simple relation:

U (q)
k (S) = U (q)inc

k (S). (5.2.118)

Consequently, the intermediate ray-theory solutions can be stored along arbitrary ref-
erence surfaces �0 and used further for computations. The procedure is the same as in the
acoustic case; see Section 5.1.11. Actually, it is sufficient to store the travel time T 0(γ1, γ2)
and the smooth medium amplitude U (q)

i (γ1, γ2) of the incident wave along the surface �0.
We also need to know the type of the incident wave (specified by index i = 1, 2, or 3) and
the side from which the incident wave approaches�0. Then, it is possible to recover all six
generated elementary waves.

5.2.15 Initial Ray-Theory Amplitudes at a Smooth Initial Line

in a Solid Medium

Herewe shall derive general initial-line ray-theory solutions for 3-D elastic laterally varying
structures. The curvature and the torsion of the initial line need not vanish. Similarly, the
distribution of the initial travel time along C0 may be arbitrary. The approach is very
much the same as in Section 5.1.12, only vectorial ray-theory displacement amplitudes are
considered instead of scalar ray-theory pressure amplitudes. For this reason, we shall be
very brief.

First, we shall discuss the representation theorem solutions for a straight initial line
C0, situated in a homogeneous medium. In the volume integral (2.6.4), the source term
fi (	x, ω) is given by the relation,

fi (	x, ω) = δ(x1 − x01)δ(x3 − x03) f
(x)
0i (x2) exp[iωT

0(x2)]. (5.2.119)

Here f (x)0i (x2) represents the i th Cartesian component of a single force 	f 0(x2) at the point x2
of the initial line C0. The elastodynamic ray-theory Green function Gin(	x ′, 	x, ω) in (2.6.4)
is given by (2.5.58). Consequently, we obtain two integrals, one for P waves and one for
S waves. Alternatively, we can obtain three integrals for P, S1, and S2 waves, if we use
δin − Ni Nn = e1i e1n + e2i e2n; see (2.5.60). Using the ray-theory solution (5.2.18) for the
same model as in the representation theorem solution and matching both these solutions,
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we obtain the final relation for the vectorial line-source radiation functions G(q)L
i (S; γ1):

G(q)L
i (S; γ1) = lim

S′→S

(L(S′)U (q)
i (S′)

) = f (x)0k (S)eik(S)

4πρ(S)V 3/2(S)
. (5.2.120)

Here G(q)L
1 corresponds to S1 waves (with V = β and with the polarization vector 	e1(S)),

G(q)L
2 to S2 waves (with V = β and 	e2(S)), and G(q)L

3 to P waves (with V = α and 	e3(S) =
	N (S)). The final ray-theory solutions for the displacement vector of an arbitrary multiply-
reflected wave generated at a point S of an initial line C0 situated in a 3-D elastic laterally
varying layered structure are then

u(x)i (R, ω) = U (x)
i (R)F(ω) exp[iω(T 0(S) + T (R, S))], (5.2.121)

with the vectorial ray-theory amplitude U (x)
i (R) given by the relation

U (x)
i (R) =

[
V (S)ρ(S)

V (R)ρ(R)

]1/2 exp[iT c(R, S)]

L(R) Dik(R)RC
kjG(q)L

j (S; γ1).

(5.2.122)

Here F(ω) is the two-dimensional frequency filter (2.6.29), and G(q)L
j (S; γ1) is the line-

source radiation function. All other symbols have the samemeaning as in a similar equation
(5.2.84) valid for a point source. There are only twodifferences between the relation (5.2.84)
for a point source and the relation (5.2.122) for a line source.

a. The radiation function G(q)
j (S; γ1, γ2) in (5.2.84) corresponds to a point source

situated at S, but the radiation function G(q)L
j (S; γ1) in (5.2.122) corresponds to a

point S situated on a line source C0.
b. Geometrical spreading L(R) in (5.2.122) is replaced by the relative geometrical

spreading L(R, S) in (5.2.84).

We remind the reader the convention for the first and last elements of the ray, formulated
in Section 5.2.9.

Because (5.2.122) has the same form as (5.2.84) (only L(R, S) is replaced by L(R)
and G(q)

j by G(q)L
j ), we can even use, for a line source, other relations derived for a point

source. This applies, for example, to (5.2.88) for unconverted P waves, to (5.2.105) for
unconverted S waves, and so on.

Let us now consider 2-D computations with a straight line source. As in (5.1.109), we
obtain

U (x)
i (R) =

[
V 2(S)ρ(S)

V (R)ρ(R)

]1/2 exp[iT c(R, S)]

L‖(R, S)
Dik(R)RC

kjG(q)L
j (S; γ1),

(5.2.123)

or, alternatively,

U (x)
i (R) = exp[iT c(R, S)]

4π [ρ(S)ρ(R)V (S)V (R)]1/2
Dik(R)RC

kj

L‖(R, S)
f (x)0l (S)e jl(S).

(5.2.124)

In (5.2.124), we can also use Hlj (S) instead of e jl(S).
The relation (5.2.123) can also be generalized to consider the line source C0 situated

on a structural interface. Then, G(q)L
j (S; γ1) can be modified as explained in Section 5.2.8.

For a single-force source, (5.2.124) can be used with e jl(S) replaced by Dl j (S).
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We shall now specify (5.2.124) for SH and P-SV waves. As usual, we consider the x2-
axis of the Cartesian coordinate system perpendicular to the plane �‖ of rays, and choose
	e2 parallel to x2-axis. Then, (5.2.124) yields

a. SH waves, for f (x)01 (S) = f (x)03 (S) = 0:

U (x)
2 (R) = exp[iT c(R, S)]

4π [ρ(S)ρ(R)β(S)β(R)]1/2
D22(R)RC

SHD22(S)

L‖(R, S)
f (x)02 (S).

(5.2.125)

b. P-SV waves, for f (x)02 (S) = 0:

U (x)
i (R) = exp[iT c(R, S)]

4π [ρ(S)ρ(R)V (S)V (R)]1/2
Dik(R)RC

kjDl j (S)

L‖(R, S)
f (x)0l (S).

(5.2.126)

In (5.2.126), i, j, k, and l are fixed and take values 1 or 3. As explained in Section 5.2.13,
the matrix product RC

kj reduces to a simple scalar multiplication of successive P-SV R/T
coefficients.

It is now simple to give expressions for 2-D elementary ray-theory SH and P-SV Green
functions G2D

in (R, S, ω). We merely use f (x)0l (S) = δln and obtain

a. For SH waves:

G2D
22 (R, S, ω) = exp[iT c(R, S)]

4π [ρ(S)ρ(R)β(S)β(R)]1/2

×D22(R)D22(S)RC
SH

L‖(R, S)
F(ω) exp[iωT (R, S)]. (5.2.127)

b. For P-SV waves:

G2D
in (R, S, ω) = exp[iT c(R, S)]

4π [ρ(S)ρ(R)V (S)V (R)]1/2

×Dik(R)RC
kjDnj (S)

L‖(R, S)
F(ω) exp[iωT (R, S)]. (5.2.128)

It is not difficult to see that the 2-D elementary ray-theory Green functions are reciprocal
in the following sense: G2D

in (R, S, ω) = G2D
ni (S, R, ω). In the time domain, the 2-D ele-

mentary ray-theory Green functions G2D
22 (R, t ; S, t0) and G

2D
in (R, t ; S, t0) are again given

by (5.2.127) and (5.2.128), only we replace F(ω) exp[iωT (R, S)] by [
√
2H (ζ )ζ−1/2](A),

where ζ = t − t0 − T (R, S); see (A.3.9).

5.3 Reflection/Transmission Coefficients for Elastic
Isotropic Media

The equations for the computation of the vectorial complex-valued displacement am-
plitudes of high-frequency elastic waves propagating in laterally varying nondissipative
isotropic elastic layered and block structures were derived in Section 5.2. These equations
contain displacement reflection/transmission coefficients Rmn. In this section, we shall dis-
cuss the displacement R/T coefficients in greater detail. In addition, we shall also discuss
the normalized displacement R/T coefficientsRmn.

The computation ofR/Tcoefficients at a plane interface between two solids is a classical
problem in seismology. Knott (1899) and Zöppritz (1919) were the first who published
analytical expressions for R/T coefficients and gave some numerical examples. This is also
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the reason why the R/T coefficients are sometimes called the Zöppritz coefficients in the
seismological literature. A large number of papers and books devoted to R/T coefficients
have been published since. Let us name here only several of them: Muskat and Meres
(1940), Nafe (1957), Vasil’yev (1959), Podyapol’skiy (1959), Bortfeld (1961), McCamy,
Meyer, and Smith (1962),Koefoed (1962), Tooley, Spencer, and Sagoci (1965),Yanovskaya
(1966), Červený and Ravindra (1971), Aki and Richards (1980), Schoenberg and Protázio
(1992), andBorejko (1996). Even though the determination of the analytical expressions for
R/T coefficients is not complicated, various conflicting expressions have been given. The
problem is that the authors do not sometimes specify properly the conditions under which
their computations of R/T coefficients have been performed. Moreover, many misprints
and/or errors have appeared in the final expressions. Thus, the application of published
equations, algorithms, and numerical results often becomes confusing.

In general, the R/T coefficients represent the ratios of certain quantities related to the
amplitudes of generated waves to the amplitude of the incident wave. They may be intro-
duced in many ways. The most common is to consider the displacement R/T coefficients
introduced in Section 2.3 and used in Section 5.2. We remind the reader that the displace-
ment R/T coefficients represent the ratios of ray-centered components of the displacement
vector of generated R/T waves to the ray-centered components of the displacement vector
of the incident wave. Alternatively, potential R/T coefficients, which are mostly based on
the Lamé’s potentials have also been used often. The potential R/T coefficients represent
the ratios of the potential of any of the generated R/T waves to the potential of the in-
cident wave. In the seismic ray method, we work mostly with displacements, not with
potentials. For this reason, the potential R/T coefficients have not been used practically
in the ray method and will not be used here at all either. Also the energy R/T coefficients
have sometimes been used to demonstrate the partition of energy into individual generated
waves at an interface. The energy R/T coefficients represent the ratios of the energy den-
sity of any of the generated R/T waves to the energy density of the incident wave. Even
though the energy R/T coefficients offer a useful insight into the partition of the energy
among the R/T waves generated at the interface, they have not found applications in the
numerical modeling of seismic body wavefields. They do not yield any information on the
argument of the complex-valued R/T coefficients. For this reason, they cannot be used in
the computation of the complex-valued displacement vector along the ray.

In general, the displacement and potential R/T coefficients can simply be mutually
recalculated, without loss of information. Similarly, the energy R/T coefficients may be
evaluated simply from the displacement or potential R/T coefficients (but not vice versa).

As stated earlier, we shall use mainly the displacement R/T coefficients here. A disad-
vantage of the displacement R/T coefficients is that they are not in general reciprocal. (Note
that the potential R/T coefficients are not reciprocal either.) In addition to the displacement
R/T coefficients, we shall also use the normalized displacement R/T coefficients (or simply
the normalized R/T coefficients). The normalized displacement R/T coefficients represent
the displacement R/T coefficients normalized with respect to the energy flux across the
interface; see Section 5.3.3. The normalized displacement R/T coefficients are reciprocal
and are very useful in the ray method. They include the same phase information as the
displacement R/T coefficients.

R/T coefficients have been broadly used in seismology in two different methods.

a. In the raymethod, to evaluate thewavefield of selected elementarywave propagating
in complex laterally varying layered structures.
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b. Inmatrixmethods, to evaluate the completewavefield in 1-Dstructures (for example,
in the reflectivity method).

In ray applications, we usually apply individual R/T coefficients at any point of in-
cidence, according to the ray code of the wave under consideration. In matrix methods,
however, the R/T coefficients are grouped into R/Tmatrices. Thesematricesmay be of dif-
ferent order in different applications (2 × 2, 4 × 4, 6 × 6, and so on). In the standard P-SV
case, the 4 × 4 matrices are composed of four 2 × 2 matrices that correspond to reflec-
tion and transmission coefficients for “downgoing” and “upgoing” waves. Analogously, the
6 × 6matrices consist of similar 3 × 3 reflection and transmissionmatrices, corresponding
to the downgoing and upgoing waves. For a detailed treatment of R/Tmatrices in isotropic
media, see Kennett (1983). For anisotropic media, see Section 5.4.7.

The general matrices, introduced in the reflectivity method, have, however, no direct
application in the raymethodbecausewedonot need to consider all upgoing anddowngoing
waves for a selected elementarywave; the ray code for the elementarywave strictly specifies
the proper R/T coefficient at any point of incidence. Without loss of generality, we can
consider only downgoingR/Tcoefficients because the structuremaybe treated locally at the
point of incidence; the “upper”mediumcoincidingwith themediumwith the incidentwave.

Nevertheless, the 3 × 3 R/T matrices are very useful in the numerical modeling of
seismic wavefields in 3-D isotropic elastic structures using the ray method, if we are also
interested in S and converted waves. If the displacement vector of the incident S wave is
polarized in the plane of incidence or perpendicular to it at all points of incidence, the
systems of equations for the R/T coefficients are decomposed and the application of the
3 × 3 R/T matrices is not required. This includes all 1-D and 2-D ray tracing applications;
see Section 5.2.13. The situation is, however, quite different in 3-D models. In general,
the displacement vectors of the S wave are polarized arbitrarily at the individual points of
incidence.The applicationof 3 × 3R/Tmatrices is very useful in this case because it allows
us to write simple compact expressions for the vectorial complex-valued amplitudes. These
expressions become even simpler if we use the normalized displacement R/T matrices
instead of standard displacement R/Tmatrices. See themore detailed treatment in Sections
5.2.4, 5.2.5, 5.3.5, and 5.3.6.

Let us add one remark. Displacement R/T coefficients depend, of course, on the ori-
entation of the basis vectors of the ray-centered basis vectors 	e1, 	e2, and 	e3 ≡ 	t , both for
incident and R/T waves. Basis vectors 	e1 and 	e2, however, may be introduced in different
ways; only unit vector 	e3 ≡ 	t is strictly specified for each wave.

In the computation of R/T coefficients, the unit vectors 	e1 and 	e2, corresponding to the
incident wave and to the generated R/Twaves,may be chosen arbitrarily. The resulting R/T
coefficients, however, depend on this choice. This can be simply checked in system (2.3.37),
which contains eiI j , e

r
I j , and e

t
I j (I = 1, 2; j = 1, 2, 3). For any choice of eiI j , e

r
I j , and

etI j , we obtain the relevant R/T coefficients. The same applies to the P-SV system (2.3.42),
which contains ei11, e

i
13, e

r
11, e

r
13, e

t
11, and e

t
13. CorrespondingR/Tcoefficients are obtained

for any choice of these components of the basis vectors. To remove possible ambiguity, we
shall specify the orientation of the unit vectors of 	e1 and 	e2 of all generated waves using
the standard option (2.3.45).

Let us now return to the actual computation of the displacement R/T coefficients. The
relevant systems of equations for the diplacement R/T coefficients are given in Section
2.3. In this section, we shall use the notations and equations of Section 2.3.2. We remind
the reader that the velocities of P and S waves and the densities are denoted α1, β1, ρ1 in
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the halfspace 1 and α2, β2, ρ2 in the halfspace 2. We also assume that the wave is incident
at interface � from halfspace 1 and that normal 	n to interface � at the point of incidence
Q is specified. It may be oriented to either side of interface �, that is, into halfspace 1 or
into halfspace 2. We distinguish these two cases by orientation index ε,

ε = sgn( 	p · 	n), (5.3.1)

where 	p is the slowness vector of the incident wave at Q; see (2.3.4). More details on the
orientation index ε will be given in Section 5.3.2.

We shall first present the R/T coefficients for the case that the unit vector 	e2 of the
incident wave is perpendicular to the plane of incidence; see Section 5.3.1. As is common
in seismology, we shall call these R/T coefficients the P-SV and SHR/T coefficients. Only
in Section 5.3.5, shall we consider the general case of 	e2 arbitrarily rotated along the ray
of the incident wave.

As in Sections 2.3 and 5.2, we shall use the following notation for the displacement R/T
coefficients. By Rrmn we shall understand the reflection coefficient, where m specifies the
type of incident wave and n specifies the type of reflected wave. Similarly, we denote the
transmission coefficient by Rtmn , where m specifies the type of the incident wave and n
the type of transmitted wave. Index m is determined as follows:

m = 1, S1 component of the incident S wave (polarized in the direction of 	e1)
m = 2, S2 component of the incident S wave (polarized in the direction of 	e2)
m = 3, P incident wave (polarized in the direction of 	e3 ≡ 	t).

Index n is determined in the same way asm but corresponds to the selected reflected/trans-
mitted wave.

5.3.1 P-SV and SH Reflection/Transmission Coefficients

In this section, we shall present the analytical expressions for the displacement R/T co-
efficients of P-SV and SH types. The basic assumption under which these “decomposed”
R/T coefficients are derived is that the basis vector 	e2 corresponding to the incident wave
is perpendicular to the plane of incidence at the point of incidence Q. The simplest choice
for the basis vectors 	e2 of all generated R/T waves is to assume that they coincide with
	e2 for the incident wave. The system of six linear equations (2.3.37) then decomposes into
two subsystems, (2.3.42) and (2.3.43). The first subsystem (2.3.42) consists of four linear
equations for the P-SV R/T coefficients. The second system (2.3.43) consists of two linear
equations for the SH R/T coefficients.

Before we give the equations for the P-SV and SH R/T coefficients, we shall make
several remarks concerning the local Cartesian coordinate system at the point of incidence
Q and the orientation of 	e1 and 	e2 at Q. In fact, we do not need to introduce the local
Cartesian coordinate system at the point of incidence at all to evaluate the R/T coefficients,
but it is often introduced in the ray method. Actually, we introduced the local Cartesian
coordinate system at Q and the orientation of the basis vectors 	e1 and 	e2 at Q in Section
4.4.1, in connection with the dynamic ray tracing across an interface. To be consistent, we
shall use the same options as in the dynamic ray tracing: the standard options (4.4.21) and
(2.3.46). We remind the reader that the z3-axis (specified by basis vector 	i (z)3 ) is taken along
normal 	n to � at Q. The normal 	n to � at Q may be oriented to either side of interface.
Axis z1 (basis vector 	i (z)1 ) is taken along the intersection of the plane of incidence with the
tangent plane to interface � at Q. The positive orientation of 	i (z)1 is such that 	p · 	i (z)1 > 0,
where 	p is the slowness vector of the incident wave. Thus, the positive z1-axis points in
the direction of propagation of the incident wave. Finally, the basis vectors 	e2 of all waves
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Figure 5.5. The physical meaning of
P-SV and SH reflection coefficients
R33, R31, R13, R11, and R22. All other
R/Tcoefficients (R12, R21, R23, and R32)
vanish. The orientation of the SV polar-
ization vector 	e1 for ε = 1 is also dis-
played by small arrows. For ε = −1,
the polarization vectors 	e1 would be op-
posite. (a) Reflection coefficients. (b)
Transmission coefficients.

under consideration coincide with 	i (z)2 , and 	e1 = 	e2 × 	e3. The calculated P-SV and SHR/T
coefficients, however, do not depend on the local Cartesian coordinate system, they depend
only on model parameters α1, β1, ρ1, α2, β2, and ρ2, on ray parameter p = (sin i)/V and
on orientation index ε.

Figure 5.5 shows schematically the physical meaning of the individual nonvanishing
R/T coefficients in the P-SV and SH case. We remind the reader that, in this case, R12 =
R21 = R23 = R32 = 0 so that the only nonvanishing displacement R/T coefficients are
R11(≡ RSV→SV ), R13(≡ RSV→P ), R31(≡ RP→SV ), R33(≡ RP→P ), and R22(≡ RSH→SH ).
Figure 5.5 also shows the orientation of the basis vectors 	e1 and 	e3 for ε = 1. The unit
vectors 	e2 of all waves are perpendicular to the plane of incidence and are pointing toward
the reader. The unit vectors 	e3 have the same directions as the slowness vectors; see large
arrows. Finally, the unit vectors 	e1 = 	e2 × 	e3 are shown by small arrows. The basis vectors
	e1, 	e2, and 	e3 form a mutually perpendicular triplet of unit vectors for each wave.

The analytical expressions for R/T coefficients R11, R13, R31, R33, and R22 are as
follows:

a. Displacement reflection coefficients:

R11 = D−1[q2 p2P1P2P3P4 + ρ1ρ2(α1β2P2P3 − β1α2P1P4)
−α1β1P3P4Y 2 + α2β2P1P2X 2 − α1α2β1β2 p2Z2],

R13 = −2εβ1 pP2D
−1(qP3P4Y + α2β2X Z ),

R31 = 2εα1 pP1D
−1(qP3P4Y + α2β2X Z ), (5.3.2)

R33 = D−1[q2 p2P1P2P3P4 + ρ1ρ2(β1α2P1P4 − α1β2P2P3)
−α1β1P3P4Y 2 + α2β2P1P2X 2 − α1α2β1β2 p2Z2],

R22 = D̄−1(ρ1β1P2 − ρ2β2P4).
b. Displacement transmission coefficients:

R11 = 2β1ρ1P2D
−1(α1P3Y + α2P1X ),

R13 = 2εβ1ρ1 pP2D
−1(qP1P4 − α1β2Z ),

R31 = −2εα1ρ1 pP1D
−1(qP2P3 − β1α2Z ), (5.3.3)

R33 = 2α1ρ1P1D
−1(β2P2X + β1P4Y ),

R22 = 2ρ1β1P2 D̄
−1.

Here we have used the notation:

D = q2 p2P1P2P3P4 + ρ1ρ2(β1α2P1P4 + α1β2P2P3)
+α1β1P3P4Y 2 + α2β2P1P2X 2 + α1α2β1β2 p2Z 2, (5.3.4)

D̄ = ρ1β1P2 + ρ2β2P4,
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and

q = 2
(
ρ2β

2
2 − ρ1β2

1

)
, X = ρ2 − qp2,

Y = ρ1 + qp2, Z = ρ2 − ρ1 − qp2,

P1 = (
1 − α21 p2

)1/2
, P2 = (

1 − β2
1 p

2
)1/2
,

P3 = (
1 − α22 p2

)1/2
, P4 = (

1 − β2
2 p

2
)1/2
.

(5.3.5)

Symbol ε stands for the orientation index; see (5.3.1). For a more detailed discussion of ε,
see Section 5.3.2.

Square roots Pi , i = 1, 2, 3, 4, may be imaginary. The sign of the imaginary square
root is taken positive, as in (5.1.20):

P1 = i
(
α21 p

2 − 1
)1/2

for p > 1/α1,

P2 = i
(
β2
1 p

2 − 1
)1/2

for p > 1/β1,

P3 = i
(
α22 p

2 − 1
)1/2

for p > 1/α2, (5.3.6)

P4 = i
(
β2
2 p

2 − 1
)1/2

for p > 1/β2.

The plus signs in the expressions for Pk in (5.3.6) again correspond to the plus sign
in expression (2.2.9) for the analytical signal, F(ζ ) = x(ζ ) + ig(ζ ). Had we defined the
analytical signal as F(ζ ) = x(ζ ) − ig(ζ ), it would have been necessary to replace i by −i
in (5.3.6). The choice (5.3.6) guarantees that the amplitudes of generated inhomogeneous
waves decrease exponentially with the increasing distance from the interface.

Expressions (5.3.2) also apply todisplacement reflectioncoefficients fromtheEarth’s
surface; we only need to put ρ2 = α2 = β2 = 0. The explicit relations for the displacement
reflection coefficients from the Earth’s surface are

R11 = D−1
1

[−(1 − 2β2
1 p

2
)2 + 4p2P1P2β

3
1α

−1
1

]
,

R13 = 4εpβ2
1α

−1
1 P2D

−1
1

(
1 − 2β2

1 p
2
)
,

R31 = −4εpβ1P1D
−1
1

(
1 − 2β2

1 p
2
)
, (5.3.7)

R33 = D−1
1

[−(1 − 2β2
1 p

2
)2 + 4p2P1P2β

3
1α

−1
1

]
,

R22 = 1.

In the same way, it is possible to obtain from (5.3.3) the displacement transmission
coefficients at the Earth’s surface. They have a formal meaning only but can be suitably
used to evaluate the conversion coefficients at theEarth’s surface; seeSection5.3.8. They are

R11 = 2P2
(
1−2β2

1 p
2
)/
D1,

R13 = −4εβ2
1 pP1P2

/
α1D1,

R31 = 4εβ1 pP1P2
/
D1,

R33 = 2P1
(
1−2β2

1 p
2
)/
D1,

R22 = 2.

(5.3.8)

In (5.3.7) and (5.3.8), D1 is the so-called Rayleigh function,

D1 = (
1 − 2β2

1 p
2
)2 + 4p2P1P2β

3
1α

−1
1 . (5.3.9)

All other notations are the same as in (5.3.5).
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Similarly, expressions (5.3.2) and (5.3.3) can also be used if one of the halfspaces is
fluid.We only need to put β1 = 0 or β2 = 0 in the relevant fluid halfspace. Because Swaves
do not propagate in fluids, the corresponding R/T coefficients with S elements only have a
formal meaning in the fluid halfspace. If both halfspaces are fluid, expressions (5.3.2) and
(5.3.3) for R33 are indefinite, of the 0/0 type. The simple limiting process β1 = β2 → 0,
however, yields Equation (5.2.91), known from the acoustic case.

It should be emphasized that the choice of polarization vectors 	e1, 	e2, and 	e3 used here
may be convenient in some applications. For example, it is fully consistent with the choice
that has been used in dynamic ray tracing. However, any other choice is as good as ours
and may be suitably used in some other computational systems. In fact, if the orientation
of the unit vectors 	e1, 	e2, and 	e3 is arbitrarily changed, Equation (5.3.2) through (5.3.6)
may be again used; it is only necessary to change the signs of relevant R/T coefficients
appropriately.

5.3.2 Orientation Index ε

To calculate the P-SV R/T coefficients of converted waves SV → P and P → SV (R13

and R31), we must know orientation index ε = sgn( 	p · 	n), where 	p is the slowness vector
of the incident wave, and 	n is the unit normal to interface � at Q. This is not surprising
because orientation index ε also affects the orientation of basis vectors 	e1 and 	e2. To prove
this, we shall follow the construction of the local Cartesian coordinate system z1, z2, z3 at
Q and the specification of 	e1 and 	e2 as described in Section 5.3.1.

We have introduced the local Cartesian coordinate system at Q so that 	i (z)3 ≡ 	n and so
that 	i (z)1 is taken along the intersection of the plane of incidence with the plane tangent
to � at Q, with 	p · 	i (z)1 > 0. The remaining basis vector 	i (z)2 is then given by the relation
	i (z)2 = 	i (z)3 × 	i (z)1 . Thus, the orientation of axis z1 does not depend on ε, but 	i (z)2 and 	i (z)3

change their sign if ε changes its sign.
Because 	e2 ≡ 	i (z)2 (by definition), both 	e1 and 	e2 also change their sign if ε changes

its sign. See Figure 5.5, where the orientation of 	e1 is shown for ε = 1. For ε = −1, unit
vectors 	e1 would point in the opposite direction.

It should again be emphasized that only the R/T coefficients of converted waves P →
SV and SV → P depend on orientation index ε. No other R/T coefficients (R11, R33, R22)
depend on it.

5.3.3 Normalized Displacement P-SV and SH Reflection/

Transmission Coefficients

The equations for amplitudes of seismic body waves propagating in layered structures are
simplified if normalized displacement R/T coefficients Rmn are used instead of standard
displacement R/T coefficients Rmn . Moreover, the normalized R/T coefficientsRmn have
certain remarkable reciprocity properties. The normalized displacement P-SV and SH
reflection/transmission coefficients are given by the relations

Rmn = Rmn

(
V (Q̃)ρ(Q̃)P(Q̃)

V (Q)ρ(Q)P(Q)

)1/2

. (5.3.10)

Here Q denotes the point of incidence; Q̃ denotes the point of reflection/transmission;
V (Q), ρ(Q), and P(Q) correspond to the incident wave; and V (Q̃), ρ(Q̃), and P(Q̃)
correspond to the selected R/T wave. Moreover, ρ is density (ρ1 or ρ2), and V is velocity
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(α1, β1, α2, or β2) depending on the type of the wave. Finally, P(Q) = (1 − V 2(Q)p2)1/2

and P(Q̃) = (1 − V 2(Q̃)p2)1/2. Thus, P(Q) and P(Q̃) may be any of P1, P2, P3, or P4,
defined by (5.3.5). See also (5.2.43). Because we do not consider inhomogeneous waves
here, P(Q) and P(Q̃) are always real-valued and positive, and the whole normalization
factor in (5.3.10) is always real-valued and positive. The R/T coefficients Rmn and Rmn
themselves, however, may be complex-valued because they contain other square roots Pi
(see (5.3.5)), and some of these square roots may be complex-valued. A typical example
is the postcritically reflected wave. See Section 5.3.4.

To explain the physical meaning of the normalization factor, we shall consider the
energy fluxes of incident and R/T plane waves across interface � at Q, perpendicular to
� (along normal 	n to �). As in Section 2.2.7, we denote the Cartesian components of the
energy flux Ŝi . The energy flux along 	n is then Ŝi ni . Let us consider, for simplicity, that the
SH component of the incident wave vanishes and assume that the amplitude of the incident
wave (P or SV) equals unity. Then we obtain

|Ŝi ni |inc = ρ(Q)V (Q)P(Q) fc

for the incident wave (see (2.4.57) and (2.4.58)) and

|Ŝi ni |R/T = ρ(Q̃)V (Q̃)P(Q̃)RR∗ fc

for a selected R/T wave. Here R is the appropriate displacement R/T coefficient. The ratio
of both energy fluxes is∣∣∣∣ (Ŝi ni )R/T(Ŝi ni )inc

∣∣∣∣ = ρ(Q̃)V (Q̃)P(Q̃)

ρ(Q)V (Q)P(Q)
RR∗ = RR∗. (5.3.11)

This yields

|R| = |(Ŝi ni )R/T /(Ŝi ni )inc|1/2. (5.3.12)

The physical meaning of R is obvious from (5.3.12). The modulus of the normalized
displacement R/T coefficient |R| represents the square root of the absolute value of the
ratio of the energy flux of the appropriate R/Twave to the energy flux of the incident wave,
both taken along normal 	n to interface � at point Q. The argument of R, however, is the
same as the argument of the standard displacement R/T coefficient R.

For the reader’s convenience, we shall give the expressions for the P-SV and SH nor-
malized displacement R/T coefficients:

a. Reflection coefficients:

R11 = R11, R22 = R22, R33 = R33,

R13 = −2εp(β1α1P1P2)
1/2D−1(qP3P4Y + β2α2X Z ), (5.3.13)

R31 = 2εp(β1α1P1P2)
1/2D−1(qP3P4Y + α2β2X Z ).

b. Transmission coefficients:

R11 = 2(β1β2ρ1ρ2P2P4)
1/2D−1(α1P3Y + α2P1X ),

R13 = 2εp(β1α2ρ1ρ2P2P3)
1/2D−1(qP1P4 − α1β2Z ),

R31 = −2εp(α1β2ρ1ρ2P1P4)
1/2D−1(qP2P3 − β1α2Z ), (5.3.14)

R33 = 2(α1α2ρ1ρ2P1P3)
1/2D−1(β2P2X + β1P4Y ),

R22 = 2(β1β2ρ1ρ2P2P4)
1/2 D̄−1.

All the symbols have the same meaning as in (5.3.2) through (5.3.6).
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For a free surface, the expressions for the P-SV and SH normalized displacement
reflection coefficients are

R11 = R11, R22 = R22, R33 = R33,

R13 = 4pεβ1(β1P1P2/α1)
1/2D−1

1

(
1 − 2β2

1 p
2
)
, (5.3.15)

R31 = −4pεβ1(β1P1P2/α1)
1/2D−1

1

(
1 − 2β2

1 p
2
)
.

D1 is given by (5.3.9).

5.3.4 Displacement P-SV and SH R/T Coefficients: Discussion

It would not be simple to discuss all the P-SV and SH R/T coefficients for isotropic solid
media in greater detail. The number of coefficients is rather high: five for reflections and
five for transmissions. The coefficients are, in general, complex-valued quantities so that
each coefficient is represented by two quantities: by the modulus and by the argument.
The coefficients depend on six medium parameters α1, β1, ρ1 and α2, β2, ρ2, and on the
angle of incidence i (or, alternatively, on the ray parameter p). Even though the number
of medium parameters may be reduced to four by considering various ratios (for example,
α1/α2, β1/α1, β2/α2, and ρ1/ρ2), the number of medium parameters still remains too high
for a detailed parameteric study. Moreover, in many situations, the dependence of certain
R/T coefficients on the angle of incidence is very complicated.

For this reason, we shall discuss the P-SV and SH R/T coefficients only very briefly.
At present, good computer programs for computing the P-SV and SH R/T coefficients are
available at most seismological institutions so that the readers may easily undertake this
study themselves.

We shall be mainly interested in the behavior of P-SV and SH R/T coefficients for
certain important situations. This applies mainly to the following situations: (1) normal
incidence, (2) critical angles of incidence, and (3) Brewster angles of incidence. We shall
also investigate the regions of angle of incidence in which the R/T coefficients are real-
valued and in which they are complex-valued.

To obtain at least a rough idea of the behavior of P-SV and SH R/T coefficients, we
shall present the moduli and arguments of these coefficients for two typical examples. The
first example concerns a typical structural interface between two elastic halfspaces, with
a weak velocity contrast (index of refraction = 0.8). See Figure 5.6. The second example
concerns the free surface of an elastic halfspace such as the surface of the Earth. See
Figure 5.7. In Figures 5.6 and 5.7, a classical alphanumerical seismological notation for
P-SV R/T coefficients is used. The notation is self-explanatory and consists of a combi-
nation of letters P and S and numbers 1 (the first halfspace, with the incident wave) and 2
(the second halfspace). The relation of this notation to Ri j is as follows:

a. For reflected waves, P1P1(R33), P1S1(R31), S1P1(R13), and S1S1(R11).
b. For transmitted waves, P1P2(R33), P1S2(R31), S1P2(R13), and S1S2(R11).

In an analogous way, we shall also speak of reflected waves P1P1, P1S1, and the like.
The first example corresponds to the following medium parameters: α1 = 6,400 m/s,

β1 = α1/
√
3 = 3,698 m/s, ρ1 = 2,980 kg/m3, α2 = 8,000 m/s, β2 = α2/

√
3 = 4,618

m/s, and ρ2 = 3,300 kg/m3. Note that refraction index n = α1/α2 equals 0.8 in this
case. Thus, we consider an interface with a positive, but only small increase of velocity
(α1/α2 = 0.8). Such interfaces are very common in the Earth’s interior, both in seismology
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Figure 5.6. Displacement and normalized displacement P-SV and SH reflection/transmission coeffi-
cients at a plane interface between two homogeneous isotropic solid media. Model: α1 = 6,400 m/s,
β1 = 3,698 m/s, ρ1 = 2,980 kg/m3, α2 = 8,000 m/s, β2 = 4,618 m/s, ρ2 = 3,300 kg/m3. Continu-
ous lines: displacement R/T coefficients; dashed lines: normalized displacement R/T coefficients.
Orientation index ε = 1. (a) P1P1 (Rr33) and P1S1 (Rr31) reflection coefficients. (b) S1P1 (Rr13)
and S1S1 (Rr11) reflection coefficients. (c) P1P2 (Rt33) and P1S2 (Rt

31) transmission coefficients.
(d) S1P2 (Rt13) and S1S2 (R

t
11) transmission coefficients. (e) SH reflection (Rr22) and transmission (Rt22)

coefficients. For ε = −1, the signs of P1S1, S1P1, P1S2, and S1P2 coefficients would be opposite.

and in seismic exploration. In crustal seismology, this ratio corresponds roughly to the
conditions at the Mohorovičić discontinuity. The same R/T coefficients would be obtained
for many other values of α1, β1, ρ1, α2, β2, and ρ2 because the R/T coefficients depend
on ratios α1/α2, β1/α1, β2/α2, and ρ1/ρ2. Thus, the medium parameters for which the
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R/T coefficients given in Figure 5.6 are computed may also be chosen, for example, as
follows: α1 = 2,000 m/s, β1 = α1/

√
3 = 1,155 m/s, ρ1 = 1,500 kg/m3, α2 = 2,500 m/s,

β2 = α2/
√
3 = 1,443m/s, and ρ2 = 1,661 kg/m3. Thesemedium parameters may bemore

typical for shallow structures in seismic exploration. Both the modulus and the phase of
the relevant R/T coefficient are shown in all cases. The normalized displacement R/T
coefficients Rmn are shown as dashed lines, if they differ from the standard displacement
R/T coefficients Rmn . Because the inhomogeneous incident and/or R/T waves are not
considered, onlyR/Tcoefficients for real-valued angles of incidence and real-valued angles
of reflection/transmission of the wave under consideration are shown.
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1. DISPLACEMENT R/T COEFFICIENTS FOR NORMAL INCIDENCE
For normal incidence (ray parameter p = 0), the R/T coefficients of converted waves

(R13, R31) vanish, both for reflections and transmission. Only the R/T coefficients of un-
converted waves are nonvanishing. To express them by simple equations, it is useful to
introduce wave impedances Z P and ZS for P and S waves:

Z P = ρα, Z S = ρβ. (5.3.16)

We also denote Z P
1 = ρ1α1, Z P

2 = ρ2α2, ZS
1 = ρ1β1, and Z S

2 = ρ2β2. The reflection
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coefficients R11, R22, and R33 for normal incidence then read

R11 = −R22 = (
ZS
2 − Z S

1

)/(
Z S
2 + Z S

1

)
,

R33 = (
Z P
2 − Z P

1

)/(
Z P
2 + Z P

1

)
.

(5.3.17)

Thus, for normal incidence, the reflection coefficient R33 of the P1P1 reflected wave is
given exactly by the same relation as the acoustic (pressure) reflection coefficient, only
c must be replaced by α; see (5.1.27). The reflection coefficients for S waves are given
by similar expressions, but the wave impedances for S waves must be considered. It may
be surprising, to some extent, that the signs of the SH and SV reflection coefficients
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are opposite. To explain this fact, we need to take into account our convention on the
orientations of unit vectors 	e1 and 	e2. Basis vector 	e2, corresponding to SH waves, is the
same for incident and reflected wave, but the signs of 	e1, corresponding to SV waves, are
opposite for incident and reflected waves. This explains the difference in signs between
R22 and R11 for normal incidence.

All the foregoing conclusions can be verified in Figure 5.6 in the numerical example
under consideration. The normal incidence reflection coefficients (R13, R31) vanish for
converted waves (P1S1, S1P1). Unconverted reflection coefficients (R11, R22, R33) take
the values given by (5.3.17) for normal incidence: R11 = R33 = −R22 = 0.161. Thus,
R11 = R33 in our example. In general, however, R11 may differ from R33. The reason why
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they are the same in Figure 5.6 is, that, in our example α1/α2 = β1/β2. Also note that
the normalized displacement reflection coefficients Ri j do not differ from the standard
displacement reflection coefficients Ri j for normal incidence.

In the investigation of R/T coefficients close to the normal incidence (e.g., in the AVO
analysis), it may be suitable to use formally the polarization vectors 	e1 of reflected S waves
in the direction opposite of that shown in Figure 5.5. In this case, the reflection coefficients
R11 and R31 have opposite signs to those given in (5.3.2). All other R/T coefficients
remain the same. Consequently, R11 equals R22 for the normal incidence. Such a choice of
polarization vectors 	e1 of reflected S waves was used, for example, by Aki and Richards
(1980).

The displacement transmission coefficients for normal incidence are given by the rela-
tion

R11 = R22 = 2Z S
1

/(
ZS
1 + Z S

2

)
, R33 = 2Z P

1

/(
Z P
1 + Z P

2

)
. (5.3.18)

The expression for the displacement P1P2 transmission coefficient R33 is, in this case,
different from the relevant expression for acousticwaves; see (5.1.32). This is not surprising
given that the displacement transmission coefficients are considered in (5.3.18) but that the
pressure transmission coefficients are given in (5.1.32). If we consider a particle velocity
instead of pressure in the fluid medium (see (5.2.91)), we will obtain exactly the same
expression as in (5.3.18).

It is obvious from (5.3.18) that the displacement transmission coefficients are not
reciprocal for normal incidence. The normalized displacement transmission coefficients
for normal incidence are

R11 = R22 = 2
√
Z S
1 Z

S
2

/(
ZS
1 + Z S

2

)
, R33 = 2

√
Z P
1 Z

P
2

/(
Z P
1 + Z P

2

)
;

(5.3.19)

see (5.3.10). Evidently, the normalized R/T coefficients are reciprocal. Moreover, in this
case, the normalized displacement coefficients equal the normalized pressure coefficients.

The differences between the standard displacement transmission coefficients Ri j and
the normalized displacement transmission coefficients Ri j for normal incidence can be
clearly seen in Figure 5.6. The numerical values of the individual transmission coefficients
in the numerical example (Figure 5.6) are R11 = R22 = R33 = 0.839,R11 = R22 = R33 =
0.987, and R13 = R31 = R13 = R31 = 0. Thus, the normalized displacement transmission
coefficientsRi j are closer to unity under normal incidence than the standard displacement
transmission coefficients.

Finally, we shall present the displacement reflection coefficient at a free surface for
normal incidence:

R11 = −1, R22 = 1, R33 = −1. (5.3.20)

2. CRITICAL ANGLES OF INCIDENCE
Critical angles of incidence are angles of incidence for which some square root Pi ,

i = 1, 2, 3, 4 in (5.3.5), vanishes. If we denote the velocity of the incident wave V and the
velocity of the selected R/T wave Ṽ , one of the square roots Pi (i = 1, 2, 3, 4) vanishes
for Ṽ p = 1, that is, for (Ṽ /V )sin i∗ = 1, where i∗ is the critical angle of incidence. This
yields the general definition of the critical angle of incidence,

i∗ = arcsin(V/Ṽ ). (5.3.21)
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Clearly, in this case, the relevant angle of reflection/transmission equals 1
2π so that the ray

of the relevant R/T wave is parallel to the interface. For angles of incidence i greater than
critical angle i∗, the square root becomes positive imaginary (see (5.3.6)), and the R/T
coefficients are complex-valued.

There may be several critical angles corresponding to different Pi . For the incident P
wave, we may have two critical angles; for the incident SV wave, three critical angles; and
for the incident SH wave, one critical angle. We shall treat these three cases separately.

a. Critical angles of incidence for the incident P wave. For the incident P wave,
there exists no one critical angle or one critical angle or two critical angles. If α2 < α1, no
critical angle exists. At least one critical angle exists for α1 < α2. The first critical angle is

i∗ = arcsin(α1/α2). (5.3.22)

This angle always represents the minimum critical angle i∗min. In addition, also the second
critical angle i∗∗ exists if β2 > α1,

i∗∗ = arcsin(α1/β2). (5.3.23)

Thus, the second critical angle exists only at interfaces with a large velocity contrast.
In our numerical example in Figure 5.6(a), only the first critical angle exists for incident

P waves, i∗ = arcsin(α1/α2) = 53.13◦. This angle also represents the minimum critical
angle, i∗min = 53.13◦. The second critical angle does not exist because β2 < α1.

b. Critical angles of incidence for the incident SV wave. For the incident SV wave,
one, two, or three critical angles of incidence exist. There is always at least one critical
angle in this case. For α2 > β2 > α1 > β1,

i∗ = arcsin(β1/α2), i∗∗ = arcsin(β1/β2), i∗∗∗ = arcsin(β1/α1),

(5.3.24)

with i∗ < i∗∗ < i∗∗∗. In this case, angle i∗ represents the minimum critical angle, i∗min =
arcsin(β1/α2). For different relations between velocities α1, β1, α2, and β2, certain of
the preceding critical angles shown in (5.3.24) do not exist, or their succession may be
different. For example, for α2 < α1, only one critical angle of incidence exists, i∗ = i∗min =
arcsin(β1/α1). Note that this critical angle of incidence exists always because β1 is always
less than α1.

In the numerical example shown in Figure 5.6(b), all three critical angles exist:
i∗ = arcsin(β1/α2) = 27.53◦, i∗∗ = arcsin(β1/α1) = 35.30◦, and i∗∗∗ = arcsin(β1/β2) =
53.13◦. Thus, the minimum critical angle i∗min = 27.53◦.

c. Critical angles of incidence for an incident SH wave. For the incident SH wave,
no one critical angle exists for β1 > β2, and one critical angle exists for β1 < β2. It is given
by the relation

i∗ = arcsin(β1/β2) (5.3.25)

and also represents the minimum critical angle. Note that the minimum critical angles of
incidence are different for SH and SV incident waves if α2 > α1.

In the numerical example under consideration, i∗ = arcsin(β1/β2) = 53.13◦. This also
represents the minimum critical angle.

d. Critical angles of incidence for waves reflected at the earth’s surface. In this
case, no critical angle exists for the incident P and SH waves, but one critical angle exists
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for the incident SV wave

i∗ = arcsin(β1/α1). (5.3.26)

This relation also defines the minimum critical angle.
Now we shall briefly discuss certain properties of the displacement R/T coefficients

connected with the critical angles of incidence.

a. Maximum angles of incidence. Let us consider an R/T wave with velocity Ṽ , and
an incident wave with velocity V . For the critical angle of incidence, i ∗ = arcsin(V/Ṽ ),
and the angle of R/T is ĩ = 1

2π . For angles of incidence i > i∗, the relevant angle of
R/T is complex-valued, and the generated wave is inhomogeneous. We are not consider-
ing inhomogeneous waves here so that critical angle i∗ = arcsin(V/Ṽ ) is the maximum
angle of incidence for which the relevant homogeneous R/T wave (characterized by ve-
locity Ṽ ) exists. Several examples can be seen in Figures 5.6. See the reflection coeffi-
cient R13 where the maximum angle of incidence arcsin(β1/α1) = 35.30◦. See also trans-
mission coefficient R13, with the maximum angle of incidence arcsin(β1/α2) = 27.53◦,
and transmission coefficients R11, R22, and R33, with the maximum angle of incidence
arcsin(α1/α2) = arcsin(β1/β2) = 53.13◦. Only transmission coefficient R31 corresponds
to a homogeneous transmitted wave for an arbitrary angle of incidence, 0 ≤
i ≤ 90◦.

In Figure 5.6, it is interesting that the normalized R/T coefficients always vanish
for the maximum angle of incidence, with the exception of unconverted reflected waves
(R11, R22, R33). This is a great difference with respect to the standard displacement R/T
coefficients, which may be rather high for angles of incidence close to the maximum angles
of incidence. For unconverted transmitted waves, the standard displacement coefficients
are even larger than unity. See transmission coefficients R11, R22, and R33 in Figure 5.6,
where the values larger than unity are indicated by arrows. The normalized coefficients,
however, vanish in all these cases. Note that themaximum angle of incidence of the relevant
R/T wave always corresponds to a critical angle of incidence.

b. Maximum angles of reflection/transmission. As in (a), the range of angles of re-
flection/transmission is also sometimes limited, assuming that the angle of incidence i lies
between 0 and 1

2π . This occurs when Ṽ < V . Since sin ĩ = (Ṽ /V ) sin i , we can write
ĩ = arcsin(Ṽ /V ) for the angle of incidence i = 90◦. Because Figure 5.6 does not show
the angles of reflection/transmission, we cannot identify the maximum angles of reflec-
tion/transmission in this figure. We can, however, easily calculate them. For example, for
the P1S1 reflected wave, the maximum angle of reflection is ĩ = arcsin(β1/α1). In our case,
ĩ = 35.30◦. The maximum angle of transmission exists only for one transmitted wave: for
the P1S2 wave, that is, arcsin(β2/α1) = 46.18◦.

The R/Twaves, corresponding to angles of R/T larger than themaximum angles, phys-
ically exist; they are, however, generated by inhomogeneous incident waves with complex-
valued angles of incidence. Examples are the so-called pseudospherical waves and various
“star waves” such as the S∗ wave.

c. Complex-valued R/T coefficients. All the P-SV and SH displacement R/T co-
efficients are always real-valued if the relevant angles of incidence are smaller than the
minimum critical angle. Similarly, they are always complex-valued for angles of incidence
larger than the minimum critical angle. Thus, the arguments of the R/T coefficients are
zero orπ for angles of incidence smaller than the critical angle, which can easily be verified
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in Figure 5.6. Consequently, the minimum critical angle plays a very important role. We
call angles of incidence i < i∗min the subcritical angles of incidence, and angles of incidence
i > i∗min the postcritical angles of incidence. The postcritical angles of incidence are also
called overcritical angles of incidence. Note that the nonvanishing argument of the R/T
coefficient affects the shape of the signal of the R/T waves; see Chapter 6.

Figure 5.6 also shows the phase shifts of individualR/Tcoefficients so thatwe can easily
verify that the phase shifts vanish for angles of incidence less than the minimum critical
angle of incidence and are nonvanishing for angles of incidence larger than the minimum
critical angle (but less than the maximum angle of incidence). We must, however, inspect
the phase shifts in Figure 5.6 carefully and distinguish them from change of sign (phase
shift 180◦).

Let us first consider the reflected waves. The minimum critical angles for reflection
coefficients P1P1(R33), P1S1(R31), and SH → SH (R22) equal 53.13◦, and for reflection
coefficients S1S1(R11) andS1P1(R13) they equal 27.53◦. Thus, all the reflection coefficients
are complex-valued if the angles of incidence are postcritical. For the P1P1, P1S1, and
SH → SH reflected waves, the minimum critical angle is rather high (53.13◦) so that the
postcritical region is situated at great epicentral distances. For S1S1 and S1P1 reflection
coefficients, the minimum critical angle is rather low (27.53◦) so that the subcritical region
is very narrow.

Transmission coefficients P1P2 (R33), S1P2 (R13), and SH → SH (R22) are real-valued
for all angles of incidence corresponding to homogeneous transmitted waves. Only the two
transmission coefficients P1S2 and S1S2 are complex-valued for angles of incidence larger
than theminimum critical angle. Theminimum critical angle for the P1S2 transmittedwave
i∗min = 53.13◦ and for the S1S2 transmitted wave i∗min = 27.53◦. In both cases, however, the
arguments of these transmission coefficients are close to 0◦ or to±180◦. Thus, even certain
transmission coefficients may be complex-valued.

d. Anomalous behavior of R/T coefficients near critical angles. The displacement
R/T coefficients change very fast with respect to the angle of incidence i in the vicinity
of critical angles. In most cases, derivatives d|Rmn|/di and/or d(arg Rmn)/di are infinite at
critical angles of incidence. Moreover, the left-hand and right-hand derivatives are usually
different there. For this reason, the modulus and/or argument of the R/T coefficient usually
form an edge or an inflection point (with an infinite derivative) at a critical point. The fast
changes of |Rmn| and/or arg Rmn cause the ray method to be inapplicable in the critical
region.

The most expressive changes of the R/T coefficients close to the critical angles can be
observed for reflection coefficients P1P1(R33), S1S1(R11), and SH → SH (R22).

e. Elliptic polarization of S waves for postcritical angles of incidence. As we can
see from the equations for the SV and SH coefficient, or directly from Figure 5.6, the
arguments of the SV → SV and SH → SH R/T coefficients are usually different. For
example, for α2 > α1 > β2 > β1, the minimum critical angle for the S1S1 reflected wave
(R11) is arcsin(β1/α2), but for the SH → SH reflected wave (R22), it is arcsin(β1/β2).
Assume now that both the SV and SH components of the incident wave are nonvanishing.
The reflected S wave then has two mutually phase-shifted components. This property
immediately implies that the reflected Swave is not polarized linearly, but rather elliptically.
For more details, refer to Section 6.4.
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3. BREWSTER ANGLES OF INCIDENCE
For a Brewster angle of incidence, the relevant R/T coefficient vanishes. The most

typical and well-known example among the P-SV and SH R/T coefficients is the SH
reflection coefficient; see Figure 5.6. For β2 > β1 and ρ2 > ρ1, we obtain Z S

2 > ZS
1 so that

R22 is negative under normal incidence. At the critical angle i∗, however, the reflection
coefficient equals 1. Thus, the Brewster angle iB is situated in the region 0 < iB < i∗,
usually very close to the critical angle. This is the basic difference between the acoustic
and SH reflection coefficients. For SH waves, the Brewster angle is very common, but for
acoustic waves, it is exceptional. In our numerical example, the Brewster angle for reflected
SH waves iB = 42.5◦.

Brewster angles are rather common even for other P-SV R/T coefficients, particularly
for the SV and converted waves. Even the P1P1 reflection coefficient may vanish for certain
angles of incidence in some cases, but this is rather unusual.

In our numerical example, several Brewster angles can be observed for reflected waves:
For the P1S1 wave, iB

.= 50.5◦; for the S1P1 wave, iB
.= 26.5◦; and for the S1S1 wave,

iB
.= 22.5◦. Note that all these Brewster angles of incidence are situated close to minimum

critical angles of incidence. Transmitted waves do not display Brewster angles.
The second example corresponds to the free surface of an elastic halfspace such as

the Earth’s surface. Figure 5.7 shows the reflection coefficients at the Earth’s surface, for
β1/α1 = 0.577. Because the figures are self-explanatory, we shall be brief in the discussion.

Reflection coefficients R33 (P1P1) and R11 (S1S1) are given by the same analytical
expressions, if they are expressed in terms of ray parameter p; see (5.3.7). If we present
them in terms of the angles of incidence of P and S waves, they have an apparently
different form because the coefficient R33 is stretched due to different angles of incidence.
Both coefficients R11 and R33 display two Brewster angles. The reflection coefficient R33 is
completely real-valued, but the S1S1 reflection coefficient R11 is complex-valued beyond
the critical angle of incidence of S waves arcsin(β1/α1) = 35.30◦. Note the proximity of
one Brewster angle to the critical angle of incidence in the R11 reflection coefficient.

The reflection coefficients of converted waves R13 (S1P1) and R31 (P1S1) are both
real-valued and reach values larger than unity in certain ranges of angles of incidence. The
relevant normalized reflection coefficientsR13 andR31, however, are both less than unity
or equal to it. Moreover, both R13 and R31 are given by the same analytical expressions,
if they are expressed in terms of ray parameter p (see (5.3.15)); they differ only in sign.
As with the reflection coefficients R11 and R33, the normalized reflection coefficientsR13

andR31 are different in Figure 5.7 only as a result of different angles of incidence;R13 is
stretched.

5.3.5 Displacement Reflection/Transmission Matrices

In this section, we shall consider an arbitrary orientation of polarization vectors 	e1 and 	e2 of
incident and reflected/transmitted waves. The only requirement is that unit vectors 	e1, 	e2,
and 	e3 ≡ 	t are mutually orthogonal and form a right-handed system for all the waves under
consideration (incident, reflected, and transmitted). Thus, 	e2 need not be perpendicular to
the plane of incidence and 	e1 need not be situated in the plane of incidence (as in the case
of P-SV and SH R/T coefficients).

In this case, we obtain nine reflection coefficients Rrmn (m = 1, 2, 3; n = 1, 2, 3). The
convention for the choice of m and n is discussed at the beginning of Section 5.3; see
also Figure 5.8. In the same way, we obtain nine transmission coefficients Rtmn . We shall
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Figure 5.7. Displacement and normalized displacement P-SV reflection coefficients at a free surface
of a solid halfspace. Model: α1 = 6,400 m/s, β1 = 3,698 m/s, ρ1 = 2,980 kg/m3. Continuous lines:
displacement coefficients; dashed lines: normalized displacement coefficients. Orientation index ε = 1,
see Figure 5.10. (a) P1P1 (Rr33) and P1S1 (Rr31) reflection coefficients. (b) S1S1 (Rr11) and S1P1 (Rr13)
reflection coefficients. For ε = −1, the signs of P1S1 andS1P1 reflection coefficientswould be opposite.

use the superscripts r and t to specify the reflection and transmission coefficients only if
symbol Rmn could cause an misunderstanding. Otherwise, superscripts r and t will not be
used.

Reflection coefficients Rrmn (m, n = 1, 2, 3) form a 3 × 3 displacement reflection ma-
trix R̂r . Similarly, Rtmn form a 3 × 3 displacement transmission matrix R̂t . These full R/T
matrices, however, do not have any application in the ray method because the type of the
R/T coefficient at any point of incidence is strictly specified by the ray code of the wave
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under consideration. The only exception is related to 3-D computations of S and converted
waves. The S waves have, in general, two components, and the matrix notation allows for
simple compact expressions of the vectorial amplitudes of S waves and converted waves
propagating in 3-D layered structures. In this case, however, we need to introduce four
types of displacement R/Tmatrices, corresponding to P → P, P → S, S → P, and S → S
reflection/transmission. The actual expressions for these matrices are given in (5.2.38).
We remind the reader that the P → P R/T matrix has only one nonvanishing element R33,
the P → S R/T matrix has only two nonvanishing elements R31 and R32, the S → P R/T
matrix has also two nonvanishing elements R13 and R23, and the S → S R/T matrix has
four nonvanishing elements R11, R12, R21, and R22.
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S1 S1S1 PS2 S1

R11 R12 R13

S2 S2S1 PS2 S2

R21 R22 R23

P PS1 PS2 P

R31 R32 R33

Figure 5.8. The physical meaning of elements Rri j of the
3 × 3 matrix R̂r of reflection coefficients. The physical
meaning of the 3 × 3matrix R̂t of transmission coefficients
is analogous.

In the following, we shall discuss the full R/T matrices because the individual P → P,
P → S, S → P, and S → S R/T matrices are obtained from the full matrices simply by
putting some elements equal zero.

The 3 × 3 full R/T matrices R̂r and R̂t may be calculated in several ways. A very
general procedure, based on the direct solution of the six linear algebraic equations (2.3.50),
expressed in matrix form, will be described in Section 5.4.7. The procedure is applied to
an interface between two anisotropic media but may also be used for an interface between
two isotropic media. For a detailed discussion, see Section 5.4.7. Here we shall discuss
another simple procedure, applicable only to interfaces between two isotropic media. It
is based on the computation of R/T matrices from analytically computed P-SV and SH
R/T coefficients, given by (5.3.2) and (5.3.3). In this case, it is necessary to transform
the displacement ray-centered components U (q)

1 and U (q)
2 into a new rotated ray-centered

coordinate system corresponding to the P-SV and SH case (	e2 perpendicular to the plane
of incidence). We introduce the following 3 × 3 matrices:

R̂0 =

 R11 0 R13

0 R22 0
R31 0 R33


 , Ĝ⊥ =


 cos κ −sin κ 0

sin κ cos κ 0
0 0 1


 .

(5.3.27)

Here R̂0 is the displacement R/T matrix for the P-SV and SH case; see Section 5.3.1.
The choice of 	e1, 	e2, and 	e3 for calculating R̂0 is described in Section 5.3.1, and the
analytical relations for R11, R13, R31, R33, and R22 are given by (5.3.2) and (5.3.3). In this
case, the remaining R/T coefficients (R12, R21, R23, and R32) vanish. The 3 × 3 matrix
Ĝ⊥ is a rotation matrix that rotates unit vectors 	e1 and 	e2 by the angle κ about the ray. If
we put cos κ = 	e2 · 	i (z)2 and sin κ = 	e2 · 	i (z)1 , rotation matrix Ĝ⊥ will shift unit vector 	e2
to 	i (z)2 . Thus, if Û(q)(Q) correspond to arbitrarily chosen 	e1 and 	e2, then Ĝ⊥(Q)Û(q)(Q)
corresponds to the P-SV and SH case, with 	e2 perpendicular to the plane of incidence, and
	e1 situated in the plane of incidence.

We shall nowuse (5.2.37), Û(q)(Q̃) = R̂T (Q)Û(q)(Q). Ifweuse the rotated displacement
matrices, the R/T matrix R̂(Q) reduces to the P-SV and SH matrix R̂0. Thus,

Ĝ⊥(Q̃)Û(q)(Q̃) = R̂0T (Q)Ĝ⊥(Q)Û(q)(Q).

This yields

Û(q)(Q̃) = Ĝ⊥T (Q̃)R̂0T (Q)Ĝ⊥(Q)Û(q)(Q), (5.3.28)
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which can be expressed in the form of (5.2.37) if we put

R̂(Q) = Ĝ⊥T (Q)R̂0(Q)Ĝ⊥(Q̃). (5.3.29)

This is the final expression for the displacement R/T matrix corresponding to any ori-
entation of unit vectors 	e1 and 	e2 corresponding to incident, reflected, and transmitted
waves.

5.3.6 Normalized Displacement Reflection/Transmission Matrices

Instead of the displacement R/T coefficient matrices R̂, we can construct normalized dis-
placement R/Tmatrices R̂. Note that the general expressions for the amplitudes of seismic
body waves propagating in 3-D layered structures contain the normalized displacement
R/T matrices R̂, not the standard displacement R/T matrices R̂; see (5.2.45). The 3 × 3
normalized displacement R/T matrix R̂ has nine elements Rmn (m, n = 1, 2, 3), which
are constructed from Rmn using relation (5.3.10). We remind the reader that the normal-
ized displacement R/T coefficientsRmn represent the displacement R/T coefficients Rmn
normalized with respect to the energy flux across the interface.

The normalized displacement R/T matrices R̂ can be calculated similarly as the dis-
placement R/T matrices R̂, but the individual elements Rmn must be reduced toRmn using
(5.3.10). We can, of course, also use the relation, alternative to (5.3.29),

R̂(Q) = Ĝ⊥T (Q)R̂0
(Q)Ĝ⊥(Q̃), (5.3.30)

where R̂0
(Q) is the matrix of normalized P-SV and SH R/T coefficients, given by (5.3.13)

through (5.3.15) (withR12 = R21 = R23 = R32 = 0).

5.3.7 Reciprocity of R/T Coefficients

The reciprocity of ray computations plays a basic role not only in theoretical considerations
but also in various practical applications. The expressions for the ray amplitudes of seismic
body waves propagating in layered media contain R/T coefficients. It is quite obvious that
displacement R/T coefficients are not, in general, reciprocal. This observation, however,
does not imply that the expressions for the ray amplitudes are not reciprocal. As we have
shown in Section 5.2.5, displacement R/T coefficients can be combined with some other
factors in the expressions for ray amplitudes to give the normalized displacement R/T
coefficients. (The normalization of the displacement coefficients is performed with respect
to the energy flux across the interface.) We shall show that the normalized displacement
R/T coefficients are reciprocal. We shall first give the reciprocity relations for the P-SV
and SH case and then for the case of arbitrary unit vectors 	e1 and 	e2. In both cases, we
shall consider a ray� connecting two points S and R, and incident at point Q on interface
�. As usual, we denote by Q̃ the point of R/T on �. Points Q and Q̃ coincide, but Q
corresponds to the incident ray if the wave propagates from S to R, and Q̃ corresponds to
the selected R/T ray. We consider only one interface; the result can be simply generalized
for any number of interfaces.

1. RECIPROCITY RELATIONS FOR P-SV AND SH R/T COEFFICIENTS
We shall now consider an arbitrary seismic body wave propagating along � from S

to R; see Figure 5.9(a). The arrows in Figure 5.9(a) show the direction of propagation
(unit vector 	e3 ≡ 	t) and the direction of unit vector 	e1. The backward propagation, from R
to S, is specified by Equations (4.4.110) and (4.4.111); see Figure 5.9(b). We remind the
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Figure 5.9. Choice of basis vector 	ei in the forward (a) and backward (b) propagation along ray�. In the
backward propagation, 	e1 and 	e3 are chosen in the opposite directions than in the forward propagation.
The local Cartesian coordinate systems at the points of incidence on structural interfaces are also
changed as follows: 	i (z)1 and 	i (z)3 are chosen in the opposite directions than in the forward propagation.
Unit vectors 	e2 and 	i (z)2 remain the same in both cases.

reader that the vectors 	e1 and 	e3 are taken opposite in forward and backward computations.
Similarly, the unit vectors 	i (z)3 , perpendicular to the interfaces at all points of incidence,
and the unit vectors 	i (z)1 are taken opposite. Unit vectors 	e2 and 	i (z)2 remain the same in both
cases. Compare Figures 5.9(a) and 5.9(b).

The preceding relations also immediately imply the relation between the forward and
backward orientation indices, ε and ε̄. In Figure 5.9(a), the unit normal 	n ≡ 	i (z)3 to the inter-
face � was chosen downward so that ε = 1. Because the unit vectors 	i (z)3 in the backward
computation are taken opposite, we obtain the following rule for the determination of ε̄:

ε̄ = −ε for reflected waves,

ε̄ = ε for transmitted waves.

see Figure 5.9(b). By direct inspection, we then obtain from (5.3.13) through (5.3.15) the
following reciprocity relation for the normalized R/T coefficients:

Rmn(Q) = Rnm(Q̃). (5.3.31)

We shall give two examples of reciprocity relations for the normalized transmission coef-
ficientsRt

11 andRt
31. We shall mark all quantities corresponding to the wave propagating

from R to S at Q̃ with a bar above the symbols. The plain symbols, without bars, correspond
to the wave propagating from S to R, at Q. Then

ᾱ1 = α2, β̄1 = β2, ρ̄1 = ρ2, ᾱ2 = α1,

β̄2 = β1, ρ̄2 = ρ1, P̄2 = P4,

P̄4 = P2, P̄1 = P3, P̄3 = P1, ε̄ = ε.

This yields

q̄ = −q, X̄ = Y, Ȳ = X, Z̄ = −Z , D̄ = D.
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Using (5.3.14), we can write

Rt
11(Q̃) = 2(β̄1β̄2ρ̄1ρ̄2 P̄2 P̄4)

1/2 D̄−1(ᾱ1 P̄3Ȳ + ᾱ2 P̄1 X̄ )
= 2(β1β2ρ1ρ2P2P4)

1/2D−1(α2P1X + α1P3Y ) = Rt
11(Q),

Rt
13(Q̃) = 2ε̄ p(β̄1ᾱ2ρ̄1ρ̄2 P̄2 P̄3)

1/2 D̄−1(q̄ P̄1 P̄4 − ᾱ1β̄2 Z̄ )

= 2εp(α1β2ρ1ρ2P1P4)
1/2D−1(−qP2P3 + α2β1Z ) = Rt

31(Q).

Similar results are also obtained for other types of normalized displacement P-SV and SH
transmission coefficients. For reflection coefficients, the reciprocity relations (5.3.31) are
immediately seen from (5.3.13).

2. RECIPROCITY RELATIONS IN THE GENERAL CASE
Weshall now consider the general case of 	e2 not perpendicular to the plane of incidence.

We again assume that the direction of unit vectors 	e1 and 	e3 for the reciprocal direction (from
R to S) is opposite to the direction of unit vectors 	e1 and 	e3 from S to R. We can then use
(5.3.30) and modify the matrices Ĝ⊥ properly for the reciprocal direction. As a result, we
again obtain general relation (5.3.31). Thus, reciprocity relation (5.3.31) is valid generally.

Note that reciprocity relation (5.3.31) is an isotropic equivalent of the general reci-
procity relation for normalized displacement R/T matrices, derived for anisotropic media
by Chapman (1994); see also Section 5.4.7.

5.3.8 P-SV and SH Conversion Coefficients

In seismology and seismic exploration, receivers aremost commonly situated on the Earth’s
surface (or very close to it). The surface of the Earth is a very distinct discontinuity
and affects the seismic wavefield recorded by the receiver situated on it considerably.
To express the effects of the Earth’s surface on the incident wave quantitatively, the ray-
centered amplitude matrix of the incident wave must be multiplied by the free-surface
conversion matrix D̂; see Section 5.2.7. The resulting products give the components of the
displacement vector expressed in the general or a local Cartesian coordinate system at the
point of incidence. We shall again call the elements of the free-surface conversion matrix
the free-surface conversion coefficients, or simply the conversion coefficients.

It is not surprising that the free-surface conversion coefficients are very important in
certain seismological applications, perhaps even more important than the R/T coefficients.
Even if waves propagating in a homogeneous halfspace without interfaces are studied, free-
surface conversion coefficients must be used for receivers situated on the Earth’s surface.
Thus, the application of the free-surface conversion coefficients in numerical modeling of
seismic wavefields is nearly universal. For this reason, we shall give the explicit expressions
for the free-surface conversion coefficients.We shall consider only the most common P-SV
and SH case in which the unit vector 	e2 of the incident wave is perpendicular to the plane
of incidence. In this case,D12 = D21 = D23 = D32 = 0, and conversion matrix D̂ has only
five nonvanishing elementsD11,D13,D31,D33, andD22. The conversion coefficients should
not be confused with the R/T coefficients of converted waves.

In the evaluation of conversion coefficients, we need to be very careful about their
signs. Orientation index ε is not quite sufficient to determine the signs of the conversion
coefficients D11, D13, D31, and D33 uniquely because the general Cartesian coordinate
system can be chosen arbitrarily. For this reason, we shall use the local Cartesian coordinate
system and fix it using the convention described in Section 5.3.1. In other words, we assume
that the unit vector 	e2 of the ray-centered coordinate system coincides with the unit vector
	i2 of the local Cartesian coordinate system. We remind the reader that unit vector 	e3 is
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Figure 5.10. Orientation of polarization vectors 	N and 	e1 of incident, reflected, and transmitted P and S
waves at a free surface of an isotropic solid halfspace. Left, orientation index ε = −1; right, orientation
index ε = 1.

positive in the direction of propagation of thewave under consideration and that the positive
orientation of 	i1 is such that 	p · 	i (z)1 > 0. (The local x1-axis is tangent to the interface and
is positive in the direction of propagation of the wave.) The local Cartesian coordinate
system is then uniquely tied to the unit vectors 	e1, 	e2, and 	e3 of the incident wave, and is
fully specified by orientation index ε. See Figure 5.10.

The derivation of analytical expressions for the conversion coefficients D11, D13, D31,
D33, and D22 for the Earth’s surface is simple:

1. We use the R/T displacement coefficients R11, R13, R31, R33, and R22 for the
Earth’s surface, given by (5.3.7) and (5.3.8).

2. Ifweuse (5.2.116) to computeDi j ,weneed to specify the components of unit vectors
	e1 and 	e3 ≡ 	N , corresponding to incidence, reflected and transmitted waves. They
are given by the following relations:

NSM
1 = α1 p, N SM

3 = εP1, eSM11 = εP2, eSM13 = −β1 p,
NrP
1 = α1 p, NrP

3 = −εP1, erS11 = −εP2, erS13 = −β1 p,
NtP
1 = 0, NtP

3 = ε, etS11 = ε, etS13 = 0.

(5.3.32)

see Figure 5.10.
3. Inserting (5.3.7) or (5.3.8) and (5.3.32) into (5.2.116), we can compute Di j (R) and

Di j (R+). A considerably simpler approach is to compute Di j (R+), where only the
transmission coefficients (5.3.8) (not the reflection coefficients (5.3.7)) are required.
In fact, the free-surface conversion coefficients Di j are directly equal the transmis-
sion coefficients; they should only be modified by a proper orientation index ε. The
final equations then read:

D11(R+) = 2P2ε
(
1 − 2β2

1 p
2
)
/D1, SV → x,

D13(R+) = 4β1 pP1P2/D1, P → x,

D31(R+) = −4β2
1 pP1P2/α1D1, SV → z,

D33(R+) = 2P1ε
(
1 − 2β2

1 p
2
)/
D1, P → z,

D22(R+) = 2, SH → y.

(5.3.33)
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We shall briefly describe the physical meaning of the indices of Di j . The first index i
specifies the component of the displacement vector in local Cartesian coordinate system
x, y, z (i = 1 for the horizontal x-component, i = 2 for the horizontal y-component,
i = 3 for the vertical z-component). The second index j denotes the type of incident wave
( j = 1 for the incident SV-wave, j = 2 for the incident SH-wave, and j = 3 for the incident
P wave). The relevant specification of Di j is shown on each line in (5.3.33).

From (5.2.116) we can also determine Di j (R), using reflection coefficients (5.3.7) and
expressions (5.3.32). It is not surprising that Di j (R) = Di j (R+) because the displacement
vector is continuous across structural interfaces (including the Earth’s surface).

The conversion coefficients D11, D13, D31, and D33 for the Earth’s surface depend
only on the angle of incidence and on one parameter, γ = β1/α1. Figure 5.11 displays
the conversion coefficients D11, D13, D31, and D33 for the Earth’s surface, assuming
γ = β1/α1 = 0.577 (that is, α1/β1

.= √
3).

Let us first discuss the conversion coefficients D13 (P → x) and D33 (P → z), corre-
sponding to the incident Pwave. They are real-valued and smooth, without singularities, for
all angles of incidence 0 ≤ i1 ≤ 90◦. Conversion coefficient D33 continuously decreases
with increasing angle of incidence, starting from D33 = 2 for normal incidence (i = 0).
Coefficient D13 vanishes for angle of incidence i = 0 and for angle of incidence i = 90◦.
In between, it has a maximum for i

.= 63◦, where it reaches the value of about 1.75.
The conversion coefficients D11 (SV → x) and D31 (SV → z) corresponding to the

incident SV wave are considerably more complex. They are real-valued only for the angle
of incidence of the SV wave i less than the critical angle, i∗ = arcsin(β1/α1). The region
i < i∗ of angles of incidence is usually called the shear wave window. The critical angle in
our case equals 35.30◦. Close to critical angle i = i∗, conversion coefficients D11 and D31

vary rapidly. For the normal angle of incidence i = 0◦, D31 = 0 and D11 = 2. Thus, the
vertical component vanishes, and the horizontal component doubles in this case.Conversion
coefficient D11 vanishes also for 1 − 2β2

1 p
2 = 0 (that is, for i = 45◦). In other words, the

SV wave is purely vertical at the Earth’s surface if it is incident at the Earth’s surface under
angle i = 45◦. The complex behavior of D11 and D31 has serious consequences for the
polarization of S waves at the Earth’s surface; see Section 6.4.7.

Equations (5.3.33) correspond to the free-surface conversion coefficients. Similar equa-
tions as (5.3.33) can be derived even for a general structural interface:

D11(R
+) = 2ερ1β1P2D

−1[ρ2α2P1P4 + α1P3P4Y − α1α2β2 p2Z ],
SV → x,

D13(R
+) = 2ρ1α1 pP1D

−1[ρ2β1α2P4 + α2β2P2X − qP2P3P4],

P → x,

D31(R
+) = 2ρ1β1 pP2D

−1[qP1P3P4 − α2β2P1X − ρ2β2α1P3],
SV → z,

D33(R
+) = 2ερ1α1P1D

−1[ρ2β2P2P3 + β1P3P4Y − α2β1β2 p2Z ],
P → z,

D22(R
+) = 2ρ1β1P2/D̄, SH → y.

(5.3.34)

All symbols have the same meaning as in (5.3.4) through (5.3.6).
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Figure 5.11. P-SVconversion coefficients at a free surface of a solid halfspace.Model:α1 = 6,400 m/s,
β1 = 3,698 m/s, ρ1 = 2,980 kg/m3. Orientation index ε = 1. (a) Conversion coefficients for the inci-
dent P wave, PZ(D33) and PX(D13). (b) Conversion coefficients for the incident S wave, SZ(D31) and
SX(D11).

5.4 Elastic Anisotropic Structures

The expressions for amplitudes of elastic body waves propagating in inhomogeneous
anisotropic layered structures are formally surprisingly simple. They are very similar to
those for the amplitudes of pressure waves propagating in inhomogeneous fluid media,
only the computation of the individual quantities in these expressions is considerably more
involved.
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We shall again use the standard equations for the displacement vector 	u(x j , t),

	u(x j , t) = 	U (x j )F(t − T (x j )). (5.4.1)

Here F(ζ ) is a high-frequency analytical signal, 	U (x j ) is a vectorial ray theory complex-
valued amplitude function, and T (x j ) is the travel time of the wave.

As shown in Section 2.4.3, three elastic body waves can propagate in a smooth inhomo-
geneous anisotropic medium: one qP and two qS (qS1 and qS2) waves. Each of these waves
corresponds to one of the three eigenvalues Gm and eigenvectors 	g (m),m = 1, 2, 3, of the
Christoffel matrix Γ̂; see (2.2.19). The travel time of themth wave satisfies eikonal equation
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Gm(xi , pi ) = 1, with pi = ∂T/∂xi , and amplitude function 	U is polarized linearly in the
direction of the relevant eigenvector 	g (m). For simplicity, we shall only use 	g instead of
	g (m) because the equations that we shall derive are valid for any m (m = 1, 2, 3). This
is an important advantage of the seismic body waves propagating in anisotropic media as
compared to those propagating in isotropic media. In isotropic media, we need to consider
P and S waves separately because they are controlled by different expressions. Thus, in
anisotropic media,

	U (xi ) = A(xi ) 	g(xi ). (5.4.2)

We shall refer to A(xi ) as the scalar ray-theory complex-valued amplitude function of the
wave under consideration, or briefly the amplitude of the wave.

In Sections 5.4.1 through 5.4.5, we shall briefly discuss the computation of amplitudes
A(xi ) of qP, qS1, and qS2 waves, including the multiply reflected converted waves prop-
agating in a layered anisotropic media. We only consider situations in which these waves
are fully separated and propagate independently. More details on qS wave coupling will be
given in Section 5.4.6, andmore details on the R/T coefficients andmatrices on a structural
interface between two anisotropic homogeneous halfspaces will be given in Section 5.4.7.
Finally, Section 5.4.8 discusses the initial ray-theory amplitudes at a smooth initial surface
and elastic Kirchhoff integrals.

5.4.1 Computations of Amplitudes Along a Ray

We shall consider ray � corresponding to a selected wave propagating in a smooth inho-
mogeneous anisotropic medium and two points S and R situated on �. The continuation
equations for the amplitude function A(xi ) of (5.4.2) then read

A(R) =
[
ρ(S)U(S)J (S)
ρ(R)U(R)J (R)

]1/2
A(S) =

[
ρ(S)J (T )(S)

ρ(R)J (T )(R)

]1/2
A(S)

=
[
ρ(S)C(S)�(T )(S)

ρ(R)C(R)�(T )(R)

]1/2
A(S); (5.4.3)

see (3.10.62). Here J = J (s) and J (T ) denote Jacobians (3.10.9), with J (T ) = U J , and�(T )

represents the scalar surface element cut out of the wavefront by the ray tube, normalized
with respect to dγ1dγ2. U and C again denote the group and phase velocities.

Alternatively, we can also write,

A(R) =
[
ρ(S)U(S)
ρ(R)U(R)

]1/2 L(S)
L(R) exp[iT c(R, S)] A(S), (5.4.4)

where L(R) = |J (R)|1/2 is the geometrical spreading, and T c(R, S) is the phase shift due
to caustics.

5.4.2 Point-Source Solutions. Radiation Functions

Continuation equations (5.4.3) and (5.4.4) cannot be used if the point source is situated at S
because J (S) = J (T )(S) = �(T )(S) = L(S) = 0 there. For finite A(S), (5.4.3) and (5.4.4)
would, in this case, yield A(R) = 0 for all points R along ray �. As in isotropic media,
however, the continuation equations can bemodified to include even this case, but wewould
then need to assume that A(S) = ∞.
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We shall now choose a new point S′ situated on� between S and R, close to S. We use
(4.14.41) for J (R) and modify (5.4.3) as follows:

A(R) =
[
ρ(S′)C(S′) det Q2(S′, S)
ρ(R)C(R) det Q2(R, S)

]1/2
A(S′). (5.4.5)

HereQ2 is the element of ray propagator matrixΠ(R, S) (see Section 4.14.3), and C is the
phase velocity. Alternatively, we can also write

A(R) =
[
ρ(S′)C(S′)
ρ(R)C(R)

]1/2 L(S′, S)
L(R, S) exp[iT

c(R, S′)] A(S′), (5.4.6)

where L(R, S) is the relative geometrical spreading, L(R, S) = |detQ2(R, S)|1/2. As
Q2(R, S) = −QT

2 (S, R), the relative geometrical spreading is reciprocal, L(R, S) =
L(S, R).

Now we shall move point S′ along � to point S. As we know, L(S′, S) → 0 in this
case. We shall, however, assume that product L(S′, S)A(S′) remains finite for S′ → S. If
we introduce function

G(S; γ1, γ2) = lim
S′→S

{L(S′, S)A(S′)}, (5.4.7)

(5.4.6) will yield

A(R) =
[
ρ(S)C(S)
ρ(R)C(R)

]1/2 G(S; γ1, γ2)
L(R, S) exp[iT c(R, S)]. (5.4.8)

Radiation function G(S; γ1, γ2) has been introduced in much the same way as the radiation
function G(q)

k (S; γ1, γ2) for an isotropic medium. As the limit is taken along the ray and
rays are parameterized by ray parameters γ1 and γ2, G is a function not only of the position
of source S but also of ray parameters γ1 and γ2. The derivation of the radiation function
of an arbitrarily oriented single-force point source will be given in Section 5.4.5.

In an isotropic homogeneous medium, the radiation function represents the distribution
of amplitudes of the wave generated by a point source along a sphere whose center is at
S. This is simple to see because L(R, S) = Cl(R, S) in isotropic media, where l(R, S) is
the distance between S and R. In anisotropic media, however, the situation is different.
Relative geometrical spreading L(R, S) is a complicated function of γ1 and γ2 and affects
the radiation properties of the source considerably. Thus, G(S; γ1, γ2) in anisotropic media
does not completely represent the directional properties of the source but represents only
one part of it. The second part is represented by the geometrical spreading.

In addition to the radiation functionG(S; γ1, γ2) given by (5.4.7), we shall also introduce
directivity pattern F(S; γ1, γ2). As in isotropic media, we introduce directivity pattern
F(S; γ1, γ2) in a locally homogeneous medium in the vicinity of point S by the equation

F(S; γ1, γ2) = (G(S; γ1, γ2)/L(R, S))l(R,S)=1, (5.4.9)

where l(R, S) is the distance between R and S. Thus, in a locally homogeneous medium,
the directivity pattern F(S; γ1, γ2) of the wave under consideration, generated by a point
source situated at S, represents the angular distribution of ray theory amplitudes of the
wave along a unit sphere whose center is at S. Note the basic difference between F and G
in the anisotropic medium. Whereas the difference is only formal in the isotropic medium,
it may be very distinct in the anisotropic media. For more details on point-source solutions
in anisotropic media and on their radiation patterns, see Kawasaki and Tanimoto (1981),
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Hanyga (1984), Ben-Menahem (1990), Ben-Menahem and Sena (1990), Gajewski (1993),
Tsvankin (1995), and Pšenčı́k and Teles (1996). The last reference also presents interesting
numerical examples showing nicely the influence of relative geometrical spreadingL(R, S)
on the directivity pattern F(S; γ1, γ2).

The computation of radiation function G(S; γ1, γ2) for a single-force point source will
be described in Section 5.4.5. The solution will be obtained by matching (5.4.8) with
the solutions for a homogeneous anisotropic medium given in Section 2.5.5. In this way,
solutions for different types of sources can also be obtained.

For completeness, we shall also give the final equation for 	u(R, t), assuming a point
source situated at point S. Using (5.4.1), (5.4.2), and (5.4.8), we obtain

	u(R, t) =
[
ρ(S)C(S)
ρ(R)C(R)

]1/2 G(S; γ1, γ2)
L(R, S)

× exp[iT c(R, S)]	g(R)F(t − T (R, S)).

5.4.3 Amplitudes Across an Interface

We shall now study the reflected/transmitted waves across structural interfaces. Consider
ray � and two points S and R situated on �. We assume that ray � strikes interface � at
point Q situated between S and R. In addition to Q, we also introduce point Q̃, coinciding
with Q but situated on the reflected/transmitted branch of the ray. Thus, points S and Q are
situated on the incident branch of the ray, and Q̃ and R are located on the R/T branch of
the ray. We shall now derive the continuation relations for amplitudes valid across interface
� from S to R.

Along the incident branch of the ray, we can use (5.4.4),

A(Q) =
[
ρ(S)U(S)
ρ(Q)U(Q)

]1/2 L(S)
L(Q) exp[iT

c(Q, S)] A(S).

Across the interface,

A(Q̃) = R A(Q),

where R is the appropriate displacement R/T coefficient. It may correspond either to an
unconverted wave or to a converted wave, depending on the types of incident and R/T
waves. We shall again use A for the amplitude function of the wave generated at Q̃, even
though the R/T wave may be converted on �. Along the R/T branch of the ray, the
continuation formula reads:

A(R) =
[
ρ(Q̃)U(Q̃)
ρ(R)U(R)

]1/2 L(Q̃)
L(R) exp[iT

c(R, Q̃)] A(Q̃).

Combining these three equations, we obtain the continuation formula from S to R in the
following form:

A(R) =
[
ρ(S)U(S)
ρ(R)U(R)

]1/2 L(S)
L(R) R(Q) exp[iT c(R, S)] A(S), (5.4.10)

where

R(Q) = R(Q)

[
ρ(Q̃)U(Q̃)
ρ(Q)U(Q)

]1/2 L(Q̃)
L(Q) , (5.4.11)

T c(R, S) = T c(R, Q̃) + T c(Q, S). (5.4.12)
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R(Q) is referred to as the normalized displacement R/T coefficient to distinguish it from
standard displacement R/T coefficient R(Q).

We shall show that R(Q) represents the displacement R/T coefficient, normalized
with respect to the energy flux in the direction perpendicular to the interface. Because
geometrical spreading L(Q) = |J (Q)|1/2 represents the cross-sectional area of ray tube,
we obtainL(Q̃)/L(Q) = (cos i(Q̃)/cos i(Q))1/2, where i(Q) is the angle of incidence and
i(Q̃) the angle of reflection/transmission. Hence,

R(Q) = R(Q)

[
ρ(Q̃)U(Q̃) cos i(Q̃)
ρ(Q)U(Q) cos i(Q)

]1/2
= R(Q)

[
ρ(Q̃)Un(Q̃)
ρ(Q)Un(Q)

]1/2
.

(5.4.13)

Here Un(Q) and Un(Q̃) are the normal components (perpendicular to the interface) of the
group velocity vectors of incident and R/Twaves, respectively. The physical explanation of
normalization factor ρ(Q̃)Un(Q̃)/ρ(Q)Un(Q) remains practically the same as for isotropic
media; see Section 5.3.3. The modulus of the normalized displacement R/T coefficient
|R(Q)| represents the square root of the absolute value of the ratio of the energy flux of the
appropriate R/Twave to the energy flux of the incidentwave, both of them considered along
normal 	n to interface � at Q. The argument of normalized coefficient R(Q), however, is
the same as the argument of standard displacement R/T coefficient R(Q).

As we showed in Section 5.3.7, the normalized R/T coefficients for isotropic media
are reciprocal, in the following sense: Rmn(Q) = Rnm(Q̃); see (5.3.31). The proof for
isotropic media was straightforward, using explicit expressions for the R/T coefficients.
For anisotropicmedia, the explicit expressions forR/Tcoefficientswould bemore complex.
The interested reader is referred to Section 5.4.7 and to Chapman (1994) for the proof that
reciprocity equation (5.3.31) remains valid even for anisotropic media.

Equation (5.4.10) can be simply modified to consider a point source at S:

A(R) =
[
ρ(S)C(S)
ρ(R)C(R)

]1/2 G(S; γ1, γ2)
L(R, S) R(Q) exp[iT c(R, S)]. (5.4.14)

A systematic parameteric investigation of the reflection/transmission coefficients of a
plane wave on a plane interface between two homogeneous anisotropic halfspaces is not
simple because these coefficients depend on a great number of parameters. In general, they
depend on 2 × 21 elastic moduli, on two densities, and on two tangential components of the
slowness vector of the incidentwave. The number of parameters is reduced for some simpler
anisotropy symmetries (for example, for transversely isotropic media), but still it remains
prohibitively large for a systematic study. For many references to such investigations, see
Section 2.3.3.

For more details on R/T coefficients and R/T matrices at an interface between two
homogeneous anisotropic halfspaces, see Section 5.4.7.

5.4.4 Amplitudes in 3-D Layered Structures

It is simple to generalize (5.4.10) and (5.4.14) for any multiply reflected/transmitted, pos-
sibly converted, wave propagating in a 3-D laterally varying layered anisotropic structure.
We again consider ray � and two points, S and R, situated on �. In addition, we assume
that the ray strikes N times some structural interfaces between S and R. We denote the
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relevant points of incidence successively Qi , i = 1, 2, . . . , N , and the relevant points of
R/T Q̃i , i = 1, 2, . . . , N . We also denote Q̃0 = S and QN+1 = R.

The continuation formula (5.4.10) can be generalized to read

A(R) =
[
ρ(S)U(S)
ρ(R)U(R)

]1/2 L(S)
L(R) R

C exp[iT c(R, S)] A(S), (5.4.15)

where

T c(R, S) =
N+1∑
k=1

T c(Qk, Q̃k−1), (5.4.16)

RC =
N∏
k=1

R(Qk) =
N∏
k=1

R(Qk)

[
ρ(Q̃k)Un(Q̃k)

ρ(Qk)Un(Qk)

]1/2
. (5.4.17)

Here RC is the complete reflection/transmission coefficient along the ray � from S to R.
It equals the product of the normalized displacement R/T coefficients R at all points of
incidence Qi , i = 1, 2, . . . , N , between S and R.

For a point source situated at S, we can modify (5.4.15) to read

A(R) =
[
ρ(S)C(S)
ρ(R)C(R)

]1/2 G(S; γ1, γ2)
L(R, S) RC exp[iT c(R, S)]. (5.4.18)

The complete R/T coefficient RC is reciprocal because it is the product of reciprocal
coefficients.

The final equation for the displacement vector of an arbitrary multiply reflected wave
propagating in a 3-D laterally varying anisotropic layered structure, generated by a point
source situated at S, now reads

	u(R, t) =
[
ρ(S)C(S)
ρ(R)C(R)

]1/2 G(S; γ1, γ2)
L(R, S) RC

× exp[iT c(R, S)] 	g(R)F(t − T (R, S)). (5.4.19)

5.4.5 Ray-Theory Green Function

We shall now derive the general expressions for the ray-theory Green function corre-
sponding to an arbitrary body wave propagating in an inhomogeneous anisotropic layered
structure. In fact, we have practically derived it; see (5.4.18) and (5.4.19). The only thing
that remains to be done is to determine the radiation function G(S; γ1, γ2) corresponding to
the unit single-force point source. We shall determine it by matching (5.4.19) with expres-
sions (2.5.75) for the high-frequency asymptotic Green function, derived for homogeneous
anisotropic medium in Section 2.5. In the time domain,

Gin (R, t ; S, 0) = gi gn exp
[
i 12πσ0

]
4πρU

√
|K S|r δ(A)(t − T (R, S)). (5.4.20)

Here δ(A)(ζ ) denotes the analytical delta function. Specifying (5.4.19) for a homogeneous
medium and for F(ζ ) = δ(A)(ζ ) yields

ui (R) = G(S; γ1, γ2)
L(R, S) gi (R)δ

(A)(t − T (R, S)). (5.4.21)
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Taking into account the relation (4.14.38) between det Q2(R, S) and K S , we obtain a simple
expression for the radiation function of an unit single force oriented along the xn-axis in a
homogeneous anisotropic medium,

G(S; γ1, γ2) = gn(S)

4πρ(S)C(S) exp
[
1
2 iπσ0(S)

]
. (5.4.22)

In certain applications, it is useful to know also a more general radiation function,
corresponding to an arbitrarily oriented single-force point source 	f 0(S). It is given by the
relation

G(S; γ1, γ2) = gk(S) f
(x)
0k (S)

4πρ(S)C(S) exp
[
1
2 iπσ0(S)

]
. (5.4.23)

Here f (x)0k denotes the kth Cartesian components of 	f 0(S).
Considering (5.4.22) in (5.4.19) yields the final expression for the ray-theory Green

function in an inhomogeneous anisotropic layered structure:

Gin(R, t ; S, t0) = gn(S)gi (R) exp[iTG(R, S)]

4π [ρ(S)ρ(R)C(S)C(R)]1/2L(R, S)
×RC δ(A)(t − t0 − T (R, S)). (5.4.24)

Equation (5.4.24) can be used also for the Green function Gin(R, S, ω) in the frequency
domain; we only replace δ(A)(t − t0 − T ) by exp[iωT ]. The meanings of all the symbols
in (5.4.24) have been explained earlier. Only the phase shift due to caustics T c(R, S) have
been replaced by T G(R, S) to include also σ0. We can call T G(R, S) the complete phase
shift due to caustics of the ray-theory Green function in anisotropic media. It is given by
the relation

T G(R, S) = T c(R, S) + 1
2πσ0(S) = − 1

2π [k(R, S) − σ0(S)]. (5.4.25)

Here k(R, S) is the KMAH index, corresponding to caustics situated on ray � between S
and R. Its computation is discussed in detail in Section 4.14.13. σ0(S) corresponds to the
point source; see Section 2.5.5. We can also introduce kG(R, S) using the relation

kG(R, S) = k(R, S) − σ0(S). (5.4.26)

Then kG(R, S) represents the KMAH index of the ray-theory Green function in anisotropic
media and even includes its initial value −σ0(S) at the point source S.

Klimeš (1997c) has proved that the complete phase shift of the ray-theory Green func-
tion due to caustics is reciprocal, T G(R, S) = T G(S, R); see Section 4.14.13. Also the
relative geometrical spreading and the complete normalized R/T coefficients are recipro-
cal: L(R, S) = L(S, R) andRC (R, S) = RC (S, R). Equation (5.4.24) then shows that the
ray-theory Green function Gin(R, t ; S, t0) is reciprocal in the following sense:

Gin(R, t ; S, t0) = Gni (S, t ; R, t0). (5.4.27)

The reciprocity relation (5.4.27) is valid for the ray-theory Green function corresponding
to any multiply reflected (possibly converted) wave propagating in a 3-D laterally varying
anisotropic layered structure. The same reciprocity relation is, of course, valid in isotropic
media; see (5.2.56).

Expressions for the ray-theory Green function for anisotropic inhomogeneous me-
dia were derived independently by several authors. See Červený (1990), Ben-Menahem,
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Gibson, and Sena (1991), Kendall, Guest, and Thomson (1992), and Pšenčı́k and Teles
(1996).

5.4.6 Quasi-Isotropic Ray Theory. qS Wave Coupling

Ray theory for inhomogeneous anisotropic media, presented in Section 3.6, cannot be used
for qS waves if the eigenvalues G1 and G2 of the Christoffel matrix, related to qS1 and
qS2 waves, coincide or are close to each other. The qS1 and qS2 waves do not propagate
independently in this case but aremutually coupled.We speak of the qS wave coupling. This
may happen globally in an inhomogeneous weakly anisotropic medium (close to isotropic)
or locally in the vicinity of shear wave singular directions, see Sections 2.2.8 and 2.2.9. In a
limit of infinitely weak anisotropy, the zero-order ray theory for two independent qS waves,
described in Section 3.6, does not yield the results known in isotropic inhomogeneous
media. Thus, the “isotropic” and “anisotropic” ray methods are in conflict in this case. The
methods to investigate the qS waves in such cases must take into account the coupling
between the two qS waves (coupling ray theory). See also a brief discussion in Sections
3.6.1 and 3.9.4. The travel times of qS waves in situations with G1

.= G2 were derived
and discussed in Section 3.9.4 using the degenerate perturbation method. Here we shall
discuss the amplitudes of qS waves propagating in inhomogeneous weakly anisotropic
media. The most important property of amplitudes of coupled qS waves propagating in
inhomogeneous weakly anisotropic media is that they are frequency dependent. We shall
use the quasi-isotropic approximation and the quasi-isotropic ray theory; see Section 3.9.4.
For completeness, we shall also discuss the propagation of qP waves in inhomogeneous
weakly anisotropic media.

Various methods have been used to investigate the qS wave coupling in inhomoge-
neous weakly anisotropic elastic media. The most comprehensive treatment, based on
generalized Born approximation, was given by Coates and Chapman (1990b). See Sec-
tion 2.6.2 for a brief explanation of generalized Born approximation. In the generalized
Born approximation, the error terms produced by substituting a zeroth-order ray-theory
Green’s function into the elastodynamic equations are treated as source terms of scat-
tered field. Using the perturbation and asymptotic methods, the volume scattering integral
is simplified and reduced to quadratures along the ray. For quasi-isotropic and alterna-
tive approaches, see, for example, Kravtsov (1968), Kravtsov and Orlov (1980), Chapman
and Shearer (1989), Guest, Thomson, and Kendall (1992), Thomson, Kendall, and Guest
(1992), Kiselev (1994), Sharafutdinov (1994), Kravtsov, Naida, and Fuki (1996), Druzhinin
(1996), Zillmer, Kashtan, and Gajewski (1998), and Pšenčı́k (1998). A broad literature re-
lated to the quasi-isotropic approximation in other branches of physics is given by Kravtsov
andOrlov (1980). The accuracy of different approaches was numerically studied by Bulant,
Klimeš, and Pšenčı́k (1999).

Herewe do not intend to treat the problemof coupling of qSwaves inweakly anisotropic
media in a great detail. For this reason, we shall use only a simple derivation based on the
quasi-isotropic approximation and on the formal Debye procedure, in which the pertur-
bation �ai jkl of density-normalized elastic parameters ai jkl from isotropic background to
weakly anisotropic medium is formally considered to be of the order ω−1. See Kravtsov
and Orlov (1980) for electromagnetic waves and Pšenčı́k (1998) for elastic waves.

We shall consider an isotropic inhomogeneous background, described by velocities
α(xi ) and β(xi ) and the density ρ(xi ), and a perturbed weakly anisotropic inhomogeneous
medium, with density-normalized elastic parameters ai jkl(xi ). We define the perturbations
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�ai jkl by the relation:

ai jkl(xi ) = a0i jkl(xi ) +�ai jkl(xi ), (5.4.28)

where

a0i jkl(xi ) = (α2 − 2β2)δi jδkl + β2(δikδ jl + δilδ jk). (5.4.29)

We shall now use (2.4.15) in the frequency domain in the weakly anisotropic medium and
obtain

iωN̄ i ( 	U ) + M̄i ( 	U ) = 0, (5.4.30)

where N̄ i and M̄i are density-normalized Ni and Mi , given by (2.4.41): N̄ i = Ni/ρ and
M̄i = Mi/ρ.Nowwe insert (5.4.28) into (5.4.30) and take into account theDebyeprocedure,
�ai jkl ∼ 1/ω. Neglecting terms of the order of ∼ω−1, we obtain

iωN̄
0
i ( 	U ) + M̄

0
i ( 	U ) + iω�ai jkl pl p jUk = 0. (5.4.31)

Here N̄
0
i and M̄

0
i are density-normalized Ni andMi , corresponding to isotropic background,

given by (2.4.16). Equation (5.4.31) yields two equations

N̄
0
i ( 	U ) = 0, (5.4.32)

M̄
0
i ( 	U ) + iω�ai jkl pl p jUk = 0. (5.4.33)

As in Section 2.4.2, Equation (5.4.32) describes the kinematic properties and polarization
of P and S waves propagating in background isotropic media. It yields eikonal equations
pi pi = 1/α2 for P waves and pi pi = 1/β2 for S waves and relevant ray tracing systems.
It also yields the polarization of P and S waves:

	U = A 	N for P waves,
	U = B 	e (1) + C 	e (2) for S waves;

(5.4.34)

see (2.4.26) and (2.4.28). Here 	N is the unit normal to the wavefront in the isotropic
background medium, and 	e (1) and 	e (2) are two mutually perpendicular unit vectors, per-
pendicular to 	N .

Now we shall discuss (5.4.33). For�ai jkl = 0, (5.4.33) yields standard transport equa-
tions; see (2.4.30) for P waves and (2.4.34) for S waves. For �ai jkl �= 0, the transport
equations (2.4.30) and (2.4.34) have nonvanishing right-hand sides. We again emphasize
that the second term in (5.4.33) is of the order of∼ω0, due to the Debye procedure.We shall
discuss (5.4.33) independently for qP and qS waves. For P waves in weakly anisotropic
media, see also Sayers (1994).

1. qP WAVES
Inserting 	U = A 	N into (5.4.33) and multiplying it by Ni , we obtain

M̄
0
i (A 	N )Ni + iωB33A = 0. (5.4.35)

Here

B33 = �ai jkl pl p j Ni Nk = α−2�ai jkl Ni N j NkNl . (5.4.36)

Equation (5.4.35) can be suitably solved along any ray�0 of the P wave constructed in the
isotropic background medium. Using the expressions for Mi (A 	N )Ni derived in Section
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2.4.2, (5.4.35) can be expressed in the following form:

d ln(A
√
Jρα)/dT + 1

2 iωB33 = 0. (5.4.37)

This gives the final solution for qP waves:

A(T ) =
[
J (T0)ρ(T0)α(T0)

J (T )ρ(T )α(T )

]1/2
A(T0)AQP (T, T0), (5.4.38)

where the quasi-isotropic correction factor AQP is given by the relation

AQP (T, T0) = exp

[
− 1

2 iω
∫ T

T0

B33dT

]
. (5.4.39)

Here the integral is taken along the ray �0 of the P wave in the isotropic background
medium, and T0 denotes the initial travel time at an arbitrary point on �0, at which A(T0)
is known. Thus, the quasi-isotropic modification of qP waves consists in a multiplicative
quasi-isotropic correction AQP , by which the amplitudes of P waves calculated in the
background medium should be multiplied. If we compare (5.4.39) with (3.9.15) and take
into account that 	g = 	N for P waves in isotropic media, we can conclude that the factor
AQP (R, S) represents exp[iω�T (R, S)], where�T (R, S) is the travel-time perturbation of
P waves from isotropic to weakly anisotropic medium. Thus, the quasi-isotropic correction
factor of qP waves AQP takes into account the travel-time perturbation only.

2. qS WAVES
Inserting 	U = B 	e(1) + C 	e(2) into (5.4.33) and multiplying it by e(K )

i , we obtain

M̄
0
i

(
B 	e(1) + C 	e(2))e(K )

i + iω(B1K B + B2KC) = 0. (5.4.40)

Here

BMN = �ai jkl p j ple
(M)
i e(N )

k (5.4.41)

are elements of the 2 × 2 weak-anisotropy matrix; see also Section 3.9.4. Note that pl =
Nl/β for S waves. We now use equations for M̄

0
i (B 	e(1) + C 	e(2))e(K )

i derived in Section
2.4.2 and introduce B0(T ) and C0(T ) by relations

B(T ) =
[
J (T0)ρ(T0)β(T0)

J (T )ρ(T )β(T )

]1/2
B0(T ),

C(T ) =
[
J (T0)ρ(T0)β(T0)

J (T )ρ(T )β(T )

]1/2
C0(T ).

(5.4.42)

Here T0 is the travel time corresponding to an arbitrary (initial) point on �0. Then we
obtain the system of two linear ordinary differential equations of the first order for B0

and C0, which can be solved along any ray �0 of the S wave constructed in the isotropic
background medium (common ray):

dB0/dT + C0e
(1)
j de(2)j

/
dT + 1

2 iω(B11B0 + B12C0) = 0,

dC0/dT + B0e
(2)
j de(1)j

/
dT + 1

2 iω(B12B0 + B22C0) = 0.
(5.4.43)

Aswecan see, theqS wave coupling system (5.4.43) for B0 andC0 is coupled and frequency-
dependent. The unit vectors 	e(1) and 	e(2) may be taken arbitrarily along the common ray
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�0; they only have to form a triplet of mutually perpendicular unit vectors with 	N . Sim-
ilar equations such as (5.4.43) with different choices of 	e(1) and 	e(2) are known from the
literature. Kravtsov (1968) and Kravtsov and Orlov (1980) used the unit normal 	n and
unit binormal 	b to �0 as 	e(1) and 	e(2). Pšenčı́k (1998) and Zillmer, Kashtan, and Gajewski
(1998) used the basis vectors 	e1 and 	e2 of the ray-centered coordinate system; see Section
4.1.1. In this choice, 	e(1)d	e(2)/dT = 	e(2)d	e(1)/dT = 0. The coupling equations derived by
Coates and Chapman (1990b) using a generalized Born approximation are also similar to
(5.4.43), with 	e(1) and 	e(2) representing the polarization vectors of qS1 and qS2 waves. In
this choice, B12 = 0. For discussion of various choices, see Pšenčı́k (1998).

Note that the vectorial amplitude of the qSwave in aweakly anisotropic inhomogeneous
medium is frequency-dependent. For this reason, we shall not use the term vectorial ray
amplitude in this section but merely the term qS vectorial amplitude. Alternatively, it would
be possible to speak of “zeroth-order quasi-isotropic approximation.” The higher-order
quasi-isotropic approximations are not investigated here. For the additional component of
the first-order quasi-isotropic approximation, see Pšenčı́k (1998).

3. DECOMPOSITION OF qS VECTORIAL AMPLITUDES INTO
RAY-CENTERED COMPONENTS
Here we shall use the choice of 	e(1) = 	e1 and 	e(2) = 	e2, where 	e1 and 	e2 are the basis

vectors of the ray-centered coordinate system; see Section 4.1. As in (5.4.42), we introduce
Be0 and C

e
0 by the relations:

B(T ) =
[
J (T0)ρ(T0)β(T0)

J (T )ρ(T )β(T )

]1/2
Be
0(T ),

C(T ) =
[
J (T0)ρ(T0)β(T0)

J (T )ρ(T )β(T )

]1/2
Ce

0(T ).

(5.4.44)

As the second terms of equations (5.4.43) vanish, we obtain

d

dT

(
Be
0

Ce
0

)
= − 1

2 iωB
e

(
Be0
Ce

0

)
, (5.4.45)

with

BeI J = �ai jkl p j pleI i eJk . (5.4.46)

Here Be is the 2 × 2 weak-anisotropy matrix (5.4.41), expressed in terms of basis vectors
	eI . The system (5.4.45) for Be

0 and C
e
0 can be still simplified. We decompose matrix Be as

follows:

Be = 1
2 (B

ae + Bse), Bae =
(
Be11 + Be

22 0
0 Be11 + Be

22

)
,

Bse =
(
Be11 − Be

22 2Be
12

2Be12 Be
22 − Be

11

)
.

(5.4.47)

HereBae is the average qS wave matrix, andBse is the qS wave splitting matrix. We further
introduce

Be0 = BeAQS(T, T0), Ce
0 = CeAQS(T, T0), (5.4.48)
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where AQS(T, T0) is the quasi-isotropic qS wave correction factor, given by the relation

AQS(T, T0) = exp

[
− 1

4 iω
∫ T

T0

(
Be11 + Be

22

)
dT

]
. (5.4.49)

The integral in (5.4.49) is taken along the ray �0 of S wave in the background isotropic
medium. The expression in the exponential function (5.4.49) represents the average qS
wave travel-time perturbation �T a (see (3.9.28)) and is analogous to AQP (T, T0) for qP
waves, given by (5.4.39). Then we can write the final equations for the vectorial amplitude
of the qS wave in weakly anisotropic media 	U (T ) in the following form

	U (T ) =
[
J (T0)ρ(T0)β(T0)

J (T )ρ(T )β(T )

]1/2
AQS(T, T0)[B

e(T )	e1(T ) + Ce(T )	e2(T )],
(5.4.50)

where Be(T ) andCe(T ) are solutions of the system of two coupled linear ordinary differen-
tial equations of the first order (the qS wave coupling system in ray-centered components):

d

dT

(
Be

Ce

)
= − 1

4 iωB
s

(
Be

Ce

)
, Bs = Bse, (5.4.51)

with the initial conditions Be(T0) and Ce(T0) at T = T0 corresponding to the amplitude
vector 	U (T0) = Be(T0)	e1(T0)+Ce(T0)	e2(T0). Consequently, the amplitudes Be and Ce of
qS waves are coupled and frequency-dependent.

The quasi-isotropic approach described here was used to compute synthetic seis-
mograms in weakly anisotropic media by Pšenčı́k and Dellinger (2000). They used the
anisotropic reflectivity modeling program by Mallick and Frazer (1990) to test the validity
of the approach. The results show that the quasi-isotropic approach spans the gap between
the isotropic and anisotropic ray methods. It can be used in isotropic regions (where it
reduces to the isotropic ray method), in regions of weak anisotropy (where no ray method
works properly), and even in regions of moderately strong anisotropy (in which the qS
waves decouple and could be modeled using the anisotropic ray method).

4. DECOMPOSITION OF qS VECTORIAL AMPLITUDE
INTO �g (1) AND �g (2) COMPONENTS
As in (3.9.17), we introduce vectors 	e(1) = 	g(1) and 	e(2) = 	g(2) by relations

g(1)k = a(1)J eJk, g(2)k = a(2)J eJk, (5.4.52)

where 	e1 and 	e2 are the basis vectors of the ray-centered coordinate system, and 	a(1) and
	a(2) are eigenvectors of the 2 × 2 weak anisotropy matrix Be; see (5.4.46). The summation
is over J = 1, 2. The eigenvectors 	a(1) and 	a(2) are given by relations

a(1)1 = a(2)2 = 2−1/2
[
1 + D−1

(
Be
11 − Be

22

)]1/2
,

a(1)2 = −a(2)1 = 2−1/2 sgn Be12
[
1 − D−1

(
Be
11 − Be

22

)]1/2
,

(5.4.53)

with

D = [(
Be
11 − Be

22

)2 + 4
(
Be12
)2]1/2

; (5.4.54)
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see (3.9.22). We shall also use the transformation matrix

A =
(
a(1)1 −a(1)2

a(1)2 a(1)1

)
; (5.4.55)

see (3.9.26).
We remind the reader that 	g(I ) are strictly perpendicular to the ray�0 and that they are

approximately equal to the projection of the polarization vectors of qS waves into the plane
perpendicular to the ray �0. We denote by Bg the 2 × 2 matrix with components

Bg
I J = �ai jkl pi pl g

(I )
j g

(J )
k ; (5.4.56)

see also (3.9.25). Here Bg is the 2 × 2 weak-anisotropy matrix, expressed in terms of
eigenvectors 	g (I ). Finally, we introduce Bg

0 and Cg
0 by relations:

B(T ) =
[
J (T0)ρ(T0)β(T0)

J (T )ρ(T )β(T )

]1/2
Bg
0 (T ),

C(T ) =
[
J (T0)ρ(T0)β(T0)

J (T )ρ(T )β(T )

]1/2
Cg

0 (T ),

(5.4.57)

as in (5.4.42). Then (5.4.43) reads

d

dT

(
Bg
0

Cg
0

)
=
[(

0 γ

−γ 0

)
− 1

2 iωB
g

](
Bg
0

Cg
0

)
. (5.4.58)

The coupling function γ = γ (T ) is given by the relation

γ (T ) = 	g(2)d 	g(1)/dT = 	a(2)d 	a(1)/dT . (5.4.59)

Here 	a(I ) are given by (5.4.53) and represent the eigenvectors of the 2 × 2 weak anisotropy
matrix Be; see (5.4.46). As 	g(1) · 	g(2) = 0, we also have γ (T ) = −	g(1)d 	g(2)/dT and simi-
larlyγ (T ) = −	a(1)d 	a(2)/dT .Using the notationa(1)1 = 	g(1) · 	e1 = cos ϕ, a(1)2 = 	g(1) · 	e2 =
sin ϕ, we also obtain

γ (T ) = dϕ/dT . (5.4.60)

Thus, ϕ is the angle between 	e1 and 	g(1) and the coupling function represents the velocity
of the rotation of eigenvectors 	g (I ) about the ray �0 as the wave progresses, in the frame
specified by 	e1 and 	e2.

Matrix Bg in (5.4.58) is diagonal; see (3.9.27). Consequently, the term with Bg in
(5.4.58) could be removed by a suitable substitution. Here we shall, however, proceed in a
slightly different way. We again decompose Bg into two matrices, as in (5.4.47):

Bg = 1
2 (B

ag + Bsg), Bag =
(
Bg
11 + Bg

22 0
0 Bg

11 + Bg
22

)
,

Bsg =
(
D 0
0 −D

)
.

(5.4.61)

Here Bag represents average qS wave matrix, and Bsg represents the qS wave splitting
matrix. They are related to Bae and Bse, given by (5.4.47), by relations Bse = ABsgAT and
Bae = ABagAT , where A is given by (5.4.55). Similarly, as in (5.4.48), we introduce Bg

and Cg by relations

Bg
0 (T ) = Bg(T )AQS(T, T0), Cg

0 (T ) = Cg(T )AQS(T, T0), (5.4.62)
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where AQS(T, T0) is given by the relation

AQS(T, T0) = exp

[
− 1

4 iω
∫ T

T0

(
Bg
11 + Bg

22

)
dT

]
, (5.4.63)

and the integral is taken along the ray �0. Because the trace of matrix Bg is invariant with
respect to the choice of basis vectors, AQS(T, T0) given by (5.4.63) is the same as that
given by (5.4.49). Then we can write the final expression for the amplitude vector of the
qS wave in a weakly anisotropic medium as follows:

	U (T ) =
[
J (T0)ρ(T0)β(T0)

J (T )ρ(T )β(T )

]1/2
×AQS(T, T0)

[
Bg(T )	g(1)(T ) + Cg(T )	g(2)(T )], (5.4.64)

where Bg(T ) and Cg(T ) are solutions of the system of two coupled linear ordinary differ-
ential equations of the first order (the qS wave coupling system in 	g(1), 	g(2) components):

d

dT

(
Bg

Cg

)
= Bd

(
Bg

Cg

)
, Bd =

(− 1
4 iωD γ

−γ 1
4 iωD

)
. (5.4.65)

The initial conditions Bg(T0) and Cg(T0) at T = T0 should correspond to the amplitude
vector 	U (T0) = Bg(T0)	g(1)(T0) + Cg(T0)	g(2)(T0). Thus, the amplitudes Bg and Cg of qS
waves are also coupled and frequency-dependent.

We can also express the system matrix Bd , given by (5.4.65), in an alternative form.
Using (3.9.29), we obtain D = 2d�T s/dT , where �T s is the time delay between the two
split qS waves. Then we obtain

Bd(T )=
(− 1

2 iωd�T
s/dT γ

−γ 1
2 iωd�T

s/dT

)

= d

dT

(− 1
2 iω�T

s(T ) ϕ(T )
−ϕ(T ) 1

2 iω�T
s(T )

)
. (5.4.66)

Here ϕ(T ) is the angle between 	e1(T ) and 	g(1)(T ).
Note that Equations (5.4.64) with (5.4.65) could be also obtained directly from (5.4.50)

with (5.4.51), using the diagonalization relation Bse = ABsgAT and the relation(
Bg

Cg

)
= AT

(
Be

Ce

)
, (5.4.67)

where the rotation matrix A is given by (5.4.55).
An important remark. As we can see from (5.4.66), the qS-wave coupling system

(5.4.65) depends on the variations of�T s and ϕ along the common ray�0. The quantities
�T s and ϕ are calculated here using the quasi-isotropic approximation. The qS-wave
coupling system (5.4.65) is, however, validmore generally; even if�T s andϕ are calculated
along �0 in a more sophisticated way (Coates and Chapman 1990b). Then the qS-wave
coupling system (5.4.65) can yield more accurate results. This applies also to (5.4.86), with
(5.4.80) and (5.4.83). For example, it is possible to consider the reference common ray�0,
corresponding to the average eigenvalue Gav = 1

2 (G1 + G2) of the two quasi-shear waves
in anisotropic media. Such a ray may be safely computed even in weakly anisotropic media
and may be close to shear wave singularities. See Section 3.6.2.
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5. QUASI-ISOTROPIC PROPAGATOR MATRICES
To express (5.4.50) and (5.4.64) in a more compact and flexible form, we shall use the

propagator technique. The propagator technique is described in great detail in Section 4.3.
Even though it is related there to 4 × 4 ray propagator matrices of the dynamic ray tracing
system, we may use all equations and conclusions of Section 4.3 here; we merely replace
the 2 × 2 submatrices of the 4 × 4 ray propagator matrix by scalars. Let us consider a ray
�0 in the background isotropic mediumM0, and two points S and R situated on it. Assume
that the ray �0 is not in contact with any structural interface between S and R. The travel
time is T (S) = T0 at point S and T (R) = T at R. Because the qS wave coupling systems
(5.4.51) and (5.4.65) are linear, we can introduce the complex-valued frequency-dependent
2 × 2 propagator matrices Πe(R, S) and Πg(R, S) in such a way that(

Be(R)
Ce(R)

)
= Πe(R, S)

(
Be(S)
Ce(S)

)
,

(
Bg(R)
Cg(R)

)
= Πg(R, S)

(
Bg(S)
Cg(S)

)
.

(5.4.68)

Thequasi-isotropic propagatormatricesΠe(R, S) andΠg(R, S) are formedby two linearly
independent solutions of systems of differential equations (5.4.51) and (5.4.65), with initial
conditions Πe(S, S) = I and Πg(S, S) = I, respectively. Because trBs = 0 and trBd = 0,
the determinants of Πe(R, S) and Πg(R, S) equal unity for an arbitrarily situated point R
on�0 (Liouville’s theorem; see Section 4.3.3). It is not difficult to see that both propagator
matrices Πe(R, S) and Πg(R, S) are symplectic (see Section 4.3.2), that they satisfy the
chain rule (see Section 4.3.4), and that their inverses can be computed by equations analo-
gous to those given in Section 4.3.5. Particularly attractive for us is the chain rule. Assume
that points Q1, Q2, . . . , QN are situated along �0 between S and R. Then

Πe(R, S) = Πe(R, QN )Πe(QN , QN−1) · · ·Πe(Q1, S). (5.4.69)

The same relation is valid also for propagator matrix Πg(R, S). This chain relation is
suitable for matching different solutions computed along different parts of the ray �0.
Note that the quasi-isotropic propagator matrices Πe(R, S) and Πg(R, S) are frequency-
dependent. To simplify the notation, we shall not write the frequency ω among arguments
of the propagator matrices.

Due to (5.4.67), propagator matrices Πe(R, S) and Πg(R, S) are mutually related:

Πe(R, S) = A(R)Πg(R, S)AT (S). (5.4.70)

Here A is given by (5.4.55). Relation (5.4.67) can be also used if we wish to transform
(Be,Ce)T into (Bg,Cg)T , or vice versa, at any point of the ray�0. Again, this may be suit-
able for matching.

Now we shall write expressions for the qS amplitude matrices. We introduce

U(q)(R) = (Be(R),Ce(R))T , U(g)(R) = (Bg(R),Cg(R))T , (5.4.71)

and similarly forU(q)(S) andU(g)(S). Then we can express relations (5.4.50) and (5.4.64) in
amore suitablematrix form.We take into account that the phase shifts due to caustics are the
same for both Be and Ce (and for both Bg and Cg). See more details later. Then we obtain

U(q)(R)=
[
ρ(S)β(S)

ρ(R)β(R)

]1/2 L(S)
L(R)

× exp[iT c(R, S)]AQS(R, S)Πe(R, S)U(q)(S), (5.4.72)
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and, similarly,

U(g)(R)=
[
ρ(S)β(S)

ρ(R)β(R)

]1/2 L(S)
L(R)

× exp[iT c(R, S)]AQS(R, S)Πg(R, S)U(g)(S). (5.4.73)

The symbols L(S), L(R), and T c(R, S) have the same meaning as in (5.2.18). Comparing
(5.4.72) with (5.2.18), we can see that the expression for the qS amplitude matrix (5.4.72)
in a weakly anisotropic medium is formally the same as the expression (5.2.18) for the
amplitude matrix of the S wave propagating in an isotropic medium; only the initial am-
plitude matrix U(q)(S) should be multiplied by the propagator matrix Πe(R, S) and by
AQS(R, S). Consequently, (5.4.72) can be modified for a point source situated at S and for
the elementary ray-theory Green functions in the same way as in Section 5.2. It can also
be modified for many other special cases. See more details later.

Using (5.4.69), the propagator matrices can be chained into factors corresponding to
shorter segments of the ray�0. Along these segments, the propagator matrices sometimes
may be computed analytically, either exactly or approximately, or in some alternative
numerical way. We shall present now several such situations.

a. Vanishing perturbations. Bs = 0, Bd = 0, and we obtain

AQS(R, S) = 1, Πe(R, S) = I, Πg(R, S) = I. (5.4.74)

Equation (5.4.72) then reduces to (5.2.18) for an isotropic medium.

b. Isotropic background, isotropic perturbed medium. BI J = 2β−1�βδI J so that
Bs = 0 and Bd = 0. Consequently,

AQS(R, S) = exp

[
iω
∫ R

S
�(1/β)ds

]
,

Πe(R, S) = I, Πg(R, S) = I.

(5.4.75)

Here the integral is taken along the ray �0. Equation (5.4.72) again reduces to standard
equation (5.2.18) for S waves in the isotropic case; only (5.2.18) should be multiplied by
AQS(R, S) given by (5.4.75). The function AQS(R, S) fully expresses the influence of the
isotropic first-order travel-time perturbation; see (3.9.9).

c. No coupling. If the eigenvectors 	g (I ) do not vary along �0 with respect to 	e1 and
	e2, the coupling function γ (T ) vanishes. System (5.4.65) then decouples, and its solu-
tion is

Πg(R, S) =
(
exp

[− 1
4 iω

∫ R
S DdT

]
0

0 exp
[
1
4 iω

∫ R
S DdT

]
)
. (5.4.76)

The integrals in (5.4.76) are taken along ray�0 and represent twice the time delay between
the two split qS waves; see (3.9.29).

As shown by (5.4.76), the propagator matrixΠg(R, S) decouples. A similar decoupled
equation analogous to (5.4.73) with (5.4.76) was also derived by Pšenčı́k (1998), using
a different procedure. Pšenčı́k (1998) also proposed some qualitative criteria showing
when (5.4.76) can be used as an approximation. This applies mostly to models close to
homogeneous (weakly inhomogeneous background media).
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The propagatormatrixΠe(R, S), corresponding to (5.4.76), is not decoupled.Weobtain
it from (5.4.70) and (5.4.76):

Πe(R, S)= I cos

[
1
4ω

∫ R

S
DdT

]
− iD−1 sin

[
1
4ω

∫ R

S
DdT

]
Bs .

(5.4.77)

Of course, Equations (5.4.76) and (5.4.77) can be used if the background isotropic and
perturbed weakly anisotropic media are homogeneous. Then D is constant and

∫ T
T0
DdT =

DT (R, S) = D(T (R) − T (S)). Equation (5.4.77) then yields

Πe(R, S) = I cos
[
1
4ωDT (R, S)

]− 1
4 iωT (R, S) sinc

[
1
4ωDT (R, S)

]
Bs .

(5.4.78)

Here sinc(x) = x−1sin(x).

d. Propagator matrices by the method of mean coefficients. The method of mean
coefficients, described by Gilbert and Backus (1966), yields simple approximate expres-
sions for the quasi-isotropic propagator matrices along short segments of the ray �0, even
for coupled equations. We shall consider the quasi-isotropic propagator matrix Πg(T, T0),
controlled by (5.4.65): dΠg/dT = BdΠg. Let us consider points T0, T1, . . . , Tl−1, Tl, . . . ,
Tn = T along the ray and use the chain rule for Πg(T, T0), analogous to (5.4.69). We also
denote �Tl = Tl − Tl−1. For small �Tl , we can approximately express Πg(Tl , Tl−1) as
follows: Πg(Tl, Tl−1) = exp[Bd(T̄l )�Tl ], where T̄l is some intermediate point of the inter-
val Tl−1 < T̄l < Tl . The method of mean coefficients is then represented by the following
approximation for small �Tl :

Πg(Tl , Tl−1)
.= exp[Bd(T̄l )�Tl ]

.= exp[S(Tl, Tl−1)], (5.4.79)

where

S(Tl , Tl−1) =
∫ Tl

Tl−1

Bd(T )dT =
(

− 1
4 iω

∫ Tl
Tl−1

DdT ϕl − ϕl−1

−(ϕl − ϕl−1)
1
4 iω

∫ Tl
Tl−1

DdT

)
,

(5.4.80)

where ϕl = ϕ(Tl) and ϕl−1 = ϕ(Tl−1). Instead of
∫ Tl
Tl−1

DdT , we can also use 2[�T s(Tl) −
�T s(Tl−1)], where�T s is the time delay between the two split qSwaves; see (3.9.29).What
remains is to calculate exp[S(Tl , Tl−1)]. To do it, we shall use the Cayley-Hamilton theorem
and Sylvester theorem; see Korn and Korn (1961, Sections 13.4–13.7). The characteristic
equation of matrix S reads

λ2 + Y = 0, (5.4.81)

where Y is given by the relation

Y = 1
16ω

2

(∫ Tl

Tl−1

DdT

)2

+ (ϕl − ϕl−1)
2. (5.4.82)

Alternatively, we can use D = 2d�T s/dT . Then the expression for Y reads

Y = 1
4ω

2(�T s(Tl ) −�T s(Tl−1))
2 + (ϕl − ϕl−1)

2. (5.4.83)
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According to the Cayley-Hamilton theorem, matrix S given by (5.4.80) satisfies its char-
acteristic equation (5.4.81):

S2 + Y I = 0. (5.4.84)

This can also be simply verified directly. Then we can use the Sylvester theorem

exp(S)
.= exp(λ1)

S− λ2I
λ1 − λ2 + exp(λ2)

S− λ1I
λ2 − λ1 . (5.4.85)

Inserting λ1,2 = ±iY 1/2, we obtain the final equation for exp(S), and, consequently, also
for Πg(Tl, Tl−1),

Πg(Tl, Tl−1)
.= I cos Y 1/2 + S sinc Y 1/2; (5.4.86)

see (5.4.79).
Here are several notes to the final equation (5.4.86).

i. The expression (5.4.86) contains only one integral,
∫ Tl
Tl−1

DdT = 2�T s , where�T s

is the time delay between the two split qS waves.
ii. The values of ϕ (angle between 	e1 and 	g(1)) should be known only at end points,
Tl−1 and Tl . Consequently, the eigenvectors 	g(1), 	g(2) need not be computed along
the ray between Tl−1 and Tl .

iii. If there is no coupling, ϕl = ϕl−1. Then (5.4.86) yields (5.4.76).
iv. Using (5.4.70), we can also obtain Πe(R, S) from (5.4.86).

e. Solutions in terms of ϕ. We shall use new amplitude functions Bϕ and Cϕ in
(5.4.65), connected with Bg and Cg by relations:

Bg(T ) = Bϕ(T ) exp
[− 1

2 iω�T
s(T )

]
,

Cg(T ) = Cϕ(T ) exp
[
1
2 iω�T

s(T )
]
.

(5.4.87)

Here�T s is the time delay between the two split qSwaves. The two coupled linear ordinary
differential equations of the first order for Bϕ(T ) and Cϕ(T ) are then as follows:

d

dT

(
Bϕ

Cϕ

)
= γ

(
0 σ (T )

−σ ∗(T ) 0

) (
Bϕ

Cϕ

)
. (5.4.88)

Here σ (T ) is given by the relation

σ (T ) = exp[iω�T s(T )], (5.4.89)

andσ ∗(T ) denotes the complex conjugate quantity. The 2 × 2matrix on theRHSof (5.4.88)
is unitary and antihermitean. It would again be possible to introduce the propagator matrix
Πϕ for the coupled system (5.4.88). Consequently, the propagator matrices Πg(R, S) and
Πe(R, S) can be also found by solving the system (5.4.88).

System of equations (5.4.88), in a slightly different form, was discussed in detail by
Coates andChapman (1990b). They also proposed to useϕ as a variable along the ray instead
of the variable T . Assume that the relation ϕ = ϕ(T ) is monotonic along the segment of
ray �0 between S and R. Using (5.4.60), we can express (5.4.88) in the following form:

d

dϕ

(
Bϕ

Cϕ

)
=
(

0 σ (T )
−σ ∗(T ) 0

)(
Bϕ

Cϕ

)
. (5.4.90)

This system of two coupled linear ordinary differential equations of the first-order (5.4.90)
is surprisingly simple, but it is still exact. The system matrix of (5.4.90) is unitary and
antihermitean. As we can notice in (5.4.89), |σ (T )| = 1 for any T .



5.4 ELASTIC ANISOTROPIC STRUCTURES 523

The systems (5.4.88) or (5.4.90) can be solved along the ray�0 in various ways. It may
again be suitable to divide the whole ray into short segments and use some approximate
treatment along any short segment such as the method of mean coefficients. See, for
example, Coates and Chapman (1990b) who also described a successful application of
(5.4.90) in the vicinity of some shear wave singularities.

f. Propagator matrix through a caustic point. Let us consider a ray �0 and two
points S and R situated on �0. Assume that a caustic point Qc is situated between S and
R. At the caustic point Qc, the phase shift due to caustic is the same for both amplitude
components Be andCe (or for Bg andCg). Consequently, we can eliminate the phase shifts
due to caustics from the propagator matrix and collect them in a common multiplicative
factor. The results are analogous to the standard ray theory: the final expression for the
amplitudematrix should bemultiplied by exp[iT c(R, S)], where T c(R, S) is the phase shift
due to all caustics situated between S and R. Thus, we can compute the propagator matrix
even through caustic points without any change. The relevant phase shift due to caustics
T c(R, S) is taken into account separately; see the factor exp[iT c(R, S)] in (5.4.72) and
(5.4.73).

g. Propagator matrices across structural interfaces. Assume that ray �0 is in con-
tact with a structural interface between points S and R. As usual, we denote the point of
incidence by Q, and the relevant R/T point by Q̃. Then the quasi-isotropic propagator
matrices Πe(R, S) and Πg(R, S) can be chained as follows:

Πe(R, S) = Πe(R, Q̃)Πe(Q̃, Q)Πe(Q, S),

Πg(R, S) = Πg(R, Q̃)Πg(Q̃, Q)Πg(Q, S).
(5.4.91)

Thus, at a point of incidence, it is necessary to insert the interface propagator Πe(Q̃, Q)
(or Πg(Q̃, Q)). It is given by the relation

Πe(Q̃, Q) = RT (Q), Πg(Q̃, Q) = AT (Q̃)RT (Q)A(Q). (5.4.92)

Here A is the 2 × 2 matrix given by (5.4.55), and R is the 2 × 2 matrix of S → S plane
wave displacement reflection/transmission coefficients for isotropic structures; see also
RS→S in (5.2.38). Finally, the superscript T denotes the transpose. As in the standard ray
method, it is suitable to replace the 2 × 2 matrix of S → S R/T displacement coefficients
R(Q) by the 2 × 2 matrix of S → S R/T normalized displacement coefficients R(Q):

Πe(Q̃, Q) = RT (Q), Πg(Q̃, Q) = AT (Q̃)RT (Q)A(Q); (5.4.93)

see Section 5.2.4. The multiplicative factor obtained by this replacement is canceled with
some other factors in the final expression for Û(q)(R).

Note that the interface propagatorsΠe(Q̃, Q) andΠg(Q̃, Q) are not symplectic so that
the chains (5.4.91) are not symplectic. Even in this case, however, the chain rule (5.4.91) can
be safely used in (5.4.69). If we wish to preserve the symplecticity, it would be necessary
to normalizeΠe(Q̃, Q) by [det Πe(Q̃, Q)]1/2 andΠg(Q̃, Q) by [det Πg(Q̃, Q)]1/2 and to
consider separately the products of all determinants.

h. Factorized anisotropicmedium. In a factorized anisotropicmedium, the perturba-
tions �ai jkl are given by relation �ai jkl(xi ) = Ai jkl� f 2(xi ) + f 2(xi )�Ai jkl ; see (3.6.34).
This relation immediately shows that the shear wave splitting matrix Bse in (5.4.51)
and matrix Bd in (5.4.65) do not depend on structural perturbations � f (xi ) but only on
anisotropy perturbations�Ai jkl . Consequently, the systems of equations (5.4.51), (5.4.65),
and (5.4.88) and relevant propagator matrices Πe(R, S) and Πg(R, S) do not depend on
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structural perturbations� f (xi ) but only on position-independent anisotropy perturbations
�Ai jkl . Thus, the coupling of S waves in a weakly anisotropic FAI medium is controlled
only by position-independent anisotropy perturbations �Ai jkl , not by structural perturba-
tions � f (xi ).

i. Strongly anisotropic medium. Formally, equations analogous to (5.4.73) can be
used even if the model M is strongly anisotropic in some region outside shear wave
singular directions. This, however, requires one to perform ray tracing and dynamic ray
tracing for the strongly anisotropic medium in this region, using anisotropic ray tracing
systems of Section 3.6 and anisotropic dynamic ray tracing systems of Section 4.14.2.
Consequently, no perturbations are involved in this region. It is not difficult to combine
isotropic and anisotropic ray tracing and dynamic ray tracing along different segments of
the ray.

The rays of qS1 and qS2 in strongly anisotropic media are, of course, different. Thus,
if we wish to perform ray tracing in a strongly anisotropic region, it is necessary to specify
by a proper ray code which of the two qS waves we wish to compute. If we are interested
also in the other qS wave, both rays should be computed independently. Only after both
computations may these waves be combined to give the complete qS wave.

For�T s exceeding some limit, such complete qS wave will give more accurate results
than any approximationbasedon a common ray.This applies not only to strongly anisotropic
media but also to weakly anisotropic media. The limit is, of course, frequency-dependent.
For example, it may be chosen to be proportional to the prevailing period of the wave.
Thus, the computation of qS waves in anisotropic media should be performed differently
for �T s not exceeding the limit and for �T s exceeding the limit:

a. In the region where �T s does not exceed the limit, an approximation based on a
common ray should be used (for example, the quasi-isotropic approximation).

b. In the region where �T s exceeds the limit, complete anisotropic qS wave compu-
tations should be performed. The problem how to choose the proper limit requires
further investigation.

Let us consider a ray �, composed of segments situated in the background isotropic
medium, and of segments situated in strongly anisotropic media. Consider one segment of
�, situated in a strongly anisotropic medium, between points Qk−1 and Qk on �. Assume
that there is no contact with structural interfaces and with shear wave singularities along�
between Qk−1 and Qk . In other words, the eigenvalues G1 and G2 of the Christoffel matrix
differ considerably along � between Qk−1 and Qk . Then we can use (5.4.73), with

AQS(Qk, Qk−1) = 1, Πg(Qk, Qk−1) = I. (5.4.94)

To compute the qS1 wave, we must use Ug(Qk−1) = (Bg(Qk−1), 0)T , and to compute the
qS2 wave, we need to use Ug(Qk−1) = (0,Cg(Qk−1))T . If the first and/or last segment of
� is situated in a strongly anisotropic medium, β(S) and/or β(R) in (5.4.73) should be
replaced by U(S) and/or U(R), where U is the relevant group velocity; see (5.4.4).

6. AMPLITUDE MATRICES IN 3-D LAYERED WEAKLY ANISOTROPIC MEDIA
Equations (5.4.72) and (5.4.73) give general expressions for the qS amplitude matrices

in a smoothmediumwithout interfaces. Using (5.4.91), these equationsmay be generalized
even for qS wave amplitude matrices in layered media. Here we wish to give general
expressions for 3 × 1 amplitude column matrices Û(q)(R) and Û(g)(R) of an arbitrary
multiply-reflected, possibly converted, wave propagating in a weakly anisotropic layered
structure.
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We introduce 3 × 3 matrices Π̂
e
(R, S) and Π̂

g
(R, S) for a smooth segment of the ray

�0 between S and R (without structural interfaces) as follows:

Π̂
e
(R, S) =


Πe(R, S)

0
0

0 0 1


 , Π̂

g
(R, S) =


Πg(R, S)

0
0

0 0 1


 .

(5.4.95)

Due to (5.4.70), the mutual relation between the two matrices is

Π̂
e
(R, S) = Â(R)Π̂

g
(R, S)ÂT (S), Â =


 A

0
0

0 0 1


 . (5.4.96)

Here the 2 × 2 matrix A is given by (5.4.55). For a layered medium, with N R/T points on
�0 between S and R, we obtain

Π̂
e
(R, S) = Π̂

e
(R, Q̃N )

1∏
k=N

[R̂T
(Qk)Π̂

e
(Qk, Q̃k−1)]. (5.4.97)

Using (5.4.96), an analogous equation can also be obtained for Π̂
g
(R, S). Here Q1,

Q2, . . . , QN are points of incidence, Q̃1, Q̃2, . . . , Q̃N the relevantR/Tpoints, and Q̃0 ≡ S.
R̂(Qk) is the 3 × 3 matrix of normalized displacement coefficients of reflection/trans-
mission on structural interfaces between two isotropic media. It is different for reflection
and for transmission. There are four types of the R/T matrix R̂(Qk): R̂P→P , R̂P→S ,
R̂S→P , and R̂S→S . The appropriate type of the R/Tmatrix must be consistent with the ray
code. We remind the reader that certain components of individual R/T matrices vanish;
see (5.2.38) for standard displacement R/T matrices for the isotropic case. For example,
R̂P→P has only one nonvanishing componentR33; R̂S→S has four nonvanishing compo-
nentsR11, R12, R21, andR22; and R̂P→S and R̂S→P have two nonvanishing components
each. The matrices Π̂

e
on the RHS of (5.4.97) are given by (5.4.95). The complete matrix

Π̂
e
(R, S) for a layered medium given by (5.4.97) is, however, more general than (5.4.95).

Only for unconverted S waves can it again be expressed in the form of (5.4.95). For uncon-
verted P waves,"e

33(R, S) �= 1. Similarly, for converted R/T waves (PS, SP), some of the
elements"e

13(R, S),"
e
23(R, S),"

e
31(R, S), and"

e
32(R, S) may differ from zero. Points Qk

and Q̃k in (5.4.97) may also be situated on�0 in a smooth medium, without any structural
interface at Qk . In this case, we use R̂(Qk) = Î. Such a choice may be useful if we wish
to calculate the matrices Π̂

e
or Π̂

g
by different methods along two different segments of

�0 separated by point Qk .
We shall also introduce function AQ(R, S):

AQ(R, S) = AQ(R, Q̃N )AQ(QN , Q̃N−1) · · ·AQ(Q1, S). (5.4.98)

HereAQ(Qk, Q̃k−1) corresponds toAQP(Qk, Q̃k−1) given by (5.4.39) if the kth segment of
the ray�0 corresponds to a qP wave; it corresponds toAQS(Qk, Q̃k−1) given by (5.4.63) if
the kth segment of the ray�0 corresponds to a qS wave.We now introduce 3 × 1 amplitude
matrices Û(q) and Û(g):

Û(q) = (Be,Ce, A)T , Û(g) = (Bg,Cg, A). (5.4.99)

These matrices correspond to the vectorial decomposition of amplitudes 	U = Be 	e1 +
Ce 	e2 + A	e3 and 	U = Bg 	g(1) + Cg 	g(2) + A 	g (3). In weakly anisotropic media, 	g (I ) are
given by (5.4.52), and 	g (3) = 	N . In strongly anisotropic media, 	g (i) represent eigenvectors
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of the Christoffel matrix for relevant anisotropic media. The final relation for the 3 × 1
amplitude matrix Û(q)(R) in a layered weakly anisotropic medium is then given by the
expression

Û(q)(R) =
[
V (S)ρ(S)

V (R)ρ(R)

]1/2 L(S)
L(R)

× exp[iT c(R, S)]AQ(R, S)Π̂
e
(R, S)Û(q)(S), (5.4.100)

which is similar to (5.2.45).
Here Π̂

e
(R, S) andAQ(R, S) are given by (5.4.97) and (5.4.98), and all other symbols

have the same meaning as in (5.2.45). The velocities V (S) and V (R) correspond to the
type of the wave at S and R (either α or β).

An alternative relation to (5.4.100) can be written for Û(g)(R) in terms of Π̂
g
(R, S).

Because we wish to use such an equation even if the source and receiver segments of �0

are situated in strongly anisotropic media, we shall use group velocities U(S) and U(R)
instead of V (S) and V (R):

Û(g)(R) =
[ U(S)ρ(S)
U(R)ρ(R)

]1/2 L(S)
L(R)

× exp[iT c(R, S)]AQ(R, S)Π̂
g
(R, S)Û(g)(S); (5.4.101)

see (5.4.4). For weakly anisotropic media, both equations (5.4.100) and (5.4.101) are al-
ternative.

Let us now briefly discuss (5.4.100). As we can see, it differs from (5.2.45) only by
the multiplicative factor AQ(R, S) and by the 3 × 3 matrix Π̂

e
(R, S), which replaces

R̂C
(Q). Consequently, (5.4.100) can be modified in many ways, in much the same way

as (5.2.45) in Section 5.2. For example, we obtain point-source solutions from (5.4.100)
if we replace Û(q)(S) by the ray-centered radiation matrix Ĝ(q)

(S; γ1, γ2), and L(S)/L(R)
by 1/L(R, S). We shall present here only one very important relation following from
(5.4.100), corresponding to the quasi-isotropic ray-theory elastodynamic Green function
Gin(R, S, ω) for a weakly anisotropic layered medium:

Gin(R, S, ω) = eki (R)eln(S)AQ(R, S)

4π [ρ(S)ρ(R)V (S)V (R)]1/2L(R, S)"
e
kl(R, S)

× exp[iωT (R, S) + iT c(R, S)]. (5.4.102)

Here the summation over k and l should be specified properly; see Section 5.2.6. If the first
element of the ray (at S) is P, we put l = 3, and if it is S, we put l = L (with the summation
over L = 1, 2). Similarly, if the last element of the ray (at R) is P, we put k = 3, and if it is
S, we put k = K (with the summation over K = 1, 2). The relation (5.4.102) can also be
modified for waves generated at an initial surface or at an initial line, for receiver R situated
at an structural interface and the like. The procedures are the same as in Section 5.2.

An alternative expression for Gin(R, S, ω) follows from (5.4.101). It reads

Gin(R, S, ω) = g(k)i (R)g(l)n (S)AQ(R, S)

4π [ρ(S)ρ(R)C(S)C(R)]1/2L(R, S)"
g
kl (R, S)

× exp[iωT (R, S) + iT G(R, S)]. (5.4.103)

Here T G(R, S) is the complete phase shift due to caustics in an anisotropic medium given
by (5.4.25), C(S) and C(R) are phase velocities, and 	g (k) are explained after (5.4.99).
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Equations (5.4.100) and (5.4.101), with (5.4.97) and (5.4.98), and the relevant ex-
pressions (5.4.102) and (5.4.103) for the ray theory Green functions, can be used for
any elementary multiply-reflected, possibly converted, wave propagating in a 3-D later-
ally varying layered structure. The model may be isotropic, perturbed isotropic, weakly
anisotropic, and the like.

Equations (5.4.100) through (5.4.103) look surprisingly simple. We must, however,
remember that the 3 × 3 matrices Π̂

e
and Π̂

g
are frequency-dependent and complex-

valued along segments of the ray situated in an inhomogeneousweakly anisotropicmedium.
Thus, in the synthetic seismogram computations, it is necessary to compute the propagator
matrices many times, for the whole range of frequencies under consideration (similarly
as in the reflectivity method). Also function AQ(R, S) is frequency-dependent, but its
implementation is considerably simpler. It reduces to one numerical quadrature along the
ray to evaluate the travel-time perturbation. This travel-time perturbation can be connected
with travel time T (R, S), so that no additional computations are required. An alternative
is to work directly in the time domain; see Coates and Chapman (1990b).

5.4.7 R/T Coefficients and R/T Matrices

The determination of R/T coefficients of plane waves at a plane interface between two
homogeneous anisotropic halfspaces was discussed in Section 2.3.3. In the seismic ray
method, the R/T coefficients can be locally applied even to a nonplanar wave, incident at
a curved interface separating two inhomogeneous anisotropic media. Here we shall first
briefly recapitulate the main steps in the evaluation of the R/T coefficients and then express
all relations in suitable matrix form.

We shallmostly use the same notations as in Section 2.3.3.We consider a plane interface
� between anisotropic homogeneous halfspaces 1 (ρ(1), c(1)i jkl , a

(1)
i jkl) and 2 (ρ

(2), c(2)i jkl , a
(2)
i jkl).

We shall not use superscripts (1) or (2) denoting the selected halfspace in relations valid
generally in both halfspaces. We denote the unit normal to � by 	n and orient it into any of
the two halfspaces. Finally, we assume that the type (qS1, qS2, qP), the slowness vector,
and the amplitude of the incident plane wave are known. We can then express the slowness
vectors of all generated plane waves by relations 	p = 	a + σ 	n. Here σ 	n represents the
normal component of the slowness vector, and 	a represents the tangential component.
The tangential components 	a of all generated plane waves are the same as the tangential
component of the incident wave so that they are presumably known. Quantities σ , however,
are different for different generated R/T waves. They are solutions of algebraic equations
of the sixth-order:

det[ai jkl(a j + σn j )(al + σnl) − δik] = 0. (5.4.104)

Solving (5.4.104) for σ , we obtain six roots σ (m) (m= 1, 2, . . . , 6), six slowness vectors
	p (m) = 	a+ σ (m)	n, and six eigenvectors 	g (m) of the Christoffel matrix �i j = ai jkl p

(m)
j p(m)

l

(no summation over m):

ai jkl
(
a j + σ (m)n j

)(
al + σ (m)nl

)
g(m)
k − g(m)

i = 0; (5.4.105)

see (2.2.32) with Gm = 1. The eigenvectors 	g (m) represent polarization vectors of six indi-
vidual waves. Finally, we obtain six group velocity vectors 	U (m) with Cartesian components
given by the relation

U (m)
i = ai jkl p

(m)
l g(m)

j g(m)
k ; (5.4.106)
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see (2.2.65). Roots σ (m) may be real-valued (homogeneous plane waves) or appear in
pairs of complex-conjugate quantities (inhomogeneous plane waves). We can divide the
six roots σ (m) into two groups: σ (1)+, σ (2)+, σ (3)+ and σ (1)−, σ (2)−, σ (3)−. The first group
includes the roots σ (i)+, for which 	U (i)+ · 	n > 0 (waves propagating along 	n), and the
second group contains the roots σ (i)− for which 	U (i)− · 	n < 0 (waves propagating against
	n). For complex-valued roots, see the more detailed discussion in Section 2.3.3. In the same
way, we also form relevant groups of eigenvectors 	g (i)+ and 	g (i)− and of slowness vectors
	p (i)+ and 	p (i)− (i = 1, 2, 3).

The system (2.3.50) of six linear algebraic equations of the first order for amplitudes
of the generated R/T waves for the wave incident from the first halfspace may be suitably
expressed in matrix form. It can be extended by six analogous equations for the wave
incident from the second halfspace. We introduce four 3 × 3 matrices Ĥ+

1 , Ĥ
−
1 , Ĥ

+
2 , and

Ĥ−
2 , formed by eigenvectors 	g (i)+ and 	g (i)− in the first and second halfspaces. For example,

the i th column of Ĥ+
1 is formed by Cartesian components of the eigenvectors 	g (i)+ in the

first halfspace. If we use the notation g+
ki for the i th Cartesian component of the eigenvector

	g (k)+, we obtain (Ĥ+)ik = g+
ki . Within the individual matrices Ĥ+

1 , Ĥ
−
1 , Ĥ

+
2 , and Ĥ

−
2 , the

relevant three eigenvectors may be ordered in an arbitrary way. It is usual to arrange them in
order of increasing phase velocity, that is, the first column for the slower qSwave, the second
column for the faster qS wave, and the third column for the qP wave. Note that the 3 × 3
matrices Ĥ+

1 , Ĥ
−
1 , Ĥ

+
2 , and Ĥ

−
2 are not unitary because the individual eigenvectors forming

these matrices correspond to different rays. We further introduce four 3 × 3 “traction”
matrices F̂+

1 , F̂
−
1 , F̂

+
2 , and F̂

−
2 , related to tractions Tk = τ jkn j :

(F̂+)ik = −X (k)+
i , X (k)+

i = ci jnln j g
(k)+
n p(k)+l ; (5.4.107)

see (2.1.3) and (2.3.51). Analogous equations define F̂−. Theminus sign in the first equation
of (5.4.107) is introduced for formal reasons; it does not influence the boundary conditions.
The individual columns in matrices F̂ must be arranged in the same order as in Ĥ.

We now add two analogous equations for the wave incident from the second halfspace
to (2.3.50) and express the equations in matrix form. We obtain four matrix equations:

Ĥ−
1 + Ĥ+

1 R̂
T
11 = Ĥ−

2 R̂
T
12, Ĥ+

2 + Ĥ−
2 R̂

T
22 = Ĥ+

1 R̂
T
21,

F̂−
1 + F̂+

1 R̂
T
11 = F̂−

2 R̂
T
12, F̂+

2 + F̂−
2 R̂

T
22 = F̂+

1 R̂
T
21.

(5.4.108)

These four matrix equations represent 36 scalar equations. The left-hand equations corre-
spond to thewave incident from the first halfspace, and the right-hand equations correspond
to thewave incident from the second halfspace. R̂I J represent the 3 × 3matrices of the R/T
coefficients, with I specifying the incident wave halfspace and J specifying the generated
wave halfspace. Consequently, R̂11 and R̂22 are reflection matrices, and R̂12 and R̂21 trans-
mission matrices. Moreover, the individual elements of R̂I J , (R̂I J )kl , have the following
meaning: k specifies the type of incident wave (qS1, qS2, qP), and l indicates the type of
generated wave (qS1, qS2, qP). This numbering corresponds to the convention used in this
book; see Sections 2.3 and 5.3. Due to this convention, it is necessary to use transposes
of R̂I J in (5.4.108). Note that a different convention for the indices in R/T matrices has
been sometimes used in the seismological literature. Thus, it is necessary to be careful in
comparing equations taken from different papers.

Equations (5.4.108) can be expressed in a more compact form using 6 × 6 matrices,

W1

(
R̂T

11 R̂T
21

Î 0̂

)
= W2

(
0̂ Î
R̂T

12 R̂T
22

)
, (5.4.109)



5.4 ELASTIC ANISOTROPIC STRUCTURES 529

where

W1 =
(
Ĥ+

1 Ĥ−
1

F̂+
1 F̂−

1

)
, W2 =

(
Ĥ+

2 Ĥ−
2

F̂+
2 F̂−

2

)
. (5.4.110)

Taking the transpose of (5.4.109), we obtain, after some simple algebra,(−R̂22R̂
−1
12 Î

R̂−1
12 0̂

) (
R̂11 Î
R̂21 0̂

)
= Q, Q = (

W−1
1 W2

)T
. (5.4.111)

This yields (
R̂21 − R̂22R̂

−1
12 R̂11 −R̂22R̂

−1
12

R̂−1
12 R̂11 R̂−1

12

)
=
(
Q̂11 Q̂12

Q̂21 Q̂22

)
.

Here Q̂I J are 3 × 3 partitions of the 6 × 6 matrix Q. This equation can be used to express
R̂I J in terms of Q̂KL:

R̂11 = Q̂−1
22 Q̂21, R̂21 = Q̂11 − Q̂12Q̂

−1
22 Q̂21,

R̂12 = Q̂−1
22 , R̂22 = −Q̂12Q̂

−1
22 .

(5.4.112)

It may be convenient to introduce the 6 × 6 matrix R of 36 R/T coefficients

R =
(
R̂11 R̂12

R̂21 R̂22

)
=
(

Q̂−1
22 Q̂21 Q̂−1

22

Q̂11 − Q̂12Q̂
−1
22 Q̂21 −Q̂12Q̂

−1
22

)
. (5.4.113)

This is the final result. Equations (5.4.112) or (5.4.113) can be used to compute any of
the 36 R/T coefficients for a plane wave incident from any side at interface �. Note that
we have kept to our convention: all 3 × 3 matrices have been marked with a circumflex
above the letter, but the 6 × 6 matrices have not.

Equation (5.4.111) forQ indicates that it would be necessary to invert the 6 × 6 matrix
W1 if we wished to compute the R/T coefficients. Fortunately, this is not necessary; some
simple relation forW−1

1 can be derived. We introduce the two following 6 × 6 matrices:

I1 =
(
0̂ Î
Î 0̂

)
, I2 =

(−Î 0̂
0̂ Î

)
, (5.4.114)

and the 6 × 6 matrix D by the relation:

D = WT I1W =
(
Ĥ+T F̂+ + F̂+T Ĥ+ Ĥ+T F̂− + F̂+T Ĥ−

Ĥ−T F̂+ + F̂−T Ĥ+ Ĥ−T F̂− + F̂−T Ĥ−

)
. (5.4.115)

It will be proved later in this section that D is a diagonal matrix:

D = diag
(
D(1)+, D(2)+, D(3)+, D(1)−, D(2)−, D(3)−). (5.4.116)

Determining the diagonal elements D(i)+ and D(i)− (i = 1, 2, 3) is not difficult. We realize
that

(F̂+T Ĥ+)km = −X (k)+
i g(m)+

i = −ci jnl n j g(k)+n g(m)+
i p(k)+l

(no summation over k). We now use the known relation

ci jnl g
(k)+
n g(m)+

i p(k)+l = ρU (k)+
j for m = k.

Analogous relations are obtained for F̂−T Ĥ−, and for Ĥ+T F̂+ = (F̂+T Ĥ+)T , and for
Ĥ−T F̂− = (F̂−T Ĥ−)T . Together,

D(i)+ = −2ρ 	U (i)+ · 	n, D(i)− = −2ρ 	U (i)− · 	n. (5.4.117)
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Thus, D(i)+ are negative, and D(i)− are positive. Using the diagonal matrix D1, corre-
sponding to the first halfspace, we can simply determine W−1

1 , see (5.4.115), and Q, see
(5.4.111):

W−1
1 = D−1

1 WT
1 I1, Q = (

W−1
1 W2

)T = WT
2 I1W1D

−1
1 . (5.4.118)

Here I1 is given by (5.4.114). These are the final general relations for the inverse of W1

and for Q.
Equation (5.4.113) for the R/T coefficients can also be used in isotropic media. The

procedure then simplifies considerably. It is not necessary to solve (5.4.104) for σ because
the solutions are analytical: σ = ±[1/V 2 − aiai ]1/2, with V = α for P waves and V = β

for S waves (double root). Moreover, the criteria to select upgoing and downgoing waves
also simplify. The plus sign in the expression for σ indicates waves propagating along
	n, and the minus sign indicates the waves propagating against 	n. Finally, expressions for
	g(1) = 	e1, 	g(2) = 	e2, and 	g (3) = 	e3 can also be found analytically. Because the isotropic
medium is a degenerate case of the anisotropic medium, the eigenvectors 	e1 and 	e2 of the S
waves cannot be completely determined, but they form a right-handed triplet with 	e3 = β 	p,
where 	p is the slowness vector of the S wave. For more details, see Sections 2.3.2 and 5.3.

AN APPROACH BASED ON THE SOLUTION OF A 6×6
EIGENVALUE PROBLEM
The previous formulation is, in principle, based on the 3 × 3 matrices. Only later did

we arrive at 6 × 6 matrices. An alternative approach is to use the 6 × 6 matrices from
the very beginning, and to calculate σ (m), m = 1, 2, . . . , 6, as the eigenvalues of some
6 × 6 matrix. This approach is closely connected with the 6 × 6 propagator technique
developed for computing the wave fields in 1-D media. This technique has been broadly
used in seismology, both for isotropic and anisotropic 1-D media. See Woodhouse (1974),
Kennett, Kerry, and Woodhouse (1978), Kennett (1983), Fryer and Frazer (1984, 1987),
Thomson, Clarke, and Garmany (1986), Frazer and Fryer (1989), Chapman (1994), and
Thomson (1996a),wheremany other references can be found. The general 6 × 6 propagator
technique can be used to determine R/T coefficients at any 1-D inhomogeneous layer,
including a stack of homogeneous layers, and to study their properties and symmetries.
The resultsmay then be simply specified for theR/T coefficients at a single planar interface.
Here our aim is more modest; we shall not discuss the R/T coefficients at transition layers
but only at a single interface. For this reason, we shall not start with the 1-D propagator
technique but rather discuss the problem of R/T coefficients at a single interface from the
beginning.

Consider a plane wave propagating in a homogeneous elastic medium, in which the
Cartesian components of the particle velocity vi = u̇i and the stress tensor τi j are given by
relations

vi = Vi exp[−iω(t − pkxk)], τi j = Ti j exp[−iω(t − pkxk)].

(5.4.119)

Inserting these relations into (2.1.18), with source terms not considered, a system of 12
equations for Vi and Ti j is obtained:

Ti j + ci jkl plVk = 0, Vi + ρ−1 p jTi j = 0. (5.4.120)

If we eliminate Ti j from (5.4.120), the system (5.4.120) of 12 equations is reduced to
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3 equations for Vi , that is Vi − ai jkl p j plVk = 0, i = 1, 2, 3. These equations are fully
equivalent to (2.2.35) for displacement amplitudes Ui . Here, however, we shall proceed in
a different way and discuss system (5.4.120).

We specify some direction by unit vector 	n and express slowness vector 	p by the relation
	p = 	a + σ 	n, where 	a is perpendicular to 	n, and σ has the same meaning as in (5.4.104).
Multiplying the first equation of (5.4.120) by n j and putting Ti = Ti j n j , we obtain a system
of six equations for Ti and Vi :

Ti + ci jkln jalVk + ci jkln jnlσVk = 0,

Vi + ρ−1σTi − ρ−1ci jkla jalVk − ρ−1ci jkla jσnlVk = 0.

Here Ti represents the i th Cartesian component of the vectorial amplitude of the traction
acting on a surface element perpendicular to 	n. These equations simplify ifweuse thematrix
notation.We introduce four 3 × 3matrices Ĉ(1), Ĉ(2), Ĉ(3), and Ĉ(4) with componentsC (1)

ik ,
C (2)
ik , C

(3)
ik , and C

(4)
ik given by relations:

C (1)
ik = ci jkln jnl , C (2)

ik = ci jkln jal ,

C (3)
ik = ci jkla jnl = C (2)

ki , C (4)
ik = ci jkla jal .

(5.4.121)

Then the system reads

T̂+ Ĉ(2)V̂+ Ĉ(1)σ V̂ = 0̂,

V̂+ ρ−1σ T̂− ρ−1Ĉ(4)V̂− ρ−1Ĉ(3)σ V̂ = 0̂,
(5.4.122)

where T̂ = (T1, T2, T3)T and V̂ = (V1, V2, V3)T . By expressing σ V̂ from the first equation
and inserting it into the second equation, we arrive at the final form of the system:

A

(
V̂
T̂

)
=
(
V̂
T̂

)
σ. (5.4.123)

Here the 6 × 6 system matrix A is given by the relation

A =
(
Â11 Â12

Â21 Â22

)
, (5.4.124)

with

Â11 = −Ĉ(1)−1Ĉ(2) = ÂT
22, Â12 = −Ĉ(1)−1,

Â21 = −ρ Î+ Ĉ(4) − Ĉ(3)Ĉ(1)−1Ĉ(2), Â22 = −Ĉ(3)Ĉ(1)−1.
(5.4.125)

System (5.4.123) is expressed in general Cartesian coordinates, with arbitrarily oriented
unit normal 	n. In the seismological literature, it is usual to use a local Cartesian coordinate
system xi , with the x3-axis along 	n. Then, n1 = n2 = 0, n3 = 1, and a3 = 0. We denote
aI = pI and introduce the 3 × 3 matrices Ĉ jl by relations (Ĉ jl)ik = ci jkl . Then

Ĉ(1) = Ĉ33, Ĉ(2) = pLĈ3L , Ĉ(3) = pJ ĈJ3, Ĉ(4) = ĈJ L pJ pL .

(5.4.126)

and

Â11 = −pLC
−1
33 Ĉ3L = ÂT

22, Â12 = −Ĉ−1
33 ,

Â21 = −ρ Î+ pJ pL
(
ĈJ L − ĈJ3Ĉ

−1
33 Ĉ3L

)
, Â22 = −pJ ĈJ3Ĉ

−1
33 .

(5.4.127)
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System (5.4.123) with (5.4.127) is well known from the seismological literature; see Chap-
man (1994) and Thomson (1996a), among others. Here, however, we prefer to work with
(5.4.125) because it does not require ci jkl to be transformed from the general to a local
Cartesian coordinate system.

Note that the 6 × 6 systemmatrixA is not symmetrical but that the product I1A (where
I1 is given by (5.4.114)) is.

As we can see from (5.4.123), σ represents an eigenvalue of the 6 × 6 matrix A. We
shall now prove that the same σ also represents a root of (5.4.104). Eliminating T̂ from
(5.4.122), we obtain[

Ĉ(4) + σ (Ĉ(2) + Ĉ(3)
)+ σ 2Ĉ(1) − ρ Î]V̂ = 0̂.

This system of six equations for V̂ has a nontrivial solution only if the determinant of the
system vanishes:

det
[
Ĉ(4) + σ (Ĉ(2) + Ĉ(3)

)+ σ 2Ĉ(1) − ρ Î] = 0. (5.4.128)

Using the notation (5.4.121) in (5.4.104), we can see that (5.4.128) and (5.4.104) are exactly
the same. Consequently, the six eigenvalues σ (m) (m = 1, 2, . . . , 6) of matrix A can also
be alternatively defined as six roots of (5.4.104).

We nowdenote V̂ and T̂ in (5.4.123), corresponding to an arbitrarily selected eigenvalue
σ (m), by V̂(m) and T̂(m), and express (5.4.123) in the following form:

AU(m) = U(m)σ (m), U(m) =
(
V̂(m)

T̂(m)

)
, (5.4.129)

(no summation over m). U(m) represents the eigenvector of matrix A corresponding to the
eigenvalue σ (m). We shall now prove that U(m) exists and can be expressed in terms of g(m)

i

and X (m)
i ; see (5.4.107). Equation (5.4.129) yields

Â11V̂
(m) + Â12T̂

(m) = V̂(m)σ (m), Â21V̂
(m) + Â22T̂

(m) = T̂(m)σ (m).

(5.4.130)

Eliminating T̂(m) from (5.4.130) yields(−ρ Î+ Ĉ(4)
)
V̂(m) + (

Ĉ(3) + Ĉ(2)
)
V̂(m)σ (m) + Ĉ(1)V̂(m)σ (m)2 = 0̂.

(5.4.131)

However, this is exactly the same equation as (5.4.105) for the eigenvector of the Christoffel
matrix ĝ(m) ≡ (g(m)

1 , g(m)
2 , g(m)

3 )T . Now we determine T̂(m). The first equation of (5.4.130)
yields

T̂(m) = (−Â−1
12 Â11 + Â−1

12 σ
(m)
)
V̂(m) = (−Ĉ(2) − Ĉ(1)σ (m)

)
V̂(m).

(5.4.132)

For T̂(m) given by (5.4.132), the second equation of (5.4.130) is automatically satisfied. Con-
sequently, T̂(m) is related to V̂(m) as shown by (5.4.132). Inserting (5.4.121) into (5.4.132)
yields the final expression for T (m)

i :

T (m)
i = −ci jkln j (al + nlσ

(m))g(m)
k = −ci jkln j p(m)

l g(m)
k = −X (m)

i

(5.4.133)

(no summation over m); see (5.4.107). Thus, we have proved that the eigenvector U(m) of
the 6 × 6 matrixA, corresponding to eigenvalue σ (m), exists and can be expressed in terms
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of g(m)
i and X (m)

i as follows:

U(m) = (
g(m)
1 , g(m)

2 , g(m)
3 ,−X (m)

1 ,−X (m)
2 ,−X (m)

3

)T
. (5.4.134)

This indicates that we can compute σ (m) and U (m) (m = 1, 2, . . . , 6), in two alternative
ways.

a. Calculate them as eigenvalues and eigenvectors of the 6 × 6 matrix A.
b. Calculate σ (m) (m = 1, 2, . . . , 6), as roots of (5.4.104) and construct the relevant

slowness vectors 	p (m) = 	a + σ (m)	n. 	g (m) is then the appropriate eigenvector of the
3 × 3 Christoffel matrix and represents the polarization vector of the selected wave.
Finally, X (m)

i = ci jkln j p
(m)
l g(m)

k is the relevant traction component; see (5.4.107).

We now take into account the complete system of eigenvalues and eigenvectors σ (m),
andU(m) (m = 1, 2, . . . , 6) and express Equation (5.4.129) in the following general form:

AW = Wσ, (5.4.135)

where 6 × 6 matrices σ andW are given by relations

σ =
(

σ̂+ 0̂
0̂ σ̂−

)
,

W = (
U(1),U(2),U(3),U(4),U(5),U(6)

) =
(
Ĥ+ Ĥ−

F̂+ F̂−

)
.

(5.4.136)

Here σ̂+ and σ̂− are 3 × 3 diagonal matrices, with diagonal elements σ (1)+, σ (2)+, σ (3)+

and σ (1)−, σ (2)−, σ (3)−, representing the eigenvalues ofA. The columns of the 6 × 6 matrix
W are represented by eigenvectorsU(m). Alternatively, we can expressW in terms of 3 × 3
submatrices of polarization vectors Ĥ+ and Ĥ−, and of 3 × 3 traction submatrices F̂+ and
F̂−, just as in (5.4.110). The eigenvalues σ (m) and relevant eigenvectors U(m) in the 6 × 6
matrices σ andW should be arranged in the same order.

Because V̂ and T̂ are continuous across the interface, the foregoing equations can be
used to solve the R/T problem. We consider interface � with unit normal 	n. We again
obtain the system of equations (5.4.109). Consequently, all the relations (5.4.110) through
(5.4.118) are obtained exactly in the same way as before. For this reason, we shall not
repeat the derivations.

Equations (5.4.135) are very convenient in studying certain symmetries of the R/T
coefficients; see Chapman (1994) and Thomson (1996a). Such symmetries also apply to
the R/T coefficients from transition layers, but here we shall apply them only to the R/T
coefficients at a single interface. We shall first prove that the 3 × 3 matrix D = WT I1W is
diagonal. Thereafter, we shall discuss the reciprocity of the R/T coefficients.

First, we prove that D = WT I1W is diagonal. Using (5.4.125), it is simple to see that
I1A is symmetric, where I1 is given by (5.4.114). We multiply the transpose of (5.4.135)
from the right by I1 and obtainWTAT I1 = σWT I1. Because I1A is symmetric, we obtain
WT I1A = σWT I1. Multiplying this byW from the right and taking into account (5.4.135),
we finally obtain WT I1Wσ = σWT I1W. This shows that diagonal matrix σ commutes
with D = WT I1W. Consequently, matrix D = WT I1W is diagonal. This also proves that

Ĥ+T F̂− + F̂+T Ĥ− = 0̂, Ĥ−T F̂+ + F̂−T Ĥ+ = 0̂; (5.4.137)

see (5.4.115).
Note that the eigenvectors of the 6 × 6 matrix A are not orthogonal, but WT I1W is

diagonal. This represents a generalization of the concept of orthogonality and may be
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called the I1-orthogonality. Consequently, the eigenvectors of the 6 × 6 matrix A are not
orthogonal but are I1-orthogonal; see Frazer and Fryer (1989).

Now we shall study the reciprocity of the R/T coefficients for forward and backward
propagation. As in Section 5.3.7, we shall mark all quantities corresponding to backward
propagation with a bar above the quantity. In the backward propagation, we keep the
Cartesian coordinate system and unit normal 	n the same as in the forward propagation.
The only change is in the direction of the slowness vectors. This changes the signs of ai in

(5.4.121), so that ˆ̄C
(1) = Ĉ(1), ˆ̄C

(2) = −Ĉ(2), ˆ̄C
(3) = −Ĉ(3), and ˆ̄C

(4) = Ĉ(4). Systemmatrix
Ā then reads

Ā = −I2AI2 =
(−Â11 Â12

Â21 −Â22

)
. (5.4.138)

Here I2 is given by (5.4.114). Inserting this into (5.4.135) yields ĀI2W = −I2Wσ, that is,
ĀW = Wσ̄, where

W = I2W, σ̄ = −σ. (5.4.139)

The relation σ̄ = −σ in (5.4.139) expresses the central point symmetry of the slowness
surfaces. Consequently, the first three columns in matrixW correspond to the downgoing
waves, and the next three columns correspond to the upgoing waves. If we take this into
account, Equation (5.4.109) must be modified to read

W1

(
Î 0̂
ˆ̄R
T

11
ˆ̄R
T

21

)
= W2

(
ˆ̄R
T

12
ˆ̄R
T

22

0̂ Î

)
.

Taking the transpose of this equation and multiplying it by I2I1 and by (5.4.109) from the
right, we obtain(

Î ˆ̄R11

0̂ ˆ̄R21

)
W

T
1 I2I1W1

(
R̂T

11 R̂T
21

Î 0̂

)
=
( ˆ̄R12 0̂
ˆ̄R22 Î

)
W

T
2 I2I1W2

(
0̂ Î
R̂T

12 R̂T
22

)
.

(5.4.140)

Using (5.4.139) and (5.4.115), we obtain

W
T
1 I2I1W1 = WT

1 I1W1 = D1.

Inserting this into (5.4.140) yields(
Î ˆ̄R11

0̂ ˆ̄R21

)
D1

(
R̂T

11 R̂T
21

Î 0̂

)
=
( ˆ̄R12 0̂

ˆ̄R22 Î

)
D2

(
0̂ Î
R̂T

12 R̂T
22

)
. (5.4.141)

Equation (5.4.141) can be used to find various reciprocity relations between ˆ̄RI J and R̂KL.
It can be expressed in many alternative forms. In general, the reciprocity relations include
the diagonal matrices D1 and D2, given by (5.4.116) with (5.4.117).

We shall not discuss the reciprocity relations for general D1 and D2 but shall focus
on one specific, very important case. We shall simplify the expressions for D1 and D2 by
suitably normalizing the eigenvectors. For simplicity, we shall assume that all eigenvalues
σ (m) are real-valued. In our treatment, 	g (i)+ and 	g (i)− are unit vectors. We can, however,
normalize them in a different way. We introduce vectors 	f (i)+

and 	f (i)−
by relations:

	f (i)+ = 	g (i)+/√2ρ| 	U (i)+ · 	n|, 	f (i)− = 	g (i)−/√2ρ| 	U (i)− · 	n|.
(5.4.142)
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Analogous normalization is also performed in the expressions for F̂+ and F̂− because they
contain 	g (i)+ and 	g (i)−; see (5.4.107). We then obtain very simple expressions for matrices
D1 and D2: D1 = D2 = I2, where I2 is given by (5.4.114). The R/T coefficients, of course,
are also influenced by the normalization of the eigenvectors.We denote theR/T coefficients
corresponding to the eigenvectors (5.4.142) byRi j (instead of Ri j ), i, j = 1, 2, . . . , 6, and
call them the normalized displacement R/T coefficients. It can be deduced from (5.4.142)
that the relation between the standard displacement R/T coefficients Ri j and the normalized
displacement R/T coefficientsRi j is

Ri j = [(ρ| 	U · 	n|) j/(ρ| 	U · 	n|)i ]1/2Ri j . (5.4.143)

Here i is the index corresponding to the incident wave, and j is the index corresponding
to the generated R/T wave (no summation over i and j). Thus, we have again arrived at
the normalized R/T coefficients introduced by (5.4.13).

The reciprocity relations for the normalized R/T coefficients Ri j follow immediately
from (5.4.141), where we insert D1 = D2 = I2. After some simple algebra, we obtain the
final result

R̄i j = R j i (5.4.144)

(i, j = 1, 2, . . . , 6). This important and very general reciprocity relation is due to Chap-
man (1994). It is valid for isotropic and anisotropic media and for reflected and transmitted
waves. Moreover, it also remains valid for the R/T coefficients at a stack of homogeneous
anisotropic layers and at a 1-D anisotropic transition layer. It should, however, be empha-
sized that the simple reciprocity relation (5.4.144) is valid only for the normalized R/T
coefficients, not for the standard displacement R/T coefficients. This corresponds to the
conclusions of Section 5.3.7 for isotropic media.

It may be useful to emphasize the differences between the general reciprocity relation
(5.4.144) and the relation (5.3.31) derived for isotropic media. In deriving (5.4.144), only
the direction of the slowness vector has been changed; the Cartesian system and the orien-
tation of normal 	n are the same both in the forward and backward propagation. In deriving
(5.3.31), however, we have used a different convention for the backward and forward
propagation; see Section 4.4.9. Due to this convention, it was also necessary to trans-
form orientation index ε; see Section 5.3.7. Otherwise, however, the reciprocity relations
(5.4.144) and (5.3.31) are the same: the normalized R/T coefficient Ri j in the backward
propagation equals the normalized R/T coefficientR j i in the forward propagation.

5.4.8 Initial Ray-Theory Amplitudes at a Smooth Initial Surface.

Elastic Kirchhoff Integrals

In this section, we shall closely follow the analogous treatment of initial ray-theory am-
plitudes of pressure waves at a smooth initial surface in a fluid medium, as discussed in
detail in Section 5.1.11. For elastic waves, the derivation is practically the same, it is only
formally more complex due to the vectorial character of the wavefield and the existence
of three types of waves (qS1, qS2, qP). We shall consider general anisotropic inhomo-
geneous media. All the derived equations, however, will also be applicable to isotropic
inhomogeneous media.

We consider a smooth initial surface �0 in an elastic medium, which may correspond
to a structural interface, a free surface, an auxiliary surface situated in a smooth medium,
a wavefront, and the like. We assume that initial time T 0 is specified along �0. We can
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then determine the initial slowness vectors and initial values of matrices Q(y) and P(y) of
all waves generated along�0. For isotropic media, the relevant equations were derived and
discussed in detail in Section 4.5. For anisotropicmedia, the derivationwould be analogous.
Consequently, we can start ray tracing and dynamic ray tracing of all waves generated at
any point of�0. To determine the vectorial amplitudes along these rays, however, we must
also know the initial ray-theory vectorial amplitudes at the initial points of rays along �0.
The determination of these initial amplitudes along�0 is the main purpose of this section.
In addition to this, we shall also discuss the elastic Kirchhoff integral. See also Haddon
and Buchen (1981), Sinton and Frazer (1982), Frazer and Sen (1985), Zhu (1988), Tygel,
Schleicher, and Hubral (1994), Ursin and Tygel (1997), Druzhinin (1998), Druzhinin et al.
(1998), and Chapman (in press).

As the point of departure, we shall use the elastic Kirchhoff integral (2.6.4) and assume
that the distribution of the displacement components ui and of the traction components Ti
along �0 are given by the relations:

ui (	x ′, ω) = U 0
i (	x ′) exp[iωT 0(	x ′)],

Ti (	x ′, ω) = iωT 0
i (	x ′) exp[iωT 0(	x ′)].

(5.4.145)

Here 	x ′ are the points along�0, andU 0
i (	x ′), T 0

i (	x ′), and T 0(	x ′) do not presumably depend
on the frequency. Using (5.4.145) in (2.6.4), the elastic Kirchhoff integral reads:

un(	x, ω) =
∫
�0

[
iωT 0

i (	x ′)Gin(	x ′, 	x, ω) −U 0
i (	x ′)hin(	x ′, 	x, ω)]

× exp[iωT 0(	x ′)]d�0(	x ′). (5.4.146)

Integral (5.4.146) is still exact, subject to assumption (5.4.145). Unit normal 	n to �0 is
oriented outside the medium in which the receiver point 	x is situated.

Now we shall use the asymptotic expressions for the elementary ray-theory elastody-
namic Green function Gin(	x ′, 	x, ω) and for the corresponding “traction” Green function
hin(	x ′, 	x, ω). In a layered medium, there would be a large number (perhaps infinite) of
elementary waves and relevant elementary Green functions; see Section 5.4.5. It would be
necessary to sum all these elementary contributions to construct the complete ray-theory
Green function. Here we shall consider only one elementary wave specified by a proper ray
code and the relevant elementary ray-theory Green function. We denote the ray of the se-
lected elementary wave, connecting points 	x and 	x ′, by �̃(	x ′, 	x). As an approximation, only
smooth-medium Green functions Gin and hin will be used here. For the smooth-medium
Green function Gin(	x ′, 	x, ω), not influenced by �0, we can use relation (5.4.24):

Gin(	x ′, 	x, ω) = Gn(	x ′, 	x)g̃i (	x ′) exp[iωT (	x ′, 	x)]. (5.4.147)

Here T (	x ′, 	x) is the travel time along �̃(	x ′, 	x) from 	x to 	x ′, g̃i (	x ′) is the i th Cartesian
component of the eigenvector 	̃g(	x ′) at 	x ′, corresponding to ray �̃(	x ′, 	x), and Gn(	x ′, 	x) is
given by the relation

Gn(	x ′, 	x) = exp[iωT G(	x ′, 	x)]
4π [ρ(	x)ρ(	x ′)C(	x)C(	x ′)]1/2L(	x ′, 	x) R

C (	x ′, 	x)gn(	x).
(5.4.148)

All symbols in (5.4.148) have the same meaning as in (5.4.24) and correspond to ray
�̃(	x ′, 	x).RC (	x ′, 	x) denotes the product of all normalizedR/T coefficients along �̃ between
	x and 	x ′. Because the elementary wave under consideration may be converted at some
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intermediate interface between 	x and 	x ′, eigenvectors gn(	x) and g̃i (	x ′) may correspond to
different wave types (qS1, qS2, qP).

For hin(	x ′, 	x, ω), we obtain
hin(	x ′, 	x, ω) = iω X̃ i (	x ′)Gn(	x ′, 	x) exp[iωT (	x ′, 	x)]. (5.4.149)

Function X̃ i transforms the displacement into traction at 	x ′. It is given by the relation
analogous to (5.4.107):

X̃ i (	x ′) = c̃i jqs(	x ′)n j (	x ′)g̃q(	x ′) p̃s(	x ′). (5.4.150)

We use the tilde to emphasize the quantities corresponding to ray �̃(	x ′, 	x). Inserting
(5.4.147) and (5.4.149) into (5.4.146) yields

un(	x, ω) = −iω
∫
�0

a(	x ′)Gn(	x ′, 	x) exp[iω(T 0(	x ′) + T (	x ′, 	x))]d�0(	x ′),

(5.4.151)

where a(	x ′) is the so-called weighting function and is given by the relation

a(	x ′) = U 0
i (	x ′)X̃ i (	x ′) − T 0

i (	x ′)g̃i (	x ′). (5.4.152)

Equation (5.4.151) with (5.4.152) represents the final form of the elastic Kirchhoff integral
for arbitrary initial conditions U 0

i (	x ′) and T 0
i (	x ′) along �0; see (5.4.145).

1. THE KIRCHHOFF INTEGRAL FOR A WAVE INCIDENT ON Σ0

We shall now specify the Kirchhoff integral (5.4.151) for the distribution of U 0
i (	x ′)

and T 0
i (	x ′) corresponding to an arbitrary elementary wave incident at�0. We shall assume

that the wave is incident at �0 from the first medium, described by medium parameters
c(1)i jkl and ρ

(1), and denote the medium parameters in the second medium by c(2)i jkl and ρ
(2).

All medium parameters may vary with the coordinates.
The smooth-medium incident wave at 	x ′, not influenced by surface �0 (which may

represent a structural interface, a free surface, etc.), is specified as follows:

ui (	x ′) = Uinc
i (	x ′) exp[iωT 0(	x ′)],

Ti (	x ′) = iωT inc
i (	x ′) exp[iωT 0(	x ′)].

(5.4.153)

Quantities Uinc
i and T inc

i are given by relations

Uinc
i (	x ′) = ginci (	x ′)Uinc(	x ′), T inc

i (	x ′) = Xinc
i (	x ′)Uinc(	x ′), (5.4.154)

where function

Xinc
i (	x ′) = c(1)i jqs(	x ′)n j (	x ′)gincq (	x ′)pincs (	x ′). (5.4.155)

An arbitrary elementary ray-theory wave is considered. Eigenvector 	ginc(	x ′) corresponds
to the wave incident at 	x ′. In the following, we shall specify the type of wave incident at 	x ′

by the index l (l = 1 for the incident qS1 wave, l = 2 for the incident qS2 wave, and l = 3
for the incident qP wave at 	x ′).

The complete wavefield at the point of incidence 	x ′ on �0 is composed of the smooth-
medium incident wave and of three reflected waves (qS1, qS2, qP). On the opposite side of
�0, the complete wavefield is formed by the superposition of three transmitted waves. See
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Section 5.2.7 for isotropic media. The final equations for U 0
i (	x ′) and T 0

i (	x ′) along �0 are

U 0
i =

(
ginci +

3∑
m=1

g(m)
i Rrlm

)
Uinc, T 0

i =
(
Xinc
i +

3∑
m=1

X (m)
i Rrlm

)
Uinc,

(5.4.156)

where Rrlm are displacement reflection coefficients. Alternative equations in terms of dis-
placement transmission coefficients are

U 0
i =

3∑
m=1

g(m)
i RtlmU

inc, T 0
i =

3∑
m=1

X (m)
i RtlmU

inc. (5.4.157)

In the reflection Rrlm and transmission Rtlm coefficients, the first index l (l = 1, 2, 3) corre-
sponds to the incident wave, and the second indexm (m = 1, 2, 3) corresponds to the gen-
erated wave. Summation over m = 1, 2, 3 is understood; each R/T coefficient (Rrlm, R

t
lm)

is multiplied by g(m)
i or X (m)

i . The summation over m = 1, 2, 3 yields three terms; any
one of them corresponds to one generated wave at �0. Quantity X (m)

i is given by relation
analogous to (5.4.150) and (5.4.155),

X (m)
i (	x ′) = ci jqs(	x ′)n j (	x ′)g(m)

q (	x ′)p(m)
s (	x ′). (5.4.158)

The eigenvector components g(m)
i and functions X (m)

i correspond to the first medium if they
are connectedwith the reflection coefficients Rrlm in (5.4.156). Similarly, they correspond to
the second medium if they are connected with transmission coefficients Rt

lm ; see (5.4.157).
Analogously, we choose c(1)i jks or c

(2)
i jks instead of ci jks in (5.4.158).

We shall now compute the weighting function a(	x ′) of the Kirchhoff integral (5.4.151)
for the wave incident at �0. We factorize a(	x ′) using the relation

a(	x ′) = A(	x ′)Uinc(	x ′). (5.4.159)

We shall also callA(	x ′) the weighting function. The Kirchhoff integral (5.4.151) then reads

un(	x, ω) = −iω
∫
�0

A(	x ′)Uinc(	x ′)Gn(	x ′, 	x)
× exp[iω(T 0(	x ′) + T (	x ′, 	x))]d�0(	x ′). (5.4.160)

Inserting (5.4.156) into (5.4.152) yields the expression for A(	x ′) in terms of reflection
coefficients Rrlm:

A(	x ′) = ginci X̃ i − Xinc
i g̃i +

3∑
m=1

(
g(m)
i X̃ i − X (m)

i g̃i
)
Rrlm . (5.4.161)

Similarly, using (5.4.157) in (5.4.152) yields the expression forA(	x ′) in terms of transmis-
sion coefficients Rtlm :

A(	x ′) =
3∑

m=1

(
g(m)
i X̃ i − X (m)

i g̃i
)
Rtlm . (5.4.162)

All quantities in (5.4.161) and (5.4.162) are taken at 	x ′. Expressions (5.4.161) and (5.4.162)
for A(	x ′) are fully equivalent. Any of them can be used for 	x situated in the first medium
or in the second medium. Thus, the Kirchhoff integral for reflected waves (	x in the first
medium) can also be expressed in terms of transmission coefficients Rtlm ; see (5.4.162).
Similarly, the Kirchhoff integral for transmitted waves (	x in the second medium) can be
expressed in terms of reflection coefficients; see (5.4.161).
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We shall now express (5.4.161) and (5.4.162) in amore specific form, inserting there the
expressions for X̃ i , Xinc

i , and X (m)
i ; see (5.4.150), (5.4.155), and (5.4.158). For 	x situated

in the first medium, we use (5.4.161):

A(	x ′) = c(1)i jqs g̃q
[
ginci
(
n j p̃s − ns p

inc
j

)+
3∑

m=1

g(m)
i

(
n j p̃s − ns p

(m)
j

)
Rrlm

]
.

(5.4.163)

Similarly, for 	x situated in the second medium, we use (5.4.162):

A(	x ′) = c(2)i jqs g̃q
3∑

m=1

g(m)
i

(
n j p̃s − ns p

(m)
j

)
Rtlm . (5.4.164)

Kirchhoff integral (5.4.160), with the weighting function A(	x ′) given by any of the
relations (5.4.161) through (5.4.164), is very general and is valid for any incident wave.
It is only necessary to specify Uinc(	x ′) properly. The general relations for Uinc(	x ′) can be
found in Section 5.4.4. As a special, but very important case, we shall consider an incident
wave, generated by a single-force point source, situated at point 	x0 in the first medium.
We consider a single force at 	x0 oriented along the kth Cartesian axis, with unit amplitude.
Uinc(	x ′) can then be expressed similarly as in (5.4.148),

Uinc(	x ′) = Gk(	x ′, 	x0) = exp[iωT G(	x ′, 	x0)]
4π [ρ(	x0)ρ(	x ′)C(	x0)C(	x ′)]1/2L(	x ′, 	x0)

×RC (	x ′, 	x0)gk(	x0). (5.4.165)

The elastic Kirchhoff integral (5.4.160) then yields the elastic Kirchhoff Green function
GK
nk(	x, 	x0, ω):

GK
nk(	x, 	x0, ω) = −iω

∫
�0

A(	x ′)Gn(	x ′, 	x)Gk(	x ′, 	x0)
× exp[iω(T 0(	x ′) + T (	x ′, 	x))]d�0(	x ′). (5.4.166)

Note that functions Gn(	x ′, 	x) and Gk(	x ′, 	x0) do not include the components of the relevant
eigenvectors at 	x ′; these are shifted to weighting functionA(	x ′). In (5.4.161) and (5.4.162),
the eigenvector of the wave incident at�0 at 	x ′ (corresponding to Gk(	x, 	x0)) is denoted by
	ginc(	x ′) and the eigenvector corresponding to Gn(	x ′, 	x) by g̃(	x ′).

In this case, the travel time T 0(	x ′) in (5.4.166) corresponds to T 0(	x ′, 	x0).We canmodify
Gn(	x ′, 	x) and Gk(	x ′, 	x0) as follows:

Ḡn(	x ′, 	x, ω) = Gn(	x ′, 	x) exp[iωT (	x ′, 	x)],
Ḡk(	x ′, 	x0, ω) = Gk(	x ′, 	x0) exp[iωT (	x ′, 	x0)].

(5.4.167)

The elastic Kirchhoff Green function (5.4.166) then formally simplifies to

GK
nk(	x, 	x0, ω) = −iω

∫
�0

A(	x ′)Ḡn(	x ′, 	x, ω)Ḡk(	x, 	x0, ω)d�0(	x ′).

(5.4.168)

This expression is very similar to the expression (5.1.75) for the pressure Kirchhoff Green
function. Functions Ḡ(	x ′, 	x, ω) and Ḡk(	x, 	x0, ω), however, do not represent elastodynamic
ray-theory Green functions. They are related to these functions as follows:

Gin(	x ′, 	x, ω) = g̃i (	x ′)Ḡn(	x ′, 	x, ω),
Gik(	x ′, 	x0, ω) = ginci (	x ′)Ḡk(	x ′, 	x0, ω).

(5.4.169)
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2. INITIAL RAY THEORY AMPLITUDES AT Σ0

As in the acoustic case in Section 5.1.11, we can apply themethod of stationary phase to
the Kirchhoff integral (5.4.151) to derive expressions for the initial-value amplitude A(S)
of an elementary wave generated at point S on the initial surface �0. Such amplitudes can
then be continued along the whole ray using (5.4.15). Up to three elementary waves can
be generated at S on each side of initial surface �0. We assume that the initial slowness
vectors of these waves, 	p (m)(S),m = 1, 2, . . . , 6, have been determined. We can then also
determine the appropriate eigenvectors 	g (m)(S), the group velocity vectors 	U (m)

(S), and
the traction components 	X (m)

(S) with components X (m)
i (S) = ci jqs(S)n j (S)g

(m)
q (S)p(m)

s (S)
(no summation over m). We can also determine the initial values of the 2 × 2 matrices
Q(y)(S) and P(y)(S) for dynamic ray tracing; see (4.14.70).

Any stationary point S of Kirchhoff integral (5.4.151) is defined so that the partial
derivatives of T 0(	x ′) + T (	x ′, x) along �0 vanish at S. For a fixed receiver point R, the
stationary points corresponding to the individual generated waves (with different T (	x ′, 	x))
have a different position on �0. Here, however, we shall be interested only in the initial-
value problem and determine A(S) for six waves generated at S. We can again use the
local principle. The derivation is practically the same as in Section 5.1.11, and we shall
not repeat it here. For the initial ray-theory amplitude A(S) of the nth wave, we obtain the
following relation:

A(S) = a(n)(S)/2ρ(S)( 	U (n)
(S) · 	n(S)). (5.4.170)

Here ρ(S) is the density at S corresponding to the nth wave, and a(n)(S) represents a(S)
given by (5.4.152), determined at the stationary point and specified for the nth wave. To
find a(n)(S), we must determine X̃ i (S) and g̃i (S), corresponding to the reciprocal direction,
from the receiver R to S. We choose the eigenvectors in both directions so that they
satisfy reciprocity relation (5.4.139). Then, for the nth wave, 	̃g(S) = −	g (n)(S) and 	̃X (S) =
	X (n)

(S). This yields

a(n)(S) = U 0
i (S)X

(n)
i (S) + T 0

i (S)g
(n)
i (S). (5.4.171)

Equation (5.4.170) with (5.4.171) represents the final expression for the initial ray-theory
amplitude of any wave generated on�0. It is valid both for isotropic and anisotropic media,
assuming that the eigenvectors satisfy reciprocity condition (5.4.139).

Relations (5.4.170) with (5.4.171) can also be used if U 0
i (S) and T

0
i (S) in (5.4.171)

correspond to awave incident at�0. In this case, however, (5.4.171) simplifies considerably.
Using (5.4.159), we obtain

a(n)(S) = A(n)(S)Uinc(S). (5.4.172)

HereA(n)(S) is determined from (5.4.161) or (5.4.162) at the stationary point, using X̃ i =
X (n)
i (S) and g̃i = −g(n)i (S). This yields

A(n)(S) = ginci X (n)
i + Xinc

i g
(n)
i +

3∑
m=1

(
g(m)
i X (n)

i + X (m)
i g(n)i

)
Rrlm,

A(n)(S) =
3∑

m=1

(
g(m)
i X (n)

i + X (m)
i g(n)i

)
Rtlm .

(5.4.173)

Both expressions are alternative. Using the orthogonality relations (5.4.137), we obtain

g(m)
i X (n)

i + X (m)
i g(n)i = 0 for m �= n,

ginci X (n)
i + Xinc

i g
(n)
i = 0,
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and

g(m)
i X (n)

i + X (m)
i g(n)i = 2ρ

( 	U (n) · 	n) for m = n. (5.4.174)

Here 	U (n)
is the group velocity vector corresponding to the nth wave at S. Using either of

the two relations (5.4.161) and (5.4.162), we obtain

A(n)(S) = 2ρ( 	U (n)· 	n)Rln (5.4.175)

(no summation over n). This relation is valid both for reflected waves (Rln = Rrln) and
transmitted waves (Rln = Rtln). Inserting this into (5.4.170) and (5.4.172), we obtain very
simple expressions for the initial ray-theory amplitude A(S) of the selected generatedwave:

A(S) = Rrln(S)U
inc(S) for reflected waves,

A(S) = Rtln(S)U
inc(S) for transmitted waves.

(5.4.176)

Here l = 1, 2, 3 is the index of the incident wave, and n = 1, 2, 3 the index of the R/T
wave. (5.4.176) is analogous to (5.1.85) for acoustic waves.

For completeness, we shall present the final initial ray-theory expressions for the elastic
wavefield, generated at an initial surface�0 situated in a laterally varying anisotropic elastic
medium. Consider point S on �0, and construct a ray �0 of a selected wave from S. Also
determine Q(y)(S) and P(y)(S), using (4.14.70), and perform dynamic ray tracing. We can
then determine geometrical spreading L = |detQ(y)|1/2 along the whole ray�0. Equations
(5.4.1), (5.4.2), and (5.4.15) yield

	u(R, ω) = A(R)	g(R) exp[iω(T 0(S) + T (R, S))]

A(R) = (ρ(S)U(S)/ρ(R)U(R))1/2(L(S)/L(R))RC exp[iT c(R, S)]A(S).

(5.4.177)

Here A(S) is given by (5.4.170) or (5.4.176), and 	g(R) is the eigenvector at R. All other
symbols have the same meaning as in (5.4.15).

3. SEVERAL COMMENTS ON THE DERIVED EQUATIONS
Let us consider an elementary wave, generated by a point source at S, incident at �0,

and a receiver situated at R. As in the acoustic case, it is possible to show that the method
of stationary phase, applied to Kirchhoff integral (5.4.160), yields exactly the same results
as the zeroth-order ray method. This remains valid even for the general inhomogeneous
anisotropic layered model. In the derivation, it is again convenient to use certain properties
of the Fresnel zone matrixMF (Q; R, S); see Section 4.14.11 for the Fresnel zone matrix in
anisotropic medium. Analogous ray-theory solutions can also be obtained from (5.4.177)
with (5.4.176), using suitable expressions for Uinc(S).

Consequently, the intermediate ray-theory solutions can be stored along arbitrary ref-
erence surfaces �0 and used in further computations. The procedure is the same as in the
acoustic case; see Section 5.1.11. Actually, it is sufficient to store the travel time T 0(γ1, γ2)
and the smooth-medium ray-centered amplitudeUinc(γ1, γ2) of the incident wave along�0.
We also need to know the type of wave incident at S (specified by index l = 1, 2, or 3), and
the information from which side the incident wave approaches �0. It is then possible to
recover all the six generated elementary waves. Of course, the efficiency of computations
may increase if some other quantities related to the incident wave are also stored along�0

(slowness vector, matrices Q(y) and P(y), and so on). For more details, see Section 5.5 of
Červený, Klimeš, and Pšenčı́k (1988b).
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5.5 Weakly Dissipative Media

In nondissipative media, the amplitudes of seismic body waves decrease with increasing
distance from the source due to geometrical spreading, reflection and transmission losses,
and the like. Realmedia, however, are dissipative, and the amplitudes of seismic bodywaves
also attenuate due to various anelastic processes, such as grain defects, grain-boundary
processes, and thermoelastic effects. The investigation of such processes has been the
subject of a broad research in material science, and has been reviewed in many books and
papers. A collection of important papers devoted to absorption was published by Toksöz
and Johnston (1981), which also contain many other references to this subject. See also
Aki and Richards (1980).

Macroscopically, many anelastic processes, which play an important role in the absorp-
tion of seismic bodywaves, obey the linear stress-strain relations andmay bewell described
within the framework of linear viscoelasticity. For a detailed theoretical exposition of linear
viscoelasticity, see Hudson (1980a). In the frequency domain, the stress-strain relations in
linear viscoelasticity can be formally expressed in the same way as in Hooke’s law, but
the real-valued, frequency-independent elastic moduli must be replaced by viscoelastic
moduli, which are complex-valued and frequency-dependent. The imaginary parts of the
viscoelastic moduli are then responsible for the attenuation of the amplitudes of seismic
body waves. The imaginary parts of the viscoelastic moduli must be taken negative in our
treatment due to the Fourier transform sign convention used here. The negative imaginary
parts of viscoelastic moduli yield the exponential decay of amplitudes with increasing
distance from the source.

We shall denote any viscoelastic modulus M(ω) and specify its real and imaginary
parts as follows:

M(ω) = MR(ω) + iMI (ω). (5.5.1)

The viscoelastic modulus M(ω) may correspond to the bulk modulus k, modulus of torsion
µ, Young modulus E , or even any anisotropic modulus ci jkl . In inhomogeneous medium,
of course, M(ω) depends on coordinates.

The concept of viscoelastic media (such as the Maxwell, Voigt, or general Boltzman
medium) has found broad applications in geophysics. Viscoelastic media have been used
to study both high-frequency seismic phenomena (such as the propagation of seismic
body waves) and low-frequency tectonic phenomena (such as creep, convection, and stress
relaxation). If we are interested only in certain particular problems, the general concepts
may be simplified. Here we shall make four simplifying assumptions, related to the purpose
of this section.

a. We shall discuss only high-frequency phenomena.
b. We shall assume that the frequency dependence of M(ω) is weak in the frequency

range under consideration.
c. We shall consider only weakly dissipative media.
d. Weshall consider only homogeneouswaves forwhich the real part and the imaginary

part of the slowness vector (that is, the propagation and attenuation vectors) are
parallel.

In seismology, the most commonmeasures of attenuation are the dimensionless quality
factor Q and its inverse Q−1, called the loss factor. A strict physical definition of quality
factor Q as an intrinsic parameter of the medium can be found in Fung (1965), Aki and
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Richards (1980), and Toksöz and Johnston (1981), among others. In the investigation of
the dissipation of high-frequency seismic waves propagating in weakly dissipative media,
quality factor Q can be simply related to the viscoelastic modulus M(ω) as follows:

Q(ω) = −MR(ω)/MI (ω). (5.5.2)

Equation (5.5.1) then becomes

M(ω) = MR(ω)(1 − i/Q(ω)). (5.5.3)

Theminus sign is due to a Fourier transform sign convention used here. For perfectly elastic
media (MI (ω) = 0 and MR(ω) is independent of frequency ω), loss factor Q−1 vanishes,
and quality factor Q(ω) is infinite. Note that also the logarithmic decrement of absorption
δ = π/Q has often been used instead of Q and Q−1.

The quality factors Q(ω), corresponding to different viscoelastic moduli M(ω), are in
general different. Thus, we have Qk, Qµ, QE , and so on. The expressions for viscoelastic
moduli easily yield the expressions for the phase velocities V (ω) of plane waves, which
are also complex-valued and frequency-dependent:

V 2(ω) = (V R(ω))2(1 − i/Q(ω)),

V (ω) = V R(ω)(1 − i/Q(ω))1/2.
(5.5.4)

For weakly dissipative media (Q � 1), we can use approximate relations:

V (ω) = V R(ω)(1 − i/2Q(ω)),

1/V (ω) = (1/V R(ω))(1 + i/2Q(ω)).
(5.5.5)

Here V R(ω) and Q(ω) differ for different waves. The expressions for V R(ω) and Q(ω)
for P and S waves can easily be obtained from MR(ω) and Q(ω) corresponding to the
viscoelastic bulk modulus and modulus of torsion (Qk, Qµ, and relevant MR). Let us
briefly discuss the physical meaning of (5.5.4). Consider a homogeneous time-harmonic
plane wave propagating in a viscoelastic homogeneous medium along the x-axis:

ui (x, t) = Ui exp[−iω(t − x/V (ω))]
.= Ui exp[−iω(t − x/V R(ω))] exp[−ωx/(2V R(ω)Q(ω))].

(5.5.6)

The last factor can also be expressed as exp[−α(ω)x],whereα(ω) is knownas the coefficient
of absorption. It is related to Q(ω) as follows: Q−1(ω) = 2α(ω)V R(ω)/ω. As we can see
from (5.5.6), the amplitudes of the plane waves propagating in viscoelastic medium are
attenuated for finite Q(ω). Moreover, wave (5.5.6) is dispersive; in other words, its real-
valued velocity of propagation V R depends on frequency.

Quantities Q(ω) and V R(ω) are not independent, they are mutually related by so-called
dispersion relations. The dispersion relations follow from causality requirements. The dis-
persion relations are well known from the theory of propagation of electromagnetic waves,
where they are called the Kramers-Krönig dispersion relations. Even for Q independent
of frequency, the dispersion relations require V R to be frequency-dependent. Otherwise,
the causality principle would not be satisfied. A detailed treatment of dispersion relations
can be found in Aki and Richards (1980, pp. 173–5), Kennett (1983, Section 1.3.3), and
Müller (1983, pp. 173–5), among others. Thus, the absorption of amplitudes is always
intrinsically connected with the disperson of velocities. For this reason, we also speak of
causal absorption.



544 RAY AMPLITUDES

In principle, it is possible to apply the high-frequency asymptotic concepts, such as the
ray method, even to the solution of the viscoelastic equation of motion, which contains
complex-valued frequency-dependent viscoelastic moduli. See Buchen (1974), Zhu and
Chun (1994a), Hearn andKrebes (1990a,1990b), Caviglia andMorro (1992), and Thomson
(1997a). If it is assumed that the frequency dependence of viscoelastic moduli is weak,
ray solutions in the form of asymptotic series in inverse powers of ω can be sought. The
method requires the computation of frequency-dependent rays in a complex phase space
(complex rays) and frequency-dependent, complex-valued travel times. This is, of course,
more time-consuming than real-valued ray tracing. In particular, two-point ray tracing in a
complex space may be cumbersome, even if the source and the receiver are situated in real
space. See the brief discussion in Section 5.6.8.

Here we shall discuss a considerably simpler approach, which is applicable to homoge-
neous waves in weakly dissipative media only. We shall work in the frequency domain; for
the implementation of the results into synthetic seismograms in the time domain, see Sec-
tion 6.3. The method is based on the evaluation of complex-valued, frequency-dependent
travel times and the subsequent computation of certain dissipation filters, which include
both the effects of attenuation of amplitudes and dispersion of velocities. The determina-
tion of dissipation filters from known complex-valued frequency-dependent travel times
is simple. The complex-valued, frequency-dependent amplitudes of seismic body waves
propagating in viscoelastic media are obtained by multiplying the relevant amplitudes of
seismic body waves propagating in perfectly elastic media by the dissipation filter. The
dissipation filter in a weakly dissipative medium can be computed very simply with the
use of some additional quadratures along known real-valued rays, computed in the relevant
nondissipative model.

There are several ways of deriving the dissipation filters. It is possible to start directly
from the viscoelastic equation of motion or to compute the complex-valued frequency-
dependent travel times by using perturbation methods. We shall derive the dissipation filter
using a very simple technique based on the perturbation approach.

We shall modify (5.5.5) slightly by introducing a reference frequency ωr ,

1

V (ω)
= 1

V R(ωr )
+
[

1

V R(ω)
− 1

V R(ωr )
+ i

2V R(ω)Q(ω)

]
. (5.5.7)

We assume that the unperturbed background medium is fully specified by 1/V R(ωr ), that
is, by the real-valued slowness for reference frequency ωr . The expression in brackets in
(5.5.7) is considered to be the slowness perturbation. We can then use the well-known ex-
pressions ofSection3.9 to evaluate the perturbations of travel time Td due to dissipation.The
travel-time perturbations will be complex-valued and frequency-dependent. They can be
computed by quadratures along unperturbed rays (calculated in the background medium).
The dissipative filter then takes the simple form

D = exp[iω Td]. (5.5.8)

The dissipative filter yields the attenuation of amplitudes along rays as the wave progresses,
and the corresponding dispersion of velocities. However, it is not able to include some
other effects of dissipation on amplitudes. For example, it does not introduce the changes
of geometrical spreading due to the dissipative properties of the medium. This is simple to
understand because geometrical spreading is a property of the ray field, and the proposed
method uses only background rays. (For more details on geometrical spreading of seismic
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body waves in viscoelastic media, see Krebes and Hearn 1985.) Similarly, it does not
introduce the reflection and transmission coefficients for viscoelastic media. See Section
5.5.4.

5.5.1 Noncausal Dissipation Filters

Velocity dispersion inweakly dissipativemedia is usually very small, and it is not necessary
to take it into account in many applications. In addition, even Q may often be considered to
be frequency-independent. We can then use a rough, noncausal approximation of (5.5.5),

1

V
.= 1

V R

(
1 + i

2Q

)
. (5.5.9)

In this case, we speak of noncausal absorption.
Let us consider the real-valued ray � connecting points S and R, computed in the

background medium described by real-valued slowness 1/V R(xi ). We assume that the
imaginary part in (5.5.9), i(2V RQ)−1, is a small perturbation of slowness 1/V R . Using
(3.9.9), we obtain

Td(R, S) = i

2

∫ R

S

ds

V RQ
= i

2

∫ R

S

dT

Q
. (5.5.10)

The integral is taken along ray�. Equation (5.5.10) yields dissipation filter D(R, S) in the
following form:

D(R, S) = exp
[− 1

2ωt
∗(R, S)

]
; (5.5.11)

see (5.5.8). Here quantity t∗(R, S) is given by the integral

t∗(R, S) =
∫ R

S

ds

V RQ
=
∫ R

S

dT

Q
. (5.5.12)

The integral is again taken along ray �. The quantity “t-star” is also sometimes called the
global absorption factor. It fully controls the dissipative decay of amplitudes of seismic
body waves in weakly dissipative inhomogeneous elastic medium. The dimension of t∗ is
time. It is obvious that the noncausal dissipation filter (5.5.11) does not yield the dispersion
of velocities.

For the noncausal dissipation operator in the time domain, corresponding to the dissi-
pation filter (5.5.11), see Section 6.3.

5.5.2 Causal Dissipation Filters

We shall now discuss the complex-valued frequency-dependent slowness 1/V (ω), given
by (5.5.7). We assume that the relation is causal, i.e. that V R(ω) is determined from Q(ω)
using some dispersion relations that guarantee the causality of the results.

We shall now take the backgroundmediumcorresponding to the real-valued, frequency-
independent slowness 1/V R(ωr ); see (5.5.7). The expression in brackets in (5.5.7) then
represents the perturbation of slowness 1/V R(ωr ).

Let us consider the real-valued ray � computed in the background medium and two
points S and R situated on it. Using (3.9.9), we can compute the travel-time perturbation
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Td (R, S) caused by the slowness perturbations:

Td(R, S) =
∫ R

S

(
1

V R(ω)
− 1

V R(ωr )

)
ds + i

2

∫ R

S

ds

V R(ω)Q(ω)
. (5.5.13)

This perturbation yields dissipation filter D(R, S) in the following form:

D(R, S) = exp

[
iω
∫ R

S

(
1

V R(ω)
− 1

V R(ωr )

)
ds

]

× exp

[
−ω
2

∫ R

S

ds

V R(ω)Q(ω)

]
. (5.5.14)

Here the integrals are taken along ray�. Thefirst factor in the dissipationfilter is responsible
for dispersion; the second, for amplitude attenuation.

It remains to specify V R(ω) corresponding to a given Q(ω) using a dispersion relation.
We shall use two important dispersion relations: the Futterman (1962) dispersion relation
and the Müller (1983) dispersion relation. For many other dispersion relations, see Szabo
(1995) and a review by Toverud and Ursin (1998).

a. FUTTERMAN DISPERSION RELATION
This relation (Futterman 1962) is the classical and a very popular dispersion relation. It

has a very interestingproperty in thatV R(ω)Q(ω) is independent ofω so thatV R(ω)Q(ω) =
V R(ωr )Q(ωr ). It reads

1

V R(ω)
= 1

V R(ωr )

[
1 − 1

πQ(ωr )
ln
ω

ωr

]
, (5.5.15)

Q(ω) = Q(ωr )

[
1 − 1

πQ(ωr )
ln
ω

ωr

]
. (5.5.16)

Here ωr is the reference frequency. Equations (5.5.15) and (5.5.16) yield

1/V (ω) = (1/V R(ωr ))
[
1 − π−1Q−1(ωr ) ln (ω/ωr ) + 1

2 iQ
−1(ωr )

]
,

(5.5.17)

Td(R, S) = t∗(R, S)
(−π−1 ln(ω/ωr ) + 1

2 i
)
, (5.5.18)

D(R, S) = exp
[−iπ−1ωt∗ ln(ω/ωr ) − 1

2ωt
∗], (5.5.19)

where t∗ = t∗(R, S) is given by the relation

t∗(R, S) =
∫ R

S

ds

V R(ωr )Q(ωr )
=
∫ R

S

dT

Q(ωr )
. (5.5.20)

A disadvantage of the classical Futterman relation is that it does not satisfy the causal-
ity requirements exactly; some deviations may be observed at very low and very high
frequencies.

b. M Ü LLER DISPERSION RELATION
Müller (1983) studied the very important case of Q(ω) obeying a frequency power law,

Q(ω) = Q(ωr )(ω/ωr )γ . (5.5.21)

Hereωr is a reference frequency, andγ is a constant, 0 ≤ γ ≤ 1.Equation (5.5.21) includes,
among others, the very important cases of Q(ω) independent of frequency (γ = 0) and
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Q(ω) proportional to frequency (γ = 1). The frequency-dependent slowness for Q � 1
corresponding to (5.5.21) reads

1

V R(ω)
= 1

V R(ωr )

[
1 − 1

2Q(ωr )

(
1−
(
ωr

ω

)γ)
cot
γπ

2

]
. (5.5.22)

The equation for the dissipation filter then reads

D(R, S) = exp

{
−ωt

∗

2

[(
ωr

ω

)γ
+ i cot

(
γ
π

2

)(
1−

(
ωr

ω

)γ)]}
. (5.5.23)

Here t∗ = t∗(R, S) is again given by (5.5.20). See also Schmidt and Müller (1986).
Note that the power law (5.5.21) for Q(ω) has been recently reported both in laboratory

experiments and in seismological applications.
The case of constant Q, independent of frequency, may be obtained from (5.5.23) by

applying the limit γ → 0. It is interesting to note that (5.5.22) and (5.5.23) yield for γ → 0
the same expressions for 1/V R(ω) and D(R, S) as the Futterman dispersion relations.

Exact dispersion relations for γ = 0 were derived by Kjartansson (1979). The
Kjartansson exact dispersion relations have found important applications in seismology
and seismic exploration.

5.5.3 Anisotropic Media

The procedures for finding the dissipation filters for homogeneous waves propagating in
the anisotropic inhomogeneous weakly dissipative media are similar to those for isotropic
media.

Let us first consider the noncausal, density-normalized, viscoelastic moduli, indepen-
dent of frequency,

ai jkl = aRi jkl + i aIi jkl . (5.5.24)

We specify the background, unperturbedmodel by real-valued, frequency-independent,
density-normalized moduli aRi jkl (xi ) and compute the rays � in it. Then, i aIi jkl represents
the model perturbation. We use (3.9.15) and obtain the imaginary travel-time perturbation

Td(R, S) = − i

2

∫ R

S
aIi jkl pi pl g

(m)
j g(m)

k dT . (5.5.25)

The integral is taken along ray� computed in the background medium. Quantities 	p, 	g (m)

and dT also refer to the background medium.
The noncausal dissipation filter D(R, S) can then be expressed as

D(R, S) = exp[iωTd(R, S)] = exp
[− 1

2ωt
∗(R, S)

]
, (5.5.26)

where t∗(R, S) represents the “t-star” quantity for the anisotropic medium,

t∗(R, S) = −
∫ R

S
aIi jkl pi pl g

(m)
j g(m)

k dT . (5.5.27)

As we can see, the noncausal dissipation filter D(R, S) (5.5.26) is exactly the same for
isotropic and anisotropic media (see (5.5.11)), only quantity t∗(R, S) has a different mean-
ing in both cases. Using (5.5.27), we can formally introduce the quality factor Q for the
anisotropic weakly dissipative medium,

Q−1 = −aIi jkl pi pl g(m)
j g(m)

k . (5.5.28)
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Thus, the quality factor and dissipation filters in anisotropicmedia depend not only on posi-
tion but also on the direction of propagation. This relationmeans that thewaves propagating
through an anisotropic dissipative medium in different directions are attenuated differently.
This effect is known as directional attenuation. See Gajewski and Pšenčı́k (1992).

For causal dissipation, the quantities in (5.5.24) are frequency-dependent:

ai jkl(ω) = aRi jkl (ω) + i aIi jkl(ω). (5.5.29)

As in isotropic medium, (5.5.29) can be modified to read

ai jkl(ω) = aRi jkl (ω
r ) + [

aRi jkl(ω) − aRi jkl(ω
r ) + i aIi jkl(ω)

]
; (5.5.30)

see (5.5.7). We specify the background medium by aRi jkl (ω
r ) and compute the rays � and

the relevant travel time T (R, S) in it. The expression in brackets in (5.5.30) represents the
model perturbation. The final expressions for the dissipation filters are obtained similarly
as for isotropic media.

5.5.4 Waves Across Interfaces in Dissipative Media

In the process of reflection/transmission of inhomogeneous planewaves at a plane structural
interface between two viscoelastic homogeneous halfspaces, three vectors play a basic
role: the propagation vector 	pR of the incident wave, the attenuation vector 	pI of the
incident wave, and the vector 	n normal to the interface. These three vectors are not, in
general, coplanar. A consequence is that the system of six boundary equations cannot be
decomposed into two subsystems (as in isotropic nondissipative media) but must be solved
as a whole (as in anisotropic media). Solving the system of six linear equations three
times, the complete set of nine reflection coefficients and nine transmission coefficients is
obtained. The exception is only the situation in which 	pR and 	pI of the incident wave and
	n are coplanar. For example, this is the case of a homogeneous incident wave. Then the
system can be decomposed.

It follows from boundary conditions that the tangential components of 	pR and 	pI for all
generated plane waves must equal the tangential components of 	pR and 	pI of the incident
wave. The consequent relations yield the Snell’s law for dissipative media, which involves
both the propagation and attenuation vector components of the incident wave and of the
relevant R/T wave.

The computation of R/T coefficients at an interface between two dissipative media
has been discussed broadly in the seismological literature. See, for example, Cooper and
Reiss (1966), Cooper (1967), Silva (1976), Borcherdt (1977, 1982), Krebes and Hron
(1980a, 1980b), Bourbiè and Gonzalez-Serrano (1983), Krebes (1983, 1984), Bourbiè
(1984),Borcherdt,Glassmoyer, andWennerberg (1986),Caviglia andMorro (1992), Samec
and Blangy (1992), Carcione (1993), Nechtschein and Hron (1996, 1997), and many other
references therein. For anisotropic dissipative media, see Carcione (1997) and Carcione,
Helle, and Zhao (1998).

We shall briefly discuss the effects of weak dissipation on R/T coefficients for incident
plane homogeneous waves. It is obvious that weak dissipation will affect the R/T coeffi-
cients only slightly in regions where the R/T coefficients are smooth. On the other hand, the
effect may be strong in regions where the variations of R/T coefficients are abrupt, mainly
in the vicinity of critical and Brewster angles. In general, weak absorption has a smoothing
effect on the R/T coefficients; it removes the sharp edges and anomalies of the coefficients.
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5.6 Ray Series Method. Acoustic Case

The complete equations for the amplitudes of high-frequency pressure waves propagating
in general laterally varying fluidmediawere derived in Section 5.1. The expressions for am-
plitudes, however, are only approximate. We remind the reader that pressure wave p(xi , t)
was described by a simple formula, p(xi , t) = P(xi ) exp[−iω(t − T (xi ))] (see (2.4.4)),
travel time T (xi ) and amplitude P(xi ) being frequency-independent. This trial solution
cannot satisfy wave equation (2.4.3) exactly. Actually, inserting the foregoing trial solution
into wave equation (2.4.3) yields (2.4.5), which consists of three terms. The first term has
multiplierω2, the second hasω1, and the third hasω0. As wewere seeking a high-frequency
solution, we were interested particularly in the first two terms. The requirement that the two
first terms must vanish yielded the eikonal and transport equation. The third term, ∇2P ,
however, is in general nonvanishing and causes some errors in our solution, particularly for
lower frequencies ω. Without changing the form of the foregoing trial solution, we cannot
satisfy (2.4.3), including the third term, completely.

There are several ways to overcome this problem and to increase the accuracy of the
solution. The classical and widely used method is to consider a solution in the form of
ray series. The method was briefly outlined in Section 2.4.1; here we shall discuss it in
considerably greater detail.

5.6.1 Scalar Ray Series. Amplitude Coefficients

We shall consider the wave equation for pressure p(xi , t) in a medium with smoothly
varying velocity c(xi ) and density ρ(xi ),

∇ · ρ−1∇ p = (ρc2)−1 p̈; (5.6.1)

see (2.4.9). We shall seek the time-harmonic solution of this equation in the form of a
scalar ray series:

p(xi , t) = exp[−iω(t − T (xi ))]
∞∑
n=0

P (n)(xi )

(−iω)n
. (5.6.2)

Thus, the ray-series solution in the time-harmonic domain is represented by a series in in-
verse powers of frequencyω.Weassume that travel timeT (xi ) and theamplitude coefficients
of the ray series P (n)(xi ), n = 0, 1, 2, . . . , depend only on coordinates xi , not on frequency.

A fewwords on the terminology. Ifwe consider only the leading termof ray series (5.6.2),
we usually speak of the zeroth-order ray approximation. The higher-order terms are then
called the higher-order ray approximations. For example, the first-order ray approxima-
tion is specified by the relation (−iω)−1P (1)(xi ) exp[−iω(t − T (xi ))]. This terminology,
however, has not been accepted generally.

Ray series (5.6.2) is not a standard convergent infinite series, but presumably has the
character of an asymptotic series for ω → ∞. Extensive literature is devoted to asymptotic
series and various asymptotic approximations. For a very detailed treatment, see, for exam-
ple, Bleistein (1984). Most of the books on mathematical physics and on wave propagation
present at least a brief explanation of this subject. Herewe shall not go intomathematical de-
tails; it will be sufficient to introduce the asymptotic series as follows: Equation (5.6.2) rep-
resents an asymptotic series for ω → ∞ if the following inequality is valid for arbitrary N ,∣∣∣∣∣p(xi , t) − exp[−iω(t − T (xi ))]

N∑
n=0

P (n)(xi )

(−iω)n

∣∣∣∣∣ ≤ a

ωN+1
, (5.6.3)
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where a is a constant independent of ω. It is obvious that (5.6.3) does not imply the con-
vergence of ray series (5.6.2). It follows from the asymptotic character of ray series (5.6.2)
that the accuracy of a finite number of terms of the asymptotic series (N fixed) may be
arbitrarily increased by increasing ω. The situation is, however, quite different for ω fixed.
Forω fixed, the required accuracy cannot, in general, be obtained by increasing the number
of terms N . For N → ∞, the asymptotic ray series is usually divergent. Thus, the ray series
is seismologically meaningful only if a finite number of terms is considered. The infinite
sign above the summation symbol in (5.6.2) has been used only for convenience; it means
that N in (5.6.3) may be arbitrarily large.

The asymptotic character of ray series (5.6.2) has actually been proved for many par-
ticular cases. The general proof of the asymptotic character of (5.6.2), however, has not
been given. In such cases, series (5.6.2) has a formal meaning only.

From the computational point of view, we are mainly interested in the behavior of
asymptotic ray series (5.6.2) for fixed ω. Usually, the moduli of the individual terms of the
ray series, |P (n)(xi )/(−iωn)|, first decrease with increasing n, and for some n = nm , they
reach a minimum value. They then increase with increasing n. The best accuracy is usually
obtained if we take the sum from n = 0 to n = nm . Taking more terms than nm does not
improve the accuracy but makes it worse. Thus, for a fixed ω, asymptotic ray series (5.6.2)
always yields some error that cannot be removed by increasing the number of terms in the
series.

The ray theory based on trial solution (5.6.2) in the form of the asymptotic series for
ω → ∞ is also often called the asymptotic ray theory, abbreviated ART. We then speak of
the ART solution (5.6.2), of ART methods, and so on.

5.6.2 Recurrence System of Equations of the Ray Method

Inserting ray series (5.6.2) into the wave equation (5.6.1) yields

e−iω(t−T )
{ ∞∑
k=−2

1

(−iω)k
N
(
P (k+2)

)

−
∞∑

k=−1

1

(−iω)k
M
(
P (k+1)

)+
∞∑
k=0

1

(−iω)k
L
(
P (k)

)} = 0, (5.6.4)

where symbols N , M , and L have the following meaning:

N
(
P (k)

) = ρ−1P (k)[T,i T,i −1/c2],

M
(
P (k)

) = ρ−1T,i P,
(k)
i + T,i

(
P (k)

/
ρ
)
,i + ρ−1T,ii P

(k) (5.6.5)

= ρ−1/2
{
T,ii

(
P (k)

/√
ρ
)+ 2T,i

(
P (k)

/√
ρ
)
,i

}
,

L
(
P (k)

) = (
P,(k)i

/
ρ
)
,i .

Equation (5.6.4) represents a power series in terms of (1/iω). It may vanish only if the
coefficients of all (1/iω)k , k = −2, −1, 0, 1, 2, . . . , vanish. Equation (5.6.4) then yields
the infinite system of equations

N
(
P (0)

) = 0,

N
(
P (1)

)− M
(
P (0)

) = 0, (5.6.6)

N
(
P (k)

)− M
(
P (k−1)

)+ L
(
P (k−2)

) = 0 for k ≥ 2.
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This system of equations can be expressed in amore compact form if we formally introduce
P (−1) and P (−2):

P (−1) = P (−2) = 0. (5.6.7)

Hence,

N
(
P (k)

)−M
(
P (k−1)

)+ L
(
P (k−2)

)= 0 for k= 0, 1, 2, . . . . (5.6.8)

This is the basic recurrence system of equations of the ray method for the acoustic case.
The system can be used to determine successively T (xi ), P (0)(xi ), P (1)(xi ), . . . , if certain
initial conditions are available.

For k = 0, (5.6.8) yields N (P (0)) = 0. Assuming a nontrivial amplitude P (0), we im-
mediately obtain the eikonal equation T,i T,i −1/c2 = 0; see (5.6.5). This remains valid
even for k > 0, so that N (P (k)) = 0 for any k, and (5.6.8) yields

M
(
P (k)

)− L
(
P (k−1)

) = 0 for k = 0, 1, . . . . (5.6.9)

Here again P (−1) = 0.

5.6.3 Transport Equations of Higher Order and Their Solutions

Inserting (5.6.5) into (5.6.9), we obtain the equation

2T,i
(
P (k)

/√
ρ
)
,i

+ (
P (k)

/√
ρ
)
T,ii = √

ρ
(
P,(k−1)

i

/
ρ
)
,i
. (5.6.10)

In vectorial form, (5.6.10) reads

2∇T · ∇(P (k)
/√
ρ
)+(P (k)

/√
ρ
)∇2T = √

ρ ∇ · (ρ−1∇P (k−1)
)
. (5.6.11)

As we can see from (2.4.11), the left-hand side of (5.6.11) for P (k) has exactly the same
form as the transport equation (2.4.11) for P (0). Equation (5.6.11) for P (k), however, has
a nonvanishing right-hand side, depending on P (k−1). For this reason, (5.6.11) is usually
called the transport equation of higher order, or higher order transport equation. Of course,
for k = 0 the higher order transport equation (5.6.10) reduces to the standard transport
equation (2.4.11) for P (0), as P (−1) = 0.

The transport equation (5.6.11) of higher order for any k ≥ 0 can be simply transformed
into an ordinary differential equation of the first order for P (k) if we solve it along the ray.
We take into account that

2∇T · ∇ P (k)

√
ρ

= 2

c

d

ds

(
P (k)

√
ρ

)
, ∇2T = 1

J

d

ds

J

c
.

Here J denotes the ray Jacobian. The derivative d/ds is taken along the ray, ds being an
elementary arclength along the ray. Using these two relations in (5.6.11), we obtain

d

ds

(
P (k)

√
ρ

)
+ P (k)

√
ρ

d

ds
ln

√
J

c
= c

√
ρ

2
∇ ·

(
1

ρ
∇ P (k−1)

)
. (5.6.12)

This is the final form of the ordinary differential equation of the first order for P (k)/
√
ρ,

representing the transport equation of the higher order. The equation can be integrated
by well-known methods, see, for example, Kamke (1959). The solution can be written
in various forms. Here we shall present two forms of the solution that may be useful in
different applications.
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First, we shall present a continuation formula. We assume that P (k) is known at one
point of the ray, say at s0. Then we can compute P (k)(s) along the whole ray,

P (k)(s) =
√
c(s)ρ(s)/J (s)

{
P (k)(s0)

√
J (s0)/ρ(s0)c(s0)

+ 1
2

∫ s

s0

√
c(s ′)ρ(s ′)J (s ′) ∇ · (ρ−1(s′)∇P (k−1)(s′)

)
ds ′
}
. (5.6.13)

This equation cannot be used for a point source situated at the point s0. In this case,
J (s0) → 0. Equation (5.6.13) can, however, be modified as in Section 5.1.2. If we express
J (s) and J (s ′) in terms of detQ2(s, s0) and detQ2(s′, s0), we obtain

P (k)(s) =
√

c(s)ρ(s)

c(s0)ρ(s0)

1

L(s, s0)
{
G(k)(s0) exp[iT

c(s, s0)]

+ 1
2

√
c(s0)ρ(s0)

∫ s

s0

√
c(s ′)ρ(s ′) L(s′, s0) exp[iT c(s ′, s0)]

× ∇ · (ρ−1(s ′)∇P (k−1)(s ′)
)
ds ′
}
. (5.6.14)

Here T c(s, s0) denotes the phase shift due to caustics on the ray between s0 and s, and
G(k)(s0) is the radiation function of the kth order, given by the relation

G(k)(s0) = lim
s′→s0

{L(s ′, s0)P (k)(s ′)
}
. (5.6.15)

The limit s′ → s0 is taken along the ray.
Thus, to compute the kth order amplitude coefficient P (k) of the ray series of a pressure

wave generated by a point source, it is necessary to know the radiation functions G(i),
i = 0, 1, . . . , k. Such higher order radiation functions are, however, known only for some
sources situated in a homogeneous medium. For a point source situated in an inhomoge-
neous medium, the problem of determination of G(i), i = 1, is considerably more involved.
With a few exceptions, the analytical expressions for G(i) are not known. This fact con-
siderably decreases the importance of higher order ray approximations in inhomogeneous
media, both in numerical modeling of acoustic wavefields and in practical applications.

5.6.4 Reflection and Transmission

We shall now consider the problem of reflection and transmission of acoustic waves at a
curved interface � between two inhomogeneous media. We denote the point of incidence
by Q. (We do not need to introduce the points Q̃ of reflection/transmission in this section;
we use Q for all generated waves.) We assume that the curvature of the interface � at Q
is small; see (2.4.60). We shall consider the incident pressure wave in the form of a ray
series:

pinc = exp[−iω(t − T inc)]
∞∑
n=0

P (n)inc
/
(−iω)n, (5.6.16)
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where T inc and P (n)inc, n = 0, 1, 2, . . . , are pressumably known. For reflected and trans-
mitted waves, the trial solutions will again be written in the form of ray series:

pr = exp[−iω(t − T r )]
∞∑
n=0

P (n)r
/
(−iω)n, (5.6.17)

pt = exp[−iω(t − T t )]
∞∑
n=0

P (n)t
/
(−iω)n. (5.6.18)

Otherwise, we shall use the notation of Sections 2.3.1 and 2.4.5.
Inserting (5.6.16) through (5.6.18) into interface conditions, we can determine T r , T t ,

P (n)r , and P (n)t (n = 0, 1, 2, . . .) along�. The discussion of travel times T r and T t remains
the same as in Section 2.3.1. We shall be interested here in the determination of amplitude
coefficients of R/T waves, P (n)r and P (n)t , at Q. Collecting the terms with the same power
of frequency in the interface conditions at the point Q gives

P (n)r − P (n)t = −P (n)inc,

ρ−1
1 T,ri ni P

(n)r − ρ−1
2 T,ti ni P

(n)t = −ρ−1
1 T,inci ni P

(n)inc −�(n−1),

where �(n) is given by the relation

�(n) = ρ−1
1

[
P,(n)ri ni + P,(n)inci ni

]− ρ−1
2 P,(n)ti ni . (5.6.19)

Using the relation T,ri ni = −T,inci ni , we obtain the final system of two equations for
unknown P (n)r and P (n)t , at the point Q,

P (n)r − P (n)t = −P (n)inc

ρ−1
1 T,inci ni P

(n)r + ρ−1
2 T,ti ni P

(n)t = ρ−1
1 T,inci ni P

(n)inc +�(n−1).

(5.6.20)

The solution of (5.6.20) for P (n)r and P (n)t at Q is

P (n)r = Rr P (n)inc + c1c2ρ1ρ2�(n−1)

ρ2c2 cos i1 + ρ1c1 cos i2
,

P (n)t = Rt P (n)inc + c1c2ρ1ρ2�(n−1)

ρ2c2 cos i1 + ρ1c1 cos i2
.

(5.6.21)

Here Rr and Rt are standard pressure reflection/transmission coefficients given by (2.3.26);
see also (5.1.21).

Let us emphasize again that Equations (5.6.21) yield the values of the higher order
amplitude coefficients of reflected and transmitted waves, P (n)r and P (n)t , only at the point
Q situated directly on the interface �. They do not say anything about P (n)r and P (n)t in
the vicinity of the interface �. To compute P (n)r and P (n)t in the vicinity of �, we must
use the continuation formulae (5.6.13), in which the values of P (n)r and P (n)t , calculated
from (5.6.21), should be used as initial conditions.

We shall now briefly discuss some consequences of (5.6.21).
For n= 0, we obtain �(n−1) =�(−1) = 0 because P (−1)r = P (−1)t = P (−1)inc = 0. Then

(5.6.21) yields

P (0)r = Rr P (0)inc, P (0)t = Rt P (0)inc. (5.6.22)

Here Rr and Rt represent the pressure reflection/transmission coefficients of plane waves
at a plane interface between two homogeneous halfspaces. Thus, in the zeroth-order ray
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approximation, P (0)r/P (0)inc and P (0)t/P (0)inc at Q do not depend on the curvature of the
interface�, the curvature of the wavefront of the incident wave, and the gradients of c and
ρ at Q. They depend only on the local values of velocities and densities at Q on both sides
of � and on the angle of incidence. See a detailed discussion in Section 2.4.5.

The situation, however, is changed drastically for n ≥ 1 because�(n−1) �= 0 in this case.
The quantity �(n−1) contains derivatives of P (n−1)r and P (n−1)t in the direction perpendic-
ular to�. These derivatives depend on all the aforementioned factors, including curvature
of the interface and of the wavefront of the incident wave and derivatives of velocity.
Thus, the local (plane wave) approximation cannot be used to determine the higher ampli-
tude coefficients of the ray series of reflected and transmitted waves, P (n)r and P (n)t , for
n ≥ 1.

Equations (5.6.21) are very general; they remain valid even for interfaces of higher
order, also called weak interfaces. For an interface of (N + 1)th order, we understand such
a surface � across which the N th derivatives of the velocity c and density ρ (or at least
one of them) are discontinuous, whereas all lower derivatives (N − 1, N − 2, . . .) of these
parameters are continuous. Thus, at the interface of the first order, the velocity c and/or the
density ρ themselves are discontinuous. Similarly, the interface� at which the gradient of
velocity c and/or density ρ are discontinuous, but the velocity and the density themselves
are continuous, is called the interface of the second order. For an interface of higher order
(weak interface), we understand any interface of the N th order with N ≥ 2.

At aweak interface, c1 = c2, ρ1 = ρ2, and i1 = i2 so that Rr = 0 and Rt = 1. Equations
(5.6.21) then simplify considerably:

P (n)r = c1ρ1�(n−1)

2 cos i1
, P (n)t = P (n)inc + c1ρ1�(n−1)

2 cos i1
. (5.6.23)

This immediately yields P (0)r = 0 and P (0)t = P (0)inc, as was expected.
Let us now briefly discuss the process of reflection/transmission at an interface of Nth

order. In this case,�(n−1) = 0 for n < N − 1, but�(n−1) �= 0 for n = N − 1. This yields,

P (n)r = 0, P (n)t = P (n)inc, for n < N − 1.

Thus, the leading term of the reflected wave from an interface of N th order corresponds to
the (N − 1)th amplitude coefficient of the ray series, P (N−1)r . Consequently, the ray series
(5.6.17) for the reflected wave from the interface of the N th order reads

pr = exp[−iω(t − T r )]
∞∑

n=N−1

P (n)r
/
(−iω)n. (5.6.24)

In the terminology of the ray method, the reflected wave (5.6.24) described by the ray series
with P (0)r , P (1)r , . . . , P (N−2)r vanishing is called the wave of (N−1)th order. In general,
the waves described by the ray series with the zeroth-order amplitude coefficient vanishing
are called the higher order waves.

5.6.5 Alternative Forms of the Scalar Ray Series

In Section (5.6.1), we considered the ray series in frequency domain for time-harmonic
waves. Seismic signals, however, are not time-harmonic but rather transient. It may be
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useful to consider alternatively other forms of the ray series, directly applicable for transient
signals. We shall present here two such forms.

1. RAY SERIES FOR HIGH-FREQUENCY TRANSIENT SIGNALS
Let us consider a real-valued signal x(t) with a Fourier spectrum x(ω). We remind the

reader of our convention that the signal x(t) and its Fourier spectrum x(ω) are denoted by
the same letter. The signal x(t) and its spectrum x(ω) are distinguished only by arguments
t and ω; see Section 2.1.5. Under the high-frequency signal x(t), we shall understand such
signal, the Fourier spectrum x(ω) of which has the following property:

|x(ω)| = 0 for 0 ≤ ω ≤ ω0, (5.6.25)

where ω0 is high.
Because the ray series (5.6.2) is asymptotic, it has only a finite number of terms and

can be integrated term by term. We multiply it by x(ω) and apply the integration
π−1

∫∞
0 x(ω) . . . dω to all terms. Then we obtain the ray series (5.6.2) in the following

form:

p(xi , t) =
∞∑
n=0

P (n)(xi ) F
(n)(t − T (xi )). (5.6.26)

This represents the ray series for high-frequency signals. The complex-valued functions
F (n)(ζ ) in (5.6.26) n = 0, 1, 2, . . . , are defined by the relation

F (n)(ζ ) = π−1

∫ ∞

0
(−iω)−n x(ω) exp[−iωζ ]dω. (5.6.27)

The functions F (n)(ζ ) satisfy the following three properties:

a. F (n)(ζ ) are high-frequency signals; that is, their Fourier spectra (−iω)−nx(ω) satisfy
(5.6.25).

b. F (n)(ζ ) are analytical signals; that is,

F (n)(ζ ) = x (n)(ζ ) + i g(n)(ζ ), (5.6.28)

where x (n)(ζ ) and g(n)(ζ ) are real-valued functions and form a Hilbert transform
pair. See (A.2.4). They can be expressed in terms of x(ω) using (5.6.27):

x (n)(ζ ) = 1

π
Re
∫ ∞

0
(−iω)−nx(ω) exp[−iωζ ]dω,

g(n)(ζ ) = 1

π
Im
∫ ∞

0
(−iω)−nx(ω) exp[−iωζ ]dω.

(5.6.29)

c. F (n)(ζ ) satisfy the following relations:

dF (n)(ζ )/dζ = F (n−1)(ζ ), n = 1, 2, . . . , (5.6.30)

or, alternatively,

F (n)(ζ ) =
∫ ζ

−∞
F (n−1)(ζ ′)dζ ′. (5.6.31)

Relations (5.6.30) and (5.6.31) allow us to compute successively all F (n)(ζ ) (n =
1, 2, . . .), as soon as F (0)(ζ ) is known.
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2. RAY SERIES FOR DISCONTINUITIES OF THE WAVEFIELD
The ray series (5.6.26) for high-frequency transient signals can be generalized ifwe con-

sider the distributions and Fourier transforms of distributions. Let us rewrite the definition
(5.6.27) of the analytical signal F (n)(ζ ) in the following form:

F (n)(ζ ) = 1

2π

∫ ∞

−∞
2(−iω)−nH (ω)x(ω) exp[−iωζ ]dω, (5.6.32)

where H (ω) is the Heaviside step function defined by the relation

H (ω) = 0 for ω < 0, H (ω) = 1 for ω > 0.

(5.6.33)

Then (5.6.32) yields an alternative relation for the analytical signal F (n)(ζ ):

F (n)(ζ ) = F (0)(ζ ) ∗ h(n)(ζ ). (5.6.34)

Here h(n)(ζ ) are defined by the following relations:

h(0)(ζ ) = δ(ζ ), h(1)(ζ ) = H (ζ ), . . . ,

h(n)(ζ ) = ζ n−1H (ζ )/(n − 1)!.
(5.6.35)

In (5.6.35), δ(ζ ) and H (ζ ) have a standard meaning: δ(ζ ) is the Dirac delta function and
H (ζ ) the Heaviside step function.

Using (5.6.34), the ray series (5.6.26) can be written in a new form:

p(xi , t) = F (0)(t) ∗
∞∑
n=0

P (n)(xi ) h
(n)(t − T (x j )). (5.6.36)

Alternatively, we can also write

p(xi , t) = F (0)(t − T (xi )) ∗
∞∑
n=0

P (n)(xi ) h
(n)(t). (5.6.37)

The functions h(n)(t) for four n (n = 0, 1, 2, and 3) are shown in Figure 5.12. As we can
see, the most important is the leading (zeroth) term of the ray series (5.6.37) because h(0)(t)
represents the highest order of discontinuity on the wavefront. The subsequent terms of
the ray series (5.6.37) change more smoothly across the wavefront; therefore, they are not
as distinct in the wavefield. In the convolution with F (0)(t − T (xi )), the functions h(n)(t)
cause the nth order integration. Because integrations imply smoothing, the higher order
terms are generally smoother than the lower order terms.

Any of the form of the ray series shown above, (5.6.2), (5.6.26), (5.6.36) and (5.6.37),
includes exactly the same functions T (x j ) and P (n)(x j ), n = 0, 1, 2, . . . . Thus, they can be
used alternatively.

Whereas the ray series expansion in the frequency domain (5.6.2) has, in general, an
asymptotic character forω → ∞, the character of the ray series (5.6.36) in the time domain
is different. It may be convergent in a vicinity of the wavefront (for small t − T (x j )). For
this reason, the ray series (5.6.36) is also often called the near-wavefront expansion. For
great t − T (x j ), the ray series (5.6.36) usually diverges and cannot be used. See Babich
(1961b).

One important remark. The pressure p(xi , t) as determined from the previously shown
ray series is a complex-valued function.Althoughwe havewritten the ray series in complex-
valued forms, only the real and imaginary parts of them (or, perhaps, a linear combination
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Figure 5.12. Functions h(n)(t), n = 0,
1, 2, 3, for the ray series in discontinu-
ities. Here h(0)(t) represents the delta
function, h(1)(t) represents the Heaviside
function, and so on. The higher order
functions h(n)(t) are smoother than the
lower-order functions at t = 0.

of both) have a physical meaning. It may be useful to stress this fact by writing Equations
(5.6.26), (5.6.36), and (5.6.37) as follows:

p(xi , t) = Re
∞∑
n=0

P (n)(x j ) F
(n)(t − T (x j )), (5.6.38)

p(xi , t) = Re

{
F (0)(t) ∗

∞∑
n=0

P (n)(x j ) h
(n)(t − T (x j ))

}
, (5.6.39)

p(xi , t) = Re

{
F (0)(t − T (x j )) ∗

∞∑
n=0

P (n)(x j ) h
(n)(t)

}
. (5.6.40)

Here Re may also be replaced by Im or by some linear combination of Re and Im.
In the following, we shall again consider the ray series in their complex-valued forms

and return to their real-valued forms (5.6.38) through (5.6.40) only in the final stage of
computation, if necessary.

5.6.6 Applications of Higher Order Ray Approximations

In the numerical modeling of wavefields and in the solution of relevant inverse problems in
inhomogeneousmedia, only the zeroth-order ray approximation has been traditionally used;
the application of higher order ray approximations has been exceptional. The argument
against the application of higher order ray approximations follows. In regular regions,
where the validity conditions of the ray method are well satisfied, the zeroth-order ray
approximation is usually sufficiently accurate, and the higher order ray approximations are
small. Thus, it is not necessary to use them because they do not contribute considerably
to the zeroth-order ray approximation. On the contrary, in singular regions, the zeroth-
order ray approximation is highly inaccurate, but the higher order ray approximations do
not increase the accuracy of the ray method; in most cases they decrease it. The higher
order approximations are even more sensitive to the singularities than the zeroth-order ray
approximation is.
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In principle, this argumentation is correct. The inaccuracy of the zeroth-order ray
approximation in the singular regions, such as the caustic region, the critical region, and
the transition region between the shadow and illuminated zones, cannot be decreased by
the application of higher order terms of the ray series. To increase the accuracy in such
regions, some modifications of the ray method must be used; see Section 5.6.8.

Still, however, the higher order ray approximationsmay play an important role in certain
wave propagation problems. In the following, we shall list several such applications.

1. HIGHER ORDER WAVES
Let us consider a wave propagating in laterally varying layered structure, described

by the ray series (5.6.2), with a nonvanishing zeroth-order amplitude coefficient P (0)(xi ).
Such a wave generates new waves at interfaces, which may again be described by relevant
asymptotic series. For waves reflected at structural interfaces of the first order (at which the
velocity c and/or the density ρ are discontinuous), the zeroth-order amplitude coefficients
are also nonvanishing. We can say that the incident and reflected wave are of the same
order in this case. At interfaces of higher order, however, the reflected waves are not of the
same order as the incident wave but are of higher order. This means that the zeroth-order
amplitude coefficient in the relevant ray series of the reflected wave vanishes and that the
leading term of the ray series corresponds to some higher order amplitude coefficient,
n ≥ 1. For more details on waves reflected from higher order interfaces, refer to Section
5.6.4, particularly ray series (5.6.24).

Another typical example of a higher order wave is the head wave. Let us consider a
wave generated by a point source, incident at a plane interface between two homogeneous
halfspaces (with c2 > c1). Then, in addition to the standard reflected wave, the head wave
is also generated at postcritical distances. The zeroth-order amplitude coefficient in the ray
series of the head wave vanishes; only the first-order amplitude coefficient is nonvanishing.
Thus, the head wave is the first-order wave in the terminology of the ray theory. For more
details on head waves, see Section 5.6.7.

2. AMPLITUDES ALONG RAYS AT WHICH P (0)(xi ) VANISHES
We shall now consider the regular wave described by ray series (5.6.2). We assume that

P (0)(xi ) is, in general, nonvanishing but that it vanishes along certain rays and is small in the
close vicinity of these rays. This may happen, for example, if the radiation function is zero
for a particular direction (nodal lines) or if the reflection/transmission coefficient vanishes
for a particular angle of incidence (Brewster angle). The first-order ray approximation will
then play an important role and will fill these gaps. The wavefield may then be described
by the two terms of the ray series,

p(xi , t) = exp[−iω(t − T (xi ))]
[
P (0)(xi ) + (−iω)−1 P (1)(xi )

]
, (5.6.41)

even in the close vicinity of such rays.

3. ESTIMATION OF THE ACCURACY OF THE ZEROTH-ORDER
RAY APPROXIMATION
For a finite frequency ω, ray series (5.6.2) can be used in practical computations only if

the moduli of the higher order approximations decrease with increasing n, at least for a few
small n. We shall now devote our attention only to two terms of the ray series; see (5.6.41).
Then, if we use the zeroth-order ray approximation in our computations, the first-order ray
approximation roughly represents the error of computations. We denote the relative error
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caused by neglecting the second term of (5.6.41) ε. Hence,∣∣P (1)(xi )
/
(−iω) P (0)(xi )

∣∣ < ε. (5.6.42)

Calculating the expression |P (1)/P (0)| may thus be very useful in accuracy considerations.
The criterion of validity (5.6.42) is, of course, very rough because only two terms of the
ray series are considered. Nevertheless, it may yield valuable estimates of accuracy of
the zeroth-order ray computations. Brekhovskikh (1960) was probably the first one who
used the outlined method to estimate the accuracy of the zeroth-order ray approximation
in the problem of reflection of spherical waves at a plane interface. See also Popov and
Camerlynck (1996).

5.6.7 Head Waves

Themost important and famous example of seismic bodywaves of the higher order are head
waves. The head waves have been used broadly in seismic exploration and in deep seismic
sounding of the Earth’s crust. They are also known as refracted waves or refraction arrivals,
and the explorationmethodbased on themas the refractionmethod.Many theoretical papers
have been devoted to head waves generated by a spherical wave incident at a plane interface
between two homogeneous halfspaces. Mostly wave methods, based on an exact integral
representation of the spherical wave, have been used, and the head waves were obtained by
an asymptotic high-frequency treatment of these integrals. Jeffreys (1926) was probably
the first to derive approximate expressions for head waves in this way. The references are
too numerous to be given here. For many classical references, see Brekhovskikh (1960),
Červený and Ravindra (1971), and Drijkoningen, Chapman, and Thomson (1987). In the
1950s, the ray method was also successfully applied to derive and study acoustic head
waves (Friedlander 1958). The application of the ray method to the investigation of head
waves is explained in detail in Červený and Ravindra (1971), where many other references
can also be found.

Let us consider a plane interface � of the first order between two homogeneous half-
spaces, with propagation velocities c1 and c2. Assume a point source, generating a spherical
acoustic wave, situated at point S in the first halfspace (with propagation velocity c1), at
distance hS from interface�. We also assume that c1 < c2 and introduce the critical angle
of incidence i∗1 , sin i∗1 = c1/c2.

We shall first explain the generation of head waves using simple wavefront charts, see
Figure 5.13. Assume that source S starts to generate a wave at time t = 0. For t < hS/c1,
that is, before the wave impinges on the interface, there exists only this one wave. For
t = hS/c1, the wavefront reaches interface � at point O (projection of S on �) and is
tangent to �. As time increases further, reflected and transmitted waves are generated.
We denote O∗ the position of the interface critical point, corresponding to the point of
incidence of the critical ray on �. The relevant interface critical time is given by the
relation T ∗ = hS/(c1 cos i∗1 ); see Figure 5.13. The wavefronts of the incident, reflected,
and transmitted waves are mutually connected at point A on � if h1/c1 < t < T ∗. The
common point A is situated between O and O∗ and moves along interface� with apparent
velocity cA = c1/sin i1(A), where i1(A) is the angle of incidence i1 at point A.

Apparent velocity cA decreases with increasing epicentral distance of point A (that is,
with increasing OA). At A = O, cA equals ∞, and for OA → ∞, cA approaches c1. An
important role in the generation of head waves is played by the interface critical point O∗.
If t < T ∗, point A is situated between O and O∗, and cA > c2. When t = T ∗, cA = cO∗ =
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Figure 5.13. Explanation of the genera-
tion of a pressure headwave at a plane in-
terface between two homogeneous fluid
halfspaces. The incident wave is gener-
ated by a point source S situated in the
lower-velocity halfspace. Head waves
are generated only at postcritical dis-
tances. For more details, see text.

c1/ sin i∗1 = c2. Finally, if t > T ∗, cA < c2. It is simple to see that if t > T ∗, the transmitted
wave propagating from point O∗ along the interface in the second medium with velocity
c2 > cA will overtake the incident and reflected waves. At point A, only the wavefronts of
the incident and reflected waves are connected, but the wavefront of the transmitted wave
will reach a point B, advanced with respect to A. The wavefront of the transmitted wave is
perpendicular to � at B, so that the ray of the transmitted wave is parallel to the interface
between O∗ and B.

The interface conditions must be satisfied between A and B. However, in the second
halfspace, only the transmitted wave propagates along interface � because the reflected
and incident waves are delayed. The transmitted wave itself cannot satisfy the interface
conditions between A and B; an additional wave must also exist in the first halfspace.
The generation of this wave can be explained simply by taking into account the Huyghens
principle: the transmitted wave at interface � generates disturbances propagating into
the first medium. This additional wave generated by the transmitted wave is called the
head wave; see Figure 5.13(b). As velocities c1 and c2 are constant along interface �,
the wavefront of the head wave is a straight line in Figure 5.13 (conical in 3-D). It passes
through point B on interface � and is tangent to the wavefront of the reflected wave at
critical point R∗, situated on the critical ray of the reflected wave. Because the wavefronts
of the head wave are parallel straight lines, all the rays of head waves are parallel to the
critical ray of the reflected wave.

Let us now briefly discuss the travel-time curves of the individual waves in our model.
They may be determined using simple geometrical considerations. We assume that the
source S and the receiver R are situated at distances hS and hR from the interface and
denote the epicentral distance of R by r . The travel times of the direct and reflected waves,
T d and T r , are

T d(r ) = [r2 + (hR − hS)
2]1/2/c1, T r (r ) = [r2 + (hR + hS)

2]1/2/c1.

(5.6.43)

Thus, both these travel-time curves are hyperbolical, but travel-time curve T d(r ) is linear
for hS = hR . The head wave exists only if c2 > c1, and if the epicentral distance of the
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Figure 5.14. Travel times, rays, and amplitudes
of pressure head waves generated by an incident
spherical wave at a plane interface between two ho-
mogeneous halfspaces (schematically). Top figure:
Travel times of direct, reflected, and head waves.
The critical distance r∗ and the crossover distance
r+ are shown. Head waves exist only at epicentral
distances r ≥ r∗. At r = r∗, the travel-time curve
of the head wave is tangent to the travel-time curve
of the reflected wave.Middle figure: Rays of direct,
reflected, and head waves. The critical ray is shown
by a dashed line. Bottom figure: Ray amplitudes of
direct, reflected, and head waves. The dotted line
shows schematically the amplitude of the interfer-
ence reflected head wave in the critical region. This
region is singular in the ray method.

receiver is larger than critical distance r∗,

r∗ = (hS + hR) tan i∗1 = (hR + hS)n/
√
1 − n2, (5.6.44)

where n = c1/c2. The travel-time curve of the head wave, T h(r ), is then given by the
equation

T h(r ) = T r (r∗) + r − r∗

c2
= hS + hR

c1
√
1 − n2

+ r − r∗

c2

= hS + hR
c1

√
1 − n2 + r

c2
. (5.6.45)

Directly at the critical point r = r∗, the travel time is given by the relation

T h∗ = T h(r∗) = T r (r∗) = (hS + hR)/c1
√
1 − n2. (5.6.46)

This travel time is also called the critical travel time. Figure 5.14 shows schematically the
rays and travel times of direct, reflected, and head waves for hS = hR .

For completeness, we shall also present the relation for the crossover distance r+,
at which the travel-time curves of direct and head waves intersect, and for the relevant
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crossover travel time T+:

r+ = 1√
1 − n2

[n(hS + hR) + 2
√
hShR],

T+ = 1

c1
√
1 − n2

[(hS + hR) + 2n
√
hShR].

(5.6.47)

For hS = hR , (5.6.47) simplifies to r+ = 2(1 + n)hS/
√
1 − n2, and T+ = 2hS(1 + n)/

(c1
√
1 − n2).

We shall now show that the head wave is a first-order wave in the terminology of the ray
method and derive expressions for its amplitude and waveform. To derive the expressions
for the amplitudes of head waves, we first have to express the zeroth-order amplitude
coefficient of transmitted wave P (0)t at the receiver point R situated in the second medium;
see Figure 5.15(a). We use (5.1.17) and insert G(S; γ1, γ2) = c1 and T c(S, R) = 0 because
we are considering an omnidirectional unit directivity pattern of the source F = 1 and
no caustics exist in our situation. If we also use (5.1.22) for the normalized transmission
coefficientRt and (4.10.22) for L(R, S), we obtain

P (0)t (R) = 2c1ρ2c2P1P2
√
p

(ρ2c2P1 + ρ1c1P2)
[
r
(
c1l1P2

2 + c2l2P2
1

)]1/2 . (5.6.48)

Here l1 and l2 represent the lengths of the ray elements in thefirst and secondmedium,r is the
epicentral distance between S and R, p is the ray parameter, p = (sin i1)/c1 = (sin i2)/c2,
P1 = cos i1, and P2 = cos i2.

We shall now decrease the depth of receiver R and move it toward the interface; see
Figure 5.15(b). We denote the receiver position directly at � by Q2 (not R). We assume
that point Q2 is situated close to B in Figure 5.13(b), where only the transmitted and head
waves exist. We also denote the point situated on the opposite side of � from Q2 by Q̃2.
We assume that r (Q2) > hS tan i∗1 , where i

∗
1 is the critical angle of incidence. Then Q1

represents the interface critical angle O∗, r (O∗) = hS n/
√
1 − n2, l1 = hS/

√
1 − n2, l2 =

L = r (Q2) − r (O∗). Thus, L is the distance of the point Q2 from the interface critical point,
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that is, the length of the element of the ray of the transmitted wave parallel to�. Similarly,
we obtain cos i2 = P2 = 0; consequently, P (0)t (Q2) = 0 (see (5.6.48)). The zeroth-order
amplitude coefficient of the transmittedwave thenvanishes along the rayparallel to interface
� beyond the interface critical point O∗. The higher order ray approximation, however,
does not vanish.

There are several approaches to deriving the expressions for the amplitudes of head
waves at Q̃2. We shall use the simplest and most straightforward approach and derive them
directly from the interface conditions. We shall not need to calculate the first-order ray
approximation of the transmitted wave at Q2 in this approach, but we shall obtain it as a
by-product.

We denote the pressure head wave propagating in the first medium ph and the pressure
transmitted wave pt . We shall consider only two terms of the ray series for both waves:

ph = exp[−iω(t − T h)]
(
P (0)h + P (1)h

/(−iω)
)
,

pt = exp[−iω(t − T t )]
(
P (0)t + P (1)t

/(−iω)
)
.

(5.6.49)

see (5.6.41). At points Q2 and Q̃2 of the interface �, only these two waves exist. The
boundary conditions are ph(Q̃2) = pt (Q2) and (ρ−1

1 ∂p
h/∂z)Q̃2

= (ρ−1
2 ∂p

t/∂z)Q2 . They
yield, at �,

P (0)h + (−iω)−1 P (1)h = P (0)t + (−iω)−1 P (1)t , (5.6.50)

1

ρ1
iω
∂T h

∂z
P (0)h − 1

ρ1

∂T h

∂z
P (1)h + 1

ρ1

∂P (0)h

∂z
− 1

iωρ1

∂P (1)h

∂z

= 1

ρ2
iω
∂T t

∂z
P (0)t − 1

ρ2

∂T t

∂z
P (1)t + 1

ρ2

∂P (0)t

∂z
− 1

iωρ2

∂P (1)t

∂z
.

(5.6.51)

Boundary condition (5.6.50) yields P (0)h(Q̃2) = P (0)t (Q2) and P (1)h(Q̃2) = P (1)t (Q2). Be-
cause P (0)t (Q2) = 0 along � (see (5.6.48)), P (0)h(Q̃2) = 0. Using the continuation rela-
tions, we arrive at an important result P (0)h = 0 in the whole first halfspace. Thus, the head
wave is a wave of the higher order. This also yields ∂P (0)h/∂z = 0 along�. Finally, because
the wavefront of the transmitted wave is perpendicular to� at Q2, we have ∂T t/∂z = 0 at
Q2. Thus,

P (0)h(Q̃2) =
(
∂P (0)h

∂z

)
Q̃2

= 0, P (1)h(Q̃2) = P (1)t (Q2),(
∂T t

∂z

)
Q2

= 0.
(5.6.52)

Inserting (5.6.52) into (5.6.51) and neglecting the two terms with factors 1/iω yields

ρ−1
1 (∂T h/∂z)Q̃2

P (1)h(Q̃2) = −ρ−1
2

(
∂P (0)t

/
∂z
)
Q2
.

Because (∂T h/∂z)Q̃2
= P∗

1 /c1 = √
1 − n2/c1,

P (1)h(Q̃2) = −(ρ1c1/ρ2P
∗
1 )
(
∂P (0)t

/
∂z
)
Q2
. (5.6.53)

It remains to calculate ∂P (0)t/∂z at Q2 from (5.6.48). The derivative ∂P (0)t/∂z at Q can
be computed using the simple formula(

∂P (0)t
/
∂z
)
Q2

= −L−1
(
∂P (0)t

/
∂P2

)
P2=0

.
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Using this relation, we obtain(
∂P (0)t

∂z

)
Q2

= − 1

L

[
2c1ρ2c2P1

√
p

ρ2c2P1 + ρ1c1P2
1[

r
(
c1l1P2

2 + c2l2P2
1

)]1/2
]
P2=0

= − 2c1
c2P∗

1 r
1/2L3/2

. (5.6.54)

Here L = r (Q2) − r (O∗). Inserting (5.6.54) into (5.6.53) finally yields

P (1)h(Q̃2) = 2ρ1c1n

ρ2(1 − n2)r1/2L3/2
. (5.6.55)

This is the final expression for P (1)h(Q̃2), where Q̃2 is situated on �. It is not difficult to
extend the validity of (5.6.55) into the first medium using continuation formulae (5.6.13).
See Figure 5.15(c). We remind the reader that all rays of head waves in the first halfspace
are straight lines making the critical angle i∗1 with the normal to interface �. There is then
no in-plane spreading. Transverse spreading, however, is different at Q̃2 and R because the
wavefront is conical in 3-D. Using (5.6.13), we obtain

P (1)h(R) = L⊥(Q̃2, S)

L⊥(R, S)
P (1)h(Q̃2) =

(
r (Q̃2)

r (R)

)1/2

P (1)h(Q̃2). (5.6.56)

Equations (5.6.55) and (5.6.56) yield

P (1)h(R) = 2ρ1c1n

ρ2(1 − n2)r1/2L3/2
, r = r (R), L = r (R) − r∗,

(5.6.57)

where r∗ is the critical distance given by (5.6.44). Thus, L again denotes the length of the
element of the ray of the transmitted wave parallel to �.

Equation (5.6.57) represents the final relation for the first-order amplitude coefficient
of the head wave. For completeness, we shall also give the final relations for the head wave
of the time-harmonic waves,

ph(R, t) = 2iρ1c1n

ωρ2(1 − n2)r1/2L3/2
exp[−iω(t − T h(R, S))], (5.6.58)

and of transient signals,

ph(R, t) = 2ρ1c1n

ρ2(1 − n2)r1/2L3/2
F (1)(t − T h(R, S)). (5.6.59)

Here T h(R, S) is given by (5.6.45).
Hence, the Fourier spectrum of the head wave corresponds to the Fourier spectrum of

the incident wave divided by frequency. For transient signals, the shape of the wavelet of
the head wave corresponds to the integral of the wavelet of the incident wave.

As a by-product of our computations of head waves, we have also obtained the first-
order amplitude coefficient P (1)t of the transmitted wave along interface � beyond the
interface critical point. Because P (1)h(Q̃2) = P (1)t (Q2), (5.6.55) also yields the relations for
P (1)t (Q2). In fact, it was simpler to calculate P (1)t (Q2) in this way; the general continuation
formula would have required more cumbersome computations.

We shall now discuss the ray amplitudes of acoustic headwaves very briefly. Figure 5.14
shows the ray amplitude-distance curves of direct, reflected, and head waves schematically.
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The largest amplitudes correspond to the direct waves. They decrease with epicentral
distance as r−1. For c1 < c2, the amplitudes of reflected waves display a more complicated
behavior. At subcritical epicentral distances, they increasewith epicentral distance and have
a sharp maximum at the critical point. At postcritical distances, they decrease smoothly
with epicentral distance, roughly as r−1. The ray amplitudes of head waves are infinite at
the critical point. Along the critical ray, the ray amplitudes cannot be calculated by the ray
method. The critical region is singular both for head and reflected waves in the same way as
the caustic region is for other types of waves. The amplitudes of head waves decrease with
increasing epicentral distance as r−1/2(r − r∗)−3/2, that is, at large epicentral distances r �
r∗ as r−2. Thus, at large epicentral distances beyond the critical point, the amplitudes of head
waves are, as a rule, considerably smaller than the amplitudes of direct and reflected waves.

In the critical region, it is necessary to take into account the fact that transient reflected
and head waves mutually interfere. Thus, the detailed investigation of the wavefield in the
critical region must take into account two facts.

a. The critical region is a singular region and the ray formulae for amplitudes cannot
be used there.

b. The reflected and head waves must be considered jointly, not separately.

For a detailed investigation of the wavefield in the critical region, see, for example,
Brekhovskikh (1960), Červený (1966a, 1966b), and Červený and Ravindra (1971). Many
other references can be found there. The dotted line in Figure 5.14 shows also the amplitude-
distance curve of the interference reflected-head wave in the critical region, calculated by
more accurate methods. The most distinct feature of these accurate amplitude-distance
curves is the shift of the maximum of the amplitude-distance curve beyond the critical point.
The shift is frequency-dependent; it is smaller for higher frequencies and more pronounced
for lower frequencies. Just at the critical point, the accurate amplitude-distance curve is
smooth, with a continuous derivative.

Beyond the region of interference of reflected and head waves, the reflected waves
and head waves are separated and propagate independently. The ray amplitudes of the
head waves are considerably smaller than the amplitudes of the reflected waves there. This
behavior, however, applies to a simple model consisting of a plane interface separating
two homogeneous halfspaces. The amplitudes of head waves are extremely sensitive to
structural deviations from this model, particularly to the curvature of the interface and to
the positive velocity gradient in the bottom halfspace. In the case of a convex interface
and/or in the case of a positive velocity gradient below the interface, the segment of the
ray, parallel to the interface in the original model, may deviate from the interface. The
“pure” head wave described in this section then changes to a so-called slightly refracted
wave (diving wave). This wave is a zeroth-order wave in the terminology of the ray method,
and its amplitude is considerably higher than the amplitude of pure head waves, even if
the deviation of the ray from the interface is small. For details see Červený and Ravindra
(1971, Chap. 6), Hill (1973), and Thomson (1990).

5.6.8 Modified Forms of the Ray Series

The four alternative forms of the ray series – (5.6.2), (5.6.26), (5.6.36), and (5.6.37) – may
be further modified to study wave propagation in certain situations in which the standard
forms of the ray series are not applicable. Several such modifications will be discussed in
this section.
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a. SPACE-TIME RAY SERIES
The zeroth-order approximation of the space-time ray method was briefly discussed in

Section 2.4.6. In a similar way, it is possible to construct the space-time ray series. We shall
present here the three most common forms of the space-time ray series for pressure waves
in fluid media. The first is

p(xi , t) = exp[iqθ (x j , t)]
∞∑
n=0

(iq)−n P (n)(x j , t), (5.6.60)

where q is a large formal parameter. The second form reads

p(xi , t) =
∞∑
n=0

P (n)(x j , t)F
(n)(θ (x j , t)), (5.6.61)

where F (n), n = 0, 1, . . . , are high-frequency analytical signals, satisfying the three con-
ditions a, b, and c, discussed in Section 5.6.5. The third form is

p(xi , t) = exp

[
iq

∞∑
n=0

q−n�(n)(x j , t)

]
. (5.6.62)

The application of the space-time ray series to the solution of thewave equation is analogous
to the application of the space-ray series. The eikonal equation and the zeroth-order trans-
port equation are obtained in the same way as in Section 2.4.6. Hamiltonian formalism can
then be applied to the eikonal equation to compute space-time rays and the phase function
θ (x j , t) along these rays. Similarly, the amplitude coefficient P (0)(x j , t) can be obtained by
solving the zeroth-order transport equation along space-time rays. To determine P (n)(x j , t)
for n ≥ 1, the higher order space-time transport equations should be derived.

For more details on various forms of the space-time ray series, on the space-time ray
tracing and solution of space-time transport equations, see Babich, Buldyrev, andMolotkov
(1985). The book also gives many other references. See also Section 2.4.6 herein.

b. RAY METHOD WITH A COMPLEX EIKONAL
We have assumed that eikonal T (x j ) is a real-valued function. In certain problems of

seismological interest, it may also be useful to consider the complex-valued eikonal T (x j ),
T (x j ) = Re T (x j ) + i Im T (x j ). This is particularly suitable in anelastic media, where the
incompressibilityκ (or elastic parameters ci jkl in anisotropic viscoelastic case) are complex-
valued. Then we can seek the solution of the frequency-domain acoustic equation using
the following ansatz:

p(x j , ω) = P(x j , ω) exp[iωT (x j , ω)]. (5.6.63)

Here both P(x j , ω) and T (x j , ω) are in general complex-valued. Using (5.6.63), we again
obtain the eikonal equation (3.1.1) or (3.1.2) and the ray tracing system (3.1.3) in the same
form as before. The difference is that all quantities in (3.1.1) through (3.1.3) are complex-
valued. The model should also be complex-valued, including interfaces. Consequently, the
complex eikonal equations and complex rays should be treated in a 12-D phase space with
complex pi and xi , i = 1, 2, 3. There is no problem in initial-value ray tracing of complex
rays, but the boundary-value ray tracing (for example, two-point ray tracing) becomes
considerably more complicated. The same approach can be applied even to isotropic and
anisotropic viscoelastic media. See Budden (1961b), Suchy (1972), Hearn and Krebes
(1990a, 1990b), Zhu and Chun (1994a), Chapman et al. (1998), and Kravtsov, Forbes,
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and Asatryan (1999), among others. For a detailed treatment of complex rays and their
application in seismic wave propagation, see Thomson (1997a), which also gives a critical
review of previous work and many references.

In fact, the ray-series solution (5.6.2) in the frequency domain may also be used for the
complex-valued T , without any change, including the basic recurrence system of equations
of the raymethod (5.6.8). The definition of functions F (n)(ζ ) given by (5.6.27) also remains
valid for complex ζ .

The ray method with a complex eikonal has found applications in various problems
of seismological interest. It has been used to study the wavefield in shadow regions (such
as in the caustic shadow) and close to acoustic axes in anisotropic media (shear wave
singularities). The complex eikonal and complex rays have also been used in the theory
of Gaussian beams; in the investigation of inhomogeneous waves, tunnel waves, surface
waves, and leakingwaves; and in the study of seismic bodywaves propagating in dissipative
media. The ray method with the complex eikonal can also be combined with the space-time
ray method, if the complex-valued phase function θ (x j , t) in (5.6.60) is taken into account.

c. MORE COMPLEX ASYMPTOTIC EXPANSIONS
The ray series method based on the expansion (5.6.2) fails in the regions of singular

behavior of the ray field, such as the caustic region, and the critical region, the shadow
region, and various transition regions. Moreover, it cannot be used to describe certain
types of waves, mainly various types of diffracted waves and the like. In all these cases,
the trial solutions have a more complicated form than the ray series (5.6.2). They often
include special functions, such as theAiry functions,Weber functions, andBessel functions.
Asymptotic series are not, in general, constructed in powers of ω−1 but rather in fractional
powers of ω−1 (for example, in ω−1/3). Suitable forms of the trial solution are usually
based on known analytical solutions of particular canonical problems, which include the
singularity under consideration in pure form. It is often simpler to find the local asymptotic
expansions, which are accurate in the close vicinity of the singularity but fail at larger
distances from it. In practical applications, local asymptotic expansions must be combined
with standard asymptotic expansions, which are accurate in nonsingular regions but lose
their accuracy close to the singularity. Fortunately, the regions of validity of both expansions
often overlap so that a combination of standard and local asymptotics may be used. A more
complex problem is to find uniform asymptotic expansions, valid not only in the vicinity
of the singularity but even at larger distances from it. Such uniform asymptotic expansions
are usually analytically considerably more complex than the relevant local asymptotics.

The problems of local and uniform asymptotic expansions for waves propagating in
laterally varying layered structures are not simple; extensive literature is devoted to them.
See Section 5.9.2.

5.7 Ray-Series Method. Elastic Case

In this section, the vectorial ray series will be introduced and used to study the propaga-
tion of elastic waves in inhomogeneous elastic, isotropic, or anisotropic media. The basic
principles of the vectorial ray-series approach remain the same as in the acoustic case, but
the derivations and final equations are more cumbersome.

The ray-series solutions of the elastodynamic equation were first written and stud-
ied by Babich (1956) and by Karal and Keller (1959). See also Babich and Alekseyev
(1958), Alekseyev and Gel’chinskiy (1959), Alekseyev, Babich, and Gel’chinskiy (1961),
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Podyapol’skiy (1966a, 1966b), Červený and Ravindra (1971), Červený, Molotkov, and
Pšenčı́k (1977), Goldin (1979, 1986), Červený and Hron (1980), Červený (1987b, 1989a),
among others. For inhomogeneous anisotropicmedia, see Babich (1961a), Červený (1972),
and Červený, Molotkov, and Pšenčı́k (1977).

5.7.1 Vectorial Ray Series. Vectorial Amplitude Coefficients

We consider a time-harmonic solution of the elastodynamic equation for an isotropic or
anisotropic inhomogeneous medium (with fi = 0) in the form of a vectorial ray series:

	u(x j , t) = exp[−iω(t − T (x j ))]
∞∑
n=0

(−iω)−n 	U (n)(x j ). (5.7.1)

We shall refer to 	U (n)(x j ), n = 0, 1, 2, . . . , as the vectorial amplitude coefficients of the
ray series. Similarly as T (x j ), the vectorial amplitude coefficients 	U (n)(x j ) depend only
on coordinates x j , not on time t and frequency ω.

As in the case of acoustic pressure waves, the leading term of (5.7.1),

	u(x j , t) = exp[−iω(t − T (x j ))] 	U (0)(x j ), (5.7.2)

is usually called the zeroth-order ray approximation. The properties of the zeroth-order ray
approximation have been studied in earlier chapters of this book, including Sections 5.1
through 5.4. In a similar way, the term

(−iω)−1 exp[−iω(t − T (x j ))] 	U (1)(x j )

is usually called the first-order ray approximation.
Vectorial ray series (5.7.1) is again assumed to have an asymptotic character for ω →

∞. In other words, it satisfies (5.6.3), where vectors 	u and 	U (n) replace scalars p and P (n).

5.7.2 Recurrence System of Equations of the Ray Method

Inserting ray series (5.7.1) into the elastodynamic equation and equating to zero the coef-
ficients at all powers of frequency yields the following infinite system of equations:

Ni

( 	U (0)
) = 0,

Ni

( 	U (1)
)− Mi

( 	U (0)
) = 0, (5.7.3)

Ni

( 	U (k)
)− Mi

( 	U (k−1)
)+ Li

( 	U (k−2)
) = 0 for k ≥ 2.

Here vectorial differential operators Ni , Mi , and Li are given by (2.4.41) for an anisotropic
medium and by (2.4.16) for an isotropic medium. System (5.7.3) can be expressed in a
more compact form if we formally introduce 	U (−1) and 	U (−2) by the relations,

	U (−1)(x j ) = 	U (−2)(x j ) = 0. (5.7.4)

System (5.7.3) then becomes

Ni

( 	U (k)
)− Mi

( 	U (k−1)
)+ Li

( 	U (k−2)
) = 0 for k ≥ 0. (5.7.5)

This is the basic recurrence system of equations of the ray method for the elastic medium.
System (5.7.5) is analogous to system (5.6.8) derived for the acoustic case. Themost impor-
tant difference is that (5.7.5) has vectorial character, whereas (5.6.8) has scalar character.
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System (5.7.5) is valid both for anisotropic and isotropic media, only operators Ni , Mi ,
and Li need to be properly specified.

The system has a recurrent character. It must first be solved for k = 0, then for k = 1,
etc. The first equation of the system (for k = 0) is used to derive the decomposition of the
wavefield into individual waves (P and S for isotropic; qP, qS1, and qS2 for anisotropic),
the eikonal equations for these waves, and the polarization of the individual waves. The
next equation (k = 1) can be used to find the relevant equations for 	U (0). Similarly, the kth
equation (k = 2, 3, . . .) of the system can be used to find 	U (k−1). The system needs to be
solved successively. To determine 	U (k) from the (k + 1)st equation of (5.7.5), the lower
amplitude coefficients 	U (k−1) and 	U (k−2) must be known.

5.7.3 Decomposition of Vectorial Amplitude Coefficients

The amplitude coefficients of ray series 	U (n)(xi ) have vectorial character in elastic media.
To solve the basic recurrence system of equations of the ray method (5.7.5), it is useful
to decompose the amplitude coefficients into components, the computation of which is
relatively simpler. We shall first consider isotropic media and then anisotropic media.

1. ISOTROPIC MEDIA
As we know, in the ray theory approximation, two waves can propagate in smooth

isotropic inhomogeneous media: the P and S waves. The eikonal equations for the travel
times of these waves can be obtained from the first equation of (5.7.3) or (5.7.5), namely
Ni ( 	U (0)) = 0; see Section 2.4.2. For P waves, equation Ni ( 	U (0)) = 0 yields eikonal equa-
tion ∇T · ∇T = 1/α2, and for S waves, eikonal equation ∇T · ∇T = 1/β2, where α and
β are the velocities of the P and S waves and are given by (2.4.23). In addition, equation
Ni ( 	U (0)) = 0 also allows us to determine the polarization of the zeroth-order amplitude
coefficient of ray series 	U (0). The P waves are polarized in the direction of the normal to
the wavefront 	N , 	U (0) = A 	N , and the S waves are polarized in the plane tangent to the
wavefront, 	U (0) = B 	e1 + C 	e2; see (2.4.26) and (2.4.28). Amplitudes A, B, and C can be
computed using the transport equations derived in Section 2.4.

For higher-order amplitude coefficients 	U (n)(x j ), however, the polarization is more
complex. The amplitude coefficients 	U (n) corresponding to P waves are not necessarily
polarized along 	N , and the coefficients 	U (n) corresponding to S waves are not necessarily
polarized in the plane tangent to the wavefront for n ≥ 1. We shall consider the following
general decomposition of 	U (n) into ray-centered components,

	U (n) = U (n)
1 	e1 +U (n)

2 	e2 +U (n)
3 	e3, (5.7.6)

where 	e1, 	e2, and 	e3 are the basis vectors of the ray-centered coordinate system. Thus, 	e1
and 	e2 are tangent to the wavefront, and 	e3 ≡ 	N is perpendicular to it.

It is common to use the following terminology:

a. For P waves, (5.7.6) will be expressed in the following form:

	U (n) = U (n)
3 	e3 + 	W (n)

, with 	W (n) = U (n)
1 	e1 +U (n)

2 	e2. (5.7.7)

Component U (n)
3 	e3 has the same polarization as the zeroth-order amplitude coeffi-

cient 	U (0) = A 	N , and is called the principal component of 	U (n). The other com-
ponent, 	W (n), is tangent to the wavefront and is called the additional component of
	U (n). See Figure 5.16.
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P WAVES

S WAVES

tangent to
the ray ΩΩ ray ΩΩ

n = 0

n > 0

n = 0 n > 0

ray ΩΩ
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Figure 5.16. Principal and additional components of the amplitude coefficients 	U (n)
of the ray series

in isotropic media. The additional components vanish for n = 0 (left). For P waves, the principal
component is tangent to the ray, and the additional components are perpendicular to it. For S waves,
the principal components are perpendicular to the ray, and the additional component is tangent to it.

b. For S waves, (5.7.6) will be expressed as

	U (n) = U (n)
1 	e1 +U (n)

2 	e2 + 	W (n), with 	W (n) = U (n)
3 	e3. (5.7.8)

For S waves, U (n)
1 	e1 +U (n)

2 	e2 (tangent to the wavefront) is called the princi-
pal component of 	U (n), and 	W (n) = U (n)

3 	e3 the additional component of 	U (n). See
Figure 5.16.

Thus, the principal components of 	U (n) have the same polarization as 	U (0), but the
additional components of 	U (n) are perpendicular to 	U (0).

Note that the principal components of 	U (n) are also sometimes called the main com-
ponents of 	U (n) or the normal components of 	U (n). Similarly, the additional components
of 	U (n) are often called the anomalous components.

One remark on the notation. In Section 5.2.2, we used superscript (q) to denote the ray-
centered components of the displacement vector and vectorial amplitude function. Here
we avoid superscripts (q) in expressions U (n)

1 , U (n)
2 , and U (n)

3 , even though they represent
the ray-centered components of 	U (n). The reason is that we wish to avoid notations that
are too complicated. The author hopes that this will not cause any misunderstanding.

2. ANISOTROPIC MEDIA
Three seismic body waves can propagate in smooth anisotropic inhomogeneous media:

one qP and two qS1 and qS2 waves. The eikonal equations for these waves can be derived
from the first equation of (5.7.3), Ni ( 	U (0)) = 0; see Section 2.4.3. For any of these three
waves, the eikonal equations are given by the relation Gm(xi , pi ) = 1, where Gm is an
eigenvalue of theChristoffelmatrix�ik = ai jkl p j pl . The zeroth-order amplitude coefficient
of the selected mth wave 	U (0) is linearly polarized along the appropriate mth eigenvector
	g (m) of the Christoffel matrix, 	U (0) = A	g (m). For more details, refer to Section 2.4.3.
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It is most usual to decompose the higher order coefficient 	U (n) of the ray series in
anisotropic media as

	U (n) = U (n)
1 	g (1) +U (n)

2 	g (2) +U (n)
3 	g (3). (5.7.9)

As in the isotropic case, we shall introduce the principal and additional components of the
higher order amplitude coefficients 	U (n) so that the principal component of 	U (n) has the
same polarization as 	U (0), and the additional component is perpendicular to it. For example,
let us consider the wave specified by m = 1. Then 	U (0) = U (0)

1 	g (1). Consequently, (5.7.9)
will become

	U (n) = U (n)
1 	g (1) + 	W (n), with 	W (n) = U (n)

2 	g (2) +U (n)
3 	g (3).

(5.7.10)

The principal component of 	U (n) is represented byU (n)
1 	g (1), and the additional component

is represented by 	W (n).

5.7.4 Higher Order Ray Approximations. Additional Components

In this section, we shall discuss the determination of the additional components 	W (n) of
the higher order amplitude coefficients 	U (n) of the ray series. The procedure is practically
the same for the anisotropic and isotropic case. For this reason, we shall first derive the
basic equations for the additional components for anisotropic media and then specify these
equations for isotropic media.

We shall consider one of the three seismic body waves propagating in an anisotropic
media specified by equation Gm(xi , pi ) = 1, with m = 1. Thus, G1 = 1, but G2 and G3 in
general differ from 1. The wave under consideration is polarized along unit vector 	g (1). We
can then use (5.7.10), where 	W (n) is the additional component of 	U (n). Inserting (5.7.10)
into (5.7.5) yields

Ni

(
U (n)

1 	g (1)
)+ Ni

( 	W (n)
) = Mi

( 	U (n−1)
)− Li

( 	U (n−2)
)
. (5.7.11)

We remind the reader that the vectorial operator Ni ( 	U (n)) can be expressed as Ni ( 	U (n)) =
ρ(�ikU

(n)
k −U (n)

i ). We shall also use relation (�ik − Gmδik)g
(m)
k = 0 for m = 1, so that

g(1)i = G−1
1 �ik g

(1)
k = �ikg

(1)
k . Similarly we obtain �ikg

(2)
k = G2g

(2)
i and �ik g

(3)
k = G3g

(3)
i .

Then

Ni

(
U (n)

1 	g (1)
) = ρ

(
�ikU

(n)
1 g(1)k −U (n)

1 g(n)i

) = ρU (n)
1

(
�ikg

(1)
k − g(1)i

) = 0.

Similarly, for Ni ( 	W (n)), we obtain

Ni

( 	W (n)
) = ρ

(
�ikg

(2)
k − g(2)i

)
U (n)

2 + ρ(�ikg(3)k − g(3)i

)
U (n)

3

= ρ(G2 − 1)U (n)
2 g(2)i + ρ(G3 − 1)U (n)

3 g(3)i .

Then (5.7.11) yields

ρ(G2 − 1)U (n)
2 g(2)i + ρ(G3 − 1)U (n)

3 g(3)i = Mi

( 	U (n−1)
)− Li

( 	U (n−2)
)
.

(5.7.12)

We assume that we know the RHS of (5.7.12) because it contains 	U (n−1) and 	U (n−2), and
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the system is recursive. Taking the scalar products of (5.7.12) with 	g (2) and 	g (3) yields

U (n)
2 = 1

ρ(G2 − 1)

[ 	M( 	U (n−1)
)− 	L( 	U (n−2)

)] · 	g (2),

U (n)
3 = 1

ρ(G3 − 1)

[ 	M( 	U (n−1)
)− 	L( 	U (n−2)

)] · 	g (3).

(5.7.13)

These are the final expressions for the additional components of amplitude coefficient 	U (n).
Mutatis mutandis, (5.7.13) can also be used for m = 2 or m = 3.

For n = 0, the additional components 	U (0)
2 and 	U (0)

3 of 	U (0) vanish, due to (5.7.4).
For n = 1, we use 	U (n−2) = 	U (−1) = 0 so that

U (1)
2 = 1

ρ(G2 − 1)
	M( 	U (0)

) · 	g (2), U (1)
3 = 1

ρ(G3 − 1)
	M( 	U (0)

) · 	g (3).

(5.7.14)

These equations can also be used for isotropic media; only the eigenvalues and eigen-
vectors must be properly specified. We remind the reader that G1 = G2 = β2 pi pi , G3 =
α2 pi pi , 	g (1) = 	e1, 	g (2) = 	e2, and 	g (3) = 	e3 ≡ 	N in the isotropic case, where 	N is the
normal to the wavefront, and 	e1 and 	e2 are tangent to the wavefront.

For P waves, pi pi = 1/α2 and G1 = G2 = β2 pi pi = β2/α2. Renumbering appropri-
ately the eigenvalues and eigenvectors, Equation (5.7.13) yields

U (n)
1 = − α2

ρ(α2 − β2)

[ 	M ( 	U (n−1)
)− 	L( 	U (n−2)

)] · 	e1,

U (n)
2 = − α2

ρ(α2 − β2)

[ 	M ( 	U (n−1)
)− 	L( 	U (n−2)

)] · 	e2.
(5.7.15)

For S waves, pi pi = 1/β2 and G3 = α2 pi pi = α2/β2. Equation (5.7.13) then yields

U (n)
3 = β2

ρ(α2 − β2)

[ 	M( 	U (n−1)
)− 	L( 	U (n−2)

)] · 	e3. (5.7.16)

For n = 0, additional components U (0)
1 and U (0)

2 (for P waves) and U (0)
3 (for S waves)

again vanish. The expressions for the additional components of the first-order ray approx-
imation yield

U (1)
1 = − α2

ρ(α2 − β2)
	M( 	U (0)

) · 	e1,

U (1)
2 = − α2

ρ(α2 − β2)
	M( 	U (0)

) · 	e2
(5.7.17)

for P waves and

U (1)
3 = β2

ρ(α2 − β2)
	M( 	U (0)

) · 	e3 (5.7.18)

for S waves.

5.7.5 Higher Order Ray Approximations. Principal Components

The computation of the principal components of the higher order amplitude coefficients of
the ray series is more involved than the evaluation of the additional components. In general,
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they can be computed by solving higher order transport equations, as in the acoustic case.
In this section, we shall derive and discuss these higher order transport equations and their
solutions.

We shall again start with anisotropic media. Multiplying (5.7.12) by g(1)i and increasing
index n by one, we obtain

	M( 	U (n)
) · 	g (1) = 	L( 	U (n−1)

) · 	g (1). (5.7.19)

Using decomposition (5.7.10) and inserting it into (5.7.19) yields

	M(U (n)
1 	g (1)

) · 	g (1) = [	L( 	U (n−1)
)− 	M( 	W (n)

)] · 	g (1). (5.7.20)

Because 	W (n) is the additional component, it can be determined from 	U (n−1) and 	U (n−2);
see (5.7.13). Thus, for a given n, we can assume that the RHS of (5.7.20) is known because
system (5.7.5) has a recurrent character. We shall use the following notation:

ζ (n−1)
m = 1

2ρ
−1/2

[
Li
( 	U (n−1)

)− Mi

( 	W (n)
)]
g(m)
i , ζ (−1)

m = 0. (5.7.21)

Then, (5.7.20) reads

Mi

(
U (n)

1 	g (1)
)
g(1)i = 2

√
ρ ζ

(n−1)
1 . (5.7.22)

This equation will be used to derive the transport equation for U (n)
1 . Suitable expressions

for Mi (U
(n)
1 	g (1))g(1)i were derived in Section 2.4.3. For example,

Mi

(
U (n)

1 	g (1)
)
g (1)
i = 2ρ UiU (n)

1,i +U (n)
1 (ρUi ),i

= √
ρ
[
2Ui

(√
ρU (n)

1

)
,i

+ √
ρU (n)

1 Ui,i
]
. (5.7.23)

Inserting (5.7.23) into (5.7.22) yields

2Ui
(√
ρU (n)

1

)
,i

+ √
ρU (n)

1 Ui,i = 2 ζ (n−1)
1 . (5.7.24)

This is the final form of the transport equation of higher order for
√
ρU (n)

1 . In vectorial
form it reads

2 	U · ∇(√ρU (n)
1

)+ √
ρU (n)

1 ∇ · 	U = 2 ζ (n−1)
1 . (5.7.25)

Transport equations (5.7.24) or (5.7.25) can be solved simply along the ray.We take into
account (3.10.25) for ∇ · 	U , ∇ · 	U = J−1d(U J )/ds, and use relation 	U · ∇(

√
ρU (n)

1 ) =
Ud(√ρU (n)

1 )/ds, and (5.7.25) yields

d

ds

(√
ρU (n)

1

)+
√
ρU (n)

1

2U J
d

ds
(U J ) = ζ

(n−1)
1

U . (5.7.26)

An alternative form of (5.7.26) is

d
(√
ρ U J U (n)

1

)/
ds =

√
J/U ζ (n−1)

1 . (5.7.27)

This equation can be integrated very simply. Before we do so, we shall give another useful
form of the transport equations. In anisotropic media, it is more common to use variable
T along the ray instead of s, dT = ds/U , and Jacobian J (T ) instead of J , J (T ) = U J . The
transport equation of higher order (5.7.27) then reads

d
(√
ρ J (T )U (n)

1

)/
dT =

√
J (T ) ζ (n−1)

1 . (5.7.28)
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The solutions of (5.7.27) and (5.7.28) are easy. We shall first present the continuation
formulae. Assume that U (n)

1 is known at point s0 of the ray and that we wish to determine
U (n)

1 at another arbitrary point s of the ray. Then the solution of (5.7.26) is

U (n)
1 (s)= 1√

ρ(s)U(s)J (s)

×
{√
ρ(s0)U(s0)J (s0)U (n)

1 (s0) +
∫ s

s0

√
J (s ′)
U(s′)

ζ
(n−1)
1 (s ′)ds ′

}
.

(5.7.29)

A similar solution is obtained from (5.7.28),

U (n)
1 (T )= 1√

ρ(T )J (T )(T )

×
{√
ρ(T0)J (T )(T0)U

(n)
1 (T0) +

∫ T

T0

√
J (T )(T ′) ζ (n−1)

1 (T ′)dT ′
}
.

(5.7.30)

The integration parameters s ′ and T ′ in the integrals in (5.7.29) and (5.7.30) represent the
arc length and the travel time along the ray.

The equations derived for the principal components of higher order amplitude coef-
ficients of ray series (5.7.29) and (5.7.30) can be expressed in various alternative forms.
They simplify considerably in certain important situations, particularly in homogeneous
media. They can also be modified to consider a point source situated at s = s0, as in the
zeroth-order case. Let us consider, for a while, only (5.7.29). The first term in the brackets
of (5.7.29) vanishes if U (n)

1 (s0) is finite because J (s0) = 0 at the point-source. U (n)
1 (s0),

however, may be infinite at the point source. As in the zeroth-order ray approximation, we
can introduce the radiation function of higher order G(n)

1 (s0; γ1, γ2),

G(n)
1 (s0; γ1, γ2) = lim

s′→s0

{L(s ′, s0) U
(n)
1 (s ′)

}
. (5.7.31)

Equation (5.7.29) can then be modified to read

U (n)
1 (s) =

√
ρ(s0)U(s0)
ρ(s)U(s)

1

L(s, s0)

{
exp[iT c(s, s0)] G(n)

1 (s0; γ1, γ2)

+ 1√
ρ(s0)U(s0)

∫ s

s0

L(s ′, s0)√U(s ′)
exp[iT c(s ′, s0)]ζ

(n−1)
1 (s ′)ds ′

}
.

(5.7.32)

Equation (5.7.30) would lead to a similar result.
For isotropic media, the equations derived above can again be used, but they must be

properly modified. We need to replace 	g (1), 	g (2), and 	g (3) by 	e1, 	e2, and 	e3 ≡ 	N and to
use 	U = α 	N for P waves and 	U = β 	N for S waves. Moreover, Li and Mi in definition
equation (5.7.21) are defined by (2.4.16). We also need to use proper numbering for P and
S waves (m = 3 for P waves and m = 1, 2 for S waves). For the reader’s convenience, we
shall give the isotropic version of (5.7.29), separately for P and S waves.



5.7 RAY-SERIES METHOD. ELASTIC CASE 575

For P waves, the principal component of 	U (n) is U (n)
3 , and U = α. Hence,

U (n)
3 (s) = 1√

ρ(s)α(s)J (s)

×
{√
ρ(s0)α(s0)J (s0)U

(n)
3 (s0) +

∫ s

s0

√
J (s ′)
α(s ′)

ζ
(n−1)
3 (s ′)ds ′

}
.

(5.7.33)

For S waves, the principal components of 	U (n) are U (n)
1 and U (n)

2 , and U = β. Hence

U (n)
1,2(s) = 1√

ρ(s)β(s)J (s)

×
{√
ρ(s0)β(s0)J (s0)U

(n)
1,2(s0) +

∫ s

s0

√
J (s ′)
β(s′)

ζ
(n−1)
1,2 (s ′)ds ′

}
.

(5.7.34)

For a point source situated at s0, we can express the ray Jacobian J (s) in terms of the
relative geometrical spreading L(s, s0). Then (5.7.32) yields

U (n)
i (s) =

(
V (s0)ρ(s0)

V (s)ρ(s)

)1/2 exp(iT c(s, s0))

L(s, s0) G(n)
i (s0; γ1, γ2)

+ 1√
ρ(s)V (s)L(s, s0)

∫ s

s0

L(s ′, s0)√
V (s′)

× exp(iT c(s ′, s0)) ζ
(n−1)
i (s ′)ds ′. (5.7.35)

Here U (n)
i (s) denote the principal components of the nth vectorial amplitude coefficients

	U (n) of ray series (5.7.1). For Pwaves, i = 3, and V = α. For Swaves, i = 1, 2, and V = β.
Moreover, T c(s, s0) denotes the phase shift due to caustics and G(n)

i (s0, γ1, γ2) denotes the
radiation pattern of the nth order, given as

G(n)
i (s0, γ1, γ2) = lim

s′→s0

{L(s ′, s0)U
(n)
i (s ′)

}
. (5.7.36)

Limit s ′ → s0 is taken along the ray specified by ray parameters γ1 and γ2. For the zeroth-
order approximation (n = 0), (5.7.35) yields (5.2.22), in slightly different notation.

Let us emphasize the basic difference between the computation of additional and prin-
cipal components of the higher order amplitude coefficients 	U (k)

, k ≥ 1. The computa-
tion of additional components is purely local; they can be obtained from known 	U (k−1)

and 	U (k−2)
using the differential operators 	M and 	L . Mostly, the spatial derivatives are

calculated numerically, using the quantities known along several vicinity rays. No new
initial data are required. The computation of the principal components of 	U (k)

(R) at a
point R on ray � requires that we know 	U (k)

(S) at some point S on � and perform a
numerical integration along� from S to R. Thus, new initial data must be known for each
k. For a point source situated at S, the vectorial higher order radiation function G(k) must
be known at S. Similarly, as in the acoustic case, the higher order radiation functions are
known only for some simple point sources situated in a homogeneous medium. For point
sources situated in inhomogeneous media, suitable expressions for higher order radiation
functions have not yet been derived. This represents the basic limitation of the practical
applicability of Equation (5.7.32).
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5.7.6 Reflection and Transmission

The problem of reflection and transmission of elastic waves at a curved interface between
two inhomogeneous elastic media can be treated by the ray-series method in much the same
way as the same problem was treated for acoustic waves in Section 5.6.4. Instead of two
interface equations, however, we have six interface equations, expressing the continuity
of displacement and traction across �. Representing the reflected and transmitted P and
S waves by the relevant ray series, we need to determine six principal components of all
these waves (two for P and four for S) successively for n = 0, 1, 2, . . . . For each n, the
system of six linear equations for six principal components is obtained by collecting the
terms with the same power of frequency in the interface conditions.

For n = 0, the system has exactly the same form as (2.3.37) or (2.3.50). For n ≥ 1, the
left-hand side of the system is the same as in (2.3.37) or (2.3.50), but the right-hand side is
considerably more complicated. As in the acoustic case, see (5.6.20), the right-hand side
of the system for n ≥ 1 contains the amplitude coefficients of the ray series of order n − 1.
The right-hand side also contains the additional components of the amplitude coefficients
of order n, but these may be expressed in terms of the amplitude coefficients of orders
n − 1 and n − 2. The systems are solved successively, first for n = 0, then for n = 1, and
so on. Thus, the right-hand sides of the system are assumed known for any n.

It would be simple to derive the system of six linear equations for any n, but the final
equations are rather cumbersome. For this reason,we do not present themhere. For isotropic
media, the interested reader can find these systems in the book by Červený and Ravindra
(1971). The discussion of the system for the elastic case remains practically the same as
for the acoustic case. Again, the local (plane-wave) approximation can be used only in the
zeroth-order approximation of the ray method, but not for higher-order approximations.
As in the acoustic case, the waves reflected at an interface of the N -th order are of the
(N − 1)-st order, in the terminology of the ray series method.

5.7.7 Alternative Forms of the Vectorial Ray Series

As in the scalar acoustic case, the vectorial ray series can be expressed in several alternative
forms. For high-frequency transient signals, the vectorial ray series takes the form

uk(x j , t) =
∞∑
n=0

U (n)
k (x j ) F

(n)(t − T (x j )). (5.7.37)

The ray series for discontinuities reads

uk(x j , t) = F (0)(t) ∗
∞∑
n=0

U (n)
k (x j ) h

(n)(t − T (x j )) (5.7.38)

or

uk(x j , t) = F (0)(t − T (x j )) ∗
∞∑
n=0

U (n)
k (x j ) h

(n)(t). (5.7.39)

Here F (n)(ζ ) are high-frequency analytical signals, satisfying conditions (5.6.30) or
(5.6.31). Similarly, h(n)(t) are given by relations (5.6.35). Functions T (x j ) and U

(0)
k (x j ),

U (1)
k (x j ), . . . , are exactly the same as in the vectorial ray series for harmonic waves

(5.7.1). Thus, ray series (5.7.1) and (5.7.37) through (5.7.39) can be used alternatively.
All the remarks and comments of Section 5.6.5, related to the scalar ray series, also apply

to vectorial ray series. In practical applications, we again must use the real or imaginary
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parts of (5.7.37) through (5.7.39), or a linear combination of the real and imaginary part
(depending on the initial and boundary conditions).

5.7.8 Exact Finite Vectorial Ray Series

Asymptotic vectorial ray series are, in general, only approximate. Only a finite number of
terms of the asymptotic series has practical meaning. For a fixed ω, the asymptotic series
always yields some unremovable error.

Nevertheless, there are some canonical situations in which the ray series is finite and
exact. One of the very important examples is the elastodynamic Green function for a homo-
geneous isotropicmedium. As we know, the elastodynamic Green function corresponds to
a single-force point source. The analytical expressions for the elastodynamic Green func-
tion in a homogeneous isotropic medium are known well from the seismological literature
(Aki and Richards 1980), and were also derived in Section 2.5.4. In the frequency domain,
the exact analytical expression consists of three terms, multiplied successively by (−iω)0,
(−iω)−1, and (−iω)−2; see (2.5.56). It thus has the form of a finite asymptotic series in
terms of (−iω)−n and is exact.

This example may be a good test of the ray-series equations derived in Sections 5.7.1
through 5.7.5. Indeed, it was proved by Vavryčuk and Yomogida (1995) that the ray-series
equations yield the exact expressions in this case. Among others, the ray-series equations
yield 	U (k)(x j ) = 0 for k ≥ 3. The ray equations remain valid even in the static case. It
is very comforting to know that the ray-series method yields exact expressions in certain
important situations. Similarly, the exact expressions for the seismic wavefield generated
by a center-of-dilatation (explosive) point source in a homogeneous isotropic medium,
have two terms with factors (−iω)0 and (−iω)−1. In this case, the ray-series method again
yields exact results.

The elastodynamic Green function may be expressed exactly by a finite ray series
even in some special cases of an anisotropic homogeneous medium. See Vavryčuk and
Yomogida (1996) for the SH wave Green function in a homogeneous transversely isotropic
medium and Vavryčuk (1997) for the elastodynamic Green function in a homogeneous
weakly transverse isotropic medium. The last reference offers an interesting discussion of
this subject and many numerical examples.

5.7.9 Applications of Higher Order Ray Approximations.

Two-Term Ray Method

In principle, everything discussed in Section 5.6.6 with regard to the applications of higher
order ray approximations for the acoustic case also applies to the elastic vectorial case.

Higher order waves are again represented mainly by waves reflected from interfaces
of higher order (see Section 5.7.6) and by head waves (see Section 5.7.10). The general
situation, however, is considerably more complex in the elastic case than in the acoustic
case because various types of converted waves may be generated at structural interfaces,
in addition to unconverted waves.

The first-order ray approximation again plays an important role if the zeroth-order
ray approximation is vanishing along certain rays. Particularly important is the case of the
radiation function vanishing along a particular direction. Such rays exist formany important
types of point sources, including the single-force point source. We remind the reader that
the single-force point source corresponds to the elastodynamic Green function. As we
know from Section 5.7.8, the ray series corresponding to the single-force point source is
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finite (three terms) and exact in homogeneous isotropic media. This is, however, not true
for inhomogeneous layered media. As in a homogeneous medium, the equations derived
in this section for the higher order ray approximation yield a nonvanishing wavefield even
along nodal lines. This result also applies to other types of radiation functions, including
the double-couple point source, which plays a very important role in seismology as the
representative of natural earthquakes.

The first-order ray approximation may be conveniently applied to the case of re-
flected/transmittedwaves along those rays alongwhich the relevantR/Tcoefficients vanish.
A very important case corresponds to the reflected/converted waves (P → S and S → P)
for normal angle of incidence. In this case, the relevant reflection coefficient is zero so
that the zeroth-order ray approximation vanishes for the normal angle of incidence. The
first-order ray approximation, however, shows that the converted reflected waves even exist
for normal angles of incidence. The application of the first-order ray approximation to
the investigation of converted reflected waves for normal and near-normal angles of inci-
dence is probably the most common application of higher order ray approximations in the
seismological literature.

The first-order ray approximation can be also used to compute the dilatation (∇ · 	u) for
S waves and the rotation (∇ × 	u) for P waves. In the zeroth-order ray approximation, these
quantities vanish. They have been used in the discrimination of P and S waves and in other
applications. See Kiselev and Rogoff (1998).

The first-order ray approximation has been also successfully used to study the properties
of S waves generated by a point source in a homogeneous, transversely isotropic medium,
propagating in directions close to that of a kiss singularity. Although the zeroth-order
approximation is very inaccurate in this case, satisfactory results are obtained if also the
first-order approximation is supplied. See Vavryčuk (1999).

The first-order ray approximation can be used to appreciate the accuracy of the zeroth-
order ray approximation, as in the acoustic case.

In addition to the applications discussed previously, we must mention one very impor-
tant vectorial application of the first-order ray approximation. It concerns the investigation
of polarization anomalies of seismic body waves due to the inhomogeneities. The ad-
ditional components of the first-order amplitude coefficients in inhomogeneous isotropic
media show that the P wave is not polarized strictly perpendicular to the wavefront, and
the S waves are not strictly polarized in the plane tangent to the wavefront. We shall now
give the expressions for the seismic body waves propagating in isotropic inhomogeneous
media, which contain the leading terms for all components of the displacement vector (both
principal and additional):

uk(x j , t) = exp[−iω(t − T (x j ))]
(
U (0)
k (x j )+ (−iω)−1W (1)

k (x j )
)
. (5.7.40)

Let us emphasize that 	W (1)(x j ) is not the complete first-order amplitude coefficient 	U (1)(x j )
but only its additional component. It is not necessary to include the principal component of
the first-order amplitude coefficient 	U (1)(x j ) because it does not represent the leading term
but only a correction to the zeroth-order amplitude coefficient. The ray method based on
(5.7.40) has also been known as the two-term ray method or the two-component ray method
in the seismological literature. The two-term ray method is the lowest approximation of the
ray-series method, which can be used to study the polarization anomalies of seismic body
waves in inhomogeneous isotropic media.

It should be mentioned that the computation of the additional component W (1)
k (x j ) is

fully local. 	W (1) can be simply calculated from 	U (0) by applying differential operator 	M
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to 	U (0) (see (5.7.17) and (5.7.18)), without knowledge of the radiation function of the first
order.

The two-term expression (5.7.40) may be of great interest in investigating anisotropic
properties of the medium. Let us consider, for example, P waves. The deviation of the
displacement vector of a P wave from the direction of the ray is commonly attributed to
anisotropy, but this deviation may appear in a fully isotropic inhomogeneous media. It is
caused by the additional component W (1)

k in (5.7.40).
Equation (5.7.40) can also be used for an anisotropic inhomogeneous medium. In this

case, however, 	W (1) is given by (5.7.10). The expression then represents the deviation of
the displacement vector from the direction of eigenvector 	g (1).

For more details and numerical computations, see Alekseyev and Mikhailenko (1982),
Kiselev (1983), Daley and Hron (1987), Roslov and Yanovskaya (1988), Babich and
Kiselev (1989), Goldin (1989), Kiselev and Roslov (1991), Hron and Zheng (1993), Goldin
andKurdyukova (1994), Popov andCamerlynck (1996), and Eisner and Pšenčı́k (1996). An
up-to-date exposition of the two-term ray method and a detailed discussion of its possibil-
ities can be found in Fradkin and Kiselev (1997).

5.7.10 Seismic Head Waves

As in the acoustic scalar case, head waves are the most typical example of higher order
seismic body waves even in the vectorial elastic case. The generation of elastic head waves
is practically the same as in the acoustic case. The only difference is that, in the elastic
case, various types of head waves may propagate from the source to the receiver.

Theoretical investigation of seismic head waves started as early as in the 1930s, see
Muskat (1933). The investigation byMuskat was based on an asymptotic treatment of exact
integral expressions. The ray method was first applied to seismic head waves by Alekseyev
and Gel’chinskiy (1961). For a detailed treatment of seismic head waves and for many
other references, see Červený and Ravindra (1971).

We shall consider a plane interface � of the first order situated between two elastic
homogeneous halfspaces, specified by medium parameters α1, β1, ρ1 and α2, β2, ρ2. We
assume that a point source of spherical elastic waves with isotropic radiation patterns is
situated at point S in the first halfspace, at distance hS from �. The receiver is situated
at point R, at distance hR from �. Receiver R may be situated either in the first or in the
second halfspace. The rays of R/T waves and head waves are planar in this case; they
are fully situated in the plane of incidence. We can then consider the P-SV and SH case
separately. We shall start with the P-SV case, but we shall call the SV waves simply S
waves. Only later shall we briefly discuss the SH head waves.

We denote the velocity of the wave generated by the source by VS (this may be either
α1 or β1, depending on the type of wave generated), and the velocity of the wave arriving
at the receiver VR (this may be α1, β1, α2, or β2, depending on the position of the receiver
and on the type of wave at R). Similarly, we denote the velocity of the head wave along
the ray segment parallel to interface � by V ∗ (this may be either α1, α2, or β2). A head
wave specified by VS, VR , and V ∗ may be generated only if the two following conditions
are satisfied:

V ∗ > VS, V ∗ > VR. (5.7.41)

All possible types of seismic head waves generated at interface � for source S situated in
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Figure 5.17. Possible types of seismic head waves generated at a plane structural interface between
two homogeneous isotropic solid halfspaces.

the first (upper) halfspace are schematically shown in Figure 5.17. The first line corresponds
to a P-wave source, and the second line corresponds to an S-wave source. The individual
head waves are denoted by a simple, self-explanatory alphanumerical code in Figure 5.17.
As we can see, 13 different types of head waves may be generated at an interface: 5 for the
source of P waves and 8 for the source of S waves. For a specified model, the individual
head waves are generated only if (5.7.41) is satisfied. Thus, all 13 head waves shown in
Figure 5.17 cannot be generated at once.

The most favorable conditions for the generation of head waves exist if α2 > β2 >
α1 > β1. In this case, 11 head waves will be generated: 5 for the P source and 6 for the S
source. In fact, all head waves shown in Figure 5.17 are generated in this case, with the
exception of head waves S1P1S2 and S1P1P2, shown in the last diagram in Figure 5.17.

The worst conditions for the generation of head waves exist if α1 > β1 > α2 > β2. In
this case, only three head waves are generated; all of them for an S-wave source and none
for a P-wave source. They correspond to the S1P1S1, S1P1S2, and S1P1P2 head waves,
shown in the last diagram of Figure 5.17.

As we can see in Figure 5.17, the head waves may be generated both by reflected and
transmitted waves. We can also see that the ray segment parallel to the interface may exist
on either side of the interface. The only requirement is that (5.7.41) is satisfied.

Let us consider an arbitrarily selected headwave.We introduce theR/Twave associated
with the selected headwave. There is always oneR/Twave associatedwith the selected head
wave. Both waves have one common ray, corresponding to the critical angle of incidence.
Along this ray, the travel times of both waves are the same and the travel-time curves of
both waves are mutually tangent. As an example, see Figure 5.14 for head wave P1P2P1
and associated reflected wave P1P1. The ray code of the R/T wave associated with the
selected head wave is obtained simply. We remove the code corresponding to the middle
element (parallel to the interface) from the ray code of the head wave. For example, the
R/T waves associated with head waves P1P2S1, S1P2S2, S1P1S1, and S1P1P2 are the
reflected wave P1S1, transmitted wave S1S2, reflected wave S1S1, and transmitted wave
S1P2, respectively.

We shall now present, without a derivation, the equations for an arbitrarily selected
head wave, corresponding to parameters hS, hR, VS, VR , and V ∗, where VS, VR , and V ∗

satisfy (5.7.41). An important role for a given head wave is played by the relevant critical
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angle of incidence i∗1 and critical distance r∗, given by the relations

sin i∗1 = VS
V ∗ , r∗ = hSVS(

V ∗2 − V 2
S

)1/2 + hRVR(
V ∗2 − V 2

R

)1/2 . (5.7.42)

The head wave exists only at postcritical distances r > r∗. The travel time T h of the head
wave is

T h = r

V ∗ + hS
VS

(
1 −

(
VS
V ∗

)2)1/2

+ hR
VR

(
1 −

(
VR
V ∗

)2)1/2

. (5.7.43)

At the critical point, travel time T h is the same as the travel time of the associated R/T
wave.

It is not difficult to derive the expression for the displacement vector 	u h of the head
wave. We assume that the radiation function of the source is omnidirectional and equals
unity (for both P and S waves). The modification for other types of radiation functions
should be straightforward. The displacement vector of the head wave at receiver point R,
	u h(R, t)

	u h(R, t) = i V ∗� tan i∗1
ω r1/2 L3/2

exp[−iω(t − T h)] 	eR. (5.7.44)

Here T h is given by (5.7.43), L = r − r∗ is the length of the ray segment parallel to
�, tan i∗1 = VS/(V ∗2 − V 2

S )
1/2, � is the so-called head-wave coefficient, and 	eR is the

polarization vector of the head wave at receiver R. If the wave arrives at R as a P wave, 	eR
is the unit vector parallel to the ray of the head wave (perpendicular to its wavefront). If it
arrives at R as an S wave, 	eR is perpendicular to the ray (tangent to the wavefront). It is
oriented with respect to the ray to the same side of the ray as the associated R/T wave.

Head-wave coefficient � may be computed easily in several ways from the expressions
for the R/T coefficients given by (5.3.2) through (5.3.5). We use the following notation:
P = (1 − V ∗2 p2)1/2, where p = sin i1/VS is the ray parameter. Note that P is one of
the quantities P1, P3, P4 defined by (5.3.5), depending on the type of head wave under
consideration. Head-wave coefficient � is then given by

� = −(dR/dP)p=1/V ∗, (5.7.45)

where R is the R/T coefficient of the associated R/T wave. Alternatively, if the R/T
coefficient of the associated R/T wave is expressed as

R = (R1 + R2P)/(R3 + R4P), (5.7.46)

the head-wave coefficient is given by the relation

� = [
(R4R1 − R3R2)/R

2
3

]
p=1/V ∗ ; (5.7.47)

see (5.7.45). Analytical expressions for individual head-wave coefficients can be found in
Červený and Ravindra (1971).

As an example, we shall apply the equations presented in this section to head wave
P1P2P1 and compare them with the equivalent equations for the acoustic head waves
derived in Section 5.6.7. We put VS = VR = c1, V ∗ = c2, n = c1/c2. Then (5.7.42) for r∗

yields (5.6.44), and (5.7.43) for T h yields (5.6.45). It is also obvious that (5.7.44) must
yield (5.6.58), if we use β1 = β2 = 0 and eliminate 	eR from (5.7.44). We remind the reader
that the displacement P1P1 reflection coefficient yields the pressure reflection coefficient
(5.1.21) for β1 = β2 = 0, where P = (1 − V ∗2 p2)1/2 = (1 − c22 p

2)1/2 is represented by
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P2. If we express pressure reflection coefficient (5.1.21) in the form of (5.7.46), we obtain
R1 = R3 = ρ2c2P1 and R2 = −R4 = −ρ1c1. Then (5.7.47) yields

� = 2ρ1c1/ρ2c2
√
1 − n2. (5.7.48)

This is the final expression for the acoustic head-wave coefficient. The same expression for
� would be obtained from (5.7.45). Inserting the acoustic head-wave coefficient � given
by (5.7.48) into (5.7.44) yields the amplitudes

iV ∗� tan i∗1
ωr1/2 L3/2

= 2iρ1c1 n

ωρ2(1 − n2)r1/2L3/2
.

This fully coincides with the expression for the amplitudes of the acoustic head waves
derived in Section 5.6.7; see (5.6.58).

Equation (5.7.44) also remains valid for SH head waves. In this case polarization vector
	eR is represented by a unit vector perpendicular to the plane of incidence. There is only one
type of SH head wave for a source situated in the first halfspace: S1S2S1. SH head wave
S1S2S1 is generated only if n = β1/β2 < 1. The SH head-wave coefficient of this wave
can be simply obtained from the SH reflection coefficient R22 given by (5.3.2), if we use
(5.7.46) and (5.7.47). We obtain

� = 2ρ2 β2/(ρ1 β1
√
1 − n2).

The final expression for the displacement vector of the SH head wave is then given by
(5.7.44), where we insert this expression for �, and put V ∗ = β2, tan i∗1 = n/

√
1 − n2.

We shall not discuss the derived equations and the properties of elastic head waves.
In fact, most of the properties of head waves in the vectorial elastic case remain very
similar to those of head waves in the scalar acoustic case; see Section 5.6.7. For more
details, see Alekseyev and Gel’chinskiy (1961) and Červený and Ravindra (1971). A very
detailed derivation of all equations for seismic head waves and a physical discussion of
their properties can be found in the book by Červený and Ravindra (1971). The book also
extends our treatment to an arbitrary structure of the overburden and discusses in detail the
situation in the critical region. The book also devotes considerable attention to so-called
interference head waves, generated at convex interfaces and/or in the case of velocity
increasing with distance from the interface.

5.7.11 Modified Forms of the Vectorial Ray Series

We shall not go into details of the seismic space-time ray-series method and seismic
complex eikonal method here; the principles of both methods are very similar to the
relevant scalar acoustic methods; see Section 5.6.8. The interested reader is referred to
Sections 2.4.6 and 5.6.8 for other suitable references and to Thomson (1997a). Similarly,
extensive literature has been devoted to various local and uniform asymptotic expansions
of the vectorial wavefields in singular regions. A more detailed treatment of these subjects,
however, would extend the scope of this book inadmissibly.

5.8 Paraxial Displacement Vector. Paraxial Gaussian Beams

In this section, we shall construct approximate high-frequency solutions of the elastody-
namic equations, valid not only along rays but also in the paraxial vicinity of these rays. We
shall call them the paraxial ray approximations (for real-valuedQ, P, andM) and paraxial
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Gaussian beams (for complex-valued Q, P, and M). We shall also use these elementary
solutions, connected with the individual rays, as cornerstones in the superposition inte-
grals, representing more general solutions of the elastodynamic equation. The summation
of paraxial ray approximations and the summation of paraxial Gaussian beams remove
certain singularities of the standard ray method.

Let us choose an arbitrary ray � and call it the central ray. The ray may be reflected,
transmitted, and converted at structural interfaces.We introduce the ray-centered coordinate
system q1, q2, q3 ≡ s connectedwith ray�, and denote unit basis vectors along� by 	e1, 	e2,
and 	e3 ≡ 	t ; see Section 4.1. Here s is the arclength along�, measured from some reference
point on �, and 	t = 	t(s) is the unit tangent vector to �. In addition to variable point s,
we also consider one fixed point s0 on �. Point s0 may be chosen quite arbitrarily on �.
We assume that dynamic ray tracing has been performed along � from s0 to s and that
ray propagator matrix Π(s, s0) is known. We also introduce the submatrices Q1(s, s0),
Q2(s, s0), P1(s, s0), and P2(s, s0) of ray propagator matrix Π(s, s0); see (4.3.5).

Chapter 4 described the use of ray propagator matrix Π(s, s0) to determine the travel-
time field in the paraxial vicinity of �. The expansion (4.1.77) of paraxial travel time
T (q1, q2, s) is valid up to the quadratic terms in qI . A similar expansion (4.6.29) for
the paraxial slowness vector components p(q)I (q1, q2, s) is valid up to the linear terms in
qI . In many applications, it would also be very useful to know the ray amplitudes in the
paraxial vicinity of�. The situation is, however, more complex in this case. The amplitudes
along the central ray are inversely proportional to [det Q]1/2 so that it would be necessary to
determine the expansion of quantity [det Q]−1/2 in terms of qI . This is, however, impossible
in the framework of standard dynamic ray tracing. Dynamic ray tracing along� yields only
Q(s) = [Q(q1, q2, s)]q1=q2=0 along �, but not Q(q1, q2, s) in the vicinity of �. There are
two possibilities of determining the distribution of Q in the vicinity of �.

a. Computation of new rays in the vicinity of �. We can then compute Q′s by the
dynamic ray tracing along the new rays, and perform interpolation between nearby
rays. See Eisner and Pšenčı́k (1996).

b. Application of higher order paraxial methods, outlined in Section 4.7.6. Suchmeth-
ods, however, have not yet been numerically investigated.

In layered media, there would be an additional difficulty connected with the amplitude
variations, caused by the variations of the R/T coefficients from one ray to another. As a
consequence of all these difficulties, paraxial amplitudes are usually considered constant
in the paraxial vicinity of � and are considered equal to the amplitudes on the central ray.
We shall call the final expressions for the paraxial displacement vector, constructed in this
way, paraxial ray approximations and discuss them in Section 5.8.1.

Nevertheless, dynamic ray tracing yields certain important results regarding the direc-
tion of the vectorial amplitudes in the paraxial vicinity of �. We know that the slowness
vector changes its direction in the vicinity of � due to the curvature of the wavefront.
Because amplitude vector 	U (q)

is parallel to the slowness vector for P waves, and perpen-
dicular to it for Swaves, the direction of 	U (q) also changes in the vicinity of�. Dynamic ray
tracing can be used to determine the slowness vector in the vicinity of�, and it can thus also
be used to determine the paraxial correction to the vectorial amplitudes of P waves there.
The determination of paraxial corrections to the vectorial amplitudes of S waves is more
involved; it requires two additional quadratures along the ray. These paraxial corrections
are not discussed here. See Coates and Chapman (1990a) and Klimeš (1999b).
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The equations for the time-harmonic paraxial displacement vector can also be used
to find some more general solutions of the elastodynamic equation, closely concentrated
around central ray � for high frequencies ω. Such solutions can be constructed in various
ways.Herewe shall briefly discuss one formof these solutions, known as paraxialGaussian
beams, or simply Gaussian beams. See Section 5.8.2.

Both the paraxial ray approximations and the paraxialGaussian beamsplay an important
role in various applications. The most important application resides in the construction of
more general solutions of the elastodynamic equation by their summation. The integral
superposition of paraxial ray approximations or of paraxial Gaussian beams yields only an
approximate high-frequency solution of the elastodynamic equation but removes certain
singularities of the standard ray method (caustic region, critical region, and the like). See
Section 5.8.3 for a detailed explanation of superposition integrals, Section 5.8.4 for their
discussion, Section 5.8.5 for the summation of paraxial ray approximations, Section 5.8.6
for the superposition integrals in 2-D models, and Section 5.8.7 for the alternative versions
of the superposition integrals. Note that the summation of paraxial ray approximations
in 3-D models (Section 5.8.5) and in 2-D models (Section 5.8.6) yields results close or
equal to the Maslov-Chapman theory, and in 1-D models it yields the WKBJ integral. The
paraxial ray approximations and the paraxial Gaussian beams offer also a very suitable tool
to investigate the phase shift due to caustics and the KMAH index; see Section 5.8.8.

5.8.1 Paraxial Ray Approximation for the Displacement Vector

We introduce the time-harmonic paraxial displacement vector, connected with central
ray �:

	upar(q1, q2, s) = 	U (s) exp
[−iω(t − T (s) − 1

2q
TM(s)q)

]
. (5.8.1)

Here q = (q1, q2)T and M(s) = P(s)Q−1(s) is the 2 × 2 matrix of the second derivatives
of the travel-time field with respect to ray-centered coordinates qI ; see (4.1.72). The am-
plitude vector 	U (s) is given by the relations derived in Section 5.2. Here we shall mostly
use Equation (5.2.83), which expresses amplitude vector 	U (s) in terms of its Cartesian
components U (x)

i (s). Using (5.2.83), we obtain

U (x)
i (s) = U�

i (s)(det Q(s)/detQ(s0))
−1/2. (5.8.2)

We shall call vector 	U�
(s) with Cartesian components U�

i (s) the spreading-free vectorial
amplitude. U�

i (s) are given by the relation

U�
i (s) = [ρ(s0)V (s0)/ρ(s)V (s)]

1/2Hik(s)RC
kjU

(q)
j (s0). (5.8.3)

Most quantities in (5.8.2) and (5.8.3) have the same meaning as in (5.2.83). Factor Hik(s)
denotes eki (s), the i th Cartesian component of the polarization vector 	ek at s, corresponding
to the elementary wave under consideration. If point s is situated on a structural interface,
Hik(s) should be replaced by conversion coefficientDik(s).U

(q)
j (s0) represents the “initial”

ray-centered amplitude of the elementary wave under consideration at s0. It is related to
U�
i (s0) as follows: U�

i (s0) = Hi j (s0)U
(q)
j (s0). The only difference between (5.8.2) with

(5.8.3) and (5.2.83) is that we have used (det Q(s)/detQ(s0))−1/2 in (5.8.2) instead of
L(s0)/L(s) in (5.2.83). Consequently, the phase shift due to caustics is tacitly included in
(det Q(s)/detQ(s0))−1/2, and factor exp[iωT c(s, s0)] has been eliminated from (5.8.3).



5.8 PARAXIAL DISPLACEMENT VECTOR. GAUSSIAN BEAMS 585

Equations (5.8.2) with (5.8.3) are valid for any multiply-reflected, possibly converted,
elementary wave propagating in a 3-D layered isotropic structure. We need to use the
convention regarding indices j and k in (5.8.3) described in Section 5.2.9. If the first
element of the ray at s0 is P, we put j = 3 (no summation over j). If it is S, we put j = J
and perform the summation over J = 1, 2. Similarly, if the last element of the ray at s is P,
we put k = 3 (no summation over k). If it is S, we put k = K , and perform the summation
over K = 1, 2.

Now we shall express [det Q(s)/detQ(s0)]−1/2 andM(s) in terms of some initial quan-
tities at s0, specifying the behavior of the wavefront at that point. We use relations (4.6.2)
and (4.6.6) to obtain

(det Q(s)/detQ(s0))
−1/2 = [det(Q1(s, s0) +Q2(s, s0)M(s0))]

−1/2,

M(s) = [P1(s, s0) + P2(s, s0)M(s0)][Q1(s, s0) +Q2(s, s0)M(s0)]
−1.

(5.8.4)

Here M(s0) is the 2 × 2 matrix of second derivatives of the travel-time field with respect
to ray-centered coordinates qI at s0. It is related to the 2 × 2 matrix of the curvature of
the wavefront K(s0) by the relation M(s0) = V−1(s0)K(s0). Further, Q1(s, s0), Q2(s, s0),
P1(s, s0), andP2(s, s0) are 2 × 2minors of the known 4 × 4 ray propagator matrixΠ(s, s0);
see (4.3.5). It should be emphasized that detQ(s) may vanish at some points between s0 and
s (caustic points). At these points, U (x)

i (s) = ∞, but the spreading-free amplitude U�
i (s)

remains finite.
Thus, to construct any paraxial ray approximation (5.8.1) connected with the known

central ray�, wemust specifyM(s0), orK(s0). Point s0 on�may be chosen arbitrarily.Ma-
trixM(s0) must be symmetrical. A consequence of the symplectic properties of propagator
matrix Π(s, s0) is that M(s) is symmetrical along the whole central ray �. Consequently,
M(s) has two real-valued eigenvalues, M1(s) and M2(s). We can relate eigenvalues M1(s0)
and M2(s0) to the principal curvatures of the wavefront at s0, K1(s0), and K2(s0) such that
KI (s0) = V (s0)MI (s0).

As we can see, any value of M(s0) specifies one paraxial ray approximation (5.8.1).
Thus, the complete system of paraxial ray approximations (5.8.1), connected with cen-
tral ray �, is three-parameteric. The relevant three parameters are M11(s0), M22(s0), and
M12(s0) = M21(s0).

The curvature of the wavefront of the paraxial ray approximation (5.8.1), connected
with central ray �, equals K(s) = V (s)M(s) at point s. Consequently, we have a three-
parameteric systemof paraxialwavefronts connectedwith the selected central ray� at point
s. All these paraxial wavefronts are mutually tangent at s on�. Assume that central ray �
belongs to an orthonomic system of rays, corresponding to some elementary wave. We can
then also construct the actual wavefront, corresponding to the elementary wave under con-
sideration at s on�. Denote its curvature at s on� byKa(s). ThenKa(s) is one curvature of
the three-parameteric system of paraxial curvaturesK(s), and all other paraxial wavefronts
are tangent to it at s on �. These paraxial wavefronts, tangent to the actual wavefront, are
often called Snell’s wavefronts. But there is no uniqueness in this terminology.

Analogous general equations for paraxial ray approximations can be determined even
in anisotropic inhomogeneous layeredmedia; see Section 5.4.4.We again consider a central
ray �. Equation (5.8.1) then reads

	u par(y1, y2, s) = 	U (s) exp
[−iω(t − T (s) − 1

2y
TM(y)(s)y)

]
. (5.8.5)
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Here y = (y1, y2)T , and y1, y2 are wavefront orthonormal coordinates in the plane tangent
to the wavefront at s, with y3 = 0; see Sections 4.2.2 and 4.2.3. As in (5.8.2), the Cartesian
component U (x)

i (s) of the paraxial amplitude vector 	U (s) is given by the expression

U (x)
i (s) = U�

i (s)
(
detQ(y)(s)

/
detQ(y)(s0)

)−1/2
(5.8.6)

(see (5.4.15)), where the spreading-free amplitude reads

U�
i (s) = [ρ(s0)C(s0)/ρ(s)C(s)]1/2gi (s)RC A(s0). (5.8.7)

Here gi (s) is the i th Cartesian component of polarization vector 	g(s) at s, and A(s0)
represents the “initial” amplitude of the elementary wave under consideration at s0. It is
related toU�

i (s0) as follows:U
�
i (s0) = gi (s0)A(s0), where 	g(s0) is the polarization vector of

the elementary wave under consideration at initial point s0. The spreading-free amplitude
U�
i (s) is the same for any paraxial ray approximation (5.8.5) with central ray � and is

not influenced by the ray field in the vicinity of �. The continuation relations (5.8.4) for
M(y)(s) and det Q(y)(s)/detQ(y)(s0) are now as follows:(

detQ(y)(s)/detQ(y)(s0)
)−1/2 = [

det (Q1(s, s0) +Q2(s, s0)M
(y)(s0))

]−1/2
,

M(y)(s) = [
P1(s, s0) + P2(s, s0)M

(y)(s0)
][
Q1(s, s0) +Q2(s, s0)M

(y)(s0)
]−1
.

(5.8.8)

Here Q1(s, s0), Q2(s, s0), P1(s, s0), and P2(s, s0) are 2 × 2 minors of the known 4 × 4
anisotropic propagator matrix Π(s, s0); see Section 4.14.3.

Thus, the complete system of paraxial ray approximations (5.8.5) in an anisotropic
inhomogeneous medium, connected with the central ray �, is again three-parameteric.
The three parameters are M (y)

11 (s0), M
(y)
22 (s0), and M

(y)
12 (s0) = M (y)

21 (s0). Travel time T (s) and
spreading-free amplitude U�

i (s) are the same in all these paraxial ray approximations.
More flexible equations for the paraxial displacement vector are obtained, if we express

the travel time functions in (5.8.1) and (5.8.5) in global Cartesian coordinates. See (4.1.86)
for isotropic media and (4.2.48) for anisotropic media.

5.8.2 Paraxial Gaussian Beams

We again consider central ray � situated in an isotropic elastic laterally varying layered
structure and real-valued travel time T (s) along central ray�. The paraxial high-frequency
solution (5.8.1) of the elastodynamic equation can be generalized by allowing complex-
valued solutions Q(s) and P(s) of the dynamic ray tracing system. Consequently, also
matrix M(s) = P(s)Q−1(s) and quantity det Q(s) are complex-valued. We shall use the
following notation:

M(s) = Re(M(s)) + i Im(M(s)). (5.8.9)

Assuming that Im(M(s)) is positive definite, the paraxial high-frequency solution of the
elastodynamic equation, alternative to (5.8.1), is closely concentrated about the central ray
and represents a beam. The relevant displacement vector is given by the relation

	u beam(q1, q2, s) = 	U (s) exp
[−iω(t − T (s) − 1

2q
TM(s)q)

]
= 	U (s) exp

[−iω(t − T (s) − 1
2q

T Re(M(s))q)
]

× exp
[− 1

2ωq
T Im(M(s))q

]
. (5.8.10)
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Here 	U (s) is expressed in terms of U�
i (s) using (5.8.2) and (5.8.3). The spreading-free

amplitude U�
i (s) remains exactly the same as in (5.8.3); the matrices M(s), Q(s), and

Q(s0) in (5.8.2) and (5.8.10) are, however, complex-valued.
As in the case of paraxial displacement vector (5.8.1), it is sufficient to knowM(s0) to

determine (det Q(s)/detQ(s0))−1/2 andM(s) along the whole ray� in (5.8.10). Relations
(5.8.4) remain valid even for complex-valued Q(s) and M(s). Complex-valued matrices
M(s0) and Q(s0), however, must satisfy three conditions.

a. Q(s0) is regular; that is, det(Q(s0)) �= 0 and det(M(s0)) �= ∞.
b. M(s0) is symmetrical.
c. Im(M(s0)) is positive definite.

It can be proved that the following three important properties are then satisfied along
the whole ray �, at any s.

i. Q(s) is regular everywhere; that is, det Q(s) �= 0.
ii. M(s) is symmetrical.
iii. Im(M(s)) is positive definite.

The proof of these conclusions can be found in Červený and Pšenčı́k (1983b). The
argument of square root [det Q(s)/detQ(s0)]−1/2 = [det(Q1(s, s0) +Q2(s, s0)M(s0))]−1/2

in (5.8.4) is determined in the following way.

a. It equals zero for s = s0.
b. It varies continuously along ray �.

The solutions (5.8.10) of the elastodynamic equation satisfying the foregoing three
conditions are known as paraxial Gaussian beams, or simply Gaussian beams.

Thus, once M(s0) satisfies the Gaussian beam conditions at any point s0 of ray �,
(5.8.10) represents the Gaussian beam along the whole ray �. Once a Gaussian beam,
always a Gaussian beam. The Gaussian beam is regular everywhere, even at caustic points.
Because the amplitudes are inversely proportional to [det Q(s)]1/2 �= 0, they remain finite
along thewhole ray�, including the caustic points. This is the important difference between
the paraxial ray approximation (5.8.1) and the paraxial Gaussian beam (5.8.10).

What is the meaning of matrices Re(M(s)) and Im(M(s))? Matrix Re(M(s)) describes
the geometrical properties of the phase front of the Gaussian beam. Because Re(M(s)) is
always symmetrical, its eigenvalues MR

1 (s) and M
R
2 (s) are always real. Quantities K1(s) =

V (s)MR
1 (s) and K2(s) = V (s)MR

2 (s) represent the principal curvatures of the phase front
of the Gaussian beam.

Matrix Im(M(s)) controls the amplitude profile of the Gaussian beam in the cross
section perpendicular to � at s. Because matrix Im(M(s)) is positive definite and sym-
metrical, it has two real-valued positive eigenvalues MI

1 (s) and M
I
2 (s), and the amplitude

profile is Gaussian in the paraxial vicinity of ray�. For this reason, the solutions (5.8.10),
with ImM(s) �= 0, are called paraxial Gaussian beams. Alternatively, they are also known
as solutions closely concentrated in the vicinity of ray �. With the increasing square of
distance from ray �, the amplitudes of the beam decrease exponentially. The exponen-
tial decrease is frequency-dependent; it is faster for higher frequencies. Quadratic curve
1
2ωq

T Im(M(s)) q = 1 in the plane perpendicular to � represents a spot ellipse for fre-
quency ω. Along the spot ellipse, the amplitudes of the Gaussian beam equal e−1 	U (s).
Instead of MI

1 (s) and M
I
2 (s), we can also introduce the quantities L1(s) and L2(s) given by
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relations

L1,2(s) = (
πMI

1,2(s)
)−1/2

. (5.8.11)

Quantities L1(s) and L2(s) represent the half-axes of the spot ellipse for frequency f = 1Hz
(ω = 2π ). We call them the half-widths of the paraxial Gaussian beam.

Thus, we can construct a six-parameteric system of paraxial Gaussian beams (5.8.10)
connected with any one central ray�. Parameters ReM11(s0), ReM22(s0), and ReM12(s0)
control the shape of the phase-front of the Gaussian beam at s = s0. Parameters ImM11(s0),
ImM22(s0), and ImM12(s0) control the width of the Gaussian beam at s = s0. The real-
valued travel time T (s) and spreading-free amplitudes U�

i (s) are the same in the whole
system of Gaussian beams and also the same as in the three-parameteric system of paraxial
approximations (5.8.1).

To guarantee the fulfilment ofGaussian beamconditions (a) through (c) at s = s0, L1(s0)
and L2(s0) must not vanish andmust be finite. On the contrary, MR

1 (s0) and M
R
2 (s0) must be

finite, but both of themmay vanish (plane phase-front at s = s0, with aGaussianwindowing
of amplitudes). For the limiting case of infinitely broad Gaussian beams (L1(s0) → ∞
and L2(s0) → ∞), the solution (5.8.10) does not represent the Gaussian beam but rather
standard paraxial ray approximation (5.8.1).

Half-widths L1(s) and L2(s) vary along the central ray with s. We can determine these
variations from (5.8.11) and (5.8.4). It is not difficult to calculate them analytically for a
homogeneous medium without interfaces. In a homogeneous isotropic medium,M−1(s) =
M−1(s0) + Iσ , where σ (s) = (s − s0)V . Equations (5.8.11) for L1(s) and L2(s) then show
that these curves are hyperbolas, with minimum widths at some points s = sM . With
increasing |s − sM |, the width of the Gaussian beam increases.

Consequently, the paraxial Gaussian beams may be narrow in some region of s but
very broad in some other region. In the latter region, where the width of Gaussian beams
is large, the validity conditions for the paraxial ray method are violated, and the accuracy
of the paraxial expressions derived here is low.

The expressions for paraxial Gaussian beams concentrated at a ray � situated in an
inhomogeneous anisotropic medium are analogous to (5.8.5):

	u beam(y1, y2, s) = 	U (s) exp
[−iω(t − T (s) − 1

2y
TM(y)(s)y)

]
= 	U (s) exp

[−iω(t − T (s) − 1
2y

T Re
(
M(y)(s)) y

)]
× exp

[− 1
2ωy

T Im
(
M(y)(s)

)
y
]
. (5.8.12)

Here the Cartesian components U (x)
i (s) of 	U (s) are given by (5.8.6) and (5.8.7). In (5.8.8),

however, M(y)(s0) must be taken complex-valued and must satisfy conditions (a) through
(c) given earlier. Spreading-free amplitudeU�

i (s) is exactly the same as in the paraxial ray
approximation; see (5.8.7).

More flexible equations for the paraxial Gaussian beams are obtained, if we express
the travel-time functions in (5.8.10) and (5.8.12) in global Cartesian coordinates. This is
analogous to paraxial approximation; see Section 5.8.1.

As the travel time is complex-valued outside the central ray of the beam, the corre-
sponding rays in the vicinity of the central ray can be interpreted as complex rays. In
this way, the Gaussian beams may be understood as bundles of complex rays (Keller and
Streifer 1971; Deschamps 1971; Felsen and Marcuvitz 1973; Felsen 1976b). Both the
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positions of the points along the ray and the ray-centered components of the slowness vec-
tor are complex-valued for complex rays. The interpretation of Gaussian beams as bundles
of complex rays is closely connected with the idea of displacing a source into a complex
coordinate space (Felsen 1976b, 1984; Wu 1985; Norris 1986).

Several alternative approaches can be used to derive the equations for high-frequency
elastodynamic paraxial Gaussian beams. For a detailed derivation of 3-D paraxial Gaussian
beams in a smooth isotropic elastic medium without interfaces, see Červený and Pšenčı́k
(1983b). The elastodynamic HF Gaussian beams are derived there as asymptotic HF one-
way solutions of the elastodynamic equation, concentrated close to the rays of P and S
waves. In this case, the elastodynamic equation is reduced to a parabolic equation, which
further leads to a matrix Riccati equation for complex-valued matrix M(s), and to the
transport equation for the amplitude factor along the central ray. Finally, the matrix Riccati
equation forM(s) yields the dynamic ray tracing system for Q(s) and P(s).

For more details on paraxial Gaussian beams see Babich (1968), Kirpichnikova (1971),
Babich and Buldyrev (1972), Babich and Kirpichnikova (1974), Babich and Popov (1981),
Popov (1982), Červený, Popov, and Pšenčı́k (1982), Červený and Pšenčı́k (1983a, 1983b,
1984a), and Hanyga (1986). By a simple extension of the foregoing approach, we obtain
Hermite-Gaussian beams, which have a more complex amplitude profile in the plane
perpendicular to the central ray; see Siegman (1973) and Klimeš (1983). They represent
higher modes of Gaussian beams.

Another extension of the paraxial Gaussian beams yields paraxial Gaussian wave
packets, moving along rays. See Arnaud (1971a, 1971b), Babich and Ulin (1981a, 1981b),
Ralston (1983), Katchalov (1984), Klimeš (1984b), Norris, White, and Schrieffer (1987),
and Klimeš (1989a). For anisotropic media, see Norris (1987). The most natural way to
derive and study theGaussianwave packets is to use the space-time raymethod; see Section
2.4.6.

Let us add one important note regarding Gaussian beams. Whereas rays are onlymath-
ematical trajectories, Gaussian beams may represent physical objects. They may be gener-
ated by physical sources and investigated experimentally. Particularly important in practi-
cal applications are very narrow beams. The disadvantage of the elastodynamic Gaussian
beams discussed here is their large width in certain regions. There is no physical mecha-
nism in our treatment that would keep the Gaussian beam narrow along the whole ray. Such
mechanisms, however, exist, but are mostly nonlinear. Themost important nonlinear mech-
anism is based on the dependence of the propagation velocity on amplitudes, assuming the
amplitudes are large. The velocities of propagation decrease with increasing amplitudes.
Because the highest amplitudes are concentrated close to the center of the beam, a small
low-velocity channel is formed along the central ray keeping the beam narrow even along
long rays (waveguide effects).

5.8.3 Summation Methods

As we know from Section 2.5.1, the spherical wave in a homogeneous medium can be
expressed as the superposition of plane waves using the Weyl integral, and as the superpo-
sition of cylindrical waves using the Sommerfeld integral. Both superposition integrals are
exact. These integrals play an important role in 1-D isotropicmedia, where they can be used
to compute numerically and/or asymptotically the wavefields generated by a point source
and the relevant Green functions. Using the elastodynamic representation theorems, the
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Green functions may further be applied to compute the wavefield in 1-D isotropic models
even in more general situations.

In 2-D and 3-D laterally varying layered isotropic or anisotropic structures, such exact
integral expressions for the wavefield generated by a point source are not generally avail-
able. It is, however, possible to construct useful expressions for the wavefield by integral
superposition of asymptotic ray-based solutions. These expressions are not exact, but they
often represent a uniform asymptotic solution of the problem under study, valid even in
certain singular regions of the ray method.

The superposition integrals may be expressed either in the time domain or in the
frequency domain. We shall present two general forms of the frequency-domain super-
position integrals, which can be used in many applications. For time-domain versions of
these integrals, see Section 6.2.6. The first of them is based on the summation of parax-
ial ray approximations. The time-domain versions of the resulting superposition integrals
are then close or equal to the Maslov-Chapman integrals. In 1-D models, they yield the
WKBJ integrals; see Section 5.8.6. The second form is based on the summation of paraxial
Gaussian beams.

It should be emphasized that the individual contributions in the superposition integrals,
corresponding to paraxial ray approximations or to paraxial Gaussian beams, represent ap-
proximate solutions of the elastodynamic equation. Consequently, the superposition inte-
gral also represents an approximate high-frequency solution of the elastodynamic equation.

Let us consider an elementary wave propagating in a laterally varying layered isotropic
or anisotropic 3-D structure, and the relevant orthonomic system of rays�(γ1, γ2), param-
eterized by two ray parameters γ1 and γ2. On each ray, we specify one initial point Sγ , at
which some initial conditions are specified. We assume that dynamic ray tracing has been
performed along ray�(γ1, γ2) from initial point Sγ , and that the 4 × 4 ray propagatormatrix
Π(Rγ , Sγ ) is known along�(γ1, γ2) at any point Rγ situated on�(γ1, γ2). The initial points
Sγ of rays �(γ1, γ2) are distributed along a smooth initial surface �0 or along a smooth
initial lineC0 or coincide at a common point S0 (central ray field with a point source at S0).
We also assume that the 2 × 2 matrices Qa(Sγ ), Pa(Sγ ), and Ma(Sγ ) = Pa(Sγ )Qa−1(Sγ ),
corresponding to the actual ray field�(γ1, γ2), are known at Sγ . To emphasize the fact that
these matrices correspond to the actual ray field, we use a in the superscript.

With each ray �(γ1, γ2), we can connect a three-parameteric system of paraxial ray
approximations, specified by a 2 × 2 real-valued symmetric matrix M(Sγ ) and/or a six-
parameteric system of paraxial Gaussian beams, specified by a 2 × 2 complex-valued
symmetric matrix M(Sγ ) with a positive definite imaginary part; see Sections 5.8.1 and
5.8.2. The 2 × 2 matrices Q(Sγ ), P(Sγ ), and M(Sγ ) correspond to any of these paraxial
solutions. Let us emphasize that Qa(Sγ ), Pa(Sγ ), andMa(Sγ ) correspond to the actual ray
field and are fixed for the elementary wave under consideration. Matrices Q(Sγ ), P(Sγ ),
and M(Sγ ), however, should be specified in some other way. Their selection corresponds
to the selection of the paraxial ray approximation or paraxial Gaussian beams we wish
to use in the superposition integrals. In all superposition integrals we shall present, it is
sufficient to specify M(Sγ ), not Q(Sγ ) and P(Sγ ). We shall prove, however, that M(Sγ )
must be specified in such a way thatM(Sγ ) �= Ma(Sγ ).

1. SUPERPOSITION INTEGRALS
We wish to determine the wavefield of the elementary wave 	u(R, ω) at a fixed receiver

point R. We do not need to know the ray that passes through R. The wavefield at R is
calculated by a weighted superposition of paraxial ray approximations or paraxial Gaussian
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beams connected with rays�(γ1, γ2) passing in the vicinity of R. Consequently, two-point
ray tracing is not required in the whole procedure.

In the frequency domain, the superposition integral for the Cartesian component
u(x)i (R, ω) of the displacement vector 	u(R, ω) reads

u(x)i (R, ω) =
∫∫

D
 (γ1, γ2)U

(x)
i (Rγ ) exp[iωT (R, Rγ )]dγ1dγ2. (5.8.13)

Factor exp[−iωt] is omitted in (5.8.13). The integral is over the rays specified by ray
parameters γ1 and γ2; D denotes the region of ray parameters under consideration. We
will not be too concerned with the size of the region D; it may be different in different
problems. However, we must remember that the boundaries of region D may generate
spurious arrivals in the computation of synthetic seismograms; see Thomson and Chapman
(1986) for a detailed treatment. Function (γ1, γ2) is the weighting function and its various
forms will be given later. Point Rγ is situated on the same ray �(γ1, γ2) as Sγ . It is
convenient to choose Rγ on�(γ1, γ2) as close to the fixed point R as possible. The function

U (x)
i (Rγ ) exp[iωT (R, Rγ )] in (5.8.13) represents the paraxial ray approximation (or the

paraxial Gaussian beam) connected with ray �(γ1, γ2). In isotropic media, it is given
by (5.8.1) through (5.8.4) for paraxial ray approximations and by (5.8.10) for paraxial
Gaussian beams. In anisotropic media, we can use (5.8.5) through (5.8.8) for paraxial ray
approximation and (5.8.12) for paraxial Gaussian beams. In all these expressions, point Rγ
corresponds to s, and Sγ corresponds to s0. The travel-time function T (R, Rγ ) represents
the travel time at R, calculated by the paraxial ray methods from the travel time T (Rγ ) at
Rγ , situated on a nearby ray �(γ1, γ2).

In isotropic media, we can express T (R, Rγ ) in ray-centered coordinates qI (R) of point
R, connected with the (variable) ray �(γ1, γ2):

T (R, Rγ ) = T (Rγ ) + 1
2q

T (R)M(Rγ )q(R); (5.8.14)

see (5.8.1). In this case, point Rγ should be situated at the intersection of ray �(γ1, γ2)
with the plane perpendicular to�(γ1, γ2), passing through R. In anisotropic media, we can
use the orthonormal wavefront coordinates yI (R) of point R:

T (R, Rγ ) = T (Rγ ) + 1
2y

T (R)M(y)(Rγ )y(R); (5.8.15)

see (5.8.5). In this case, point Rγ is situated at the intersection of ray �(γ1, γ2) with the
plane tangent to the wavefront at Rγ , passing through R.

Let us emphasize again that the ray passing through R does not need to be known.
Actually, such a ray need not exist, for example, if R is situated in the shadow region
of the elementary wave under consideration. On the contrary, several such rays may ex-
ist in the case of multipathing. In both cases, superposition integral (5.8.13) is well de-
fined.

In the actual computations, T (R, Rγ )may be represented in various coordinate systems.
As an example, see (4.6.24) in Cartesian coordinates. It is most customary to introduce a
“target” surface�R passing through R and consider points Rγ situated on this surface�R .
For more details refer to item 3 in this section.

Integral (5.8.13) expresses the wavefield at point R by a weighted superposition of the
paraxial ray approximations or paraxial Gaussian beams, connected with the neighboring
rays, passing close to R. Due to this, we can expect the integrals to smooth the singular
behavior in the caustic region, critical regions, and the like. Moreover, we can expect the
summation of synthetic seismograms not to be as sensitive to the minor details in the
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approximation of the structural model as the standard ray synthetic seismograms. This is,
in fact, the reason why the superposition integrals are used.

The superposition integral (5.8.13)may be also expressed in a slightly different, alterna-
tive form.We use the standard zeroth-order ray-theory complex-valued vectorial amplitude
Uray
i (Rγ ) and take into account that

U (x)
i (Rγ ) =  0(γ1, γ2)U

ray
i (Rγ ), (5.8.16)

where, for anisotropic media,

 0(γ1, γ2) =
[
det Q(y)a(Rγ )

det Q(y)a(Sγ )

]1/2 [ det Q(y)(Sγ )

det Q(y)(Rγ )

]1/2
. (5.8.17)

For isotropic media, the expression for  0(γ1, γ2) is analogous, only (y) is removed from
the superscripts. The arguments of both square roots in (5.8.17) are determined in a standard
way. The superposition integral (5.8.13) then reads

u(x)i (R, ω) =
∫∫

D
�(γ1, γ2)U

ray
i (Rγ ) exp[iωT (R, Rγ )]dγ1, dγ2. (5.8.18)

The relation between theweighting functions (γ1, γ2) in (5.8.13) and�(γ1, γ2) in (5.8.18)
is

�(γ1, γ2) =  (γ1, γ2) 0(γ1, γ2). (5.8.19)

In the following discussion, we shall mostly use the superposition integral (5.8.18) and
determine directly the weighting function �(γ1, γ2). Strictly speaking, the superposition
integral (5.8.18) does not represent the expansion into paraxial ray approximations or into
paraxial Gaussian beams because the ray-theory amplitude factor Uray

i (Rγ ) is different
from U (x)

i (Rγ ). The differences in amplitudes are, however, only formal (see (5.8.16))
and are compensated by the weighting functions. The most important exponential factor
exp[iωT (R, Rγ )] in (5.8.18) is exactly the same as in (5.8.13). For this reason, we shall
continue to speak about the summation of paraxial ray approximations and the summation
of paraxial Gaussian beams, even if we consider the superposition integral (5.8.18).

2. DETERMINATION OF THE WEIGHTING FUNCTION Φ(γ1, γ2)
Weshall nowpresent a very simple derivation of theweighting function�(γ1, γ2), based

on the asymptotic high-frequency treatment of (5.8.18). In regular regions of the ray field,
the asymptotic high-frequency treatment of superposition integral (5.8.18) should yield
the same result as the standard ray method. Consequently,�(γ1, γ2) can be determined by
matching both solutions.

In the derivation of theweighting function�(γ1, γ2), there is no large difference between
anisotropic and isotropic media. For this reason, we shall consider here the more general
case of anisotropic media, with T (R, Rγ ) given by (5.8.15). The final expressions for
�(γ1, γ2) can then be easily specified even for isotropic media.

If we wish to determine weighting function �(γ1, γ2), we can assume point R to be
situated in a region covered regularly by rays �(γ1, γ2). One of these rays passes through
point R. We denote this ray by�0, the relevant ray parameters by γ10 and γ20, and the initial
point of �0 on �0 by S.

Before we evaluate superposition integral (5.8.18) for high frequencies ω, we shall
transform it to a more useful form, suitable for its asymptotic evaluation. Because the
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travel time T (Rγ ) in (5.8.15) is different for different rays �(γ1, γ2), we shall express it in
terms of T (R). Point R is presumably situated in the regular ray region so that we can use

T (R) = T (Rγ ) + 1
2y

T (R)M(y)a(Rγ )y(R),

whereM(y)a(Rγ ) corresponds to the actual ray field. Inserting this into (5.8.15) yields

T (R, Rγ ) = T (R) + 1
2y

T (R)
[
M(y)(Rγ ) −M(y)a(Rγ )

]
y(R).

The superposition integral (5.8.18) then reads

u(x)i (R, ω) = exp[iωT (R)]
∫∫

D
�(γ1, γ2)U

ray
i (Rγ )

× exp
[
1
2 iωy

TM(y)(Rγ )y
]
dγ1dγ2, (5.8.20)

where the 2 × 2 matrix M(y) is given by the relation

M(y)(Rγ ) = M(y)(Rγ ) −M(y)a(Rγ ). (5.8.21)

This integral, valid in regular ray regions, is very general. It may be used to calculate
weighting function �(γ1, γ2) for both isotropic and anisotropic media, for the summation
of paraxial ray approximations (real-valued Q(y),P(y),M(y)), and for the summation of
paraxial Gaussian beams (complex-valued Q(y),P(y),M(y)).

For high frequencies ω, the main contribution of the superposition integral (5.8.20)
comes from the vicinity of ray �0(γ10, γ20), passing through the receiver point R. Conse-
quently, we can put approximately Uray

i (Rγ )
.= Uray

i (R) and �(γ1, γ2)
.= �(γ10, γ20). As

a target surface �R , we shall use the plane y1, y2, tangent to the wavefront at R, with the
origin at R. In this case, we can approximately use the following relation for T (R, Rγ ):

T (R, Rγ ) = T (R) + 1
2y

T (Rγ )M(y)(R)y(Rγ ).

The superposition integral (5.8.18) can then be approximately expressed in the following
way:

u(x)i (R, ω)
.= exp[iωT (R)] �(γ10, γ20) U

ray
i (R)

×
∫∫

D
exp

[
1
2 iωy

T (Rγ )M(y)(R)y(Rγ )
]
dγ1dγ2. (5.8.22)

To compute (5.8.22), we shall exploit the known integral∫∫ ∞

−∞
exp

[
1
2 iωy

TWy
]
dy1dy2 = (2π/ω)[−detW]−1/2. (5.8.23)

Here y1 and y2 are Cartesian coordinates, y = (y1, y2)T , andW is a constant 2 × 2 matrix
with detW �= 0.MatrixWmay also be complex-valued, with a positive-definite imaginary
part. The argument of [−detW]−1/2 in (5.8.23) is given by the following relations:

Re[−detW]1/2 > 0 for ImW �= 0,

[−detW]1/2 = |detW|1/2 exp [−iπ4 SgnW
]

for ImW = 0.

(5.8.24)

As usual, SgnW denotes the signature of the real-valued matrixW; it equals the number
of its positive eigenvalues minus the number of its negative eigenvalues. Thus, it equals 2,
0, or −2.
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Here are several comments to (5.8.23). For real-valued W, the result (5.8.23) with
(5.8.24) is well known from the method of stationary phase, see Bleistein (1984). For
complex-valuedW, the computation of (5.8.23) is based on a simultaneous diagonalization
of 2 × 2 matrices ReW and ImW, with ImW positive definite, and on a consequent
transformation of the double integral (5.8.23) into a product of two relevant single integrals.
Such a diagonalization is possible if ImW is positive definite, but this is just the case of
paraxial Gaussian beams. For more details on the simultaneous diagonalization ofW and
on the computation of (5.8.23), see Červený (1982b).

Transforming the integration variables γ1 and γ2 in (5.8.22) into integration variables
y1 and y2 and using (5.8.23), we obtain

u(x)i (R, ω)
.= (2π/ω)�(γ10, γ20)

[−detM(y)(R)
]−1/2

× ∣∣detQ(y)a(R)
∣∣−1

Uray
i (R) exp[iωT (R)]. (5.8.25)

Matching (5.8.25)with the standard zeroth-order ray-theory solution u(x)i (R, ω) = Uray
i (R)

× exp[iωT (R)] yields the following expression for the weighting function �(γ10, γ20):

�(γ10, γ20) = (ω/2π )
[−detM(y)(R)

]1/2∣∣detQ(y)a(R)
∣∣. (5.8.26)

Because point R may be situated on an arbitrary ray �(γ1, γ2), we can use the same
expression for point Rγ , situated on the ray �(γ1, γ2),

�(γ1, γ2) = (ω/2π )
[− det M(y)(Rγ )

]1/2∣∣detQ(y)a(Rγ )
∣∣. (5.8.27)

This is the final expression for�(γ1, γ2). The argument of [−detM(y)(Rγ )]1/2 is given by
(5.8.24). Inserting (5.8.27) with (5.8.15) into (5.8.18) yields the final form of the superpo-
sition integral. See Section 5.8.4 for its more detailed discussion.

The integral (5.8.23) cannot be applied to the computation of the superposition integral
(5.8.18) if det M(y)(R) = 0. In other words, the results are not valid for receiver points R,
satisfying the relation

det
[
M(y)(R) −M(y)a(R)

] = 0; (5.8.28)

see (5.8.21). Receiver points R, at which (5.8.28) is satisfied, are usually called the pseudo-
caustic points. The pseudocaustic points play an important role only in the superposition of
paraxial ray approximations. In the superposition of paraxial Gaussian beams, the pseudo-
caustic points cannot exist because ImM(y)(R) is always positive definite and ImM(y)a(R)
is zero.

3. TRAVEL-TIME FUNCTION T (R , Rγ )
Travel-time function T (R, Rγ ) in the superposition integral (5.8.18) reads

T (R, Rγ ) = T (Rγ ) + 1
2y

T (R, Rγ )M
(y)(Rγ )y(R, Rγ ), (5.8.29)

with y(R, Rγ ) = (y1(R, Rγ ), y2(R, Rγ ))T . It represents the travel time at R, calculated
by the paraxial ray methods from the travel time T (Rγ ) at Rγ , situated on a nearby ray
�(γ1, γ2). It is assumed here that the point Rγ is situated at the intersection of ray�(γ1, γ2)
with the plane tangent to thewavefront at Rγ , passing through R. The origin of thewavefront
orthonormal coordinates y1 and y2 is taken at Rγ .

For a given R, the computation of point Rγ , situated on the ray�(γ1, γ2), is not a simple
task and may be rather cumbersome. For 2-D isotropic media, a suitable procedure to find
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Rγ was proposed in Červený, Popov, and Pšenčı́k (1982). It is, however, more suitable to
use the paraxial ray methods to transform (5.8.29) into a more suitable form.

Equation (5.8.29) can be simply transformed into general or local Cartesian coordinates
xi . Using (4.2.48), we obtain

T (R, Rγ ) = T (Rγ ) + (x̂(R) − x̂(Rγ ))
T p̂(x)(Rγ )

+ 1
2 (x̂(R) − x̂(Rγ ))

T M̂(x)(Rγ )(x̂(R) − x̂(Rγ )), (5.8.30)

where M̂(x)(Rγ ) is expressed in terms of M̂(y)(Rγ ) as

M̂(x)(Rγ ) = Ĥ(Rγ )M̂
(y)(Rγ )Ĥ

T (Rγ ), (5.8.31)

and where M̂(y)(Rγ ) is given by (4.2.44). Ĥ(Rγ ) is the 3 × 3 transformation matrix from
general Cartesian coordinates xi into wavefront orthonormal coordinates yi at Rγ .

Equation (5.8.30) corresponds strictly to (5.8.29). The only difference is that Cartesian
coordinates xi (R) and xi (Rγ ) are used instead of wavefront orthonormal coordinates yI (R)
and yI (Rγ ). Note that y3(R) = y3(Rγ ) = 0 because both points R and Rγ are presumably
situated in the plane y3 = 0. Thus, it would be again necessary to perform cumbersome
computations of points Rγ situated at all rays �(γ1, γ2), for each receiver position R.

In the framework of the paraxial ray methods, however, Equation (5.8.30) with (5.8.31)
is valid more generally. Actually, the position of point Rγ on the ray �(γ1, γ2) may be
arbitrary; the only requirement is that the distance |	x(R) − 	x(Rγ )| be small and that the
terms higher than quadratic may be neglected in the expansion (5.8.30) for T (R, Rγ ). Thus,
point Rγ on the ray �(γ1, γ2) may be chosen arbitrarily, but close to R. This important
conclusion allows us to consider smoothly curved, arbitrarily oriented target surface �R .

Let us consider a smoothly curved target surface�R , passing though the receiver point
R, and assume that all termination points Rγ of rays�(γ1, γ2) are situated on this surface.
Surface �R may represent a formal surface in a smooth medium, a structural interface
inside the model, or a free surface of the model. If a system of receivers is considered, it
is suitable to choose the target surface �R in such a way as to contain all receivers.

We shall now present one suitable equation for T (R, Rγ ), which will be useful in
the following discussion. The travel-time expansion (5.8.30) may be expressed in local
Cartesian coordinates zi introduced in Section 4.4.1, which is devoted to the R/T problem
at a curved interface. The origin of the local Cartesian coordinate system zi is situated at
Rγ on�R , with the axes z1 and z2 situated in a plane tangent to the target surface�R at Rγ .
The position of receiver point R on the target surface �R is then specified by zi (R), with
z3(R) presumably small. The travel-time function T (R, Rγ ) is then approximately given
by the relation (see 4.14.53),

T (R, Rγ ) = T (Rγ ) + zT (R)p(z)(Rγ ) + 1
2z

T (R)F(Rγ )z(R)

= T (Rγ ) + ẑT (R)p̂(z)(Rγ ) + 1
2z

T (R)F̄(Rγ )z(R). (5.8.32)

Here the 2 × 2 matrix F(Rγ ) is given by the relation

F(Rγ ) = (G− Aan)M(y)(G− Aan)T + E− p(z)3 D; (5.8.33)

see (4.14.54).All quantities in (5.8.33) are taken at Rγ . The 2 × 2matricesG(Rγ ),Aan(Rγ ),
M(y)(Rγ ), E(Rγ ), and D(Rγ ) have the same meaning as in (4.14.54). Similarly, F̄(Rγ ) is
given by (5.8.33), with the last term excluded,

F̄(Rγ ) = (G− Aan)M(y)(G− Aan)T + E. (5.8.34)
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The relation between the two equations (5.8.33) and (5.8.34) is obvious, if we take into
account that z3

.= − 1
2 zI z J DI J (Rγ ).

Using (5.8.33) or (5.8.34), we can also express M(y)(Rγ ) in a useful form:

M(y) = (G− Aan)−1(F− Fa)(G− Aan)−1T

= (G− Aan)−1(F̄− F̄a)(G− Aan)−1T ; (5.8.35)

see (5.8.21). The superscript a again specifies the actual ray field. Note also that det(G−
Aan) = (U/C) cos δ, where δ is the angle between the ray and the normal to �R at Rγ ; see
Section 4.14.8.

4. SPECIFICATION OF MATRIX M(y)

Superposition integral (5.8.18) is influenced by the choice of the 2 × 2 matrixM(y). As
explained earlier,M(y) may be specified at Sγ , at Rγ , or at any other point on ray�(γ1, γ2).
Using the ray propagator matrix, M(y) can be determined at any point of ray �(γ1, γ2) as
soon as it is known at any other point of the ray. It is most common to specify it at Rγ or Sγ .
If we specify it at Rγ , it is possible to use the superposition integral (5.8.18) with (5.8.30)
and (5.8.27) directly. If it is specified at Sγ , we must supplement the preceding equations
with the continuation relations,

M(y)(Rγ ) = [
P1 + P2M(y)(Sγ )

][
Q1 +Q2M(y)(Sγ )

]−1
,

Q(y)(Rγ )Q(y)−1(Sγ ) = Q1 +Q2M(y)(Sγ );
(5.8.36)

see (5.8.8). Here P1 = P1(Rγ , Sγ ), Q1 = Q1(Rγ , Sγ ), P2 = P2(Rγ , Sγ ), and Q2 =
Q2(Rγ , Sγ ) are the 2 × 2 minors of the ray propagator matrix Π(Rγ , Sγ ) for anisotropic
media. Analogous relations, with the same P1,Q1, P2, andQ2, are valid even forM(y)a and
Q(y)a .

We shall first present two simple examples of summation integrals withM(y) specified
at Sγ . For the expansion of the wavefield at a smooth initial surface �0 into locally plane
waves, we use M(y)(Sγ ) = 0. If we wish to expand the same wavefield into locally plane
waves with Gaussian amplitude profiles, we use ReM(y)(Sγ ) = 0 and ImM(y)(Sγ ) positive
definite. The same choices can be used in the expansion of the wavefield generated by a
point source into locally plane waves or into locally plane waves with Gaussian amplitude
profiles.

It is however, very common to chooseM(y) at points Rγ , situated on the target surface
�R , M(y)(Rγ ). We can again consider locally plane waves at Rγ , with M(y)(Rγ ) = 0, or
locally plane waves with a Gaussian amplitude windowing, using ReM(y)(Rγ ) = 0 and
ImM(y)(Rγ ) �= 0. In this case, ImM(y)(Rγ ) must be positive definite. Nowwe shall discuss
in greater detail a choice of ReM(y)(Rγ ), which removes the quadratic terms from the
expansion (5.8.32) of Re T (R, Rγ ). We consider (5.8.32) and choose ReM(y)(Rγ ) in such
a way that Re F̄(Rγ ) = 0. We take into account (5.8.34) and obtain

ReM(y)(Rγ ) = −(G− Aan)−1E(G− Aan)−1T . (5.8.37)

All matrices in (5.8.37) are again taken at Rγ and have the same meaning as in (5.8.34).
The choice (5.8.37) also removes approximately the quadratic terms from the expansion
of Re T (R, Rγ ) in Cartesian coordinates (5.8.30) so that (5.8.30) reads

T (R, Rγ )
.= T (Rγ ) + (x̂(R) − x̂(Rγ ))

T p̂(x)(Rγ )

+ i 12
(
x̂(R) − x̂(Rγ ))

T Im M̂(x)(Rγ )(x̂(R) − x̂(Rγ )
)
. (5.8.38)
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Thus, if the summation of paraxial ray approximation is considered, (5.8.38) yields a very
simple relation

T (R, Rγ ) = T (Rγ ) + (x̂(R) − x̂(Rγ ))
T p̂(x)(Rγ ). (5.8.39)

In the summation of paraxial Gaussian beams, Im M̂(x)(Rγ ) �= 0 in (5.8.38).We can choose
a positive-definite 2 × 2 matrix ImM(y)(Rγ ) arbitrarily and use (5.8.31) to determine
Im M̂(x)(Rγ ). Matrix Im M̂(x)(Rγ ) controls the width of Gaussian beams under considera-
tion. For infinitely broad paraxial Gaussian beams, ImM(y)(Rγ ) = 0, and the superposition
of paraxial Gaussian beams becomes the superposition of paraxial ray approximations.

5.8.4 Superposition Integrals: Discussion

In this section,we shall present thefinal formof the superposition integral. It is valid both for
the summation of paraxial ray approximations (ImM(y)(Rγ ) = 0) and for the summation of
paraxial Gaussian beams (ImM(y)(Rγ ) positive definite). It is assumed that all termination
points Rγ of rays �(γ1, γ2) are situated along a target surface �R , passing through the
receiver(s) R. The target surface �R may be smoothly curved. The superposition integral
is then as follows:

u(x)i (R, ω) = ω

2π

∫∫
D
Uray
i (Rγ )

[−detM(y)(Rγ )
]1/2

× |detQ(y)a(Rγ )| exp[iωT (R, Rγ )]dγ1dγ2; (5.8.40)

see (5.8.18), (5.8.24), (5.8.27), and (5.8.30). Here

M(y)(Rγ ) = M(y)(Rγ ) −M(y)a(Rγ ), (5.8.41)

and the argument of [−detM(y)(Rγ )]1/2 is given by relations,

Re
[−detM(y)

]1/2
> 0 for ImM(y) �= 0,[−detM(y)

]1/2 = ∣∣detM(y)
∣∣1/2 exp [−iπ4 SgnM(y)

]
for ImM(y) = 0;

(5.8.42)

see (5.8.24). The travel-time function T (R, Rγ ), expressed in Cartesian coordinates, is

T (R, Rγ ) = T (Rγ ) + (x̂(R) − x̂(Rγ ))
T p̂(x)(Rγ )

+ 1
2 (x̂(R) − x̂(Rγ ))

T M̂(x)(Rγ )(x̂(R) − x̂(Rγ )). (5.8.43)

The superposition integral (5.8.40), with (5.8.41) through (5.8.43), is valid for any inho-
mogeneous anisotropic elastic layered structure, which may be bounded or unbounded. It
may be, however, applied even to isotropic elastic media and to fluid media. For isotropic
media, we perform dynamic ray tracing in ray-centered coordinates and remove (y) from
superscripts of all 2 × 2 matrices in (5.8.40) through (5.8.42). For pressure waves in fluid
models, we only replace vectorial components u(x)i (R, ω) andUray

i (Rγ ) by scalars p(R, ω)
and Pray(Rγ ).

Actually, the superposition integral (5.8.40) with (5.8.41) through (5.8.43) can be ap-
plied to any other type of wavefield for which the ray-theory amplitudes Uray

i (Rγ ) can be
computed and the dynamic ray tracing can be performed along rays to compute Q(y)a(Rγ )
andM(y)a(Rγ ). For example, this applies to radiowaves.
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The wavefield under consideration may correspond to any multiply-reflected zeroth-
order ray-theory body wave. It may be also converted at structural interfaces. The wave
may be generated at a smoothly curved initial surface, at a smooth initial line, or by a point
source. The radiation function of a point source or of the line source may be arbitrary.
If the radiation function corresponding to the ray-theory elastodynamic Green function is
used in Uray

i (Rγ ), the “superposition” Green functions are obtained. We can call them
elastodynamic Green functions based on the superposition of paraxial ray approximations
and on the superposition of paraxial Gaussian beams.

The receiver may be situated arbitrarily in the model, including structural interfaces
and the Earth’s surface. The expression for the ray amplitude Uray

i (Rγ ) must contain the
proper conversion coefficients in this case. For receivers situated along the Earth’s surface,
it is suitable to choose the Earth’s surface as a target surface �R . For receivers distributed
along a borehole, any smooth surface containing the borehole may be chosen as the target
surface �R .

It is very interesting to see that the superposition integral (5.8.40) does not require
the computation of the whole ray propagator matrices along rays �(γ1, γ2) from Sγ to
Rγ , ifM(y)(Rγ ) is specified at Rγ . In this case, it is sufficient to perform the dynamic ray
tracing only once, for initial conditions Q(y)a(Sγ ) and P(y)a(Sγ ) at Sγ . For the specification
of Q(y)a(Sγ ) and P(y)a(Sγ ) at a curved initial surface with an arbitrary distribution of the
initial travel time, see (4.14.70). The computation of the whole ray propagator matrix
Π(Rγ , Sγ ) is needed only if we wish to specify M(y) at Sγ (see (5.8.36)) or at any other
point between Sγ and Rγ .

The integrand of the superposition integral (5.8.40) is finite everywhere, including the
caustic point at Rγ . If Rγ is a caustic point, |detQ(y)a(Rγ )| = 0 and Uray

i (Rγ ) is infinite.
The expression Uray

i (Rγ )[−detM(y)(Rγ )]1/2|detQ(y)a(Rγ )|, however, remains finite for
arbitraryM(y)(Rγ ).

In anisotropic media, the matrices Q(y)a(Rγ ) and M(y)a(Rγ ) = P(y)a(Rγ )Q(y)a−1(Rγ )
in (5.8.40) and (5.8.41) can be directly computed by dynamic ray tracing in wavefront
orthonormal coordinates; see (4.2.31). In isotropic media, the analogous 2 × 2 matrices
Qa(Rγ ) andMa(Rγ ) = Pa(Rγ )Qa−1(Rγ ) can be computed by dynamic ray tracing in ray-
centered coordinates; see (4.1.64). Instead of dynamic ray tracing inwavefront-orthonormal
or ray-centered coordinates, we can also perform dynamic ray tracing in general Carte-
sian coordinates and determine Q(x)

i J = (∂xi/∂γJ )T=const. and P (x)
i J = (∂p(x)i /∂γJ )T=const..

From these 12 quantities, Q(y)a
I J , P (y)a

I J , and M (y)a
I J can be determined and used in (5.8.40)

and (5.8.41). Mutual relations between these quantities can be found in Section 4.14. See
also more details in the next section.

Here are several comments to the summation of paraxial Gaussian beams and to the
choice of the 2 × 2 symmetric matrix ImM(y). The superposition integral (5.8.40) rep-
resents the summation of paraxial Gaussian beams if ImM(y) is positive definite. Matrix
ImM(y) controls the amplitude profile of paraxial Gaussian beams used in the expan-
sion, mainly their width. For ImM(y) = 0 (that is, for infinitely broad Gaussian beams),
(5.8.40) represents the summation of paraxial ray approximations; see the next section.
Even small values of ImM(y), however, increase the stability of computations and suppress
pseudocaustic points and spurious arrivals. The main disadvantage of the Gaussian beam
summation solutions is that they depend on the free parameters (that is, on the widths of
the Gaussian beams) in certain singular regions. With sufficiently broad Gaussian beams
(small ImM(y)(Rγ )), they yield the wavefield in caustic and critical regions correctly, but
they are not accurate for edge diffractions. The computation of edge diffractions requires
the use of very narrow Gaussian beams close to the edge. Moreover, spurious saddle points
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can arise in strongly laterally inhomogeneous media and degrade the beam solutions (see
White et al. 1987). The optimum choice of ImM(y) that would minimize the error of the
computation is not known. The problem of the choice of ImM(y) in the superposition in-
tegrals has been broadly discussed in seismological literature, but it still requires further
research. See, for example, Klimeš (1989b).

The expansion of a high-frequency wavefield into paraxial Gaussian beams was first
proposed by Babich and Pankratova (1973). See also Katchalov and Popov (1981), Popov
(1982), Červený, Popov, and Pšenčı́k (1982), Červený and Pšenčı́k (1983a, 1983b, 1984a),
Červený (1983, 1985a, 1985c), Katchalov, Popov, and Pšenčı́k (1983), Červený and Klimeš
(1984), Madariaga (1984), Konopásková and Červený (1984), Nowack and Aki (1984),
Klimeš (1984a, 1984b, 1989b), Müller (1984), Fertig and Pšenčı́k (1985), Madariaga and
Papadimitriou (1985), Norris (1986), White et al. (1987), Katchalov and Popov (1988),
Weber (1988), andWang andWaltham (1995). A reviewwith extensive literature up to 1985
can be found in Červený (1985c). The application of paraxialGaussianwave packets instead
of paraxial Gaussian beams in the summation procedure requires additional integration in
the superposition integrals; see Ralston (1983) and Klimeš (1984b, 1989a).

Alternatively to the summation of Gaussian beams, it is also possible to use the so-
called coherent-state transform; see Klauder (1987) and Foster and Huang (1991). We then
speak of the coherent-state method and of the coherent-state approximation. For a detailed
explanation and many references and applications, see Thomson (in press).

5.8.5 Maslov-Chapman Integrals

We shall now discuss the superposition integral (5.8.40) for a special case, specified by the
following requirements:

a. Summation of paraxial ray approximations is considered; that is, ImM(y)(Rγ ) = 0.
Then the second relation of (5.8.42) can be used to determine the argument of
[−detM(y)(Rγ )]1/2 in the superposition integral (5.8.40).

b. The real part ofM(y)(Rγ ) is specified at Rγ using (5.8.37). The second derivatives
of the travel-time field along the target surface �R then vanish, and T (R, Rγ ) is
given by a simple linear expansion (5.8.39) (similarly as in transform methods).

c. The dynamic ray tracing is performed in Cartesian coordinates (see (4.2.4)) not
in wavefront orthonormal coordinates (see (4.2.31)). In other words, the super-
position integral (5.8.40) should be expressed in terms of 12 quantities Q(x)

i J =
(∂xi/∂γJ )T=const. and P

(x)
i J = (∂pi/∂γJ )T=const., not in terms of 8 quantities Q(y)a

I J =
(∂yI/∂γJ )T=const., and P

(y)a
I J = (∂p(y)I /∂γJ )T=const..

The superposition integral satisfying the requirements (a) and (b) is

u(x)i (R, ω) = ω

2π

∫∫
D
Uray
i (Rγ )|detN (Rγ )|1/2

× exp
[
iω(T (Rγ ) + (x̂(R) − x̂(Rγ ))

T p̂(x)(Rγ ))

− iπ4 SgnN (Rγ )
]
dγ1dγ2. (5.8.44)

Here the 2 × 2 matrix N (Rγ ) is given by the relation

N (Rγ ) = Q(y)aT (Rγ )
[
M(y)(Rγ ) −M(y)a(Rγ )

]
Q(y)a(Rγ ), (5.8.45)

whereM(y)(Rγ ) is specified by (5.8.37).
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The superposition integral (5.8.44) represents theMaslov integral for anisotropicmedia,
derived in a different way by Chapman (in press, Section 4.1). To obtain a full agreement,
we only need to expressN (Rγ ) in terms of Q(x)

i J and P (x)
i J , computed by dynamic ray tracing

in Cartesian coordinates. See also the requirement (c).
If we chooseM(y)(Rγ ) = 0, (5.8.45) yields

N (Rγ ) = −Q(y)aT (Rγ )P
(y)a(Rγ ). (5.8.46)

The componentsN I J (Rγ ) of matrixN (Rγ ) in (5.8.46) represent the second derivatives of
the travel-time field with respect to γI and γJ , taken along the wavefront. Using relations
derived in Section 4.2.2, we obtain

Q(y)aT (Rγ )P
(y)a(Rγ ) = Q̂(x)T (Rγ )P̂

(x)(Rγ ), (5.8.47)

where Q̂(x) and P̂(x) are 3 × 2 matrices with elements Q(x)
i J and P (x)

i J , computed by dynamic
ray tracing in Cartesian coordinates. They represent the derivatives of xi and p(x)i with
respect to γJ , taken along the wavefront.

Nowwe shall consider a target surface�R inclined with respect to the wavefront at Rγ ,
which may be curved. We determine (Q(x)

i J )�R and (P (x)
i J )�R , representing the derivatives

with respect to γJ , taken along the target surface �R . The derivation is simple:

(
Q(x)
i J

)
�R =

(
∂xi
∂γJ

)
�R

=
(
∂xi
∂γJ

)
T

+
(
∂xi
∂T

)
ray

(
∂T

∂γJ

)
�R

= Q(x)
i J + U (x)

i

(
∂T

∂γJ

)
�R

,

(
P (x)
i J

)
�R =

(
∂p(x)i

∂γJ

)
�R

=
(
∂p(x)i

∂γJ

)
T

+
(
∂p(x)i

∂T

)
ray

(
∂T

∂γJ

)
�R

= P (x)
i J + η(x)i

(
∂T

∂γJ

)
�R

.

We now denote the normal unit vector to �R at Rγ by 	n. Multiplying the first equation by
ni , and taking into account that ni (∂xi/∂γJ )�R = 0, we obtain(

∂T

∂γJ

)
�R

= − ni

n jU (x)
j

Q(x)
i J .

This yields the final expressions for (Q(x)
i J )�R and (P (x)

i J )�R :

(
Q(x)
i J

)
�R =

(
δik − U (x)

i nk

U (x)
j n j

)
Q(x)
k J ,

(
P (x)
i J

)
�R = P (x)

i J − η
(x)
i nk

U (x)
j n j

Q(x)
k J .

(5.8.48)

We remind the reader that Q(x)
k J and P

(x)
k J are computed by dynamic ray tracing in Cartesian

coordinates. The final expression for matrix N (Rγ ) is then given by the relation

N (Rγ ) = −(Q̂(x)
)T
�R

(
P̂(x)

)
�R . (5.8.49)

Here (Q̂(x))�R and (P̂(x))�R are 3 × 2 matrices with elements (Q(x)
i J )�R and (P (x)

i J )�R , given
by (5.8.48). The expression (5.8.49) corresponds to that given by Chapman (in press) for
the weighting function in the Maslov integral in anisotropic media.

Note that the Maslov-Chapman integral (5.8.44) can be modified to allow complex-
valuedM(y)(Rγ )with a positive definiteM(y)(Rγ ). The expression (5.8.49) for theweighting
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function has then an additional term containingM(y)(Rγ ). Similarly, even the exponent has
an additional imaginary quadratic term. Actually, the integral (5.8.44) then represents the
summation of paraxial Gaussian beams. A detailed derivation and discussion of the relevant
integrals can be found in Červený (2000). All quantities in the integral are expressed in
global Cartesian coordinates, not in wavefront orthonormal coordinates.

The Maslov method was introduced to seismology and applied to the computation
of synthetic seismograms (Maslov seismograms) by Chapman. The Maslov integrals are
also known asMaslov-Chapman integrals, to acknowledge the basic contribution of C. H.
Chapman to the application of the method to seismic wave propagation. The relevant
expressions for the Maslov-Chapman integrals have mostly been derived in a more sophis-
ticated way than outlined here, using pseudodifferential and Fourier integral operators in a
mixed xi -pi -phase space. The Maslov-Chapman technique yields satisfactory results even
in certain singular regions of the ray method (Airy caustics, critical regions).

For a more detailed derivation and discussion of the Maslov-Chapman integrals and for
many applications in seismology, see Chapman and Drummond (1982), Klimeš (1984b),
Ziolkowski and Deschamps (1984), Chapman (1985, in press), Thomson and Chapman
(1985), TrompandDahlen (1993),Guest andKendall (1993),Kendall andThomson (1993),
Brown (1994), Huang and West (1997), Huang, West, and Kendall (1998), and Huang,
Kendall, Thomson, and West (1998). Klimeš (1984b) was the first who explained the
Maslov-Chapman integrals as a limiting case of the Gaussian beam summation integrals,
for ImM(y) → 0.

A note on the problem of pseudocaustic points. Integral (5.8.44) fails at pseudocaus-
tic points at which det[M(y)(Rγ ) −M(y)a(Rγ )] = 0; see (5.8.28). We remind the reader
that the standard ray-theory expressions fail at caustic points, where detQ(y)a(Rγ ) = 0.
If the caustic and pseudocaustic points are well separated, it is possible to use the su-
perposition integrals at caustic points (and close to them), and the standard ray-theory
expressions at pseudocaustic points (and close to them). It is possible to obtain uniformly
valid solutions by blending together the two asymptotic solutions with weighting functions
(also called neutralizers); see Maslov (1965) and Chapman and Drummond (1982). Here
we shall only consider the situation appropriate to our case. We introduce two smooth
weighting functions w1(γ1, γ2) and w2(γ1, γ2) on target surface �R , corresponding to the
end points Rγ of the rays �(γ1, γ2) on �R . We choose w1(γ1, γ2) and w2(γ1, γ2) so that
w1(γ1, γ2) + w2(γ1, γ2) = 1 everywhere on�R . We then assign the weighting functions to
the two asymptotic solutions and take them to be unity where the relevant asymptotic solu-
tion is valid, to be zero where it is invalid, and to vary smoothly from 0 to 1 inbetween. This
method has yielded very accurate results in many important applications. Nevertheless, the
pseudocaustic pointsmayappear very close to the caustic points in certain situations, and the
phase partitioning becomes difficult. For a detailed discussion, refer to Kendall and Thom-
son (1993), where also other methods of treating the pseudocaustic problem are proposed.

5.8.6 Summation in 2-D Models

We shall now consider a 2-D model, in which the structural parameters do not depend on
one Cartesian coordinate, say x2, but may depend on the remaining coordinates x1 and x3.
We shall further consider a one-parameteric system of planar rays �(γ1), situated in plane
�‖, and assume that the ray plane �‖ coincides with plane x2 = 0. In isotropic media,
such a system of planar rays�(γ1) always exists; it is only necessary to consider the initial
slowness vectors 	p0 in such a way that p20 = 0. In anisotropic media, however, the rays
with p20 = 0 form a system of planar rays�(γ1) situated in�‖ only exceptionally, in case
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of some simpler types of anisotropy. In general, the rays in anisotropic media deviate from
the plane �‖ even if p20 = 0. See Section 3.6.5.

We further assume that all 2 × 2 matrices Q(y), P(y), M(y), Q(y)a , M(y)a , and P(y)a

can be diagonalized along rays �(γ1), so that det Q(y) = Q‖Q⊥, det Q(y)a = Q‖aQ⊥a ,
det P(y) = P‖P⊥, and so on. For isotropicmedia, such a diagonalization is always possible;
see Section 4.13. For anisotropic media, this is not the general case, but we shall consider
here only such simple models in which this is possible. We can then introduce 2-D paraxial
ray approximations and 2-D paraxial Gaussian beams by putting Q⊥ = Q⊥a , P⊥ = P⊥a ,
andM⊥ = M⊥a . Thus, Q⊥, P⊥, andM⊥ are real-valued even for paraxial Gaussian beams.
Quantities Q‖, P‖, and M‖, however, are real-valued for paraxial ray approximations, but
complex-valued for paraxial Gaussian beams. The system of paraxial ray approximations
connected with a selected ray �(γ1) is then one-parameteric, with one free parameter M‖.
Similarly, the system of paraxial Gaussian beams connected with a selected ray �(γ1) is
two-parameteric, with two free parameters ReM‖ and ImM‖ > 0. These parameters may
be specified at any point of ray �(γ1).

We shall now assume that the receiver point R is situated in plane�‖. The superposition
integral can be derived in the same way as in Section 5.8.3. Instead of (5.8.23), however,
we shall exploit an analogous single integral∫ ∞

−∞
exp

[
1
2 iωx

2W
]
dx = (2π/ω)1/2[−iW ]−1/2. (5.8.50)

HereW is a real-valued or a complex-valued constant different from zero. IfW is complex-
valued, its imaginary part must be positive, ImW > 0. The argument of [−iW ]1/2 is given
by the following relations:

Re[−iW ]1/2 > 0 for Im W > 0,
[−iW ]1/2 = |W |1/2 exp[−iπ4 sgnW

]
for ImW = 0.

(5.8.51)

The 2-D superposition integral, analogous to (5.8.40), then reads

u(x)i (R, ω) = (ω/2π )1/2
∫
D
Uray
i (Rγ )[−iM‖]1/2|Q‖a(Rγ )|

× exp[iωT (R, Rγ )]dγ1. (5.8.52)

Here

M‖(Rγ ) = M‖(Rγ ) − M‖a(Rγ ), (5.8.53)

and the argument of [−iM‖]1/2 is given by (5.8.51), for W = M‖(Rγ ). The travel-time
function T (R, Rγ ), expressed in Cartesian coordinates, follows immediately from (5.8.43)
for x2(R) − x2(Rγ ) = 0, and from the appropriately simplified expression for M̂(x)(Rγ ),
given by (4.14.47) and (4.2.44). For isotropic media, see Section 4.13.5, particularly
(4.13.58) and (4.13.39).

The discussion of the superposition integral (5.8.52) remains practically the same as
the discussion of (5.8.40). The superposition integral (5.8.52) may be used both for the
summation of paraxial ray approximations (ImM‖(Rγ ) = 0) and for the summation of
paraxial Gaussian beams (ImM‖(Rγ ) > 0). The superposition of paraxial ray approxi-
mations fails at pseudocaustic points R, at which M‖(R) = M‖a(R). The summation of
paraxial Gaussian beams, however, remains regular even at pseudocaustic points because
ImM‖(R) > 0 and ImM‖a(R) = 0 in this case.
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The superposition integral (5.8.52) may be used both for a strictly 2-D case (a line
source perpendicular to �‖ in a 2-D model) and for a 2.5-D case (point source in
the plane �‖ in a 2-D model). The integral remains exactly the same in both cases; only
the geometrical spreading in the expression for the ray amplitudes Uray

i (Rγ ) are different.
See Sections 4.13.4 and 5.2.13.

Commonly, the summation in (5.8.52) is performed along a target line CR , at which
the receiver R and the end points Rγ of rays�(γ1) are situated. The specification of M‖ is
also fully analogous to the specification of matrix M(y), discussed in Section 5.8.3.4. We
only replace the 2 × 2 matrices in (5.8.37) by their upper diagonal elements.

Superposition integral (5.8.52) can be easily simplified for 1-D models in which the
structural parameters depend on Cartesian coordinate x3 only (say depth) and in which the
ray plane�‖ again coincides with plane x2 = 0. Let us consider ImM‖(Rγ ) = 0, that is, the
summation of paraxial ray approximations. The resulting superposition integrals are then
usually called the WKBJ integrals. It is common to express these integrals directly in the
time domain; see Section 6.2.6. TheWKBJ integrals were first derived byChapman (1976a,
1978), using the transform methods. Chapman also proposed that the resulting synthetic
seismograms be called WKBJ seismograms. For more details, see also Dey-Sarkar and
Chapman (1978), Chapman andDrummond (1982), Chapman andOrcutt (1985), Chapman
(1985), and Garmany (1988). An efficient and general computer program to compute the
WKBJ seismograms in vertically inhomogeneous isotropic layered structures is described
by Chapman, Chu, and Lyness (1988). See Singh and Chapman (1988) for WKBJ method
in anisotropic media and Wang and Dahlen (1994) for surface waves.

5.8.7 Alternative Versions of the Superposition Integral

The general superposition integral (5.8.40) can be expressed in many alternative forms. For
example, Uray

i (Rγ ) can be replaced by U (x)
i (Rγ ) using (5.8.16), or by the spreading-free

amplitude U�
i (Rγ ), using (5.8.6) and (5.8.7). Here we shall present one version of the

superposition integral, which has been used in seismological literature.
Using (5.8.36), we express M(y)(Rγ ), given by (5.8.21), in the following form:

M(y)(Rγ ) = [
P1 + P2M

(y)(Sγ )
][
Q1 +Q2M

(y)(Sγ )
]−1

−[P1 + P2M
(y)a(Sγ )

][
Q1 +Q2M

(y)a(Sγ )
]−1
.

Here P1,P2, Q1, and Q2 are the minors of the ray propagator matrix Π(Rγ , Sγ ) for
anisotropic media, as in (5.8.36). BecauseM(y)(Rγ ) is symmetric,M(y)(Rγ ) = M(y)T (Rγ ),
and the preceding equation yields

M(y)(Rγ ) = (
Q1 +Q2M

(y)(Sγ )
)−1T

× [
(P1 + P2M

(y)(Sγ ))
T (Q1 +Q2M

(y)a(Sγ ))

− (
Q1 +Q2M

(y)(Sγ )
)T (

P1 + P2M
(y)a(Sγ )

)]
× (

Q1 +Q2M
(y)a(Sγ )

)−1
.

Using the symplectic properties (4.3.16) of the ray propagator matrix, which are valid for
both isotropic and anisotropic media, we can simplify the expression in the square brackets
considerably; it reads M(y)(Sγ ) −M(y)a(Sγ ). Using also the second equation in (5.8.36),
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we then obtain

M(y)(Rγ ) = (
Q(y)(Sγ )Q

(y)−1(Rγ )
)TM(y)(Sγ )

(
Q(y)a(Sγ )Q

(y)a−1(Rγ )
)
.

(5.8.54)

Here M(y)(Sγ ) is again given by (5.8.21). Equation (5.8.54) represents the continuation
relation for M(y) along ray �. If we use (5.8.27), we obtain

�(γ1, γ2) = (ω/2π )
[−detM(y)(Sγ )

]1/2∣∣detQ(y)a(Sγ )
∣∣ 0(γ1, γ2),

(5.8.55)

where 0(γ1, γ2) is given by (5.8.17). If we use (5.8.19), Equation (5.8.55) yields a simple
expression for the weighting function  (γ1, γ2):

 (γ1, γ2) = (ω/2π )
[−detM(y)(Sγ )]

1/2
∣∣detQ(y)a(Sγ )

∣∣. (5.8.56)

The superposition integral (5.8.40) then reads

u(x)i (R, ω) = (ω/2π )
∫∫

D
U (x)
i (Rγ )

[−detM(y)(Sγ )
]1/2∣∣detQ(y)a(Sγ )

∣∣
× exp[iωT (R, Rγ )]dγ1dγ2, (5.8.57)

where M(y)(Sγ ) is again given by (5.8.41) with (5.8.42), only it is taken at the initial point
Sγ . The travel-time function T (R, Rγ ) is the same as in (5.8.43).

Recall that U (x)
i (Rγ ) in the superposition integral (5.8.57) represents the amplitude

of a paraxial ray approximation or of a paraxial Gaussian beam (see (5.8.2)), not the ray
amplitude. Actually, (5.8.57) represents the original superposition integral (5.8.13).

The superposition integral (5.8.57) is more transparent than (5.8.40) if we wish to
specifyM(y) at Sγ . The determination ofU (x)

i (Rγ ) is, however, slightly more involved than
the determination of Uray

i (Rγ ) and requires the computation of the whole ray propaga-
tor matrix along ray �. Another advantage of the superposition integral (5.8.40) is that
the computer routines for the determination of Uray

i (Rγ ) are broadly available in various

program packages, but not the routines for U (x)
i .

5.8.8 Phase Shift Due to Caustics. Derivation

The expressions for the paraxial ray approximations and paraxial Gaussian beams, derived
in Sections 5.8.1 and 5.8.2, can also be used to derive simple expressions for contribution
�k to the KMAH index k, when the ray passes through a caustic point. The relevant
phase shift at the caustic point is then −(π/2)�k. Here we shall derive expressions for
�k at caustic points situated in general anisotropic inhomogeneous media. By simple
specification of these expressions, we also obtain analogous (simpler) expressions for
isotropic inhomogeneous media.

The importance of the KMAH index in computing high-frequency seismic wavefields
along rays has been emphasized in several places in this book. Detailed recipes for com-
puting it have also been presented. This applies mainly to Section 4.12 for isotropic in-
homogeneous media, and to Section 4.14.13 for anisotropic inhomogeneous media. The
derivation of these recipes, however, was not given in those sections because the necessary
background for their derivation had not yet been developed there. We shall use the theory
given in Sections 5.8.1 and 5.8.2 to present a simple derivation of convenient expressions
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for �k. We shall follow mainly the approach proposed by Bakker (1998) because it is
simple and transparent. For other relevant references, see Sections 4.12 and 4.14.13.

As we can see from (5.8.5) through (5.8.7), the singularities at caustic points are con-
tained in the factor[

detQ(y)
]−1/2

exp
[
1
2 iωy

TM(y)y
]

= [
detP(y)

]−1/2[
detM(y)

]1/2
exp

[
1
2 iωy

TM(y)y
]
,

because M(y) = P(y)Q(y)−1. The notation here is the same as in Section 5.8.1. We shall
assume, for awhile, that det P(y)(sc) �= 0 at the caustic point s = sc on the ray.Consequently,
we shall discuss the behavior of the amplitude factor

A(s) = [
detM(y)(s)

]1/2
exp

[
1
2 iωy

TM(y)(s)y
]
, (5.8.58)

in the vicinity s ∼ sc of the caustic point. (We shall briefly return to the case of det P(y)(sc) =
0 later.) We also denote the two eigenvalues of the 2 × 2 symmetric matrix M(y)(s) by
M (y)

1 (s) and M (y)
2 (s), and the relevant normalized eigenvectors by m(y)

1 (s) and m(y)
2 (s),

m(y)T
1 m(y)

1 = 1 and m(y)T
2 m(y)

2 = 1.
Amplitude factor A(s) remains formally the same both for the paraxial ray approxi-

mation and for the paraxial Gaussian beams. The only difference is that the 2 × 2 matrix
M(y)(s) is real-valued for the paraxial ray approximation, but complex-valued for paraxial
Gaussian beams. There is no jump in [det M(y)(s)]1/2 at the caustic point s = sc for paraxial
Gaussian beams as for the paraxial ray approximation; the factor [det M(y)(s)]1/2 varies
quite smoothly and continuously for the Gaussian beams there.

Thus, in deriving the phase shift of the amplitude factor at a caustic point s = sc, we
can proceed in the following transparent way.We shall first study the amplitude factorA(s)
in the vicinity of the caustic point s = sc for the paraxial ray approximation. We shall then
extend the result to Gaussian beams considering small values of ImM(y)(s), varying quite
smoothly in the vicinity of the caustic point. Finally, we shall apply the limiting process for
ImM(y)(s) → 0. In this way, we shall obtain expressions for �k at caustic points of any
type, both in isotropic and anisotropic structures.

As we shall see later, we shall express �k in terms of the 2 × 2 matrix B(y)(sc), rep-
resenting one submatrix of the 4 × 4 system matrix of the dynamic ray tracing system;
see (4.2.32). Alternatively, we can express it in terms of the 2 × 2 matrix DS(sc), repre-
senting the curvature matrix of the local slowness surface at s = sc. In inhomogeneous
anisotropic media, both matrices depend on position and the slowness vector compo-
nents but not on the derivatives of material parameters. Consequently, B(y)(sc) and DS(sc)
are locally related by (4.14.29), just as in a homogeneous medium. This equation also
shows that matrices U−1(sc)B(y)(sc) and DS(sc) are congruent. Because both matrices are
symmetric, the eigenvalues are real-valued. Moreover, the Sylvester law of inertia shows
that SgnB(y)(sc) = SgnDS(sc). We shall not consider the exceptional cases of DS(sc) and
B(y)(sc) being rank-deficient at the caustic point.

In the following discussion, we shall investigate the phase shifts at caustic points s = sc
of the second order (rank Q(y)(sc) = 0) and at caustic points s = sc of the first order (rank
Q(y)(sc) = 1) independently.

1. Caustic points of the second order (rankQ(y)(sc) = 0). In this case,Q(y)(sc) = 0,
and alsoM(y)−1(sc) = Q(y)(sc)P(y)−1(sc) = 0. The Riccati equation (4.14.50) forM(y)−1 at
s = sc simplifies to (dM(y)−1/dT )s=sc = B(y)(sc). In the vicinity of caustic point s = sc,
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this yieldsM(y)−1(s)
.= (s − sc)B(y)(sc)/U(sc). Consequently,

1
/
M (y)

I (s)
.= (s − sc)U−1(sc)B

(y)
I (sc). (5.8.59)

This yields the expression for the amplitude factor A(s),

A(s) =
2∏
I=1

(
M (y)

I (s)
)1/2

exp
[
1
2 iωM

(y)
I (s)

∣∣yTm(y)
I (s)

∣∣2]; (5.8.60)

see (5.8.58).
We shall now extend Equations (5.8.59) and (5.8.60), derived for paraxial ray approxi-

mations, to broad Gaussian beams. In this case, M (y)
I (s) has a small positive imaginary part

along the whole ray; see Section 5.8.2. This can also be clearly verified in the exponen-
tial factor in (5.8.60). Consequently, 1/M (y)

I (s) has a small negative imaginary part, and
(5.8.59) should be modified to read:

1/M (y)
I (s)

.= (s − sc)U−1(sc)B
(y)
I (sc) − i�, (5.8.61)

where� is a constant,� > 0.We shall now discuss the cases of B(y)
I (sc) > 0 and B(y)

I (sc) <
0 independently.

a. For B(y)
I (sc) > 0, the real part of 1/M (y)

I (s) is negative for s < sc and positive for
s > sc; see (5.8.61). The small imaginary part of 1/M (y)

I (s) is negative, both for
s < sc and s > sc. Consequently, square root (1/M

(y)
I (s))1/2 should be almost neg-

ative imaginary (with a small positive real part) for s < sc and almost positive real
(with a small negative imaginary part) for s > sc. In the limiting process for ImM(y)

vanishing, we obtain (1/M (y)
I (s))1/2 negative imaginary for s < sc and positive real

for s > sc. Consequently, |1/M (y)
I (s)|1/2 should bemultiplied by exp(iπ/2) at s = sc

to account for the phase jump.
b. For B(y)

I (sc) < 0, the real parts of 1/M (y)
I (s) have signs opposite to those in (a);

see (5.8.59). In the same way as in (a) we obtain the final result that |1/M (y)
I (s)|1/2

should be multiplied by exp(−iπ/2) at s = sc to account for the phase jump.

Amplitude factor A(s), however, has square roots (M (y)
I (s))1/2; not (1/M (y)

I (s))1/2;
see (5.8.60). Consequently, square root |M (y)

I (s)|1/2 should be multiplied at s = sc by
exp(−iπ/2) for B(y)

I (sc) > 0, and by exp(+iπ/2) for B (y)
I (sc) < 0, to account for the phase

jump. Moreover, we must take into account both (M (y)
1 (s))1/2 and (M (y)

2 (s))1/2 in (5.8.60).
Thus, the final expression for �k at the caustic point of the second order is

�k =
2∑
I=1

sgn
(
B(y)
I (sc)

) = Sgn
(
B(y)(sc)

) = SgnDS(sc). (5.8.62)

All three expressions are alternative and give the same result. The phase shift factor at
caustic point s = sc is then given by exp[−i(π/2)�k]. For the positive-definite slowness
surface DS(sc), we obtain �k = 2; for the negative definite, we obtain �k = −2; and for
eigenvalues of different signs, �k = 0.

2. Caustic points of the first order (rank Q(y)(sc) = 1). Because P(y)(sc) is assumed
to be of full rank, rank M(y)−1(sc) = 1. Only one of the two eigenvalues M (y)

1 (sc) and
M (y)

2 (sc) is singular at sc, say M (y)
1 (sc). The relevant eigenvector is denoted by m(y)

1 (sc).
Consequently, also M (y)−1

1 (sc) = 0, M(y)−1(sc)m
(y)
1 (sc) = 0, m(y)T

1 (sc)M(y)−1(sc) = 0. At



5.9 VALIDITY CONDITIONS AND EXTENSIONS OF THE RAY METHOD 607

s = sc, we further find that

d
(
1/M (y)

1 (s)
)/

ds = d
(
m(y)T

1 M(y)−1m(y)
1

)/
ds = m(y)T

1

(
dM(y)−1

/
ds
)
m(y)

1 .

At s = sc, the matrix Riccati equation (4.14.50) then yields

d
(
1
/
M (y)

1 (s)
)/

ds = U−1m(y)T
1 B(y)m(y)

1 ,

and, finally, in the vicinity of caustic point s = sc,

1
/
M (y)

1 (s)
.= (s − sc)U−1(sc)

(
m(y)T

1 (sc)B
(y)(sc)m

(y)
1 (sc)

)
. (5.8.63)

Equation (5.8.63) is analogous to (5.8.59). Consequently, we can proceed in the same way
as for caustic points of the second order and obtain the final expression for�k at the caustic
point of the first order:

�k = sgn
[
m(y)T

1 (sc)B
(y)(sc)m

(y)
1 (sc)

] = sgn
[
m(y)T

1 (sc)D
S(sc)m

(y)
1 (sc)

]
.

(5.8.64)

Both expressions in (5.8.64) are alternative and give the same result. The phase shift at the
caustic is given by the factor exp[−i(π/2)�k]. For positive definite DS (convex slowness
surface), �k = 1; for negative definite DS (concave slowness surface), �k = −1. For
DS(sc) neither positive definite nor negative definite, �k = 1 for certain directions of
eigenvector m(y)

1 and �k = −1 for its other directions, depending on (5.8.64).
Bakker (1998) proved that the same expressions for�k as in (5.8.64) are obtained even

if rank P(y)(sc) = 1. In this case, the preceding approach cannot be used, but the result
is again given by (5.8.64). The case of rank P(y)(sc) = 1 plays an important role in 2-D
computations. For more details, see Bakker (1998).

In isotropic media, the matrix of the curvature of the slowness surface is always positive
definite. Thus, �k = 2 at caustic points of the second order, and �k = 1 at caustic points
of the first order. In isotropic media, the (anomalous) phase shift T c = 1

2π , corresponding
to �k = −1, is not possible. The same applies to qP waves in anisotropic media. For a
more detailed discussion, see Section 4.14.13.

5.9 Validity Conditions and Extensions of the Ray Method

The great virtue of the ray method resides in its universality, effectiveness, and conceptual
clarity and its ability to investigate various waves of importance in seismology and seismic
prospecting separately from other waves. Although its accuracy is limited, it is the only
method that is able to give an approximate answer to many problems of HF seismic body
wave propagation in structurally complex media.

The ray method also has another great advantage: it offers heuristic principles for many
other asymptotic approximate methods of propagation, scattering, and diffraction of HF
seismic body waves, which lead to more accurate results even in situations where the
standard ray method fails. In all these methods, the rays form some coordinate frame for
the evaluation of HF seismic wavefields, although they may lose their physical meaning of
trajectories along which the energy of HF seismic body waves propagates.

In this section, we shall first discuss the validity conditions of the ray method. After
this, we shall briefly discuss the computation of wavefields in various singular regions, and
various modifications and extensions of the ray method.
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5.9.1 Validity Conditions of the Ray Method

The ray method is only approximate. It is applicable only for high frequencies ω, or, alter-
natively, for small wavelengths λ. It would be very useful to know the validity conditions
under which the ray method can be applied to compute seismic wavefields. These validity
conditions usually are only of a qualitative, not quantitative character. We shall not try to
discuss the validity conditions of the ray method in greater detail; we shall merely make
some general remarks concerning this problem. The validity conditions we shall present
are applicable to scalar wavefields. Analogical validity conditions, however, are applicable
even to seismic vectorial wavefields. It is only necessary to supplement them by some
additional validity conditions which deal with the separation of P and S waves. For a more
detailed treatment of the validity conditions of the ray method, see Ben-Menahem and
Beydoun (1985), Beydoun and Ben-Menahem (1985), Chapman (1985), Fradkin (1989),
Popov and Camerlynck (1996), and particularly Kravtsov and Orlov (1980).

a. GENERAL VALIDITY CONDITIONS
We shall first describe some general validity conditions that are of a fully qualitative

character. The three most important general validity conditions are usually formulated in
the following way.

1. The wavelength λ of the wave under consideration must be considerably smaller
than any characteristic quantity of length dimension l j ( j = 1, 2, . . .) in the problem
under study,

λ � l1, l2, . . . . (5.9.1)

For example, characteristic quantities l j are radii of curvature of interfaces, some
scale lengths of the inhomogeneity of the medium of type V/|∇V |, where V is the
velocity, and similar scale lengths of the inhomogeneity of density. It follows from
the study of certain canonical problems and from comparisons with exact solutions
that the ray method can sometimes be applied even to situations in which some of
the characteristic lengths of a problem are not much larger than the wavelength.
Thus, the list of quantities l j in condition (5.9.1) must be specified in detail for each
problem under study.

2. The ray method fails in the vicinity of surfaces S along which the ray field of the
wave under consideration is not regular. Let n be the distance from surface S. The
validity condition then reads

λ � n. (5.9.2)

Examples of surfaces S are caustic surfaces and boundaries of shadow zones.
3. The ray method is not applicable when the length L of the ray trajectory of the wave

under consideration between the source and the receiver is too large. The estimates
based on the theorem of mean value lead to the condition

λ � l20/L . (5.9.3)

Here l0 has the same meaning as l j in Condition 1.

Is it possible to remove or at least reduce the aforementioned restrictions? Because
validity condition (5.9.1) expresses the high-frequency character of the wavefield, it is not
possible to remove it in the framework of high-frequency asymptotics. It is only possible to
specify the qualitative conditions in amore quantitativeway, by comparing the ray solutions
with the exact solutions for some canonical cases.
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The problem of doing away with condition (5.9.3) has not been solved yet. Note that va-
lidity condition (5.9.3) practically coincides with the condition L � l2/λ, which applies to
waves in randommedia, and where l denotes certain measures of random inhomogeneities.
Comparing these conditions, we can see a similar role of random and deterministic inhomo-
geneities in the validity conditions that restrict the length of the ray path of short waves. The
specific criteria related to possible chaotic behavior of rays have not yet been developed.

To do away with condition (5.9.2), various modifications and extensions of the ray
method have been proposed. These extensions give good results also in certain singular
regions where the ray method fails. The problem of singularities, however, still remains one
of the most serious problems in the application of the ray method. In laterally inhomoge-
neous media, various singular regions may overlap, and the application of local extensions
becomes more complicated.

b. FRESNEL VOLUME VALIDITY CONDITIONS
Using the concept of Fresnel volumes, we can express the validity conditions in a more

quantitativeway. The validity conditions in relation to Fresnel volumes for scalarwavefields
were investigated in great detail by Kravtsov and Orlov. We shall present a short review of
their investigations, taken from the book by Kravtsov and Orlov (1980). They present two
validity conditions.

1. The parameters of the medium and the parameters of the wave under consideration
(amplitude and slowness vector) must not vary significantly over the cross section
of the Fresnel volume.

If we denote the maximum perpendicular dimension of the Fresnel volume rF ,
we can write

rF

∣∣∣∣∇⊥V
V

∣∣∣∣ � 1, rF

∣∣∣∣∇⊥P
P

∣∣∣∣ � 1, rF

∣∣∣∣∇⊥ pi
p

∣∣∣∣ � 1, (5.9.4)

and so on. Here∇⊥ denotes the gradient perpendicular to the ray, P is the scalar am-
plitude, and pi are the components of the slowness vector 	p. The physical meaning
of inequalities (5.9.4) is obvious. Criteria (5.9.4) are expressed in the form given
by Kravtsov and Orlov. It would be possible to rewrite them in our notation, but we
shall not do so here.

2. The Fresnel volumes of two rays belonging to one and the same congruence and
reaching one and the same receiver point must not penetrate into one another sig-
nificantly. The criterion may then be expressed in the following way:

δVF � VF , (5.9.5)

where VF is the sum of Fresnel volumes corresponding to both rays arriving at the
receiver point, and δVF is the common part of these Fresnel volumes. The same
validity condition may be used even for more rays arriving at the receiver point. For
a more detailed explanation, see Kravtsov and Orlov (1980). Kravtsov and Orlov
(1980) use the criteria (5.9.4) and (5.9.5) to compute and study the caustic zones,
where the ray approximation fails.

According to Kravtsov andOrlov, criteria (5.9.4) and (5.9.5) are universal and sufficient
in the scalar ray method. Kravtsov and Orlov investigated many special cases and found
that validity conditions (5.9.4) and (5.9.5) can replace all other forms of validity conditions
of the ray method proposed by other authors.
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5.9.2 Singular Regions. Diffracted Waves

The ray field corresponding to an elementary wave specified by ray parameters γ1 and γ2
is called regular in spatial region S if it covers continuously and uniquely region S with
rays, that is, if one and only one ray passes through any point of the region.

In smooth media without structural interfaces, the regularity of the ray field in S is
connected mainly with the behavior of the ray Jacobian J = ∂(x, y, z)/∂(γ1, γ2, γ3) at
S. The caustic surfaces, along which J vanishes, are singular, and the vicinities of such
surfaces represent singular regions of the ray method. The validity conditions of the ray
method (5.9.2) are not satisfied along the singular surfaces.

In the case of media with structural interfaces, other singular surfaces, not connected
with caustics, also play an important role. Let us name here the critical surfaces of reflected
waves, separating the subcritical region from the postcritical region. In the postcritical
region, the head wave exists in addition to the reflected wave. Validity condition is not
satisfied along the critical surface. Other examples are the boundary surfaces separating
the illuminated regions from the Fresnel shadows connected with some screening bodies
or interfaces. Validity conditions are again not satisfied along the boundary surfaces so that
the boundary surfaces are singular.

The three types of singular surfaces described here and the relevant singular regions
will be briefly discussed in this section. Before we start the discussion, here are a few
general remarks.

It is obvious that the ray-series solutions cannot be applied in singular regions. The
zeroth-order approximation fails completely, and the higher order terms of the ray series
do not improve the accuracy, but instead make it even worse. The problem of finding
the high-frequency asymptotic in the singular regions of the ray method is not simple.
Extensive literature has been devoted to uniform and local asymptotics valid in singular
regions.Uniform asymptotics are valid everywhere, both in the singular region and outside
it. In the regular region outside the singular region, it yields the ray solution. The uniform
asymptotic expansion, however, is often rather complicated or is not known at all. It is
then useful to look for simpler local asymptotics, valid in the singular region, but failing in
the regular region outside it. Thus, the local asymptotic must be combined with standard
ray formulae. The local asymptotic is used in the singular region and the ray equations
outside it. Local asymptotics are very convenient if the regular region overlaps the region
of validity of the local asymptotics: The matching of both solutions at the boundary of the
singular region is then simple.

In general laterally varying layered structures, the algorithms based on the application
of local asymptotics may sometimes be rather complicated. There are two main reasons
for this.

i. There are various types of singular regions. Each singular region requires a different
local asymptotic. This leads to cumbersome alorithms.

ii. The singular regions in 3-D laterally varying layered structures often overlap. In the
region inwhich two singular regions overlap, the local asymptotics corresponding to
the individual singular regions are usually no longer valid;more general asymptotics
are required. Thus, the algorithms based on local asymptotics are useful in many
simple situations, but, in principle, they cannot be complete. For more details, see
items 1, 2, and 3 in the next part of this section. Under item 3, a very general
approach based on the geometric theory of diffraction is also briefly described.
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The wavefields in singular regions are also briefly discussed in other parts of this text.
See Section 3.2.3 on anomalous rays in layered structures, Sections 5.6.8 and 5.7.11 for
modified forms of the ray series, particularly for the ray method with a complex eikonal,
and Section 5.8 for the uniform asymptotics based on the summation of paraxial Gaussian
beams and on the summation of paraxial ray approximations.

1. CAUSTIC REGION
Point C of ray � at which the ray Jacobian vanishes, J (C) = 0, is called the caustic

point. At the caustic point, the ray amplitude of the wave under consideration is infinite,
and the wavefield is singular. The ray-series method cannot be used to calculate the ray
amplitudes not only directly at the caustic point, but also in its vicinity, called the caustic
region. Outside the caustic region, however, the zeroth-order ray expressions for amplitudes
are again valid. These expressions at both sides of the caustic point may be connected using
the KMAH index.

In space, caustic points form caustic surfaces. The shape of caustic surfaces depends
on the medium and on the position of the source. Caustic surfaces represent the envelopes
of rays. Caustic surfaces may have singularities like cusps and swallow-tails. The part of
the caustic surface that is locally smooth in some region is usually called a simple caustic
in that region.

From a physical point of view, caustic pointC of ray� is situated at a point where ray�
is tangent to the caustic surface. In the case of a simple caustic, the caustic surface separates
an illuminated region from the caustic shadow. In the illuminated region, there are two
rays at any point situated close to the caustic surface (the ray approaching and leaving the
caustic). In the shadow region, there are no real-valued rays; only complex-valued rays
may penetrate there. In the case of a more complicated caustic surface, there may be three
or even more intersecting rays at any point situated on one side of the caustic surface, with
a lower member of rays on the other side of the caustic surface.

Caustic surfaces are common even in smooth media without structural interfaces. In
fact, they represent the only singular surfaces of the ray method in smooth isotropic me-
dia. In addition to these “smooth-medium caustics,” the structural interfaces are usually
responsible for additional caustic surfaces. As a well-known example, let us mention the
caustic surfaces corresponding to the waves reflected from the interface of a syncline form.

The wavefield in the caustic region cannot be calculated by the zeroth-order ray approx-
imation. Even the higher order terms of the ray series do not improve the accuracy; instead,
they make it worse. The high-frequency wavefield in the caustic region may be calculated
by asymptotic methods, but more sophisticated ansatz solutions must be used. In the case
of a simple caustic, such solutions usually employ Airy functions (Ludwig 1966). We then
speak of the Airy caustic. For more complex caustic surfaces, the solution may often be
expressed in terms of two-parameteric Pearcey functions (Stamnes 1986).

The literature devoted to caustics is too extensive to be presented here. For a very
detailed treatment and for other literature, the reader is referred to Babich and Buldyrev
(1972), Stavroudis (1972), Felsen andMarcuvitz (1973), Babich andKirpichnikova (1974),
Kravtsov and Orlov (1980, 1993), Chapman (1985), Stamnes (1986), Hanyga (1995), and
Hanyga and Helle (1995).

It should be emphasized again that the problems in the illuminated part of the caustic
region consist only of the computation of amplitudes. The standard ray tracing and travel-
time computation may be used there; neither theoretical nor numerical problems occur in
the ray tracing procedures in the vicinity of caustics.
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2. CRITICAL REGION
The critical region is the most important singular region of R/T waves at structural

interfaces. It is situated in the close vicinity of the critical ray of R/T waves; see Sections
3.2.3, 5.3.4, 5.6.7, and 5.7.10. Critical rays are defined as follows. If any of the rays of the
R/T waves corresponding to a selected incident wave is grazing the interface at the R/T
point, the rays of all other remaining R/T waves corresponding to the same incident ray
are called critical. The critical rays play a very important role in seismic measurements,
particularly in wide-angle source-receiver configurations. On one side of the critical ray
(subcritical region), only the reflected wave exists; on the other side of it (postcritical, also
called overcritical, region) the head wave is also generated. The critical ray is common to
the reflected and relevant head waves. For head waves, it also represents the boundary ray.

There are many types of critical rays and relevant critical regions, corresponding to
various reflected and transmitted PP, PS, SP, and SSwaves. The classification of all possible
critical rays would, in fact, be the same as the classification of the relevant head waves; see
Figure 5.17.

The zeroth-order ray amplitudes of R/T waves along the critical ray are finite, but their
derivative with respect to the ray parameters is infinite there (from one ray to another). The
amplitudes of the relevant head waves along the critical ray are infinite; see Figure 5.14.
Thus, the validity conditions are not satisfied at the critical ray, and the ray is singular.

There is a large difference between the caustic singular region and critical singular
region. The critical ray is singular as a whole; that is, any point situated on the critical ray
is singular. On the contrary, the ray tangent to the caustic surface is not singular as a whole,
but only at the caustic point where the ray is tangent to the caustic surface.

The amplitudes of reflected waves in the critical region cannot be calculated by the
zeroth-order ray approximation. Even the higher order terms of the ray series do not improve
the accuracy, rather they make it worse. The local asymptotics in the critical region em-
ploy Weber-Hermite functions. See Brekhovskikh (1960) for acoustic waves, and Červený
(1966a, 1966b, 1967), Smirnova (1966), and Marks and Hron (1980) for elastic waves.
A review with many other references can be found in Červený and Ravindra (1971). The
most comprehensive and detailed treatment, applicable even to curved interfaces between
inhomogeneous media, was given by Thomson (1990).

The behavior of travel times, rays, and ray amplitudes in the critical region of pressure
reflected and head waves is displayed in Figure 5.14. We emphasize that the computation
of the rays and travel times of reflected waves in the critical region is quite easy; there is
only a problem with the computation of amplitudes. Figure 5.14 also shows schematically
the typical form of the amplitude-distance curves of interference pressure reflected-head
waves in the critical region, calculated by local asymptotic methods.

3. FRESNEL SHADOWS
Fresnel shadows are the regions in space where no rays of the elementary wave under

consideration penetrate. The Fresnel shadow is, as a rule, connected with a discontinuous
wavefront of the wave. In the illuminated region, where the wavefront exists, the ray field
is regular. The surface that separates the illuminated region from the shadows region is
called the boundary surface. It is formed by boundary rays, corresponding to the limiting
rays in the illuminated region.

The boundary surface is singular. From one side of the boundary surface, the ray
theoretical amplitudes vanish (shadow). From the other side of the boundary surface, the
regular zeroth-order approximation of the raymethod is nonvanishing (illuminated region).
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Thus, the validity conditions of the raymethod are not satisfied along the boundary surface,
and the boundary surface is singular. The zeroth-order approximation of the ray method
cannot be used even in the vicinity of the boundary surface, which is usually called the
transition region (between the illuminated region and shadow). The higher order terms of
the ray series do not improve the situation; a new ansatz solution must be used.

Shadow zones are usually connected with some bodies in the medium, which screen
the regular rays. The two main types of shadow zones, corresponding to the different types
of screening bodies, are as follows.

a. Shadow zones connected with edges and vertices in structural interfaces (including
the Earth’s surface).

b. Shadow zones connected with smooth interfaces (Thomson 1989).

There are two diffraction effects connected with either of these two situations.

i. The boundary surface between the shadow and the illuminated region is singular,
and a new ansatz solution must be used. It usually employs Fresnel functions.

ii. New diffracted waves are generated. The diffracted waves generated at edges and
vertexes are called the edgewaves and the vertexwaves (or tipwaves). The diffracted
waves generated by rays tangent to smooth interfaces are called smooth interface
diffracted waves. Both of these waves not only penetrate into shadow zones but also
affect the illuminated region close to the boundary surface.

The asymptotic high-frequency calculation of edge and smooth interface diffracted rays
is based on the computation of diffracted rays; see Section 3.2.3. The diffracted rays play a
basic role in the extension of the ray method, known as the geometric theory of diffraction,
proposed by Keller (1958, 1962, 1963); see also James (1976). Note that diffracted rays can
be calculated by standard ray tracing and that only the initial conditions must be properly
chosen; see Section 3.2.3. The computation of amplitudes of diffracted waves requires
the evaluation of so-called diffraction coefficients, which are in general direction- and
frequency-dependent. Typical examples are the diffraction coefficients of edge and vertex
waves; see Klem-Musatov (1980, 1994).

Extensive literature is devoted to the computation of amplitudes of edge and smooth in-
terface diffractions. We shall mention only a few selected references: Friedrichs and Keller
(1955), Keller, Lewis, and Seckler (1956), Lewis, Bleistein, and Ludwig (1967), Trorey
(1970, 1977), Babich and Buldyrev (1972), Červený,Molotkov, and Pšenčı́k (1977), Felsen
and Marcuvitz (1973), James (1976), Babich and Kirpichnikova (1974), Klem-Musatov
(1980, 1994), Aizenberg and Klem-Musatov (1980), Achenbach, Gautesen, andMcMaken
(1982), Bleistein (1984), Felsen (1984), Klem-Musatov and Aizenberg (1984, 1985),
Chapman (1985), Thomson (1989), Bakker (1990), Sun (1994), Hanyga (1995, 1996a),
and Luneva (1996). These publications also contain many other references. Very good re-
views can be found in James (1976), Thomson (1989), Klem-Musatov (1994), and Hanyga
(1995).

5.9.3 Inhomogeneous Waves

The standard ray method considers only elementary seismic body waves with travel times
real-valued along the whole ray. As soon as the travel times and relevant slowness vectors
of some elementary wave are complex-valued, the wave cannot be treated by the standard
ray method; the ray method with a complex eikonal should be used. This applies even to
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elementary waves for which the travel times and slowness vectors are complex-valued only
along some segment(s) of the ray and are real-valued along other segments. We shall call
here such waves inhomogeneous, generalizing in this way the term inhomogeneous plane
waves,whichwas introduced inSection2.2.10.Weemphasize that the inhomogeneouswave
in this terminology is not a plane wave. To call the wave inhomogeneous, it is sufficient if
the travel time is complex-valued only along certain part of the ray, not necessarily passing
through the receiver. In frequency domain, the amplitudes of inhomogeneous waves decay
exponentiallywith increasing frequency. In nondissipative isotropic media, the exponential
decay is along the wavefront. Note that the inhomogeneous waves, or at least certain types
of them, are also often called evanescent waves; see Felsen (1976a).

Various methods have been used to study numerically the inhomogeneous waves. We
shall name several of them here.

a. Traditionally, exact integral expressions have been used to study certain simple types
of inhomogeneous waves. Such exact solutions are, however, available practically
only for 1-Dmodels such as themodels composed of homogeneous layers separated
by plane-parallel interfaces. In laterally varying structures with curved interfaces,
such solutions cannot be used, or can be used only locally.

b. The ray method with a complex eikonal can be used even in laterally varying
structures with curved interfaces. See Sections 5.6.8.B and 5.7.11 and Thomson
(1997a).

c. The space-time raymethod with a complex-valued phase function is also applicable
to general 2-D and 3-D structures. See Section 2.4.6.

d. Perturbation ray theory may be very useful in such situations where the effects
leading to inhomogeneous waves are weak (for example, weakly dissipative media).
The imaginary part of the travel time, yielding the exponential decay of amplitudes,
can be then computed by quadratures along real ray in the nonperturbed reference
model. See Sections 5.5 and 6.3.

e. Various hybrid methods can be used if the “inhomogeneous” complex-valued seg-
ment of the ray is very short in comparison with the prevailing wavelength. See
Section 5.9.4 for hybrid ray-matrix method.

f. More complex asymptotic approximations can be used to describe certain inhomo-
geneous waves. See Section 5.6.8C.

Let us now present several examples of inhomogeneous waves.

1. Waves in dissipative media. They can be treated by complex rays or by the space-
time ray method; see Sections 2.4.6 and 5.6.8. See also Caviglia and Morro (1992). In
weakly dissipative media, perturbation methods can also be applied. Then the standard
ray method can be used in the reference nondissipative medium, and the dissipative ef-
fects (amplitude decay, dispersion) are obtained by simple quadratures along the real ray.
Consequently, the approach can be easily incorporated into computer codes based on the
standard ray method. See Section 5.5.

2. Postcritically transmittedwaves. For awave incident postcritically on an interface,
the transmitted wave has a complex-valued travel time and the relevant ray is complex. See
Figure 3.6(c). The PP inhomogeneous transmitted wave often has been called “the direct
wave root.” Not only transmitted waves, but also SP reflected waves are inhomogeneous
for angles of incidence greater than arcsin(β/α). All these inhomogeneous transmitted and
reflected waves are well known from the solution of a classical seismological problem of
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reflection and transmission of a spherical wave at a plane interface between two homoge-
neous elastic halfspaces. Their implementation into routine ray-theory computer programs
for the computation of seismic wavefields in 2-D and 3-D laterally varying layered struc-
tures, however, is not straightforward. Usually, they are not considered in these programs
at all. Application of complex rays would help in this case.

3. Tunneling of waves through a high-velocity thin layer. When the wave is incident
postcritically on the layer, it penetrates through the thin layer along a complex ray. The
relevant travel time and slowness vector are complex-valued inside the layer. Leaving the
thin high-velocity layer, the complex raymay again change into a real ray. Consequently, the
waves transmitted through the layer may again have a real-valued travel-time and slowness
vector and represent a standard elementary wave. The only difference is that its amplitude
contains a factor exponentially decaying with increasing frequency. The tunneling of waves
was investigated by the reflectivity method (Fuchs and Schulz 1976), by the generalized
ray method (Drijkoningen and Chapman 1988; Drijkoningen 1991a), and by the hybrid
ray-matrix method (Červený and Aranha 1992). Note that the hybrid ray-matrix method
can be easily incorporated into computer codes based on the standard ray method if the
thickness of the layer is considerably less than the prevailing wavelength of the wavefield
under consideration. See Červený (1989b).

4. Pseudospherical waves. S∗ waves. Spherical waves generated by a point source can
be expanded into planewaves using theWeyl integral; see Section 2.5.1. This expansion also
contains inhomogeneous plane waves. If the point source is situated close to a structural in-
terface in a higher velocity halfspace, the inhomogeneous wave propagating from the point
source may generate a regular transmitted wave in the lower velocity halfspace. The wave
has a roughly spherical wavefront, with its center at the projection of the source to the inter-
face. For this reason, it is often called the pseudospherical wave. The pseudospherical waves
were probably first obtained by the asymptotic treatment of exact integrals byOtt (1942) and
Brekhovskikh (1960) for fluid media and by Červený (1957) for elastic media. They were
also identified by laboratory modeling using the schlieren method (see Červený, Kozák,
and Pšenčı́k 1971; Červený and Kozák 1972). The amplitudes of pseudospherical waves
decrease exponentially with increasing d/λ, where d is the distance of the point source
from the interface. For a detailed asymptotic treatment, see also Daley and Hron (1983b).

For an explosive source, generating P waves, situated close to the Earth’s surface,
pseudospherical S waves are generated at the Earth’s surface (in addition to standard PS
converted waves). They are known as S∗ waves and were investigated by finite-differences
by Hron and Mikhailenko (1981); see also Daley and Hron (1983a). The S∗ waves also
play an important role in S-wave directivity patterns of explosive sources situated close to
the Earth’s surface; see Jı́lek and Červený (1996).

The hybrid ray-matrix method can be incorporated into computer codes based on the
standard ray method to compute even pseudospherical waves if d/λ is very small.

Even some other inhomogeneous waves may be generated at a structural interface if
the point source is situated close to it. Let us mention here the leaking, head-wave-type
waves and Stoneleywaves. SeeGilbert andLaster (1962), Tsvankin, Kalinin, and Pivovarov
(1983), Tsvankin andKalinin (1984), andKiselev and Tsvankin (1989), and other literature
given therein.

Many other types of inhomogeneous waves (in our terminology) may propagate in
realistic complex structures. They are briefly discussed in other places in this book. Let us
mention the inhomogeneous waves penetrating into caustic shadows (see Section 5.9.2 and
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Thomson 1997a), the surfacewaves and inhomogeneouswaves connectedwithwaveguides
(see Section 5.9.4), and so on.

5.9.4 Waves Propagating in a Preferred Direction

In the zeroth-order approximation of the ray method, individual elementary waves in 3-D
laterally varying media propagate along rays. The high-frequency part of the energy flux
vector of thesewaves is oriented along appropriate rays.Because the ray approximation does
not consider the back-scattering at inhomogeneities, we also speak of one-way propagation
along rays.

To study the high-frequency one-way propagation along a certain preferred direction
(not necessarily the ray), various approaches have been used. In 2-D, the preferred direction
may represent an axis of the waveguide, the surface of the Earth, a structural interface, and
the like. If the preferred direction differs from the ray, the resulting wave under investiga-
tion is more complex than the elementary ray-theory wave. Among others, the amplitude
of this wave is frequency-dependent. Sometimes, it may be possible to construct it by a
superposition of many elementary waves or by many multiple arrivals of the same ele-
mentary wave. The resulting interference wave, however, has properties that may be quite
different from the properties of individual elementary waves; only the whole interference
complex has a good physical meaning. Often, the wavefield can be hardly computed by the
summation of individual ray contributions, and it is preferable to use some extensions of
the ray method.

One of the most common approaches to study the high-frequency waves propagat-
ing along a certain preferred direction is based on the parabolic wave equation method
(Leontovich and Fock 1946; Fock 1965). The method of the parabolic wave equation, also
known as the parabolic approximation method, has been applied to many wave propaga-
tion problems such as waves propagating in waveguides, whispering gallery waves, and
beam propagation. A detailed historical survey of various applications of the parabolic
wave equation can be found in Tappert (1977). For elastic waves, see McCoy (1977) and
Hudson (1980b, 1981). The parabolic wave equation was used even in seismic exploration;
see Landers and Claerbout (1972), Claerbout (1976, 1985), and Sutton (1984). The method
was also applied to the derivation of paraxial Gaussian beams in 3-D structures (see Section
5.8.2 and Červený and Pšenčı́k 1983b). In most applications, the narrow-angle propagation
was assumed.

The most general approach to the investigation of one-way wave propagation in a
preferred direction, which does not assume a narrow-angle propagation, is based on the
factorization of the wave equation. The factorization yields two factors, one of them corre-
sponding to the forward propagation and the second to the backward propagation. By this
factorization, a differential equation for one-way propagation is obtained. The differential
equation is of the first order in the preferred direction and of a higher order in the trans-
verse direction. For the Helmholtz equation, see Fishman andMcCoy (1984, 1985), and for
the elastodynamic equation for inhomogeneous anisotropic medium, see Thomson (1999).
Thomson also gives a high-frequency alternative to the one-way elastodynamic equation.
The Thomson one-way equation is very general; it includes the qP wave, two qS waves,
and the coupling between the two qS waves (for example, in weakly anisotropic media).
It remains valid at S-wave singularities (for example, at conical points), at caustics, and at
other singularities.
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The Thomson one-way elastodynamic equation can be solved in two ways. First, it
can be solved analytically, by using so-called path integrals (Schulman 1981; Weigel
1986; Schlottmann 1999). The path integrals may be further reduced by the application of
stationary-phase method to the ray-theory, Maslov-Chapman, and Kirchhoff representa-
tions. Second, it can be solvednumerically, by “forward-stepping”FDalgorithms.Thomson
(1999) also discusses several narrow-angle approximations, which would considerably in-
crease the efficiency of FD computations. They represent anisotropic analogues of the well-
known 15◦ and 45◦ one-way differential equations for acoustic waves (Claerbout 1985).
The wide-angle form of the equation is also close to the equations of the phase-screen
method (Wu 1994; Wild and Hudson 1998).

We shall now present several important examples of waves of interference character.
Typical examples ofwaves of interference character are the surfacewaves, likeRayleigh

andLovewaves.Certain ray approachesmaybe useful even in the investigation and process-
ing of seismic surface waves propagating in smoothly laterally varying Earth, particularly
in surface wave tomography. This applies mainly to surface-wave ray tracing. See Section
3.12 for more details.

Waves propagating in low-velocity smooth waveguides are very important in ocean
acoustics and the ionosphere. As a rule, waves propagating in such waveguides carry a
large amount of energy to great distances from the source. If the source is situated in the
waveguide, many rays are trapped in the waveguide, and the ray field in the waveguide
forms many caustics. At large distances from the source, the caustic regions inside the
waveguide are extensive and mutually overlap. The ray field in the waveguide may have a
chaotic character. The ray method is not then suitable for evaluating the wavefield inside
the waveguide, and various extensions have to be used. In many cases, it is more suitable
to use the normal mode method. For more details, see Budden (1961a, 1961b), Babich and
Buldyrev (1972), Miklowitz (1978), Kravtsov and Orlov (1980), and Abdullaev (1993),
and other references given therein.

The waveguide may also be formed by a homogeneous low-velocity layer bounded by
plane interfaces of the first order or by the surface of the Earth. Caustics are then not
formed, but other difficulties appear. At large distances from the source, the number of
multiply-reflected waves is very large, particularly due to PS and SP conversions in elastic
media. Moreover, the critical regions corresponding to individual multiply-reflected waves
may be very extensive. Finally, the zeroth-order contributions of the ray method of the
individual waves may cancel one another due to destructive interference, and the non-ray
and higher order ray contributions become important. Thus, at large distances from the
source, the normal mode method again becomes more efficient.

In the preceding two examples, we have considered a low-velocity smooth waveguide
and a homogeneous low-velocity layer bounded by interfaces. In the real Earth, waveguides
may be considerably more complex. Instead of one homogeneous low-velocity layer, there
may be a stack of thin layers, and/or a combination of smooth velocity variations with
structural interfaces of the first order. The interfaces may be curved. The difficulties in
treating such structures by the ray method are even more serious than in the preceding two
simplified examples.

Other waves of interference character are interference head waves (see the end of
Section 5.6.7 and more details in Červený and Ravindra 1971), and whispering gallery
waves (see Babich and Buldyrev 1972; Babich andKirpichnikova 1974; Popov and Pšenčı́k
1976a, 1976b; and Thomson 1990).
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Several hybrid methods have also been proposed to investigate seismic waves of inter-
ference character.

The hybrid ray-finite difference method was proposed by Lecomte (1996). The ray
method is used in smooth parts of the model, and the finite-difference method is applied
locally to a structurally very complex (but small) part of the model. See also Piserchia
et al. (1998).

The hybrid ray-mode method combines the modal and ray approaches in computing the
wavefield in a waveguide. Several modal and several ray contributions are used to compute
the complete wavefield. See Felsen (1981), Kapoor and Felsen (1995), Zhao and Dahlen
(1996), and Lu (1996), and other references given therein.

The hybrid ray-matrix method, also called hybrid ray-reflectivity method, was proposed
to compute high-frequency seismic bodywaves propagating inmedia containing thin layers.
The ray method is used in smooth parts of the model, and the matrix method is used at
points of interaction of the ray with a thin layer. The matrix method is used at the points
of interaction to compute the frequency-dependent R/T coefficients at thin layers. For 1-D
media, the method was proposed by Ratnikova (1973); see also Daley and Hron (1982). For
laterally varying structures, see Červený (1989b). The method was also used to investigate
the tunneling of seismic body waves through thin high-velocity layers by Červený and
Aranha (1992) and to study the effect of a thin surface low-velocity layer on the wavefield
recorded at the Earth’s surface by Červený and Andrade (1992).

5.9.5 Generalized Ray Theory

Thewavefield generated by a point source situated in a one-dimensionalmedium consisting
of homogeneous layers separated by plane-parallel interfaces can be expressed exactly in
terms of closed-form integrals. Analytical expressions for the integrands of these integrals
can be found for the model containing one structural interface (or a free surface). For a
higher number of structural interfaces, matrix methods have been usually used to find the
integrand. The integrals are usually of an oscillatory character and represent the complete
wavefield, not separated into individual elementarywaves. The relevant integrals can be ex-
pressed inmany alternative forms. This is a classical problem of theoretical seismology and
wave physics.Abroad literature, includingmany textbooks, gives details of the derivation of
such integrals. See Lamb (1904), Sommerfeld (1909), Love (1944), Brekhovskikh (1960),
Ewing, Jardetzky, and Press (1957), Červený and Ravindra (1971), Officer (1974), Pilant
(1979), Aki and Richards (1980), Ben-Menahem and Singh (1981), and Kennett (1983).

Various methods have been proposed to treat these integrals numerically. At present,
the most popular and efficient method consists of their direct numerical computation in
frequency domain and is known as the reflectivity method. It was proposed by Fuchs
(1968a, 1968b) and further developed by Fuchs and Müller (1971), Kennett (1983), and
Müller (1985). For a detailed tutorial treatment, see Aki and Richards (1980, Chap. 9)
and Müller (1985). For anisotropic layered media, see Booth and Crampin (1983), Fryer
and Frazer (1984, 1987), Mallick and Frazer (1987, 1990, 1991), and Kelly, Baltensperger,
and McMechan (1997).

The integrals representing the complete wavefield can also be expanded into contri-
butions corresponding to rays of individual multiply-reflected/transmitted waves. Each of
these contributions is characterized by an arrival time in such a way that it vanishes for
times less than its arrival time. There is always a finite number of contributions (if any) with
arrival times less than arbitrarily chosen time. Consequently, the summation of individual
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contributions yields an exact result if the contributions are treated exactly and if a sufficient
number of contributions is used. For this reason, we speak about generalized ray theory or
exact ray theory. It should be emphasized that these ray contributions have a more general
meaning than the zeroth-order approximation of the ray method. Each of them also may
include the head waves related to the multiple reflection under consideration, leaking mode
contributions, and Stoneley waves. For this reason, we also speak about an expansion into
generalized ray contributions, or simply into generalized rays.

The generalized ray contributions may be computed in many different ways, either in
time or in frequency domain. The time-domain computations play a particularly important
role. In time domain, the integrals corresponding to generalized ray contributions may
be transformed to simpler nonoscillatory integrals along a suitably chosen contour in a
complex plane. Basic ideas of computations were proposed by Cagniard (1939, 1962) and
extended by de Hoop (1960). For this reason, the method is also known as the Cagniard-
deHoop method (or Cagniard-deHoop technique), and the relevant integration contours are
known as Cagniard- deHoop contours. In Russia, a similar method has been proposed by
Smirnov and Sobolev; see a short description in Smirnov (1964). The method was further
developed by Zvolinskiy (1957, 1958, 1965).

In this book, we are interested in the computation of seismic wavefields in 3-D laterally
varying isotropic and anisotropic layered structures with curved interfaces. The gener-
alized ray method cannot be applied to such computations; it can be used only for 1-D
models consisting of plane-parallel layers. For this reason, we shall not discuss here the
Cagniard-deHoop technique, we shall give only several references for further reading. See
Bortfeld (1967), Helmberger (1968), Chapman (1974), Müller (1968, 1970), and a tutorial
explanation in Aki and Richards (1980, Chap. 6). For anisotropic stratified media, see van
der Hijden (1988). The method may be used even for vertically inhomogeneous media,
simulated by a system of thin homogeneous layers (similarly as the reflectivity method).
For the Epstein profile, see Drijkoningen (1991b). The method was used to study various
nonray effects and behavior of seismic body waves in singular regions. As an example, let
us name here the studies devoted to tunneling of waves, see Drijkoningen and Chapman
(1988) and Drijkoningen (1991a). The method was also modified for radially symmetric
media (see Gilbert and Helmberger 1972), and for models with nonparallel interfaces (see
Hong and Helmberger 1977; Kühnicke 1996). For a comparison of synthetic seismograms
computed by generalized ray theory and reflectivitymethod, seeBurdick andOrcutt (1979).
The generalized ray method was applied to many important seismological investigations
by D. Helmberger and his group.

The exact integral expressions corresponding to generalized rays can also be treated
in the frequency domain. Such integrals were broadly used in the investigation of the
reflection and transmission of spherical waves at a plane interface. The main idea of com-
putation consists of a suitable deformation of integration contours in a complex plane,
and of approximate, or numerical, evaluation of the integrals along these new contours.
Integration contours close to the steepest descent trajectory have been mostly used be-
cause they suppress the oscillations of the integrand considerably. For more details, see
Ewing, Jardetzky, and Press (1957), Červený and Ravindra (1971), and Aki and Richards
(1980, Chap. 6). The method has also been effectively used to find suitable local asymp-
totic approximations in singular regions, where the standard zeroth-order approximation
of the ray method fails. Particular attention was devoted to the critical region of re-
flected and head waves. See Brekhovskikh (1960) for acoustic waves and Červený (1957,
1966a, 1966b, 1967) for elastic waves. Similar local asymptotic approximations in the
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critical region were also found for multiply-reflected waves and were applied successfully
in the computer codes for synthetic seismograms for vertically inhomogeneous struc-
tures; see Červený (1979b). The integrals were also used to study various nongeometri-
cal effects such as pseudospherical waves and leaking modes (Ott 1942; Červený 1957;
Tsvankin and Kalinin 1984) and to compare the exact and asymptotic computations (Kise-
lev and Tsvankin 1989). For an excellent review of methods of the computation of body
wave synthetic seismograms in laterally homogeneous media, see Chapman and Orcutt
(1985).



CHAPTER SIX

Ray Synthetic Seismograms

Under ray synthetic seismograms, we understand time-domain, high-frequency
asymptotic solutions of the elastodynamic equation by the ray method. Ray syn-
thetic seismograms are represented by a superposition of elementary ray synthetic

seismograms, corresponding to the individual elementary body waves arriving at the re-
ceiverwithin a specified timewindow. In a layered 3-D structure, theremay bemany seismic
body waves that travel from the source to the receiver along different ray trajectories. They
correspond to various reflected, refracted, multiply-reflected, converted, and other seismic
body phases.

In this chapter, we shall consider only standard, zeroth-order elementary waves in the
construction of ray synthetic seismograms. Waves of higher order (such as head waves),
diffracted, inhomogeneous, and other waves that cannot be described by standard ray ap-
proaches will not be included in the superposition. Moreover, we shall not consider the
higher order terms in the ray series for individual elementary waves; all elementary waves
will be represented only by their zeroth-order ray approximation. Thus, it would be more
precise to speak of zeroth-order ray synthetic seismograms. We shall, however, avoid the
term zeroth-order to make the terminology simpler. We believe this will not cause any
misunderstanding. Of course, the ray synthetic seismograms studied here may also be
extended to include certain types of waves not included among zeroth-order ray approx-
imation waves. This would, however, require special treatment. See a brief exposition in
Section 6.2.5.

If the individual waves forming the ray synthetic seismograms are separated and do not
interfere mutually in certain regions, it is possible to study them separately. For example,
their amplitudes may be fully determined by the equations of Sections 5.1, 5.2, and 5.4.
In certain regions, however, elementary waves interfere, particularly if the signals are
longer. In these regions, the expressions for the amplitudes of the individual waves cannot
fully describe the wavefield, and various interference effects must be considered. Ray
synthetic seismograms provide the proper description of such interference effects. This
is the main advantage of ray synthetic seismograms in comparison with elementary ray
synthetic seismograms.

Although the computations of ray synthetic seismograms are only approximate and
the ray method may fail partially or completely in certain situations, ray concepts and ray
synthetic seismograms have been found very useful in many important applications of
great interest in seismology and in seismic exploration.

We shall discuss the construction of elementary ray synthetic seismograms in Sec-
tion 6.1 and the construction of ray synthetic seismograms in Section 6.2. We shall exploit

621
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certain properties of the Hilbert transform and of analytical signals to propose efficient al-
gorithms for the computation of synthetic seismograms. The necessary equations related to
the Hilbert transform and analytical signals can be found in Appendix A. The construction
of ray synthetic seismograms in the frequency domain and in the time domain is discussed.
In the frequency domain, a fast frequency response (FFR) algorithm is described in detail;
this algorithm increases the efficiency of the frequency domain computations considerably.
For completeness, time-domain versions of certain integral solutions, derived in Chapter 5,
are discussed in Section 6.2.6. They represent the time domain versions of Kirchhoff inte-
grals and of various superposition integrals.

In Sections 6.1 and 6.2, only nondissipative media are considered. Section 6.3 gener-
alizes these results for dissipative media. We consider only weakly dissipative media in
which it is possible to obtain the amplitudes of seismic body waves by a simple extension
of the equations for the amplitudes of waves propagating in nondissipative media along
real ray trajectories; see Section 5.5. The computation of synthetic seismograms of seis-
mic body waves propagating in strongly dissipative media would require the computation
of new, complex rays. Both noncausal and causal absorption models are considered in
Section 6.3.

There is no difference between the construction of ray synthetic seismograms for scalar
(acoustic) and vectorial (elastic) wavefields. For this reason, we shall consider only the vec-
torial (elastic) wavefield, represented by displacement vector 	u(x j , t). The scalar acoustic
wavefield is not discussed explicitly; the relevant equations for the scalar wavefields are ex-
actly the same as for vectorial wavefields.We have only to replace the vectorial expressions
( 	u, 	U ) by the relevant scalar expressions (p, P).

The only section that is fully devoted to vectorial wavefields is Section 6.4, which dis-
cusses the polarization of vectorial seismic wavefields. The main attention in Section 6.4
is devoted to the construction of ray synthetic particle ground-motion diagrams. After the
ray synthetic seismograms for the Cartesian components of the displacement vector are
known, it is simple to construct the particle-motion diagrams in any Cartesian coordinate
plane. It is shown that the ray synthetic particle ground motion of compressional waves is
linear but that it may be elliptic, quasi-elliptic, or even more complex for shear waves. The
relevant algorithms are briefly described and discussed in Section 6.4.

For more details on the construction of ray synthetic seismograms in complex laterally
varying isotropic structures see a review paper by Červený (1985b). The paper also gives
many examples of computation and references for further reading and applications. For
anisotropic structures see Gajewski and Pšenčı́k (1987b, 1990, 1992), Thomson, Kendall,
and Guest (1992), Guest and Kendall (1993), and Alkhalifah (1995).

6.1 Elementary Ray Synthetic Seismograms

In this section, we shall consider one arbitrarily selected “elementary” wave, propagating in
a 3-D laterally varying layered structure. The wave may be of any type, including multiply-
reflected and converted waves. We shall call the expression for any component of the
displacement vector of this wave in the time domain the elementary ray synthetic seismo-
gram. A superposition of various elementary waves arriving along various ray trajectories
from the source at the receiver will be considered in Section 6.2.

The elementary ray synthetic seismogram can be computed in two ways: in the fre-
quency domain and in the time domain. We shall describe both approaches in some detail.
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6.1.1 Displacement Vector of an Elementary Wave

We can express any component of displacement vector un(R, t) at point R, by

un(R, t) = Re{Un(R)F(t − T (R))}, (6.1.1)

where Un(R) is the nth component of the vectorial ray theory complex-valued amplitude
function, T (R) is the scalar-valued travel time, F(ζ ) is the high-frequency analytical signal,
and Re{. . .} stands for the real part of {. . .}. Components un and Un may be given in any
coordinate system.

We shall call (6.1.1) the elementary ray synthetic seismogram or simply the elementary
synthetic seismogram.

We know how to calculate bothUn(R) and T (R). We must, however, discuss two other
problems:

a. How to select the relevant analytical signal F(ζ ).
b. Which method would be efficient in computing the elementary synthetic seismo-

gram given by (6.1.1).

6.1.2 Conservation of the Analytical Signal Along the Ray

Before we discuss these two problems in greater detail, we shall draw two important con-
clusions from Equation (6.1.1). As we can see from (6.1.1), analytical signal F(t − T (R))
is conserved along the whole ray (even across structural interfaces). The actual form of the
signal may change along the ray due to phase changes of Un(R), caused by caustics and
postcritical incidence at structural interfaces and at the Earth’s surface, but the analytical
signal remains the same. This basic law is, of course, valid only in nondissipative media
and in the zeroth-order approximation of the ray method.

This law also implies that the shape of the envelope of the displacement vector is
conserved along the whole ray in nondissipative media; see (A.3.24). If we introduce a
normalized envelope (the maximum of the envelope is reduced to unity), the normalized
envelope of the displacement vector remains the same along the whole ray. Thus, the
normalized envelope will be the same at points S and R.

6.1.3 Analytical Signal of the Elementary Wave. Source Time Function

The analytical signal is given by the relation

F(t − T ) = x(t − T ) + ig(t − T ), (6.1.2)

where x(ζ ) is some real-valued function and g(ζ ) is its Hilbert transform; see (A.3.1). It is
sufficient to know one of the functions x , g, and F to determine the two other. Because ana-
lytical signal F(ζ ) is preserved along the ray, it is sufficient to know x(ζ ) (or g(ζ )) at one ref-
erence point of the ray, andwe can determine the analytical signal F(ζ ) along the whole ray.

In all ray computations, the analytical signals (or x(ζ ) or g(ζ )) corresponding to the
individual elementary waves must be specified at one point of the ray. Usually, they are
specified at the initial point S of the ray. Theymay be considered the same for all elementary
waves, but this is not necessary. For example, the analytical signals of Pwaves generated by a
point sourcemay be different from the analytical signals of Swaves generated by the source.
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Let us consider, for a while, a point source in a homogeneousmedium, situated at S. The
ray-centered components of displacement vector un(R, t) are then obtained from (6.1.1)

un(R, T ) = Re

{
F(t − l/V )

L(R, S) Gn(S)
}
, (6.1.3)

whereL(R, S) = Vl(R, S) is the relative geometrical spreading in ahomogeneousmedium,
l(R, S) is the distance of R from S, and Gn(S) is the nth ray-centered component of the
radiation function. As an example, see (5.4.23) for the radiation function corresponding
to a single-force point source in an anisotropic medium. Note that L(R, S) is always real.
Often Gn(S) is also real-valued. Then, (6.1.3) yields

un(R, T ) = Gn(S)
L(R, S) x(t − l/V ). (6.1.4)

For this reason, the real-valued time function x(ζ ) is usually called the source time function.
If Gn(S) is not real-valued, signal x(ζ ) is phase-shifted. For simplicity, we shall call x(ζ )
the source-time function even in this case, considering that the source-time function may
be phase shifted directly from the source.

Several signals have been broadly used in the numerical modeling of seismic wavefields
by ray methods to represent the source-time functions of a point source. The most popular
are the Ricker signal (Hosken 1988; Dietrich and Bouchon 1985), Gabor signal (Gabor
1946; Červený 1976, 1985b; Červený, Molotkov, and Pšenčı́k 1977, pp. 47–50), Küpper
signal (Küpper 1958; Müller 1970), Berlage signal (Aldridge 1990), and Rayleigh signal
(Hubral and Tygel 1989). They are defined by the following equations.

a. The Ricker signal:
x(t) = (

1 − 2β2(t − ti )
2
)
exp

[−β2(t − ti )
2
]
, (6.1.5)

with two free parameters, β and ti .
b. The Gabor signal:

x(t) = exp
[−(2π fM (t − ti )/γ )

2
]
cos[2π fM (t − ti ) + ν], (6.1.6)

with four free parameters, fM , γ , ν, and ti . Note that this signal is also known
under different names such as the Gaussian envelope signal and the Puzyrev signal.

c. The Küpper signal:
x(t) = 0 for t ≤ ti and t ≥ ti + T,

= sin
Nπ (t − ti )

T
− N

N + 2
sin

(N + 2)π (t − ti )

T

for ti < t < ti + T, (6.1.7)

with three free parameters, T , N and ti . At present, the signal is mostly known as
the Müller signal.

d. The Berlage signal:
x(t) = 0 for t < ti ,

= (t − ti )
N exp[−β(t − ti )] sin[2π fM (t − ti )] for t > ti , (6.1.8)

with four free parameters fM , β, N , and ti .
e. The Rayleigh signal:

x(t) = 1

π

ε

(t − ti )2 + ε2 , (6.1.9)

with two free parameters, ti and ε > 0.

Several important signals x(t), together with their Hilbert transforms g(t), can be seen
in Figure 6.1.
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Figure 6.1. Examples of signals x(t)
of seismic body waves, often used in
numerical modeling of seismic wave-
fields, and their Hilbert transforms g(t).
(a) Gabor signals for γ = 4 and γ = 6
(this page). (b) Ricker signal andBerlage
signal. (c) Müller signal and the box car
function.
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Figure 6.1(b)
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Figure 6.1(c)
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Note that the Ricker, Gabor, and Rayleigh signals are noncausal but that the Berlage
and Küpper signals are causal. In ray methods, however, the causality of the results is not
guaranteed by taking a causal source time function. In addition to the source time function
x(t), we also have to consider its Hilbert transform g(t). In general, the Hilbert transform
of causal functions is noncausal. Thus, the ray method is, in principle, noncausal. Note
that the envelope of the source-time function is always noncausal.

We can, however, speak about the effective causality of the ray method. Let us modify
x(t) and g(t) in such a way that we put them zero for all times t at which |F(t)| < Amaxδ,
where Amax represents the maximum value of the envelope of the signal, and δ is some
specified small quantity (say, 0.0001). We can then simply define the effective arrival time,
and this effective arrival time will be the same for the signal and its Hilbert transform, as
both have the same envelope. Thus, (6.1.1) will be effectively causal at any point of the ray.

6.1.4 Computation of the Elementary Synthetic Seismogram

in the Time Domain

If the travel-timefield is real-valued, Equation (6.1.1) can be expressed in several alternative
forms. The first is the most straightforward

un(R, t) = x(t − T (R)) Re Un(R) − g(t − T (R)) Im Un(R)

= |Un(R)|{x(t − T (R)) cosχn(R) − g(t − T (R)) sinχn(R)}.
(6.1.10)

Here χn(R) is the argument of Un(R), Un(R) = |Un(R)| exp(iχn(R)).
Expression (6.1.10) simplifies considerably if we consider a source-time function that

is roughly harmonic and modulated by a smooth envelope a(t),

x(t) = a(t) cos(2π fM t + ν); (6.1.11)

see Appendix A. We can then use the approximate expression for the Hilbert transform,
g(t)

.= −a(t) sin(2π fM t + ν) (see (A.2.14)), and this leads to

un(R, t)
.= |Un(R)|a(t − T (R)) cos[2π fM (t − T (R)) + ν − χn(R)].

(6.1.12)

Thus, in this case, the approximate computation of the elementary synthetic seismogram
is very simple. This approach has been used broadly for a long time in the computation
of ray synthetic seismograms; see, for example, the SEIS83 computer program packages
(Červený and Pšenčı́k 1984b) and the revised version of SEIS83, called SEIS88. The
source-time function in these packages is assumed to be the Gabor signal; see (6.1.6). The
elementary seismogram is then given by

un(R, t) = |Un(R)| exp
[−(2π fM (t − ti − T (R))/γ )2

]
× cos[2π fM (t − ti − T (R)) + ν − χn(R)]. (6.1.13)

Alternative expressions to (6.1.10) are

un(R, t) = Re{F(t) ∗Un(R)δ(t − T (R))}, (6.1.14)

or

un(R, t) = Re
{
x(t) ∗Un(R)δ

(A)(t − T (R))
}
, (6.1.15)
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see (6.1.1) and (A.3.14). The star (∗) denotes the convolution.
Equation (6.1.15) can also be expressed in the following forms:

un(R, t) = x(t) ∗ Re
{
Un(R)δ

(A)(t − T (R))
}

= x(t) ∗
{
δ(t − T (R)) Re Un(R) + 1

π (t − T (R))
Im Un(R)

}
.

(6.1.16)

For elementary seismograms, these relations are obvious. We shall, however, see in Sec-
tion 6.2 that they will lead to different algorithms in computing complete ray synthetic
seismograms.

6.1.5 Elementary Synthetic Seismograms for Complex-Valued

Travel Times

For complex-valued T , we replace δ(A)(t − T ) in (6.1.15) by −i/[π (t − T )]; see (A.3.21).
Then (6.1.15) yields

un(R, t) = Re
{
x(t) ∗Un(R)δ

(A)(t − T (R))
} = Re

{
x(t) ∗ −iUn(R)

π (t − T (R))

}

= x(t) ∗ Im
{

Un(R)

π (t − T (R))

}
=Re

{
F(t) ∗ 1

π
Un(R) Im

1

t − T (R)

}
.

(6.1.17)

These relations are important particularly in the computation of synthetic seismograms of
waves propagating in weakly dissipative media.

6.1.6 Computation of Elementary Synthetic Seismograms

in the Frequency Domain

In certain situations, it is useful to compute the elementary ray synthetic seismograms in the
frequency domain. We shall first compute the elementary frequency response. By elemen-
tary frequency response, we understand the Fourier spectrum of the relevant component
of the displacement vector at R, for the source-time function corresponding to the Dirac
delta function, x(t) = δ(t). The elementary frequency response is given by the relation

un(R, f ) = Un(R) exp[2iπ f T (R)]. (6.1.18)

To obtain the elementary synthetic seismogram from the elementary frequency response
(6.1.18),wemustmultiply (6.1.18) by theFourier spectrum x( f ) of the source-time function
x(t) and use the inverse Fourier transform.

Aswe can see from (6.1.18), the frequency response for one elementary wave has a very
simple meaning. The concept of the frequency response will be more important in the com-
putation of complete ray synthetic seismograms, by summation of elementary frequency
responses. The frequency response is independent of the actual source-time function, and
the same frequency response can be used to evaluate ray synthetic seismograms for various
source-time functions.
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6.1.7 Fast Frequency Response Algorithm

If we compute the synthetic seismograms in the frequency domain using the Fourier trans-
form, we must determine (6.1.18) for a series of frequencies fk (k= 1, 2, . . . , K ), with
fi+1 − fi =� f = const. Themost time-consuming step in the computationof the frequency
response is the evaluation of the trigonometric functions cos(2π fkT ) and sin(2π fkT ). A
considerably simpler procedure, which practically eliminates the computation of these
trigonometric functions, can be found. For any selected frequency fk = f1 + (k − 1)� f ,

un(R, fk) = Un(R) exp[2iπ fkT (R)]

= Un(R) exp[2iπ ( f1 + (k − 1)� f )T (R)]

= Un(R) exp[2iπ f1T (R)][exp(2iπ� f T (R))]
k−1.

If

A = exp[2iπ� f T (R)], (6.1.19)

then

un(R, fk) = un(R, fk−1)A = un(R, f1)A
k−1. (6.1.20)

Thus, the fast frequency response algorithm,which eliminates the calculation of the trigono-
metric functions, follows. Contribution Un(R) exp(2iπ f T (R)) is directly calculated only
for the first frequency f = f1. In addition, we also compute A given by (6.1.19). For every
other frequency ( f2, f3, . . .), only one complex-valued multiplication is needed to obtain
the frequency response (see (6.1.20)); no trigonometric function needs to be computed.

The FFR algorithm increases the efficiency of the computation of synthetic seismo-
grams in the frequency domain tremendously. Instead of the computation of two trigono-
metric functions and several algebraic operations, only one complex-valued multiplication
by a constant quantity is needed for each frequency.

The FFR algorithm can also be used for complex-valued T (R), but T (R) must be
independent of frequency. Thus, the FFR algorithm can be used for noncausal dissipation.
For causal dissipation, T (R) depends on frequency, and the FFR algorithm cannot be used.
See Section 6.3.

6.2 Ray Synthetic Seismograms

In Section 6.1, we considered only one elementary wave specified by an appropriate al-
phanumeric code, and its ray � passing through R. In a layered medium, however, there
may be many body waves that travel from the point source at S or from the initial surface
� to point R along various trajectories�. They correspond to various reflected, refracted,
converted, and other seismic body phases. Moreover, even one elementary wave may travel
from S (or from �) to R along different ray trajectories (so-called multiple rays).

To distinguish between the displacement vector un(R, t) corresponding to one selected
elementary wave, and the displacement vector of the complete wavefield, obtained by the
superposition of various elementary waves, we shall use a bar above the letter for the
displacement vector of the complete wavefield, ūn(R, t). We shall again consider only one
(nth) component of the displacement vector, but we shall speak of the displacement vector,
for simplicity.

Ray synthetic seismograms have found applications in the interpretation of observed
seismograms, mainly in structural studies of the Earth’s crust and the uppermost mantle.



6.2 RAY SYNTHETIC SEISMOGRAMS 631

They have usually been used to improve successively the structural model, comparing the
observed and synthetic seismograms. The ray synthetic seismograms cannot compete in
accuracy with some other synthetic seismograms generating the complete wavefield, like
finite-difference synthetic seismograms. However, they have one great advantage when
compared with them. Any signal in ray synthetic seismograms can be simply assigned
to a structure in a very limited part of the model, corresponding to the vicinity of the
relevant ray. Consequently, we know which part of the model should be corrected to
obtain a better fit. The finite-difference synthetic seismograms do not offer such a pos-
sibility because they yield the complete wavefield. (Exception are the finite-difference
movies that may be used to correlate individual signals on successive time levels.) The
ray synthetic seismograms also offer some advantages with respect to the independent
treatment of travel times and amplitudes of individual elementary waves. They include, in
one picture, three pieces of information related to individual signals: travel times, ampli-
tudes, and waveforms. Moreover, they also give a proper description of various interfer-
ence effects in regions, where individual elementary waves interfere and cannot be treated
separately.

In the 1960s and 1970s, the ray synthetic seismograms were evaluated mostly for 1-D
crustal models composed of parallel thick homogeneous layers; see, for example, Hron and
Kanasewich (1971). Several modifications of the ray method, such as the Weber-Hermite
modification for the critical regions, were included to increase the accuracy of ray com-
putations; see Červený and Ravindra (1971). The computer programs were also modified
for vertically inhomogeneous layered structures, simulating them by thin homogeneous
layers (similar to the reflectivity method) and computing only primary unconverted reflec-
tions from individual interfaces. See the detailed expositions of these methods, with many
examples, in the book by Červený, Molotkov, and Pšenčı́k (1977), in Červený (1979b),
and Hron et al. (1986). Very fast and efficient algorithms and computer programs for 1-D
ray synthetic seismograms based on polynomial rays (see Section 3.7) are described in
Červený and Janský (1985) for vertically inhomogeneous layered medium and in Zednı́k,
Janský, and Červený (1993) for radially symmetric layered structure.

In 1-D models, the standard ray method is not as accurate as the WKBJ, reflectiv-
ity and generalized ray methods. Consequently, ray synthetic seismograms have found
most natural applications in laterally varying layered models, where the three mentioned
methods cannot be used. The first ray synthetic seismograms for 2-D crustal structures,
mostly composed of homogeneous isotropic nondissipative layers separated by curved
interfaces, were computed in 1970s. The key problem in the algorithms consists in the
two-point ray tracing. As soon as the problem of two-point ray tracing was reliably
solved for general 2-D laterally varying layered structures, it was possible to produce
more-or-less universal and routine computer packages for 2-D ray synthetic seismograms.
See, for example, computer package SEIS83, distributed by World Data Center (A) for
Solid Earth Geophysics, Boulder (Červený and Pšenčı́k 1984b). Alternative algorithms
have been proposed by many seismologists. 2-D ray synthetic seismograms have been
used in deep seismic sounding of the Earth’s crust, and in seismic exploration, in strong
motion seismogram computations, in vertical seismic profiling, in cross-well computa-
tions, among others. The algorithms, details of computations, and many numerical ex-
amples of 2-D ray synthetic seismograms can be found in Červený and Pšenčı́k (1977),
Červený, Molotkov, and Pšenčı́k (1977), Hron, Daley, andMarks (1977), Chapman (1978),
Hong and Helmberger (1978), May and Hron (1978), Červený (1979a), Marks and Hron
(1980), McMechan and Mooney (1980), Cassel (1982), Langston and Lee (1983), Lee and
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Langston (1983a, 1983b), Bernard and Madariaga (1984), Červený and Pšenčı́k (1984b),
Cormier and Mellen (1984), Cormier and Spudich (1984), Spence, Whittal, and Clowes
(1984), Spudich and Frazer (1984), Madariaga and Bernard (1985), Fertig and Pšenčı́k
(1985), Moczo, Bard, and Pšenčı́k (1987), Brokešová (1996), and Iversen, Vinje, and
Gelius (1996). For a more detailed review with many numerical examples and references,
see Červený et al. (1980), and particularly Červený (1985b). At present, the computa-
tion of ray synthetic seismograms in 2-D laterally varying layered isotropic structures
is a well-understood and routine problem, and relevant computer packages are available
at most seismological institutions. The recent references would be too numerous to be
given here.

In 3-D laterally varying layered structures, ray synthetic seismograms can be computed
practically in the same way as in 2-D; see Červený and Klimeš (1984), Azbel et al. (1984),
Musil (1989), and Chen (1998), among others. There are, however, two serious additional
problems. The first problem is connected with the construction of sufficiently general 3-D
models of laterally varying layered and blocked media, which would satisfy the validity
conditions of the ray method in the range of prevailing frequencies under consideration.
The second, very critical problem consists of fast, efficient, and safe algorithms for two-
point ray tracing, yielding all multiple rays. The two-point ray tracing in 3-D structures is
considerably more complicated than in 2-D structures. Suitable program packages for 3-D
ray synthetic seismograms exist but are usually not available in the public domain. One
of the popular 3-D packages, designed by L. Klimeš, is called the Complete Ray Tracing
package and is based on algorithms described in detail by Červený, Klimeš, and Pšenčı́k
(1988b), supplemented by the two-point ray tracing algorithm by Bulant (1996, 1999).

In anisotropic inhomogeneous layered structures, the main principles of ray synthetic
seismograms remain the same as in isotropic inhomogeneous media. Because the ray
fields in anisotropic inhomogeneous layered structures are intrinsically 3-D, the 2-D ray
synthetic seismograms do not play as important a role in practical applications there as
they do in isotropic media. For this reason, 3-D models usually have been considered. The
two problems of 3-D computations discussed here (model, two-point ray tracing) play a
similarly important role in anisotropic media as in isotropic media. An additional problem
is connected with shear wave singularities and with weak anisotropy, where the standard
anisotropic ray method fails. See Gajewski and Pšenčı́k (1987a, 1987b, 1990, 1992) and
their programpackageANRAY, aswell asGuest andKendall (1993) andAlkhalifah (1995).

We have discussed here only the ray synthetic seismograms computed by standard
ray methods. The synthetic seismograms for laterally varying layered structures, based on
asymptotic high-frequency integral solutions of the elastodynamic equation are discussed
in Section 6.2.6. Equations of Section 6.2.6 may be applied to the Kirchhoff integrals and
to various other superposition integrals. For weakly dissipative media, see Section 6.3.

6.2.1 Ray Expansions

The displacement vector component of the complete wavefield at R, ūn(R, t),

ūn(R, t) =
∑
(�)

un(R, t), (6.2.1)

where the summation runs over all (or some selected) rays from S (or from the initial
surface�), arriving at Rwithin a specified timewindow.Contributions un(R, t) correspond
to the individual rays and are given by the equations of Section 6.1.
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Formula (6.2.1) is usually called the ray expansion formula. Considerable attention
in the seismological literature has been devoted to the automatic generation of numerical
codes of multiply reflected waves in horizontally layered media with homogeneous layers;
see, for example, Hron (1971, 1972) and Červený, Molotkov, and Pšenčı́k (1977). In such
media, the elementary waves may be effectively grouped into families of kinematic and
dynamic analogues. In this case, only a finite number of elementary waves arrives at the
receiver within a specified time window. (The number of elementary waves, however,
may be tremendously high.) In inhomogeneous layered structures, an infinite number of
elementary waves may arrive at the receiver, even if a time window of finite length is
considered. Thus, a ray synthetic seismogram (6.2.1) cannot be generally complete, but
only partial ray expansion is possible. Moreover, in laterally varying layered structures,
the elementary waves must be treated individually; they cannot be grouped into families
of kinematic and dynamic analogues. The ray method is the most effective in situations
in which only a small number of elementary waves needs to be computed. A medium
composed of thick layers separated by smooth interfaces may serve as a good example,
particularly if the epicentral distances of the receivers are not too large.

6.2.2 Computation of Ray Synthetic Seismograms in the Time Domain

Several methods can be used if the synthetic seismograms are to be computed in the time
domain.

The first method is based on the summation of elementary synthetic seismograms. It
evaluates the elementary synthetic seismograms for a given source-time function one after
another and performs summation (6.2.1). This method is conceptually very simple, but it
is numerically efficient only if the number of elementary synthetic seismograms is small.
Moreover, it requires a very effective algorithm to compute the individual elementary
seismograms. It has been used traditionally mainly in connection with the approximate
computation of the ray synthetic seismograms using relation (6.1.12), particularly for the
Gabor source-time function; see (6.1.13). For example, the method is used in the 2-D
program packages SEIS83 and SEIS88; see Červený and Pšenčı́k (1984b). For a large
number of elementary waves, the method is not efficient.

A more efficient method is based on impulse synthetic seismograms, see Equa-
tion (6.1.14). We first compute the complex-valued time series

ū In(R, t) =
∑
(�)

Un(R)δ(t − T (R)) (6.2.2)

and obtain

ūn(R, t) = Re
{
F(t) ∗ ū In(R, t)

} = Re

{
F(t) ∗

∑
(�)

Un(R)δ(t − T (R))

}
.

(6.2.3)

Therefore, we need to determine two real-valued impulse synthetic seismograms for
Re
∑
Un(R)δ(t − T (R)) and Im

∑
Un(R)δ(t − T (R)); see (6.2.2). Convolving the im-

pulse synthetic seismograms with the relevant analytical signal and taking its real part, we
obtain the final result.
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Alternatively, we can use equation F(t) ∗ δ(ζ ) = x(t) ∗ δ(A)(ζ ), see (A.3.14), to obtain

ūn(R, t) = Re

{
x(t) ∗

∑
(�)

Un(R)δ
(A)(t − T (R))

}

= x(t) ∗ Re

{∑
(�)

Un(R)δ
(A)(t − T (R))

}
. (6.2.4)

The sum in (6.2.4) represents a complex-valued impulse synthetic seismogram (for the
source-time function given by the Dirac delta function). The application of (6.2.3), how-
ever, will usually be more efficient because it uses only the real-valued δ functions in the
summation and does not require the analytical delta signal δ(A)(t − T ) to be calculated.

6.2.3 Computation of Ray Synthetic Seismograms for Complex-Valued

Travel Times

If the model under consideration is dissipative, we obtain complex-valued travel times T .
The equations of the preceding section must then be modified. In this case, the simplest
approach to derive the equations for the synthetic seismograms is to insert (A.3.21) into
(6.2.4). We then obtain

ūn(R, t) = Re

{
x(t) ∗

∑
(�)

Un(R)

( −i

π (t − T (R))

)}

= Im

{
x(t) ∗ 1

π

∑
(�)

Un(R)

t − T (R)

}
= x(t) ∗ Im

1

π

∑
(�)

Un(R)

t − T (R)
,

(6.2.5)

where T (R) is complex-valued. Alternatively, we can also use x(t) ∗ (−i/π(t − T )) =
F(t) ∗ Im(1/π (t − T )) to arrive at

ūn(R, t) = Re

{
F(t) ∗ 1

π

∑
(�)

Un(R) Im
1

t − T (R)

}
. (6.2.6)

The last equation seems to be most efficient for complex-valued travel times.

6.2.4 Computation of Ray Synthetic Seismograms

in the Frequency Domain

In the frequency domain, it is convenient to compute first frequency response Yn(R, f ):

Yn(R, f ) =
∑
(�)

Un(R) exp[2iπ f T (R)]. (6.2.7)

If we multiply frequency response Yn(R, f ) by the Fourier spectrum of the source-time
function, we obtain the actual spectrum of the synthetic seismogram. Using the inverse
Fourier transform, we obtain the ray synthetic seismogram. If travel time T (R) is complex-
valued, we can again use (6.2.7), without any modification.

The frequency domain approach is efficient particularly if we use the FFR algo-
rithm. If the FFR algorithm cannot be used, the frequency domain approach becomes
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time-consuming, particularly if we are treating a large number of elementary waves. Nev-
ertheless, the method allows various frequency-dependent effects to be included, which
can hardly be included in the time-domain approach.

6.2.5 Modified Frequency-Response Expansions

The frequency-response ray expansion (6.2.7) can be modified to include a considerably
broader class of applications by allowing Un(R) to be frequency-dependent:

Yn(R, f ) =
∑
(�)

Un(R, f ) exp[2iπ f T (R)]. (6.2.8)

The expressions Un(R, f ) may include even possible frequency-dependent effects cor-
responding to the travel time T (R). As examples, we can name here the quasi-isotropic
correction factor (5.4.39) of qP waves propagating in weakly anisotropic media or dissipa-
tion filters D(R, S) introduced in Section 5.5. The expansion (6.2.8) simplifies ifUn(R, f )
can be factorized,Un(R, f ) = Un(R)Xn( f ) (no summation over n), where Xn( f ) are some
frequency filters, different for different elementary waves. Then

Yn(R, f ) =
∑
(�)

Un(R)Xn( f ) exp[2iπ f T (R)]. (6.2.9)

Finally, if the filter is the same for all elementary waves, (6.2.9) yields

Yn(R, f ) = Xn( f )
∑
(�)

Un(R) exp[2iπ f T (R)]. (6.2.10)

The modified expansions (6.2.8) through (6.2.10) can be used in various applications,
where (6.2.7) fails. We shall discuss here briefly several of them.

a. Dissipative effects. Because these effects play a very important role in practical
applications, Section 6.3 will be devoted to them.

b. Singular regions. Diffracted waves. In caustic, critical, and transition regions,
various modifications of the ray method can be used. The amplitudes of elementary
waves under consideration are then usually frequency-dependent. Similarly, ampli-
tudes of diffracted waves, pseudospherical waves, inhomogeneous waves, and the
like are also frequency-dependent. Expansion (6.2.8), however, can be used even in
these cases.

c. Higher order approximations. Head waves. In this case, it is suitable to write
the higher order approximations and higher order waves as independent elementary
waves. Then expansion (6.2.9) can be used. The frequencyfilter Xn( f ) for individual
contributions equals either 1 for the zeroth-order approximation, (−2iπ f )−1 for the
first-order approximation, (−2iπ f )−2 for the second-order approximation, and so
on. The contributions with Xn( f ) = (−2iπ f )−k , for k fixed, can then be grouped,
and (6.2.10) can be used for these groups. See Eisner and Pšenčı́k (1996).

d. Hybrid combination of the ray method with other methods. Here the ampli-
tudes of individual waves are usually frequency-dependent, and (6.2.8) should be
used. As an example, let us name here the hybrid combination of the ray method
with the matrix method, in which the R/T coefficients and conversion coefficients
are frequency-dependent. Such hybrid combination has been successfully used for
models with thin transition layers and with thin subsurface layering. See Červený
(1989b).
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e. Point sources with different source-time functions. If sources with different
source-time functions are considered independently, standard ray expansions (6.2.7)
can be used. Modifications, however, are required if such sources should be used
in one computation, together. As an example, let us consider single-force point
sources and moment-tensor point sources; see Section 5.2.3. A similar example are
single-force point sources and explosive point sources; see Section 5.2.3. See also
Douglas, Young, and Hudson (1974).

f. Point sourceswith frequency-dependent radiation functions. In this case, (6.2.8)
or (6.2.9) should be used. As an example, let us present the radiation functions of
point sources situated close to structural interface and/or to the Earth’s surface; see
Jı́lek and Červený (1996).

g. Point and line sources. If point and line sources are considered independently, stan-
dard ray expansions (6.2.7) can be used in both cases. The modification is required
if we wish to consider both sources together, in one computation, or to compare ray
synthetic seismograms with those computed by finite-difference method for a 2-D
model with a line source. See more details in Sections 2.6.3, 5.1.12, and 5.2.15.

h. Frequency filters of recording instruments. The frequency-domain character-
istics of recording instruments can be introduced in ray-theoretical computation
using (6.2.10). The filter Xn( f ) can also be used to transform computed seis-
mograms (in displacements) to velocigrams (Xn = −2iπ f ) or to accelerograms
(Xn = −4π2 f 2). Moreover, frequency filters corresponding to the local structure
close to the recording equipment can also be introduced in this way.

The preceding list of applications of modified frequency-response expansions is far
from being complete. It would be possible to present here many other examples. Of course,
many of the foregoing frequency filters may be suitably replaced by a convolution in the
time domain or by direct computations in the time domain.

6.2.6 Time-Domain Versions of Integral Solutions

Certain more general solutions of the elastodynamic equation, presented in this book,
have been constructed by integral superposition of asymptotic ray-based solutions. In the
frequency domain, they can be mostly expressed in the following integral form:

un(R, f ) =
∫∫

D
An(R, γI ) exp[i2π f θ (R, γI )]dγI . (6.2.11)

Here f = ω/2π is the frequency, R denotes the position of the receiver, γ1 and γ2 are ray
parameters, D is some region in the ray parameter domain, An(R, γI ) are components of
a vectorial amplitude function, and θ (R, γI ) is a scalar phase function. Each of An(R, γI )
and θ (R, γI ) may be either real-valued or complex-valued.

The frequency-domain solution can be transformed into the time-domain solution using
the Fourier integral:

un(R, t) = 2Re
∫ ∞

0
X ( f )un(R, f ) exp[−i2π f t]d f

= 2Re
∫∫

D
An(R, γI )

×
(∫ ∞

0
X ( f ) exp[−i2π f (t − θ (R, γI ))]d f

)
dγI ;
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see (A.1.3). X ( f ) is the complex Fourier spectrum of the signal x(t) under consideration,
for example, of the source-time function. Using (A.3.15), we obtain

un(R, t) = Re
∫∫

D
An(R, γI )x

(A)(t − θ (R, γI ))dγI . (6.2.12)

This is the time-domain analogueof the frequency-domain solution (6.2.11), and x (A)(t − θ )
is the analytical signal corresponding to x(t − θ ); see (A.3.2).

The time-domain solution (6.2.12) can be expressed in several alternative forms. Using
relation x (A)(t − θ ) = x(t) ∗ δ(A)(t − θ ), (6.2.12) yields

un(R, t) = x(t) ∗ Re
∫∫

D
An(R, γI )δ

(A)(t − θ (R, γI ))dγI . (6.2.13)

δ(A)(t − θ ) denotes the analytical delta function; see (A.3.6). Finally, we can use (A.3.21)
in (6.2.13) and obtain

un(R, t) = x(t) ∗ π−1 Im
∫∫

D

An(R, γI )

t − θ (R, γI )dγI . (6.2.14)

The time-domain integrals (6.2.12) through (6.2.14) can be used both for An and θ complex-
valued.

The frequency-domain superposition integral (6.2.11) may contain some simple
frequency-dependent multiplicative factor, for example factor −iω = −i2π f . We do not
consider such factors here because they can be connected with the Fourier spectrum
X ( f ). For example, factor −iω yields the Fourier spectrum −i2π f X ( f ) = F(ẋ), where
ẋ = dx/dt . Thus, if (6.2.11) is multiplied by (−iω), x (A)(t − θ ) in (6.2.12) should be
replaced by ẋ (A)(t − θ ), and x(t) in (6.2.13) and (6.2.14) should be replaced by ẋ(t).

With properly specified functions An(R, γI ) and θ (R, γI ), (6.2.11) represents various
integral solutions of the elastodynamic equation derived in this book. It represents the
solutions based on the summation of paraxial ray approximations and on the summation of
paraxial Gaussian beams; see Section 5.8. Consequently, it also represents various forms
of the Maslov-Chapman integrals, derived in different ways. In this case, integration is
performed in the ray parameter domain. It also represents Kirchhoff integrals; see Sec-
tions 5.1.11 and 5.4.8. In this case, integration is performed along surface �0, which may
again be parameterized by ray parameters. In the summation of paraxial Gaussian beams,
phase function θ (R, γI ) is complex-valued; in all other cases, it is real-valued. Expressions
(6.2.11) through (6.2.14) remain valid for a one-parameteric system of rays, with ray pa-
rameter γ1. In this case, the double integral

∫∫
D must, of course, be replaced by a single

integral. The foregoing integrals then also represent the superposition integrals in the 2-D
and 1-D models; see Section 5.8.6.

For complex-valued phase function θ (R, γI ) (for example, in the summation of parax-
ial Gaussian beams), the most efficient way is to perform the computation of synthetic
seismograms in the frequency domain. The computation is very fast and effective because
the fast frequency response algorithm can be used. For this reason, we shall consider
only real-valued phase function θ (R, γI ) in the following. We can then use the relation
x (A)(t − θ ) = x (A)(t) ∗ δ(t − θ ) in (6.2.12) and obtain

un(R, t) = Re

{
x (A)(t) ∗

∫∫
D
An(R, γI )δ(t − θ (R, γI ))dγI

}
. (6.2.15)
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Thus, the integral over D reduces to a line integral in D along the equal-phase line
t = θ (R, γI ), also called the isochrone. The relevant line integral along the isochrone
in D can be modified in two ways.

1. IMPULSE INTEGRALS
We introduce a variable γ along the isochrone t = θ (R, γI ) in D and substitute γ1,

γ2 → θ, γ in (6.2.15).We can introduce γ so that dγ = [dγ 2
1 + dγ 2

2 ]
1/2 along the isochrone

in D. Using also the relation (∂θ/∂γI )(∂γI/∂γ ) = 0, we obtain

dθdγ = det

(
∂θ/∂γ1 ∂θ/∂γ2
∂γ /∂γ1 ∂γ /∂γ2

)
dγ1dγ2

=
((

∂θ

∂γ1

)2

+
(
∂θ

∂γ2

)2
)1/2

dγ1dγ2.

Then (6.2.15) yields

un(R, t)=Re

{
x (A)(t) ∗

∫
t=θ (R,γI )

An(R, γI )

[(
∂θ

∂γ1

)2

+
(
∂θ

∂γ2

)2
]−1/2

dγ

}
.

(6.2.16)

The integral is taken along the isochrone t = θ (R, γI ) in D. Consequently, γI depend on
time t , and also the integrand of (6.2.16) is a function of t .

Nowwe shall consider one-parameteric single integrals, with one ray parameter γ1 only.
The example is theWKBJ integral; see Section 5.8.6. In this case, the integral (6.2.16) along
the isochrone inD is replaced by the sum over the individual points at which t = θ (R, γ1).
Also, [(∂θ/∂γ1)2 + (∂θ/∂γ2)2]1/2 should be replaced by |∂θ/∂γ1|. Equation (6.2.16) then
yields

un(R, t) = Re
{
x (A)(t) ∗�t=θ (R,γ1)An(R, γ1)/|∂θ (R, γ1)/∂γ1|

}
. (6.2.17)

The equation analogous to (6.2.17) for vertically inhomogeneous media was first derived
by Chapman (1976a, 1976b) and by Wiggins (1976). The Wiggins’ (1976) derivation
was based on physical argumentation; he speaks of the “disk ray theory.” For a detailed
derivation and discussion, see Chapman (1978).

2. BAND-LIMITED INTEGRALS
We shall now derive an important approximate expression for un(R, t), which includes

some smoothing.We use the box car window B(t) = 1
2 (H (t + 1) − H (t − 1)), where H (t)

is the Heaviside function (see (A.1.15)), and introduce a new window:

B(t/�t)

�t
= 1

2�t

[
H

(
t +�t
�t

)
− H

(
t −�t
�t

)]
. (6.2.18)

�t denotes the digitalization interval of the discrete time series. Instead of un(R, t), we
shall compute uan(R, t) = un(R, t) ∗ B(t/�t)/�t . It can be proved that uan(R, t) is the
average value of un(R, t) over time interval 2�t :

uan(R, t) = un(R, t) ∗ B(t/�t)

�t
= 1

2�t

∫ t+�t

t−�t
un(R, τ )dτ. (6.2.19)
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If we take into account that δ(t − θ ) ∗ B(t/�t)/�t = B((t − θ )/�t)/�t , we can express
(6.2.15) in the following form:

uan(R, t) = 1

2�t
Re

{
x (A)(t) ∗

∫∫
t±�t=θ

An(R, γI )dγI

}
. (6.2.20)

The integration is not performed along the whole of D, but only along the strip t −�t ≤
θ (R, γI ) ≤ t +�t in D.

Indeed, integral (6.2.20) is surprisingly simple. For a given time t , only the vecto-
rial amplitude function An(R, γI ) is integrated over the strip t ±�t = θ , situated along
isochrone t = θ . Suitable numerical algorithms were proposed by Spencer, Chapman, and
Kragh (1997). They are based on the triangulation of the strip, with the ray-theory results
known at the apexes of the triangular elements, and on the linear interpolation of ray-theory
quantities inside the individual triangles.

For one-parameteric single integrals (for example, for the WKBJ integrals, see Sec-
tion 5.8.7), Equation (6.2.20) yields

uan(R, t) = 1

2�t
Re

{
x (A)(t) ∗

∫
t±�t=θ

An(R, γ1)dγ1

}
. (6.2.21)

The integral is taken over all γ1-intervals, satisfying for a given R and t the conditions
t −�t ≤ θ (R, γ1) ≤ t +�t .

If An(R, γ1) varies slowly and smoothly within individual γ1-intervals, (6.2.21) yields
approximately

uan(R, t) = 1

2�t
Re
{
x (A)(t) ∗

∑
An(R, γ̄1)�γ1

}
. (6.2.22)

Here the summation is again over all γ1-intervals. Within each interval, An(R, γ1) is taken
constant, that is, An(R, γ1) = An(R, γ̄1), where γ̄1 is determined by solving the equation
t = θ (R, γ̄1). Further,�γ1 is the width of the γ1-interval (measured along a straight line of
constant t). In other words, interval�γ1 is defined by t ±�t = θ (R, γ1). Equation (6.2.21)
was first derived by Chapman (1978), where its detailed discussion can also be found. The
relevant algorithms and computer programs are described in Chapman, Chu, and Lyness
(1988). Chapman’s algorithm to compute the WKBJ seismograms is now quite standard in
seismology and seismic exploration.

A great advantage of the band-limited integrals is that they are not as sensitive to the
approximation of the medium and to minor details of the model as the ray method itself.
For a more detailed discussion, see Chapman (1978, Section 3.4).

A final note. Until now, we have discussed only single and double integrals. Analogous
methods can, however, also be used for volume integrals, with the integrands expressed is
the same form as in (6.2.11). The most important example is the Born scattering integral
(2.6.18), with the ray-theory expressions for the displacement and Green function used in
the integrand. A suitable numerical procedure to evaluate the time-domain version of the
Born scattering integral is described in Spencer, Chapman, and Kragh (1997).

6.3 Ray Synthetic Seismograms in Weakly Dissipative Media

As in Section 5.5, we shall consider only homogeneous waves in weakly dissipative media.
The method is based on the application of certain dissipation frequency filters to the
amplitudes of the individual elementary waves. The dissipation filters can be computed by
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quadratures along real-valued rays of these elementary waves, calculated in nondissipative
models. Thus, the method does not require the computation of complex-valued rays, which
would be necessary for strongly dissipative media. For more details, see Krebes and Hron
(1980a, 1980b, 1981), Krebes and Hearn (1985), Hearn and Krebes (1990a, 1990b), and
Thomson (1997a), among others.

6.3.1 Dissipation Filters

It was shown in Section 5.5 that the effect of weak absorption on the amplitudes of seismic
waves in the ray method may be expressed in terms of the dissipation frequency filter
D(R, S), given by (5.5.8),

D(R, S) = exp[iωTd(R, S)]. (6.3.1)

Here Td(R, S) is a complex-valued frequency-dependent travel-time perturbation. It repre-
sents the difference between the travel time in the viscoelastic (weakly dissipative) model
under consideration and the travel time in a specified frequency-independent elastic back-
groundmodel. Both travel times are calculated along a ray�0 from S to R, determined in the
background model. If Td(R, S) is complex-valued, but frequency-independent, we speak
of noncausal absorption. Under causal absorption, Td(R, S) must be complex-valued and
frequency-dependent. This yields the material dispersion, which is intrinsically connected
with dissipation. Using the Kramers–Krönig dispersion relations, it can be proved that
dissipation filter (6.3.1) must be frequency-dependent so that the existence of absorption
always implies the dispersion of velocities. The dispersion, however, may be small if we
do not consider large distances between S and R. Thus, the dispersion may be neglected
in certain practical cases and only noncausal absorption can be considered.

In this section we shall describe the computation of synthetic seismograms in weakly
dissipative media. We shall distinguish two cases.

a. Noncausal absorption, that is, Td(S, R) independent of frequency (but complex-
valued).

b. Causal absorption, that is, Td (S, R) both complex-valued and frequency-dependent.

In the last part of the section, we shall describe one particularly simple case: wave prop-
agation in a constant-Q model. If quality factor Q is constant in the whole model under
consideration, the dissipation filter is extremely simple and may be applied to the wavefield
as a whole, not divided into individual elementary waves.

6.3.2 Noncausal Absorption

For each elementary wave, quantity Td(R, S) can be expressed in terms of the global
absorption factor t∗ (also called t-star) using the relation

Td(R, S) = 1
2 it

∗(R, S). (6.3.2)

Here t∗(R, S) is given by (5.5.12) and can be evaluated simply along a known ray of
the elementary wave under consideration. Because t∗(R, S) is real-valued, Td(R, S) is
imaginary-valued. Note that quantities t∗(R, S) differ for different rays connecting S and R.
The final expression for the elementary seismogram corresponding to a selected elementary
wave is obtained by considering the complex-valued frequency-independent travel time
T (R, S) + 1

2 it
∗(R, S) instead of the standard real-valued travel time T (R, S).
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The final expressions for the displacement vector can be obtained in three ways:

a. In the frequency domain. In this case, the algorithm of fast frequency response
can be used; see Section 6.1.7. It is used independently for each elementary wave,
and the fact that t∗(R, S) are different for different rays is of no consequence. The
computation of synthetic seismograms for waves propagating in a noncausal model
is practically as fast as in a perfectly elastic model. The only thing we have to do
is to compute t∗(R, S) along all the rays under consideration connecting S and R.
This is, however, fast and easy, once the rays are known.

b. In the time domain. We can use any of equations (6.1.17), but again we use them
separately for each elementary wave. Particularly simple is the first expression in
(6.1.17). Putting Un(R) = U R

n + iU I
n and using (A.3.19), we obtain

un(R, t) = Re
{
x(t) ∗Un(R)δ

(A)(t − T (R))
}

= 1

π
UR
n

∫ ∞

−∞

x(u)T Idu

(t − T R − u)2 + (T I )2

+ 1

π
U I
n

∫ ∞

−∞

x(u)(t − T R − u)du

(t − T R − u)2 + (T I )2
. (6.3.3)

Integrals in (6.3.3), divided by π , are also known as Poisson integrals. They have
simple limits for T I → 0. The first has the limit x(t − T R), and the second has
−g(t − T R), where g is the Hilbert transform of x . Thus, for T I → 0, (6.3.3)
yields (6.1.10). In fact, Poisson integrals represent the analytical continuation of x
and g from the real axis into a complex plane. See also the similar treatment for
inhomogeneouswaves in Section 2.2.9, particularly Equations (2.2.83) and (2.2.84).

c. Approximate expressions. Regardingmonochromatic high-frequency signalswith
a broad envelope a(t), the expressions for the signals propagating in a weakly dissi-
pativemedia can also be derived approximately. Theywill not be given here because
they can be obtained simply from the more general approximate expressions for
causal signals presented in the next section; see (6.3.6).

6.3.3 Causal Absorption

In the case of causal absorption, Td(R, S) in (6.3.1) is frequency-dependent. See, for
example, Futterman’s dissipation filter (5.5.19) orMüller’s dissipation filter (5.5.23). These
dissipation filters are, as a rule, again functions of t∗(R, S), but the exponent of D(R, S)
is not a linear function of frequency, as in the case of noncausal models. The simple
approaches of Section 6.3.2 cannot be used to construct synthetic seismograms, but more
time-consuming approaches must be used.

a. In the frequency domain, the fast frequency response cannot be used. We must
calculate dissipation frequency filter D(R, S) separately for all waves, frequencies,
and receiver positions. Thus, the procedure becomes rather cumbersome. It may
simplify considerably only if Td(R, S) is taken to be independent of frequency in
the range of frequencies being considered. The FFR algorithm can then be used.

b. In the time domain, it would be necessary to find the time domain version of the
dissipation filter. The results may then be obtained by convolution. The time version
of the dissipation filter, d(t ; R, S), can be obtained by the inverse Fourier transform
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from dissipation filter D(R, S):

d(t ; R, S) = 1
2π

−1

∫ ∞

−∞
D(R, S) exp[−iωt]dω. (6.3.4)

This dissipation time function d(t ; R, S) can be computed easily for any dissipation
filter D(R, S). The graphical representations of d(t ; R, S) for various D(R, S) can
be found in many seismological publications.

c. Approximate expressions. If a high-frequency harmonic carrier with a broad
smooth envelope a(t) is involved, the expression for the signal propagating in a
weakly dissipative media can be derived approximately. These expressions were
derived by Červený and Frangié (1980, 1982) and used in computer packages to
calculate synthetic seismograms in inhomogeneous weakly dissipative media. A
very general form of the source-time function was considered:

x(t) = a(2π fM (t − ti )/γ ) cos(2π fM (t − ti ) + ν). (6.3.5)

Here a(ζ ) is assumed to be the broad and smooth envelope of the signal. Here we
shall consider only a special case of (6.3.5), in which envelope a(ζ ) is Gaussian,
a(ζ ) = exp(−ζ 2). Signal (6.3.5) then corresponds to the Gabor signal (6.1.6). The
parameter controlling the width of the envelope is dimensionless quantity γ . For
small γ , the envelope is narrow, and for large γ the envelope is broad. In appli-
cations, values of γ close to 4 are very common. See the examples in Figure 6.1.
Parameter fM is the frequency of the harmonic carrier, which is close to the prevail-
ing frequency of the signal for sufficiently broad envelopes (γ > 3). For simplicity,
we shall call fM the prevailing frequency of the Gabor source-time function. Phase
shift ν vanishes for cosine-like signals and equals−π/2 for sine-like signals. Quan-
tity ν may, however, be arbitrary.

Now assume that the wave is generated by a point source situated at S and recorded at
receiver R. Consider an arbitrary elementary wave propagating in a general 3-D layered
weakly dissipative structure from S to R along ray �. For simplicity, we shall consider
Futterman’s dissipativemodel, but the sameapproach can alsobe applied to other dissipative
models. We put ωr = 2π fM , V = V ( fM ), and Q = Q( fM ). Thus, the background model
corresponds to frequency fM . The travel time from S to R is T (R, S) = ∫ R

S V−1ds, and
the global absorption factor is t∗(R, S) = ∫ R

S (V Q)
−1ds. Both integrals are taken along ray

�0 in the background medium. We further denote the nth ray-centered component of the
amplitude in the background medium by Un(R) and introduce the phase of the amplitude,
χn(R) by Un(R) = |Un(R)| exp[iχn(R)].

Then the nth ray-centered component of the displacement vector of the elementary
wave under consideration corresponding to the Gabor source-time function, propagating
in an inhomogeneous weakly dissipative layered medium from S to R is given by a simple
approximate relation:

un(R, t)
.= |Un(R)| exp

[−(2π fM (t − T a)/γ )2 − (π fM t
∗/γ )2 − π f ∗t∗

]
× cos[2π f ∗(t − T a − π−1t∗) + ν − χn(R)]. (6.3.6)

Here

T a = T (R, S) − t∗(R, S)
π

(
1 + ln

f ∗

fM

)
+ ti ,

f ∗ = fM (1 − 2π fM t
∗/γ ).

(6.3.7)
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For small t∗(R, S) (say, t∗(R, S) < 1), (6.3.6) provides a good description of all the
effects of causal absorption on the Gabor signal with a broad envelope (say, γ > 3) propa-
gating in weakly dissipative media. The decrease of amplitudes with increasing t∗ is mainly
due to the term −π f ∗t∗ in the exponent of (6.3.6). The envelope, however, varies in shape
as the wave progresses. The prevailing frequency f ∗ of the signal decreases as the wave
progresses; see the second equation of (6.3.7). The decrease of f ∗ with t∗ depends on γ ; it
is larger for small γ , higher fM , and higher t∗. The carrier cos[. . .] propagates with a lower
velocity than the envelope; see the additional term −π−1t∗ in the expression for cos[. . .].
Numerical investigation of expression (6.3.6) and the investigation of its accuracy can be
found in Červený and Frangié (1982). They show that signal (6.3.6) satisfies the condition
of causality very well.

6.3.4 Constant–Q Model

The expressions for dissipation filter D(R, S) simplify considerably if quality factor Q
is constant in the whole model. Then t∗(R, S) = Q−1

∫ R
S dT = Q−1T (R, S). Thus, for

constant Q, t∗(S, R) is proportional to the travel time from S to R, and the dissipation filter
reads

D(R, S) = exp[−ωT (R, S)/Q]. (6.3.8)

For a given travel time T (R, S), the dissipation filter does not depend on the type of wave,
on the ray trajectory between S and R, or even on the position of point R.

For the source-time function of a short duration, the complete wavefield is composed
of short signals, and their arrival times T (R, S) may be approximately replaced by running
time. Such filters can be effectively used even in finite-difference computations, where they
can be directly applied to the successive time levels. See Zahradnı́k (1982) and Zahradnı́k,
Jech, and Moczo (1990a, 1990b) for more details and various modifications of the filter.
Some modifications can be applied even to the final complete wavefield. If the complete
wavefield is computed for a perfectly elastic (nondissipative) medium, the modified filter
may be applied to it a posteriori.

6.4 Ray Synthetic Particle Ground Motions

The study of the polarization of vectorial wavefields is a classical problem of physics,
particularly of optics (Born and Wolf 1959; Grant and West 1965; Kravtsov and Orlov
1980). In seismology, polarization studies have a long tradition mainly in the investigations
of surface waves. It has been known for a long time that the Rayleigh waves propagating
along the surface of a homogeneous halfspace are elliptically polarized in the saggital
plane and that the ratio of the vertical to the horizontal half-axis is close to 1.5 (Bullen
and Bolt 1985; Pilant 1979). In seismic body wave studies, the main attention has been
devoted to the effects of the Earth’s surface on the polarization of these waves (Gutenberg
1952; Malinovskaya 1958; Nuttli 1959, 1961; Nuttli and Whitmore 1962; Mendiguren
1969; Herrman 1976; Evans 1984; Booth and Crampin 1985), particularly to the nonlinear
polarization of S waves due to a postcritical incidence on the Earth’s surface. Structural
effects on the polarization of seismic body waves have been studied only exceptionally
(Cormier 1984; Liu, Crampin, and Yardley 1990). The nonlinear polarization of S waves,
however, may be caused not only by postcritical incidence of the S wave at the Earth’s
surface, but also by postcritical incidence of the S wave at an inner structural interface.
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The interest in the polarization of seismic body waves has recently increased consid-
erably, mainly in seismic exploration. There are, at least, three reasons for this increased
interest. First, seismic prospecting has been tradionally based on P waves. Because P waves
are, as a rule, linearly polarized, it was not necessary to consider more complex, nonlinear
polarization. Recently, however, S waves have also been used frequently in various seis-
mic methods (Dohr 1985; Puzyrev, Trigubov, and Brodov 1985; Danbom and Domenico
1986). These studies require a better knowledge of the nonlinear polarization of seismic S
waves. Second, polarization studies require three-component (or, at least, two-component)
recording equipment. In seismic prospecting for oil, three-component measurements were,
until recently, more or less exceptional. Now, three-component measurements are being
used more frequently (Gal’perin 1984). Third, polarization studies play an important role
studying seismic anisotropy. The increased interest in seismic anisotropy has also stimu-
lated interest in polarization measurements, and consequently, in the particle motions of
seismic body waves in general structures (Crampin 1981, 1986).

In the investigation of particle motions of seismic body waves in complex structures,
we shall consider only the zeroth-order approximation of the ray method. It is well known
that the zeroth-order ray approximation may fail in certain singular regions. Of course,
in these regions it will be necessary to support the ray method by a more sophisticated
investigation. Various waves that cannot be described by the zeroth-order approximation
of the ray method, such as head, diffracted, and inhomogeneous waves, are not considered
either. In certain applications, it would be useful to apply the two-term ray method; see
Section 5.7.9.

Seismic body waves have a transient character. In some other branches of physics
(eletromagnetic waves), the wavefields are mostly time-harmonic. In the case of time-
harmonic wavefields, the vectorial wavefield is polarized mostly linearly or elliptically.
Usually, thewaveformof seismic signals is roughly quasi-harmonic; that is, it is represented
by a harmonic carrier with a smooth envelope (Gabor signal, Berlage signal). In general,
however, seismic body wave signals are neither harmonic nor quasi-harmonic. It would be
useful to study the polarization of general signals, not just of harmonic or quasi-harmonic
ones.

In this section, we shall discuss the ray-theoretical polarization diagrams of elementary
seismic bodywaves. The approach is based on the complex-valued representation of seismic
signals (analytical signals). It is no more complicated than the approach used for harmonic
waves; nevertheless, it yields considerably more general results, specifically two basic
types of polarization of seismic bodywaves: linear and quasi-elliptical. The quasi-elliptical
polarization is more complex than the standard elliptical polarization. The quasi-ellipses
have the form of elliptical spirals. The elliptical spiral is affected considerably by the
envelope of the signal under consideration. Thus, the envelope of the signal plays a very
important role in the polarization studies of transient seismic body waves.

6.4.1 Polarization Plane

Consider the displacement vector 	u(R, t) at point R. The polarization diagram is then
the locus of the end points of the displacement vector 	u(R, t), constructed at R for time t
varying.We shall use the complex-valued representation (6.1.1) of the displacement vector
of the seismic body wave under consideration. In vectorial form, (6.1.1) reads

	u(R, t) = Re{ 	U (R)F(t − T (R))}. (6.4.1)
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Here F(ζ ) is a high-frequency analytical signal, F(ζ ) = x(ζ ) + ig(ζ ), where x(ζ ) and g(ζ )
are real-valued functions forming a Hilbert transform pair; see (A.3.1). We shall express
the analytical signal in the following form:

F(ζ ) = a(ζ ) exp(−iφ(ζ )), (6.4.2)

where a(ζ ) is the envelope of both x(ζ ) and g(ζ ), and φ(ζ ) is the so-called phasogram,

a(ζ ) = [x2(ζ ) + g2(ζ )]1/2, φ(ζ ) = −arctan(g(ζ )/ f (ζ ));

see (A.3.23) and (A.3.24). We shall consider only normalized analytical signals F(ζ ) for
which the maximum of envelope function a(ζ ) is 1. We also speak of the normalized
envelope. For harmonic waves with frequency f , a(ζ ) = 1 and φ(ζ ) = 2π f ζ + ν, where
ν is a real-valued constant.

Now

	U (R) = 	U R(R) + i 	U I (R), (6.4.3)

where 	UR(R) and 	U I (R) are two real-valued vectors. Inserting (6.4.2) and (6.4.3) into
(6.4.1) yields

	u(R, t)= a(t −T (R)){ 	U R(R) cosφ(t −T (R))+ 	U I (R) sinφ(t −T (R))}.
(6.4.4)

This vectorial equation describes the ray synthetic particle ground motion, corresponding
to seismic body wave (6.4.1) in a 3-D space at point R. Evidently, the particle ground
motion is confined to a plane specified by real-valued vectors 	U R(R) and 	U I (R).

Equation (6.4.4) immediately shows that the particle motion trajectory is linear only in
the following three cases:

	UR(R)= 0 or 	U I (R)= 0 or 	UR(R)= c 	U I (R), (6.4.5)

where c is a real-valued constant. In all the other cases, the polarization will be nonlinear.
Thus,with the exception of cases (6.4.5), the particlemotion is nonlinear and confined to

plane�p specified by 	UR and 	U I .We shall call�p the plane of polarization or polarization
plane. The plane of polarization is fully defined by point R and by unit normal 	Np to the
plane �p:

	Np = ( 	UR × 	U I )/| 	U R × 	U I |. (6.4.6)

6.4.2 Polarization Equations

In the numerical modeling of seismic wavefields and in practical measurements, we do not
treat the displacement vector 	U directly but rather treat its components in a suitably chosen
local or global Cartesian coordinate system (for example, vertical, radial, and transverse).
Consequently, we usually study the projection of the particle motion into the relevant
coordinate planes (vertical-radial, vertical-transverse, transverse-radial). For simplicity,
we shall speak of polarization equations in the relevant planes.

In this section, we shall derive the polarization equations in an arbitrary plane passing
through point R. The plane may fully coincide with polarization plane �p, but it may also
be arbitrarily inclined with respect to �p, or even perpendicular to it. The polarization
equations we shall derive will also be applicable to points R situated on an interface or on
the Earth’s surface.



646 RAY SYNTHETIC SEISMOGRAMS

Let us consider a Cartesian coordinate system x1, x2, x3 with three unit basis vectors
	i1, 	i2, and 	i3 and with its origin at R. Hence,

	U = U1 	i1 +U2 	i2 +U3 	i3, Uk = UR
k + iU I

k . (6.4.7)

Components U1, U2, and U3 are, in general, complex-valued. In view of (6.4.3),

	U R = U R
1

	i1 +UR
2

	i2 +U R
3

	i3, 	U I = U I
1
	i1 +U I

2
	i2 +U I

3
	i3. (6.4.8)

We are interested in the particle ground motion in an arbitrary plane passing through
R. Without loss of generality, we choose coordinate plane x1-x2, specified by unit vectors
	i1 and 	i2. Because the Cartesian coordinate system xi may be chosen arbitrarily at R, this
choice represents an arbitrary plane passing through R. To avoid unnecessary subscripts
and superscripts, we shall denote

U1 = B exp[iβ], U2 = C exp[iγ ]. (6.4.9)

Here the amplitudes of the individual components B and C are real-valued, which also
applies to phase-shifts β and γ . The components U1 and U2 are said to be phase-shifted,
if the following relation is valid:

β − γ �= kπ, k = 0,±1,±2, . . . . (6.4.10)

The polarization equations can now be expressed in the following simple form:

u1 = aB cos(φ − β), u2 = aC cos(φ − γ ); (6.4.11)

see (6.4.1), (6.4.2) and (6.4.9). Remember that a and φ are functions of the argument
ζ = t − T (R) and that B, C , β, and γ are functions of position R only.

We shall now discuss the shape of the particlemotion diagram described by polarization
equations (6.4.11) and try to find some of its general characteristics. It is not difficult to
eliminate φ from (6.4.11):

uTHu = a2B2C2 sin2(γ − β), u = (u1, u2)
T , (6.4.12)

where the polarization matrix H reads

H =
(

C2 −BC cos(γ − β)
−BC cos(γ − β) B2

)
. (6.4.13)

Equation (6.4.12) does not represent a polarization equation and cannot be used to
compute the particle motion trajectory. It is, however, an equation very convenient in
discussing certain general properties of the particle ground motion diagram.

The polarization matrixH is real-valued and symmetric. Its eigenvalues H1 and H2 are
as follows:

H1,2 = 1
2 (B

2 + C2) ∓ 1
2�,

� = [
(B2 + C2)2 − 4B2C2 sin2(γ − β)]1/2. (6.4.14)

For BC sin(γ − β) → 0, we obtain an approximate relation for H1:

H1
.= B2C2

B2 + C2
sin2(γ − β)

(
1 + B2C2

(B2 + C2)2
sin2(γ − β)

)
. (6.4.15)



6.4 RAY SYNTHETIC PARTICLE GROUND MOTIONS 647

We shall now introduce φ1 and φ2 to specify the direction of eigenvectors 	h(1) and 	h(2) of
H. Angle φ1 is measured from unit vector 	i1 to 	h(1), and the angle φ2 is measured from 	i1
to 	h(2). They are given by the relations

tanφ1 = �+ C2 − B2

2BC cos(γ − β) , φ2 = φ1 + π/2. (6.4.16)

We shall take φ1 within the limits −π/2 ≤ φ1 ≤ π/2, and, consequently, 0 ≤ φ2 ≤ π .
If BC cos(γ − β) → 0, Equation (6.4.16) is not suitable for computations. Expanding

� in terms of BC cos(γ − β) yields

tanφ1
.= (C2 − B2)2(1+ sgn(C − B))+ 2B2C2 cos2(γ −β) sgn(C − B)

2BC(C2 − B2) cos(γ −β) .

(6.4.17)

For B > C , this yields

tanφ1 = BC cos(γ − β)/|B2 − C2|.
Consequently, if BC cos(γ −β)= 0, φ1 = 0. This has, of course, been expected. If γ −β =
±(1+ 2k)π/2 and B=C , angle φ1 can be taken arbitrarily (circular polarization).

Let us now introduce new axes x ′
1 and x

′
2, related to eigenvectors 	h(1) and 	h(2), respec-

tively. In this new coordinate system, Equation (6.4.12) can be expressed in diagonalized
form,

u′
1
2/a21 + u′

2
2/a22 = a2, (6.4.18)

where

a1 = BC |sin(γ − β)|/
√
H1, a2 = BC |sin(γ − β)|/

√
H2. (6.4.19)

For BC sin(γ − β) → 0, the expression (6.4.19) for a1 is not suitable because H1 → 0, too.
We can, however, insert (6.4.15) for H1. Directly for BC sin(γ − β) = 0, the quasi-elliptic
polarization degenerates to linear polarization,

a1 = (B2 + C2)1/2, a2 = 0.

For time-harmonic waves, the normalized envelope a(t − T (R)) in (6.4.18) is inde-
pendent of time, a(t − T (R)) = 1. Equation (6.4.18) then represents an ellipse with the
half-axes a1 and a2 given by (6.4.19). It is simple to see that a1 corresponds to the greater
half-axis and that a2 corresponds to the smaller half-axis of the ellipse. The directions of
the axes of the ellipse are determined by eigenvectors 	h(1) and 	h(2). Thus, for harmonic
waves, we can call ellipse (6.4.18) with a = 1 the polarization ellipse. For a1 �= 0 and
a2 �= 0, we speak of the elliptical polarization of time-harmonic waves.

In the case of transient signals corresponding to seismic bodywaves, the particlemotion
trajectory is more complicated. For time t = tm corresponding to the maximum of the
envelope, a(tm − T (R)) = 1; the particle motion diagram has a tangent point with the time
harmonic polarization ellipse. For all other times, a(t − T (R)) ≤ 1. Thus, the complete
polarization diagram of a transient seismic body wave is bounded by the time-harmonic
polarization ellipse. For this reason, we shall, in this case, call ellipse (6.4.18) with a = 1
the boundary polarization ellipse. Inside the boundary ellipse, the polarization diagram
has spiral character. In general, the particle motion trajectory of a transient seismic body



648 RAY SYNTHETIC SEISMOGRAMS

wave has the shape of an elliptic spiral. We speak of quasi-elliptical polarization and of
the polarization quasi-ellipse.

The reader is reminded that a1 and a2 are the half-axes of the boundary polarization
ellipse. Similarly, eigenvectors 	h(1) and 	h(2) represent the directions of the axes of the
boundary ellipse. We shall refer to a1, a2, 	h(1), and 	h(2) as the principal parameters of the
polarization quasi-ellipse.

The typical shapes of polarization quasi-ellipses for several commonly used seismic
signals are shown in Figure 6.2. The first two examples correspond to the Gabor signal
(6.1.6) with fM = 4.5Hz, ν = 0, ti = 1 s, and two different widths, γ = 4 and γ = 8. The
third example corresponds to the Ricker signal (6.1.5), with β = 16 s−1, ti = 1 s. The last
example corresponds to the Berlage signal (6.1.8) with fM = 4.5Hz, β = 8 s−1, N = 0,
and ti = 1 s.To compute andplot the polarizationdiagrams inFigure 6.2,Equations (6.4.11)
are used, with u1 corresponding to the horizontal axis and u2 corresponding to the vertical
axis. Parameters B,C, β, and γ in all diagrams are chosen as follows: B = 0.3,C = 1,
β = − 1

2π , and γ = 0. In this case, Equations (6.4.11) read: u1(ζ ) = −0.3a(ζ ) sinφ(ζ ) =
0.3g(ζ ), u2(ζ ) = a(ζ ) cosφ(ζ ) = x(ζ ), with ζ = t − T (R); see (6.4.2).

The principal parameters of the polarization quasi-ellipse, a1, a2, 	h(1), and 	h(2), as in-
troduced here, correspond to the boundary polarization ellipse. For signals with a broad
envelope a(ζ ), they roughly represent the actual size of the quasi-ellipse. For signals with
narrower envelopes a(ζ ), however, the effect of the envelope on the quasi-ellipse is greater,
and the quantities a1 and a2 do not necessarily describe the size of the relevant quasi-ellipse
properly.

Equations (6.4.19) for the half-axes a1 and a2 of the polarization quasi-ellipse, and
Equation (6.4.17) for the direction of the principal axis of the quasi-ellipse (corresponding
to the greater half-axis) are valid quite universally, even for the degenerate case of linear
polarization.

The eccentricity of the boundary polarization ellipse ε =
√
a21 − a22/a1 =√

1 − H1/H2. Let us discuss two limiting situations. For linear polarization (B = 0 or
C = 0 or β = γ ), ε = 1. If B = C �= 0 and γ − β = ±(2k + 1)π/2, ε = 0 (that is, circu-
lar polarization).

The particle motion can be clockwise or counterclockwise. We shall determine the
conditions when it is clockwise and when it is counterclockwise. We know that φ is a linear
function of t for harmonic waves, φ = 2π fm(t − T (R)). It is given by the same relation
for quasi-harmonic waves. For more complex signals, φ is not necessarily a linear function
of time, but it usually increases with time. We shall now consider only such signals with φ
increasing with time. We introduce a polar angle ν by the relation,

tan ν = u2/u1 = C cos(φ − γ )/B cos(φ − β).
For dν/dφ, we obtain

dν

dφ
= C cos2 ν sin(γ − β)

B cos2(φ − β) . (6.4.20)

Thus, we can conclude:

a. If sin(γ − β) is positive, dν/dφ is also positive, and the particle motion is counter-
clockwise. We also speak of a retrograde movement.

b. If sin(γ − β) is negative, dν/dφ is also negative and the particle motion is clock-
wise. We speak of a prograde movement.
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Figure 6.2. Examples of ray-theoretical polarization diagrams (particle ground motion trajectories) of
an elementary wave for several simple signals. The polarization diagram at a point R is the locus of the
end points of the displacement vector 	u(R, t), constructed at R for time t varying. It is either linear or
has the shape of an elliptic spiral. In the latter case, we speak of a quasi-elliptic polarization and of the
polarization quasi-ellipse. Each of the 2-D diagrams shows a projection of the particle ground motion
into a plane. For details, see text.
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6.4.3 Polarization of Interfering Signals

In the preceeding sections, we have shown that the polarization of a seismic body wave is
quasi-elliptical if the real and imaginary vectorial parts of 	U (R) are nonvanishing and have
different directions. Here we shall discuss the polarization of a wavefield corresponding to
two interfering body waves 	u(1)(R, t) and 	u(2)(R, t). For simplicity, we shall assume that
the analytical signals corresponding to both waves are the same, only 	U (R) and T (R) are
different. As in (6.4.1), we shall represent these two waves by equations

	u(1)(R, t) = Re
{ 	V (R)F(t − T (1)(R)

)}
,

	u(2)(R, t) = Re
{ 	W (R)F

(
t − T (2)(R)

)}
.

(6.4.21)

Here 	V (R) and 	W (R) are the complex-valued vectorial amplitude factors of both waves,
T (1)(R) and T (2)(R) denote their arrival times. We shall also consider a specific, but very
common form of the analytical signal, corresponding to a harmonic carrier with a broad
envelope a(ζ ), x(ζ ) = a(ζ ) cos 2π fMζ . In this case, g(ζ ) is given by an approximate rela-
tion g(ζ )

.= −a(ζ ) sin 2π fMζ , and we obtain F(ζ ) .= a(ζ ) exp(−2iπ fMζ ). Here fM is the
prevailing frequency. Inserting this into (6.4.21) yields

	u(1)(R, t) = a
(
t − T (1)(R)

)
Re
{ 	V (R) exp[−2iπ fM

(
t − T (1)(R)

)]}
,

	u(2)(R, t) = a
(
t − T (2)(R)

)
Re
{ 	W (R) exp

[−2iπ fM
(
t − T (2)(R)

)]}
.

(6.4.22)

We shall now introduce quantity �T (R)

�T (R) = T (2)(R) − T (1)(R) (6.4.23)

and denote the width of envelope a(ζ ) by h. (The exact definition of the width is not
important here.) Then, for |�T (R)| > h, the twowaves donot interfere, and the polarization
of both noninterfering waves is fully described by the equations given in Section 6.4.1. We
are, however, interested in the polarization of the interfering signals forwhich |�T (R)| < h.
If �T (R) is small, a(t − T (1)(R))

.= a(t − T (2)(R)). Then in view of (6.4.22),

	u(1)(R, t) = a
(
t − T (1)(R)

)
Re
{ 	V (R) exp[−2iπ fM

(
t − T (1)(R)

)]}
,

	u(2)(R, t) .= a
(
t − T (1)(R)

)
×Re

{ 	W (R) exp
[−2iπ fM

(
t − T (1)(R)−�T (R))]}. (6.4.24)

For the particle ground motion of the two interfering waves, 	u = 	u (1) + 	u (2) so that

	u = a{ 	UR cosφ + 	U I sinφ}, (6.4.25)

where

	U R = 	V R(R) + 	WR(R) cos δ − 	W I (R) sin δ,
	U I = 	V I (R) + 	W I (R) cos δ + 	WR(R) sin δ.

(6.4.26)

We have also used the notation,

φ = 2π fM
(
t − T (1)(R)

)
, δ = 2π fM�T (R), a = a

(
t − T (1)(R)

)
.

(6.4.27)

The motion is confined to polarization plane �p specified by vectors 	UR and 	U I given by
(6.4.26).
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If we compare (6.4.25) with (6.4.4), we can see that all the formulae of the preceding
section remain valid, only vectors 	U R and 	U I have a different meaning.

It is obvious from (6.4.26) that the superposition of two interfering signals will be, in
general, quasi-elliptically polarized. It is polarized linearly only if one of the conditions
(6.4.5) is satisfied, where 	UR and 	U I are given by (6.4.26). This is, however, not very
common.

Relations (6.4.25) through (6.4.27) can be simply generalized for N interfering signals.
The main conclusions remain valid even in this case.

In the derivation of (6.4.25) through (6.4.27), we have made several simplifying as-
sumptions. Two assumptions are most important.

a. The analytical signals F(ζ ) of both waves are the same.
b. a(t − T (1)(R))

.= a(t − T (2)(R)).

If these two assumptions are not satisfied, the particle ground motion may be even more
complex than the quasi-elliptical.

6.4.4 Polarization of Noninterfering P Waves

The equations of Sections 6.4.1 through 6.4.3 are quite general and may be used to study
the ray synthetic polarization of noninterfering P and S waves propagating in 3-D laterally
varying structures.

For P waves, the treatment is simple. Let us first consider a smooth medium. In this
case, 	U (R) = A(R) 	N (R), where 	N is the unit vector normal to the wavefront and A is
a scalar, possibly a complex-valued function. This implies that 	UR(R) = c 	U I (R), where
c = Re(A)/Im(A) (for Im(A) �= 0). In view of (6.4.5), the noninterfering P wave in a
smooth medium is always linearly polarized along the normal 	N to the wavefront.

Let us now discuss the particle ground motion at point R situated on a structural
interface, where R is the point of incidence of a P wave. At point R situated at a structural
interface, we need to take into account conversion matrices Dik(R); see (5.2.67). The
displacement vector at R will always be confined to the plane of incidence in the case of an
incident P wave. We thus can only discuss the situation in the plane of incidence. We can
consider only two elements D13, and D33 of conversion matrix Dik(R); see (5.2.116). If
the angle of incidence is subcritical, all these elements are real-valued, but for postcritical
angles of incidence they are complex-valued.

This implies that the particle ground motion at point R situated on a structural interface
is linear for a subcritically incident P wave at R. It is confined to the plane of incidence,
but its direction deviates from the direction of the incident P wave at R.

For postcritical angles of incidence, however, the particle ground motion at R is, in
general, quasi-elliptical in the plane of incidence. The reason is that D13(R) and D33(R)
are not only complex-valued but are also phase-shifted.

As we know, the critical angle of incidence i∗1 is given by relation sin i
∗
1 = α1/α2, where

α1 is the P wave velocity of the incident wave at R and α2 is the P wave velocity at R, but
on the other side of the interface. Thus, postcritical angles of incidence may exist only if
α2 > α1.

At the Earth’s surface, the incidence of P waves is always subcritical so that the polar-
ization at point R situated at the Earth’s surface is always linear assuming that a P wave is
incident at R.
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In the vicinity of a structural interface or of the Earth’s surface, the incident P wave
always interferes with the reflected PP and PS waves on one side of the interface, and the
transmitted PP and PS waves interfere on the other side of the interface. Thus, the ray syn-
thetic particle ground motion is, in general, quasi-elliptical in the vicinity of the interface;
see Section 6.4.3. The exception is the situation corresponding to normal incidence.

The conclusions of this section are fully based on the zeroth-order approximation of
the ray method. If higher-order terms of the ray series are also taken into account, the
conclusions are different, the particle ground motion of a noninterfering P wave may
be quasi-elliptical even in a smooth medium. This can be clearly demonstrated on the
simplest case of the ray series method: the two-term ray method; see (5.7.40). The two-
term ray method considers the additional component of the first-order approximation 	W (1),
in addition to the zeroth-order approximation 	U (0), that is, 	U (0) + (−iω)−1 	W (1). Here 	U (0)

and 	W (1) are mutually perpendicular. Even for the real-valued 	U (0) and 	W (1), there is a
phase shift of 90◦ between the two components due to factor (−iω)−1. Thus, in the two-
term ray method, the noninterfering P wave is, in general, quasi-elliptical even in a smooth
medium. The polarization plane contains 	N , the normal to the wavefront. Of course, the
shape of the boundary polarization ellipse depends considerably on the mutual relation
between 	U (0) and (−iω)−1 	W (1). In most cases, term (−iω)−1 	W (1) is small with respect
to 	U (0). The eccentricity of the boundary polarization ellipse is then close to unity, and the
ellipse is very thin, close to linear polarization. The quasi-elliptic polarization of P waves
may be more pronounced only if 	U (0) is small, for example, close to nodal lines.

6.4.5 Polarization of Noninterfering S Waves in a Smooth Medium

In a smooth medium, the complex-valued vectorial amplitude function 	U (R) of a nonin-
terfering S wave is given by the relation

	U (R) = U (q)
1 (R)	e1(R) +U (q)

2 (R)	e2(R); (6.4.28)

see (5.2.4) and (5.2.7). Here 	e1(R) and 	e2(R) are the basis vectors of the ray-centered
coordinate system, situated in the plane tangent to the wavefront at R. Note that the three
unit vectors 	e1, 	e2, and 	e3 ≡ 	N form a mutually orthogonal, right-handed triplet of unit
vectors. Scalar functions U (q)

1 (R) and U (q)
2 (R) represent the ray-centered components of

vectorial amplitude function 	U (R) and are, in general, complex-valued.
Thus, the polarization plane �p of a noninterfering S wave propagating in a smooth

medium is represented by a plane tangent to the wavefront at R. We shall now investigate
the particle groundmotion of S waves directly in plane�p. In fact, we can use the results of
Section 6.4.2 directly, if we introduce the Cartesian coordinate system at R so that 	i1 ≡ 	e1,	i2 ≡ 	e2, and 	i3 ≡ 	N. Polarization plane �p then coincides with the Cartesian coordinate
plane x1-x2, where the x1-axis is taken along 	e1 and the x2-axis is taken along 	e2. It is
obvious that, in this case, the x1 and x2 coordinates coincide with ray-centered coordinates
q1 and q2.

If we use the notation U (q)
1 = B exp[iβ], U (q)

2 = C exp[iγ ], where B,C, β, and γ are
real-valued (see (6.4.9)), we can conclude that the S wave in a smooth medium is linearly
polarized only if

BC sin(β − γ ) = 0. (6.4.29)

Thus, if (6.4.29) is satisfied, the particle ground motion of a noninterfering S wave in a
smooth medium is linear in plane �p, tangent to the wavefront at R.
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If (6.4.29) is not satisfied, the particle ground motion of a noninterfering S wave in a
smooth medium is quasi-elliptical in plane�p tangent to the wavefront at R. The half-axes
of the boundary polarization ellipse, a1 and a2, are given by (6.4.19) and are oriented along
the eigenvectors 	h(1) and 	h(2) of polarization matrix H; see (6.4.13).

Thus, the particle groundmotion of Swaves in a smoothmedium is quasi-elliptical only
if both B and C are nonvanishing (B �= 0,C �= 0) and if U (q)

1 and U (q)
2 are phase-shifted

(β − γ �= kπ ).
Now we shall investigate the continuation of the particle ground motion diagrams of

noninterfering S waves along the ray in a smooth medium. We shall first mention three
facts.

a. Polarization plane �p is perpendicular to the ray at any point of the ray.
b. The normalized envelope of the wave propagating in a nondissipative medium does

not change as the wave progresses along the ray; see Section 6.1.2.
c. The ray-centered components U (q)

1 and U (q)
2 of an S wave propagating in a smooth

medium vary along the ray in the same way.

Here (c) follows from the fact that the transport equations for U (q)
1 and U (q)

2 are the same;
see (2.4.37) and (2.4.38). Thus, we can formulate the conservation law of the normalized
polarization quasi-ellipse: The principal parameters of the normalized polarization quasi-
ellipse of an S wave propagating in a nondissipative isotropic smooth medium do not
change along the ray. By the principal parameters of the normalized polarization quasi-
ellipse we understand the half-axes a1 and a2 of the normalized polarization boundary
ellipse and the eigenvectors 	h(1) and 	h(2), specifying the direction of both axes of the
boundary ellipse, with respect to unit vectors 	e1 and 	e2.

If the smooth part of the ray under consideration does not contain any caustic point,
the conservation law may even be formulated more generally. The shape of the normalized
polarization quasi-ellipse of an S wave propagating in a nondissipative isotropic smooth
medium and its orientation with respect to unit vectors 	e1 and 	e2 do not change along the
smooth part of the ray, which does not contain caustic points.

Note that the principal parameters of the normalized polarization quasi-ellipse do not
change as the S wave passes through a caustic point, but the shape of the normalized
polarization quasi-ellipse does change. It is rotated by 1

2π (or by π for focus) inside the
boundary ellipse, changing its shape appropriately.

The conservation law remains valid even for linearly polarized S waves. Thus, if a
linearly polarized S wave has the direction of 	e1 at any reference point of the ray, it has the
direction of 	e1 along the whole smooth part of the ray. Similarly, if the displacement vector
of an S wave makes an angle θ with 	e1 at any reference point of the ray, it makes the same
angle along the whole smooth part of the ray.

Thus, the basis vectors 	e1 and 	e2 of the ray-centered coordinate system play a very
important role in the investigation of the variations of the polarization of S waves along
the ray in a smooth medium: the polarization of S waves remains fixed with respect to the
unit vectors 	e1, 	e2. For this reason, 	e1 and 	e2 are also called polarization vectors.

It should be emphasized that the polarization vectors of S waves, 	e1 and 	e2, rotate along
the ray with respect to the unit normal 	n and unit binormal 	b as the wave progresses, if a
3-D nonplanar ray with a nonzero torsion is considered. In other words, the polarization
quasi-ellipse of the S wave rotates with respect to 	n and 	b. The relevant angle between
the polarization vector and 	n or 	b can also be determined by the classical Rytov law; see
(4.1.14).
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Let us nowdiscuss the projection of the particle groundmotion of an Swave propagating
in a smoothmedium into various planes passing through R.We shall only study the situation
in which the polarization of S waves in polarization plane �p is quasi-elliptical. (The
case of linear polarization in �p is elementary.) In general, the projection into any plane
passing through R is again quasi-elliptical. There is, however, one important exception.
The projection of the quasi-ellipse into a plane perpendicular to plane �p is linear.

The foregoing conclusion has a very important consequence in 1-D and 2-D studies.
Assume that ray � of an S wave is fully situated in plane �‖. Plane �‖ is often vertical.
For simplicity, we shall also treat it as a vertical plane. It is then usual to decompose the
S wave into two components: SV and SH. The SH component is perpendicular to �‖, and
the SV component is confined to �‖ (but perpendicular to �). The S wave in a smooth
medium is quasi-elliptically polarized if the following three conditions are satisfied:

1. The amplitude of the SH component is nonvanishing.
2. The amplitude of the SV component is nonvanishing.
3. The amplitudes of the SH and SV components are phase-shifted.

Polarization plane �p is perpendicular to �, so that it is also perpendicular to the plane
of ray �‖. The consequence is that the ray theoretical polarization of a noninterfering S
wave propagating in a smooth medium along a planar ray� situated in plane�‖ is always
linear in plane�‖. Thus, in some way we can say that the quasi-elliptical polarization of S
waves in a smooth medium is a typical 3-D phenomenon. If we investigate the S wavefield
in plane �‖ only, the polarization of the S waves is linear. It can be quasi-elliptical only in
planes not coinciding with �‖.

Finally, we need to emphasize that all the conclusions of this section are valid only in
the zeroth-order approximation of the raymethod. As for P waves, the two-term raymethod
also yields quasi-elliptical polarization of S waves even if the zeroth-order approximation
of the ray method yields linear polarization of the S waves. Polarization plane�p, however,
is not perpendicular to the ray. The two-term ray method yields quasi-elliptical polarization
in a smooth medium even in the 2-D case in plane �‖ of the ray. In most cases, however,
the eccentricity of the polarization ellipse is close to unity, and the polarization ellipse is
very thin and close to linear polarization.

6.4.6 Polarization of S Waves at Structural Interfaces

If the receiver is situated on a structural interface, we must consider conversion matrices
Dik(R); see (5.2.68). We shall first discuss the polarization in the plane of incidence. We
again decompose the Swave into SHandSVcomponents. In the plane of incidence,we need
to consider only two elements D11 and D31 of conversion matrix Dik(R). For subcritical
angles of incidence, these elements are real-valued, but for postcritical angles of incidence,
they are complex-valued, with D11 and D31 mutually phase-shifted. Thus, we can draw a
conclusion related to an S wave incident at a structural interface at point R. The particle
ground motion in the plane of incidence is linear if the S wave is incident subcritically; it
is quasi-elliptical, if the S wave is incident postcritically.

For incident S waves, quasi-elliptical polarization at structural interfaces is more fre-
quent than for incident P waves. The main reason is that the velocity of P waves α is always
higher than the velocity of S waves β. Whereas angles of incidence can be critical only if
α2 > α1 for incident P waves, they may be critical for any interface for incident S waves.
One critical angle exists always and is given by the relation i∗1 = arcsin(β1/α1). Of course,
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there may be one or two additional critical angles of incidence for the incident S wave, such
as arcsin(β1/α2) and arcsin(β1/β2), but they do not exist always. Thus, the critical angle of
incidence i∗1 = arcsin(β1/α1) is quite universal and is important even for a receiver situated
at the Earth’s surface.

We have so far only considered polarization in the plane of incidence. In general, how-
ever, the quasi-elliptic polarization due to the phase shift of the two components (horizontal
and vertical) in the plane of incidence is combined with the quasi-elliptic polarization due
to the phase shift of the SV and SH components. The final polarization plane�p is neither
perpendicular to ray �, nor coincident with plane �‖; it is situated more generally. The
particle ground motion in �p is, however, again quasi-elliptic.

Close to structural interfaces, several waves always interfere, so that the polarization
is, as a rule, quasi-elliptical. The exception are the normally incident S waves.

6.4.7 Polarization of S Waves at the Earth’s Surface

We shall consider an S wave incident at point R situated on the Earth’s surface. We again
decompose the S wave at R into two components; one component (SH) is perpendicular
to the plane of incidence, and the other (SV) is confined to the plane of incidence and is
perpendicular to the ray.

As we know from Section 6.4.6, there is always one critical angle of incidence i∗1 =
arcsin(β1/α1), if an S wave is incident at the Earth’s surface. Under standard conditions, the
critical angle of incidence equals 25◦−35◦. We call the range of angles of incidence i1 < i∗1
the shear wave window; see Crampin (1989). For angles of incidence within the shear wave
window (i1 < i∗1 ), the polarization in the plane of incidence at point R is linear, but outside
the shear wave window (i1 > i∗1 ) it is quasi-elliptical. This conclusion also applies if the
SH component of the S wave vanishes at R.

For a nonvanishing SH component, particularly if the SH and SV components are
phase-shifted, the polarization plane �p again has a more general position; it does not
coincide with the plane of incidence and is not perpendicular to the ray.

6.4.8 Causes of Quasi-Elliptical Polarization of Seismic Body Waves

in Isotropic Structures

As explained in Sections 6.4.1 through 6.4.7, the polarization of seismic body waves
may be nonlinear for several reasons. Let us first consider an elementary, noninterfering
wave. The wave is quasi-elliptically polarized if vectorial amplitude factor 	U is complex-
valued, 	U = 	UR + i 	U I , with both 	UR �= 0 and 	U I �= 0, and if the directions of 	UR and
	U I are different. This can also be formulated otherwise: the wave is linearly polarized if
	UR = 0 or 	U I = 0 or if 	U R = c 	U I , where c is a real-valued nonvanishing constant.

Alternatively, we can also express 	U in a component form; see (6.4.9). We then can say
that the wave is quasi-elliptically polarized in plane x1-x2 if both the components U1 and
U2 are nonvanishing and if they are phase-shifted (β − γ �= kπ ).

Evidently, the complex-valued character of 	U is not sufficient to generate a quasi-
elliptical polarization of the wave. It is also required that the directions of 	UR and 	U I differ,
or, alternatively, that the Cartesian complex-valued components of 	U are phase-shifted.We
shall present two examples. Let us assume that a P wave with a real-valued 	U = 	UR passes
through a caustic point. Beyond the caustic, the vectorial amplitude factor is imaginary-
valued, 	U = −i 	UR . The wave, however, remains linearly polarized. The example for the
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postcritically reflected PPwave is similar. Even though the reflection coefficient is complex-
valued, the wave is linearly polarized.

In this section, we shall discuss all the possible causes of quasi-elliptical polarizations
of seismic body waves. All explanations are based fully on ray theory considerations and
assume the validity of the zeroth approximations of the raymethod. Our conclusions cannot
be applied to singular regions of the ray method and to waves that cannot be described by
the ray method. The polarization may then be more complicated.

There are four main causes of quasi-elliptic polarization of seismic body waves in
isotropic structures. They are as follows:

1. Complex-valued directivity patterns of the source.
2. Postcritical incidence of an S wave at the Earth’s surface.
3. Postcritical incidence of an S wave at an inner structural interface.
4. Interference of two or more signals.

We shall now briefly discuss these causes.

1. COMPLEX-VALUED DIRECTIVITY PATTERNS OF THE SOURCE
We shall consider a point source of seismic bodywaves.Within the framework of the ray

method, the amplitudes of seismic body waves generated by a point source are proportional
to the directivity patterns of the source. In the raymethod, the directivity patterns are usually
introduced in such away that they represent an angular distribution of the vectorial complex-
valued amplitude factor along a spherewhose center is at the source.We denote it 	U0. Vector	U0 has, in general, three components: a normal (radial) component, corresponding to P
waves, and two tangential mutually perpendicular components, corresponding to S waves.
Let us call them S1 and S2.

It is obvious that thePwavegenerated by a point sourcewill always be linearly polarized,
even if the relevant directivity patterns are complex-valued. The reason is that, in this case,
	UR
0 and 	U I

0 have the same direction.
The S wave generated by the point source, however, may be quasi-elliptically polarized.

The conditions for the quasi-elliptical polarization of the generated S wave are: (a) both S1
and S2 components are nonvanishing, and (b) they are mutually phase-shifted. Polarization
plane �p is then a plane perpendicular to the ray of the generated S wave.

For directivity patterns of simple types of point sources such as a single force, the S1
and S2 components are usually real-valued. The generated S wave will then be linearly
polarized. This situation, however, may be different if more complex directivity patterns
are considered. It may also be different if a source is situated on (or close to) a structural
interface, or the surface of the Earth. For example, the directivity patterns of a single-force
source situated on the Earth’s surface are complex-valued for radiation angles i larger than
critical angle i∗ = arcsin(β/α). This implies that the S waves generated by an inclined or
horizontal single force situated on the Earth’s surface should be elliptically polarized at
receivers situated in certain regions.

We have considered only a point source. For sources of finite extent, the generation
conditions for S waves will be more favorable for the quasi-elliptic, or even more complex
polarization.

2. POSTCRITICAL INCIDENCE OF AN S WAVE AT THE EARTH’S SURFACE
There are two polarization effects related to the postcritical incidence of an S wave at

the Earth’s surface.
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The first effect is the quasi-elliptical polarization at point R situated on the Earth’s
surface. This effectwas explained in detail in Section 6.4.7. The quasi-elliptical polarization
in the plane of incidence does not depend on the SH component of the S wave and exists
even if the SH component vanishes.

The second effect is related to the polarization of generated reflected SS waves. Assume
that both SV and SH components of the incident S wave are nonvanishing and that they
are not phase-shifted. The polarization of the incident S wave is then linear, perpendicular
to the ray � of the incident S wave. The polarization of the reflected S wave remains
linear if the angle of incidence is subcritical. This is obvious because both SV and SH
reflection coefficients are in this case real-valued. If, however, the angle of incidence is
postcritical, the polarization of the reflected SS wave will be quasi-elliptical in plane �p,
perpendicular to the ray of the reflected SS wave. The reason is that the SH reflection
coefficient at the surface of the Earth is always real-valued and equals −1, whereas the
SV reflection coefficient is complex-valued for postcritical incidence. Consequently, the
SV and SH components for postcritically reflected S waves are phase-shifted, and this will
cause the quasi-elliptical polarization.

Thus, the postcritical incidence of an S wave at the Earth’s surface is one of the most
important causes of quasi-elliptical polarization of generated reflected S waves.

3. POSTCRITICAL REFLECTIONS OF S WAVES AT STRUCTURAL INTERFACES
The two polarization effects related to the postcritical incidence of an S wave at a

structural interface remain practically the same as described for the Earth’s surface. The
first effect is related to the quasi-elliptical polarization at point R on the interface, in
the plane of incidence. For details refer to Section 6.4.6. The second effect is related to
the quasi-elliptical polarization of generated reflected and transmitted SS waves.

Thus, the postcritical incidence of an S wave at a structural interface is one of the most
important causes of quasi-elliptical polarization of generated reflected and transmitted S
waves.

4. INTERFERING SIGNALS
The interference of two or more signals is very common, but it usually has a local

character. There is, however, one very important exception: interference of seismic body
waves close to structural interfaces and close to the surface of the Earth. In these regions,
several waves usually interfere: either incident, reflected P and reflected S, or transmitted
P and transmitted S.

It is not difficult to estimate the extent of the region of interference. Assume, for
example, that we have a linearly polarized incident P wave and reflected P waves. The
thickness of the layer close to the interface in which the incident and reflected waves
interfere is

H
.= 1

2αh cos i,

where h is the width of the envelope of the signal under consideration, i is the angle of
incidence, and α is the P-wave velocity. In this region, the two waves will interfere, and
the polarization will be quasi-elliptical (even though the incident wave is compressional).

There are some exceptions. For normal incidence, the polarization is linear because the
displacement vectors of the incident wave and of both monotypic reflected and transmitted
waves have the same direction. Note that, in this case, converted waves are not generated.
Only under oblique incidence is it quasi-elliptical.



658 RAY SYNTHETIC SEISMOGRAMS

At the interface itself, the polarization is linear if the incident wave is subcritical because
�T (R) = 0 (see (6.4.23)). The polarization is then quasi-elliptical only at some distance
from the interface. If the incident wave is postcritical, however, the polarization is quasi-
elliptical, even though�T (R) = 0.This applies to any incidentwave, including the incident
P wave. This is the only case in which the Pwave is quasi-elliptically polarized: the P wave
must be postcritically incident at the structural interface and the receiver must be situated
itself on the interface. The reason is that in this case the P wave is, in fact, composed of
three waves with complex-valued amplitudes.

This type of quasi-elliptical polarization may play an important role in VSP studies.
Quasi-elliptical polarization is a diagnostic information that indicates the position of the
interface.

6.4.9 Quasi-Elliptical Polarization of Seismic Body Waves

in Layered Structures

In this section, we shall discuss the polarization of an arbitrary multiply-reflected seismic
body wave propagating in an isotropic laterally varying layered structure. The wave may
be unconverted P or S along the whole ray or converted (several segments P, several S). We
shall consider only receivers situated inside a locally smooth structure, not on a structural
interface or on the Earth’s surface. The effects related to the position of the receiver on a
structural interface or on the Earth’s surface are well known from Sections 6.4.6 and 6.4.7.
We shall also consider only the zeroth-order ray theoretical polarization, but not the effects
caused by the higher order terms.

If the wave arrives at receiver R as a P wave, the situation is simple. The wave is
always linearly polarized in the direction perpendicular to the wavefront. This applies even
if certain segments of the ray correspond to S waves. Even in the case of converted waves,
it is fully sufficient for the wave to arrive as P at the receiver to have linear polarization
at R.

If the wave arrives as an S wave at the receiver, the situation is more complex: it may
be polarized linearly or quasi-elliptically. In the discussion of this case, we shall consider
independently planar and nonplanar 3-D rays.

Let us first consider a planar ray. Unit vector 	e2 can then be conveniently chosen
perpendicular to the plane at the initial point of the ray. It then remains perpendicular to
the plane along the whole ray even across interfaces. As usual, we denote one relevant
component of the S wave USH and the other USV. The SV and SH components are then
fully separated along the whole ray and do not affect each other. The wave is then quasi-
elliptically polarized at the receiver only if it is an unconverted S wave along the whole ray
between the source and receiver, and only if both componentsUSV andUSH are nonvanishing
at the source. If the wave is linearly polarized at the source (argUSV − argUSH = kπ ), then
there must be at least one postcritical reflection/transmission point along the ray. If it
is elliptically polarized directly from the source, all reflection/transmission points may
be subcritical. Let us emphasize that one P element is sufficient to eliminate fully the
quasi-elliptic polarization from the remaining part of the ray. The polarization plane is
perpendicular to the ray. This implies that the quasi-elliptic polarization will be observed
only in vertical-tranverse and tranverse-radial planes. The polarization due to postcritical
reflection/transmission at structural interfaces will always be linear in the vertical-radial
plane. (We again emphasize that receiver R is considered to be situated in a smoothmedium
and not on a structural interface or on the surface of the Earth.)
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In 3-Dmodels with 3-D, nonplanar rays, such strict constraints are not required because
the vector 	e2 perpendicular to the plane of incidence at one R/T point is not necessarily
perpendicular to the plane of incidence at the next R/T point. There may be two reasons
for this.

a. The rotation of 	e2 along the ray due to the torsion of the ray.
b. Different planes of incidence.

We shall speak of the coupling of S1 and S2 components. The coupling effect implies that
an S wave with only one nonvanishing component U1 or U2 at one point of incidence may
have both nonvanishing components at the next point of incidence. Even P elements may
change to S elements with nonvanishing S1 and S2 components: At one point of incidence,
the incident P wave generates an S1 wave, and the S1 wave may generate nonvanishing S1
and S2 at the next point of incidence due to the coupling effect.

Let us draw some conclusions related to 3-D layered models. Assume first that the wave
is unconverted S along the ray. Then, if thewave is quasi-elliptically polarized at the source,
it will be quasi-elliptically polarized along the whole ray, including the receiver (with the
exception, perhaps, of the Brewster angles). If a linearly polarized S wave is generated by
the source, the requirement is that the incident wave has nonzero componentsU1 andU2 at
least at one R/T point and that the angle of incidence is postcritical at that point. Nonzero
components U1 and U2 may be generated directly by the source or by coupling effects at
some R/T points.

We now consider a converted wave, which has at least one P element. The P element
may even be the first. (This means that a P source is being considered.) The wave will be
quasi-elliptically polarized at the receiver if the following two requirements are fulfilled:

a. The chain of several (at least two) last elements of the ray corresponds to an S wave.
b. At least at one R/T point within this chain, the incident S wave has nonzero com-

ponents U1 and U2, and the angle of incidence is postcritical.

6.4.10 Polarization of Seismic Body Waves in Anisotropic Media

Three seismic body waves (qS1, qS2, and qP) can propagate in an anisotropic inhomoge-
neousmediumwithout interfaces. If these waves are well separated and propagate indepen-
dently, they are polarized linearly along eigenvectors 	g (1), 	g (2), and 	g (3) of the Christoffel
matrix �ik . Because these eigenvectors can be uniquely determined at any point on the ray,
the direction of the linear polarization of the three waves can also be uniquely determined,
even for qS waves. Thus, the qS waves in anisotropic media are not quasi-elliptically
polarized as they may be in an isotropic media, but they are polarized linearly. This is
the great difference between the polarization of shear waves in isotropic and anisotropic
media.

As we have shown in Section 2.2.5, the eigenvectors 	g (1), 	g (2), and 	g (3) corresponding
to three plane waves qS1, qS2, and qP, propagating with common normal in a homogeneous
anisotropicmedium, aremutually perpendicular. Thus, the qS1 and qS2waves are polarized
in a plane perpendicular to 	g (3) and are also mutually perpendicular. In an inhomogeneous
anisotropicmedium, however, the situationmay be different. The threewaves qS1, qS2, and
qP propagate along their own rays. The direction of the slowness vectors of the three waves
are, in general, different at the receiver. This implies that eigenvectors 	g (1), 	g (2), 	g (3) are
not necessarily mutually perpendicular at the receiver. In practical applications, however,
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they are usually nearly perpendicular. The particle ground-motion analysis exploits this
fact to discriminate the two qS waves and to study shear-wave splitting.

In certain situations, however, the polarization of qS waves may be considerably more
complex. We shall briefly discuss two such situations here.

1. Shear-wave singularities. For certain directions of the slowness vector, the phase
velocities of the qS1 and qS2 waves coincide; see Section 2.2.8. Eigenvectors 	g (1)

and 	g (2) cannot then be uniquely determined, and the polarization of the qS1 and
qS2waves is not well defined. The polarization of qS waves along and close to these
directions is in general anomalous and may be very complicated, particularly in the
vicinity of a point singularity; see Crampin (1981) and Rümpker and Thomson
(1994). The standard ray method cannot be used to investigate these polarization
anomalies.

2. Weakly anisotropic media. In inhomogeneous, but weakly anisotropic media
(quasi-isotropic), the phase velocities of qS1 and qS2 waves are globally close
to each other. In such cases, the two qS waves cannot be treated independently,
and the standard ray method, based on independent qS1 and qS2 waves, cannot be
applied. The polarization may be very complex in this case. For more details on qS
waves in weakly anisotropic media, see Section 5.4.6.



APPENDIX A

Fourier Transform, Hilbert Transform,
and Analytical Signals

In this appendix, we shall present, without derivation, certain properties of Fourier
and Hilbert transforms and of analytical signals. We shall not go into mathemat-
ical details and complexity of the treatment; we shall concentrate only on the as-

pects related to the subject of this book. For a detailed treatment, we recommend
Papoulis (1962), Bracewell (1965), and many other books devoted to the Fourier
transform.

A.1 Fourier Transform

We shall consider function x(t) of real-valued time t and denote its Fourier spectrum X ( f ),
where f is the frequency:

X ( f ) = F(x(t)) =
∫ ∞

−∞
x(t) exp[2iπ f t]dt,

x(t) = F−1(X ( f )) =
∫ ∞

−∞
X ( f ) exp[−2iπ f t]d f.

(A.1.1)

The symbol F(x(t)) is used to denote the Fourier transform of x(t) and F−1(X ( f )) to
denote the inverse Fourier transform of X ( f ). x(t) and X ( f ) are said to form a Fourier
transform pair.

We shallmostly consider functions x(t) to be finite signals of finite duration. In this case,
integrals (A.1.1) always exist in their standard sense. In certain cases, however, we shall
apply the Fourier transform to more complex functions x(t), particularly to distributions
such as the Dirac delta function δ(t). For a more detailed discussion of the applicability of
(A.1.1) in such cases, refer to the preceding references.

In the text of this book, we have denoted the Fourier spectrum of function x(t) by
x( f ) (not by X ( f )) and distinguished time function x(t) from its spectrum x( f ) only by
arguments t and f ; see Section 2.1.5. This convention was very useful in expressing the
acoustic and elastodynamic wave equation in a similar form in the time domain and in
the frequency domain. The convention also decreased the number of necessary symbols
considerably. In this appendix, however, we shall distinguish strictly between lowercase
letters for time function x(t) and uppercase letters for their Fourier spectrum X ( f ). The
exception is the symbol F(t) for the analytical signal.

661



662 APPENDIX A

Often, circular frequency ω = 2π f is used instead of frequency f . Fourier transform
(A.1.1) then reads

S(ω) =
∫ ∞

−∞
x(t) exp[iωt]dt, x(t) = 1

2π

∫ ∞

−∞
S(ω) exp[−iωt]dω.

(A.1.2)

Thus, the relation between Fourier spectra X ( f ) and S(ω) is S(2π f ) = X ( f ) (or S(ω) =
X (ω/2π )). Unless otherwise stated, by the Fourier spectrum of the function x(t) we shall
understand function X ( f ).

Fourier transforms (A.1.1) and (A.1.2) could also be written with opposite signs in
their exponents. For real-valued x(t), this would yield complex-conjugate expressions for
spectra X ( f ) and S(ω). In this book, we have used systematically the sign convention
corresponding to (A.1.1) and (A.1.2). This convention is traditional in the seismic ray
method.

For real-valued signals x(t) of real-valued variable t , the Fourier transform pair may
be expressed in a slightly simpler version:

X ( f ) =
∫ ∞

−∞
x(t) exp[2iπ f t]dt,

x(t) = 2Re
∫ ∞

0
X ( f ) exp[−2iπ f t]d f.

(A.1.3)

Thus, the integration in the inverse Fourier transform runs over nonnegative frequencies f
only.

For the reader’s convenience, we shall give several useful relations of Fourier transform
pairs; however, we give only those relations used in book so that the list is far from complete.
We assume X1( f ) = F(x1(t)), X2( f ) = F(x2(t)), and α1, α2, α, and t0 are arbitrary real-
valued constants.

F(α1x1(t) + α2x2(t)) = α1X1( f ) + α2X2( f ), (A.1.4)

F(x(αt)) = |α|−1X ( f/α), (A.1.5)

F(x(t − t0)) = X ( f ) exp(2iπ f t0), (A.1.6)

F(x1(t) ∗ x2(t)) = X1( f )X2( f ), (A.1.7)

F(x(−t)) = X (− f ). (A.1.8)

Here and in the following equations, the star (∗) denotes the convolution. In addition, we
shall also give several useful expressions for the direct and inverse Fourier transform:

F(exp[−π t2]) = exp[−π f 2], F−1(exp[−π f 2]) = exp[−π t2],
(A.1.9)

F(δ(t)) = 1, F−1(δ( f )) = 1, (A.1.10)

F(sgn t) = i/π f, F−1(sgn f ) = −i/π t , (A.1.11)

F(H (t))= 1
2 (δ( f )+ i/π f ), F−1(H ( f ))= 1

2 (δ(t)− i/π t), (A.1.12)

F(
√
2 H (t)t−1/2) = | f |−1/2 exp

[
i
π

4
sgn f

]
(A.1.13)

F(H (t − a)(t2 − a2)−1/2
) = 1

2 iπH
(1)
0 (2π f a). (A.1.14)
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Here H (t) is the Heaviside function

H (t) = 0 for t < 0, H (t) = 1 for t > 0,

H (t) = 1
2 for t = 0.

(A.1.15)

Function sgn t can be expressed using the Heaviside function and relation sgn t =
2(H (t) − 1

2 ). In (A.1.14), H
(1)
0 is the Hankel function of the first kind and zeroth-order; see

Abramowitz and Stegun (1970).

A.2 Hilbert Transform

We again consider a real-valued function x(t) of real-valued variable t . The Hilbert trans-
form g(t) = H(x(t)) of x(t) is then defined by the following integral:

g(t) = H(x(t)) = 1

π
P.V.

∫ ∞

−∞

x(ζ )

ζ − t
dζ. (A.2.1)

Function x(t) can then be expressed in terms of g(t) using the inverse Hilbert transform:

x(t) = H−1(g(t)) = − 1

π
P.V.

∫ ∞

−∞

g(ζ )

ζ − t
dζ. (A.2.2)

Here P.V. denotes the Cauchy principal value of the integral. Alternative expressions for
(A.2.1) and (A.2.2) are

g(t) = − 1

π t
∗ x(t), x(t) = 1

π t
∗ g(t), (A.2.3)

and,

g(t) = 2 Im
∫ ∞

0
X ( f ) exp[−2iπ f t]d f,

x(t) = 2Re
∫ ∞

0
X ( f ) exp[−2iπ f t]d f.

(A.2.4)

Here X ( f ) = F(x(t)).
These are a few useful Hilbert transform pairs:

H(δ(t)) = −1/π t, H(1/π t) = δ(t), (A.2.5)

H(cos (t)) = −sin t, H(sin t) = cos (t), (A.2.6)

H
(
1

π

ε

t2 + ε2
)

= − t

π (t2 + ε2) , H
(
1

π

t

t2 + ε2
)

= 1

π

ε

t2 + ε2 ,
(A.2.7)

H(H (t)t−1/2) = H (−t)(−t)−1/2. (A.2.8)

where ε is a real-valued constant. Thus, for Rayleigh signal (6.1.9), the Hilbert transform
is known exactly; see (A.2.7).

Several useful properties of the Hilbert transform pair follow:∫ ∞

−∞
(x(t))2dt =

∫ ∞

−∞
(g(t))2dt, (A.2.9)

∫ ∞

−∞
x(t)g(t)dt = 0 , (A.2.10)

dg(t)/dt = H(dx(t)/dt), (A.2.11)
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g(at + b) = H(x(at + b)), (A.2.12)

H(x(t) ∗ y(t)) = H(x(t)) ∗ y(t) = x(t) ∗H(y(t)). (A.2.13)

The approximate relations follow:

H(a(t) cos(2π fM t + ν)) .= −a(t) sin(2π fM t + ν), (A.2.14)

H(exp(−(2π fM t/γ )
2
)
cos(2π fM t + ν))

.= −exp
(−(2π fM t/γ )

2
)
sin(2π fM t + ν). (A.2.15)

Here a(t) is a broad smooth envelope of the harmonic carrier with frequency fM . Equation
(A.2.15) shows the Hilbert transform of Gabor signal (6.1.6) as a special case of (A.2.14).
For (A.2.15) to be sufficiently accurate, we need to choose γ roughly larger than 3. For the
derivation of (A.2.14) and (A.2.15) and for many numerical examples see Červený (1976)
and Červený, Molotkov, and Pšenčı́k (1977).

The Hilbert transform has found important applications not only in the time domain but
also in the frequency domain. For causal functions x(t) (satisfying the relation x(t) = 0 for
t < 0), the real and imaginary parts of Fourier spectrum X ( f ) form aHilbert transformpair.

A.3 Analytical Signals

The analytical signal may appear in some form in any high-frequency asymptotic solution
of seismic wave propagation problems. It is important in the construction of synthetic
seismograms using the ray method and its extensions. The concept of the analytical signal
is closely connected with the Hilbert transform.

There is nothing surprising in the concept of the analytical signal.Weknow that it is often
considerably simpler to solve some problems involving the time-dependent real-valued
harmonic function cosωt if we use the complex-valued exponential function exp(−iωt)
instead of cosωt and return to the real-valued functions only in the final solution of the
problem. The same applies to function sinωt . A similar approach is useful even in the ray
method and in its extensions. Instead of the real-valued source-time function x(t), we use
the relevant complex-valued analytical signal x(A)(t) and return to the real-valued solutions
only in the final equations.

We shall now introduce the complex-valued analytical signal F(t) corresponding to the
real-valued signal x(t):

F(t) = x(t) + ig(t) = x(t) + iH(x(t)). (A.3.1)

In addition to the general notation F(t) for the complex-valued analytical signal corre-
sponding to any real-valued function, we shall also use a more specific notation, x (A)(t),
for the analytical signal corresponding to the real-valued function x(t),

x (A)(t) = x(t) + ig(t) = x(t) + iH(x(t)). (A.3.2)

Alternatively, it would be the minus sign (−) in (A.3.1) and (A.3.2). The sign convention
we use in (A.3.1) and (A.3.2) corresponds to the sign convention in Fourier transform
(A.1.1). We have used the plus sign in the expressions for analytical signals systematically
throughout the whole book.

From (A.2.4) and (A.3.1), we obtain an alternative expression for the analytical signal
using the Fourier integral

x (A)(t) = 2
∫ ∞

0
X ( f ) exp[−2iπ f t]d f. (A.3.3)
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Thus, the Fourier spectrum of the analytical signal vanishes for negative frequencies. It is
given by the relation

F(x (A)(t)) = 2H ( f )X ( f ). (A.3.4)

The last alternative definition of analytical signal x (A)(t) follows from (A.2.3) and (A.3.1)

x (A)(t) = (δ(t) − i/π t) ∗ x(t) = δ(A)(t) ∗ x(t). (A.3.5)

Function

δ(A)(t) = δ(t) − i/π t (A.3.6)

is called the analytical delta function and plays a very important role in the seismic ray
method. As we can check in (A.2.5), analytical delta function δ(A)(t) is the analytical signal
corresponding to delta function δ(t).

Three other important exact expressions for the analytic signals correspond to the
trigonometric functions, to Rayleigh function (6.1.9), and to the inverse square root func-
tion:

(cosωt)(A) = exp[−iωt], (A.3.7)(
1

π

ε

t2 + ε2
)(A)

= 1

π

ε − it

(t2 + ε2) = − i

π

1

t − iε
, (A.3.8)

(H (t)t−1/2)(A) = H (t)t−1/2 + iH (−t)(−t)−1/2. (A.3.9)

Now we shall write two approximate expressions for the analytical signals, corresponding
to a harmonic carrier with a broad envelope a(t):

[a(t) cos(2π fM t + ν)](A) .= a(t) exp[−i(2π fM t + ν)], (A.3.10)[
exp

(−(2π fM t/γ )
2
)
cos(2π fM t + ν)](A)

.= exp
[−(2π fM t/γ )

2 − i(2π fM t + ν)]. (A.3.11)

Thus, the analytical signal (A.3.11) corresponding to Gabor signal (6.1.6) can be approx-
imately calculated analytically, see (A.3.11). The accuracy is good if γ is larger roughly
than 3.

Three very useful relations regarding analytical signals F(t), corresponding to any
function x(t), follow:∫ ∞

−∞
F2(t)dt =

∫ ∞

−∞
F∗2(t)dt = 0, (A.3.12)

∫ ∞

−∞
F(t)F∗(t)dt =

∫ ∞

−∞
(x2(t) + g2(t))dt

= 2
∫ ∞

−∞
x2(t)dt = 2

∫ ∞

−∞
g2(t)dt, (A.3.13)

[x(t) ∗ y(t)](A) = [x(t)](A) ∗ y(t) = x(t) ∗ [y(t)](A). (A.3.14)

Using definition equation (A.3.3), we can also generate analytical signals for complex-
valued variable t . The analytical signals for complex-valued variable t are very useful in
problems that consider complex-valued travel times (dissipative media, inhomogeneous
waves, and Gaussian beams). Consider a real-valued function x(t), its complex Fourier
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spectrum X ( f ), and derive the analytical signal x (A)(t − T) corresponding to x(t), where
T is complex-valued, T = T R + iT I . Using (A.3.3), we obtain

x (A)(t − T ) = 2
∫ ∞

0
X ( f ) exp[−2iπ f (t − T )]d f. (A.3.15)

This can be expressed in a convolutory form

x (A)(t − T ) = x(t) ∗ F−1(2H ( f ) exp(2iπ f T )). (A.3.16)

The inverse Fourier transform in (A.3.16) can be simply computed, assuming T I ≥ 0,

F−1(2H ( f ) exp(2iπ f T )) = 2
∫ ∞

0
exp[−2iπ f (t − T )]d f = −i

π (t − T )
.

(A.3.17)

Thus, finally

x (A)(t − T ) = x(t) ∗ (−i/π (t − T )). (A.3.18)

Alternatively,

x (A)(t − T ) = 1

π

∫ ∞

−∞

T I x(u)du

(T I )2 + (t − T R − u)2

− i

π

∫ ∞

−∞

(t − T R − u)x(u)du

(T I )2 + (t − T R − u)2
. (A.3.19)

If t − T is real-valued, (A.3.5) becomes

x (A)(t − T ) = x(t) ∗ δ(A)(t − T ), (A.3.20)

where δ(A)(ζ ) is the analytical delta function; see (A.3.6). Thus, all expressions derived in
the time domain for the real-valued travel time T in terms of δ(A)(t − T ) can be applied
even for complex-valued T , if we put

δ(A)(t − T ) → −i/π (t − T ). (A.3.21)

Finally, we shall show that (A.3.21) has a very close relation to the properties of Rayleigh
signal (6.1.9). If we put T = T R + iT I , (A.3.21) can be expressed in the following form:

δ(A)(t − T )= T I

π [(t − T R)2 + (T I )2]
− i

π

t − T R

[(t − T R)2 + (T I )2]
. (A.3.22)

The analytical signal has many important applications. Among others, it can be used
to evaluate the envelope of signal x(t) and its instantaneous frequency. We use

x (A)(t) = ∣∣x (A)(t)∣∣ exp[−i�(t)], (A.3.23)

where ∣∣x (A)(t)∣∣ = [x2(t) + g2(t)]1/2, �(t) = −arctan(g(t)/x(t)). (A.3.24)

Thus, function |x (A)(t)| represents the envelope of signal x(t) (and also of its Hilbert
transform g(t)). The instantaneous frequency f I (t0) of signal x(t) at time t0 then reads

f I (t0)
.= (2π )−1 (d�(t)/dt)t=t0 . (A.3.25)



References

Abdullaev, S. S. (1993). Chaos and dynamics of rays in waveguide media. Amsterdam: Gordon and
Breach.

Abgrall, R., and Benamou, J.-D. (1999). Big ray-tracing and eikonal solver on unstructured grids:
Application to the computation of a multivalued traveltime field in the Marmousi model.Geophysics
64, 230–9.

Abramowitz, M., and Stegun, I. A. (1970). Handbook of mathematical functions. New York: Dover.
Achenbach, J. D. (1975).Wave propagation in elastic solids. Amsterdam: Elsevier.
Achenbach, J. D., Gautesen, A. K., and McMaken, H. (1982). Ray methods for waves in elastic solids.
London: Pitman.

Aizenberg, A. M., and Klem-Musatov, K. D. (1980). Calculation of wave fields by the method of
superposition of edge waves. Geology and Geophysics 21, 92–108.

Aki, K., Christoffersen, A., and Husebye, E. S. (1977). Determination of three-dimensional structure
of the lithosphere. J. Geophys. Res. 82, 277–296.

Aki,K., andRichards, P. (1980).Quantitative seismology. Theory andmethods.SanFrancisco: Freeman.
Al-Chalabi, M. (1997a). Instantaneous slowness versus depth functions. Geophysics 62, 270–3.
Al-Chalabi, M. (1997b). Time-depth relationships for multilayer depth conversion.Geophys. Prospect-
ing 45, 715–20.

Aldridge, D. F. (1990). The Berlage wavelet. Geophysics 55, 1508–11.
Alekseyev, A. S., Babich, V. M., and Gel’chinskiy, B. Ya. (1961). Ray method for the computation of
the intensity of wave fronts. In Problems of the dynamic theory of propagation of seismic waves (in
Russian), vol. 5, ed. G. I. Petrashen, pp. 3–24. Leningrad: Leningrad Univ. Press.

Alekseyev, A. S., and Gel’chinskiy, B. Ya. (1958). Determination of the intensity of head waves in the
theory of elasticity by the ray method (in Russian). Dokl. Akad. Nauk SSSR 118, 661–4.

Alekseyev, A. S., and Gel’chinskiy, B. Ya. (1959). On the ray method of computation of wave fields
for inhomogeneous media with curved interfaces. In Problems of the dynamic theory of propagation
of seismic waves (in Russian), vol. 3, ed. G. I. Petrashen, pp. 107–60. Leningrad: Leningrad Univ.
Press.

Alekseyev, A. S., and Gel’chinskiy, B. Ya. (1961). The ray method of computation of the intensity of
head waves. In Problems of the dynamic theory of propagation of seismic waves (in Russian), vol. 5,
ed. G. I. Petrashen, pp. 54–72. Leningrad: Leningrad Univ. Press.

Alekseyev, A. S., and Mikhailenko, B. G. (1982). “Nongeometrical phenomena” in the theory of
propagation of seismic waves (in Russian). Dokl. Akad. Nauk SSSR 267 (5), 1079–83.

Alkhalifah, T. (1995). Efficient synthetic-seismogram generation in transversely isotropic, inhomoge-
neous media. Geophysics 60, 1139–50.

Arnaud, J. A. (1971a). Mode coupling in first-order optics. J. Opt. Soc. Am. 61, 751–8.
Arnaud, J. A. (1971b). Modes of propagation of optical beams in helical gas lenses. Proc. IEEE 59,
1378–9.

Arnold, V. I. (1967). Characteristic classes entering in quantization conditions. Funct. Anal. Appl. 1,
1–13.

667



668 REFERENCES

Arnold, V. I. (1974). Mathematical methods of classical mechanics (in Russian). Moscow: Nauka.
(Translated to English by Springer, Berlin, 1978.)

Asakawa, E., and Kawanaka, T. (1993). Seismic ray tracing using linear traveltime interpolation. Geo-
phys. Prospecting 41, 99–112.

Asatryan, A. A., and Kravtsov, Yu. A. (1988). Fresnel zone of hyperbolic type from the physical point
of view. Wave Motion 10, 45–57.

Audebert, F., Nichols, D., Rekdal, T., Biondi, B., Lumley, D. E., and Urdaneta, H. (1997). Imaging
complex geologic structure with single-arrival Kirchhoff prestack depth migration. Geophysics 62,
1533–43.

Auld, B. A. (1973) Acoustic fields and waves in solids. New York: Wiley.
Azbel, I. Ya., Dmitrieva, L. A., Gobarenko, V. S., and Yanovskaya, T. B. (1984). Numerical mod-
elling of wavefields in three-dimensional inhomogeneous media. Geophys. J. R. astr. Soc. 79,
199–206.

Babich, V. M. (1956). Ray method of the computation of the intensity of wave fronts (in Russian).Dokl.
Akad. Nauk SSSR 110, 355–7.

Babich, V. M. (1961a). Ray method of the computation of the intensity of wave fronts in elastic inho-
mogeneous anisotropic medium. In Problems of the dynamic theory of propagation of seismic waves
(in Russian), vol. 5, ed. G. I. Petrashen, pp. 36–46. Leningrad: Leningrad Univ. Press. (Translation
to English: Geophys. J. Int. 118, 379–83, 1994).

Babich, V. M. (1961b). On the convergence of series in the ray method of calculation of the intensity of
wave fronts. In Problems of the dynamic theory of propagation of seismic waves (in Russian), vol. 5,
ed. G. I. Petrashen, pp. 25–35. Leningrad: Leningrad Univ. Press.

Babich, V. M. (1968). Eigenfunctions, concentrated in the vicinity of a closed geodesics. InMathemat-
ical problems of the theory of propagation of waves (in Russian), vol. 9, ed. V. M. Babich, pp. 15–63.
Leningrad: Nauka.

Babich, V. M. (1979). On the space-time ray method in the theory of elastic waves (in Russian). Izv.
Akad. Nauk SSSR, Fizika Zemli, No. 2, 3–13.

Babich, V. M., and Alekseyev, A. S. (1958). On the ray method of the computation of the intensity of
wave fronts (in Russian). Izv. Akad. Nauk SSSR, Geophys. Series, No. 1, 17–31.

Babich, V. M., and Buldyrev, V. S. (1972). Asymptotic methods in problems of diffraction of short
waves (in Russian). Moscow: Nauka. (Translated to English by Springer, Berlin, 1991, under the title
Short-wavelength diffraction theory.)

Babich, V. M., Buldyrev, V. S., and Molotkov, I. A. (1985). Space-time ray method. Linear and non-
linear waves (in Russian). Leningrad: Leningrad Univ. Press.

Babich, V. M., Chikhachev, B. A., and Yanovskaya, T. B. (1976). Surface waves in vertically inhomo-
geneous elastic halfspace with a weak horizontal inhomogeneity (in Russian). Izv. Akad. Nauk SSSR,
Fizika Zemli, No. 4, 24–31.

Babich, V. M., and Kirpichnikova, N. Y. (1974). The boundary-layer method in diffraction problems
(in Russian). Leningrad: Leningrad Univ. Press. (English translation by Springer, 1979).

Babich, V. M., and Kiselev, A. P. (1989). Non-geometrical waves – Are there any? An asymptotic
description of some “non-geometrical” phenomena in seismic wave propagation.Geophys. J. Int. 99,
415–20.

Babich, V. M., and Pankratova, T. F. (1973). On discontinuities of the Green function of mixed
problems for wave equation with variable coefficients. In Problems of mathematical physics (in
Russian), vol. 6, ed. V. M. Babich, pp. 9–27. Leningrad: Leningrad Univ. Press.

Babich, V. M., and Popov, M. M. (1981). Propagation of concentrated acoustical beams in three-
dimensional inhomogeneous media (in Russian). Akust. Zh. 27, 828–35.

Babich, V. M., and Ulin, V. V. (1981a). Complex-valued ray solutions and eigenfunctions, concentrated
in the vicinity of a closed geodesic. InMathematical problems of the theory of propagation of waves
(in Russian), vol. 11, ed. V. M. Babich, pp. 6–13. Leningrad: Nauka.

Babich, V. M., and Ulin, V. V. (1981b). Complex space-time ray method and “quasiphotons.” InMath-
ematical problems of the theory of propagation of waves (in Russian), vol. 12, ed. V. M. Babich,
pp. 5–12. Leningrad: Nauka.
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Červený, V., and Hron, F. (1980). The ray series method and dynamic ray tracing system for three-
dimensional inhomogeneous media. Bull. Seismol. Soc. Am. 70, 47–77.
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Červený, V., and Pšenčı́k, I. (1984b). SEIS83 –Numerical modelling of seismic wave fields in 2-D later-
ally varying layered structures by the raymethod. InDocumentation of earthquake algorithms, Report
SE-35, ed. E. R. Engdahl, pp. 36–40. Boulder: World Data Center A for Solid Earth Geophysics.
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Fertig, J., and Pšenčı́k, I. (1985). Numerical modeling of P and S waves in exploration seismology. In
Handbook of geophysical exploration, Section I: Seismic exploration, eds. K. Helbig and S. Treitel,
vol. 15, Seismic shear waves, Part A: Theory, ed. G. Dohr, pp. 226–82. London: Geophysical Press.

Firbas, P. (1984). Travel time curves for complex inhomogeneous slightly anisotropic media. Studia
Geoph. et Geod. 28, 393–406.

Fischer, R., and Lees, J.M. (1993). Shortest path ray tracingwith sparse graphs.Geophysics 58, 987–96.
Fishman, L., and McCoy, J. J. (1984). Derivation and application of extended parabolic wave theories.
I. The factorized Helmholtz equation. J. Math. Phys. 25, 285–96.

Fishman, L., and McCoy, J. J. (1985). A new class of propagation models based on a factorization of
the Helmholtz equation. Geophys. J. R. astr. Soc. 80, 439–61.
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Klimeš, L. (1983). Hermite-Gaussian beams in inhomogeneous elastic media. Stud. Geoph. et Geod.
27, 354–65.



REFERENCES 683
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Konopásková, J., and Červený, V. (1984). Numerical modelling of time-harmonic seismic wave fields
in simple structures by the Gaussian beam method. Part I. Stud. Geoph. et Geod. 28, 19–35. Part II.
Stud. Geoph. et Geod. 28, 113–28.

Korn, G. A., and Korn, T. M. (1961).Mathematical handbook for scientists and engineers. New York:
McGraw Hill.

Körnig, M. (1995). Cell ray tracing for smooth, isotropic media: A new concept based on generalized
analytic solution. Geophys. J. Int. 123, 391–408.

Kravtsov, Yu. A. (1968). “Quasiisotropic” approximation to geometrical optics (in Russian). Dokl.
Akad. Nauk SSSR 183, 74–7.

Kravtsov, Yu. A. (1988). Rays and caustics as physical objects. In Progress in optics, vol. 26, ed. E.
Wolf, pp. 227–348. Amsterdam: North Holland.

Kravtsov, Yu. A., Forbes, G. W., and Asatryan, A. A. (1999). Theory and applications of complex rays.
In Progress in optics, vol. 39, ed. E. Wolf. Amsterdam: Elsevier.



684 REFERENCES

Kravtsov, Yu. A., Naida, O. N., and Fuki, A. A. (1996).Waves inweakly anisotropic 3-D inhomogeneous
media: Quasiisotropic approximation of geometrical optics (in Russian).Usp. Fiz. Nauk 166, 141–67.

Kravtsov, Yu. A., and Orlov, Yu. I. (1980). Geometrical optics of inhomogeneous media (in Russian).
Moscow: Nauka. (Translation to English by Springer, Berlin, 1990.)

Kravtsov, Yu. A., and Orlov, Yu. I. (1993). Caustics, catastrophes and wavefields. Berlin: Springer.
Krebes, E. S. (1983). The viscoelastic reflection/transmission problem: Two special cases.Bull. Seismol.
Soc. Am. 73, 1673–83.

Krebes, E. S. (1984). On the reflection and transmission of viscoelastic waves – Some numerical results.
Geophysics 49, 1374–80.

Krebes, E. S., andHearn, D. J. (1985). On the geometrical spreading of viscoelasticwaves.Bull. Seismol.
Soc. Am. 75, 391–6.

Krebes, E. S., and Hron, F. (1980a). Ray-synthetic seismograms for SH waves in anelastic media. Bull.
Seismol. Soc. Am. 70, 29–46.

Krebes, E. S., and Hron, F. (1980b). Synthetic seismograms for SHwaves in a layered anelastic medium
by asymptotic ray theory. Bull. Seismol. Soc. Am. 70, 2005–20.

Krebes, E. S., and Hron, F. (1981). Comparison of synthetic seismograms for anelastic media by
asymptotic ray theory and the Thompson-Haskell method. Bull Seismol. Soc. Am. 71, 1463–8.

Kühnicke, E. (1996). Three-dimensional waves in layered media with unparallel and curved interfaces:
A theoretical approach. J. Acoust. Soc. Am. 100, 709–16.

Kuo, J. T., and Dai, T.-F. (1984). Kirchhoff elastic wave migration for the case of noncoincident source
and receiver. Geophysics 49, 1223–38.
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Sommerfeld, A. (1909). Über die Ausbreitung des Wellen in der Drahtlosen Telegraphie. Ann. Phys.
28, 665–736.

Sorrells, G. G., Crowley, J. B., and Veith, K. F. (1971). Methods for computing ray paths in complex
geological structures. Bull. Seismol. Soc. Am. 61, 27–53.

Spence, G. D., Whittall, K. P., and Clowes, R. M. (1984). Practical synthetic seismograms for laterally
varying media calculated by asymptotic ray theory. Bull. Seismol. Soc. Am. 74, 1209–23.

Spencer, C. P., Chapman, C. H., and Kragh, J. E. (1997). A fast, accurate integration method for
Kirchhoff, Born andMaslov synthetic seismogram generation. 67th Annual SEGMeeting Expanded
Abstracts, Dallas, 1838–41.

Spudich, P., and Frazer, L. N. (1984). Use of ray theory to calculate high-frequency radiation from
earthquake sources having spatially variable rupture velocity and stress drop. Bull. Seismol. Soc. Am.
74, 2061–82.

Stamnes, J. J. (1986). Waves in focal regions. Bristol and Boston: Adam Hilger.
Stavroudis, O. N. (1972). The optics of rays, wavefronts and caustics. New York: Academic Press.
Suchy, K. (1972). Ray tracing in an anisotropic absorbing medium. J. Plasma Physics 8, 53–65.
Sun, J. (1994). Geometrical ray theory: Edge-diffracted rays and their traveltimes (second-order ap-
proximation of the traveltimes). Geophysics 59, 148–55.

Sun, J. (1996). The relationship between the first Fresnel zone and the normalized geometrical spreading
factor. Geophys. Prospecting 44, 351–74.

Sutton, G. R. (1984). The effect of velocity variations on the beam width of seismic wave. Geophysics
49, 1649–52.

Synge, J. L. (1954). Geometrical optics. An introduction to Hamilton’s method. London: Cambridge
Univ. Press.

Synge, J. L., and Schild, A. (1952). Tensor calculus. Toronto: Univ. Toronto Press.
Szabo, T. L. (1995). Causal theories and data for acoustic attenuation obeying a frequency power law.
J. Acoust. Soc. Am. 97, 14–24.

Tanimoto, T. (1987). Surface-wave ray tracing equations and Fermat’s principle in an anisotropic earth.
Geophys. J. R. astr. Soc. 88, 231–40.

Tappert, F. D. (1977). The parabolic approximation method. In Wave propagation and underwater
acoustics. Lecture notes in Physics, vol. 70, eds. J. B. Keller and J. S. Papadakis, pp. 224–87. Berlin:
Springer-Verlag.

Tappert, F. D., and Tang, X. (1996). Ray chaos and eigenrays. J. Acoust. Soc. Am. 99, 185–95.
Thom, R. (1972). Stabilite structurelle et morphogénese. Reading, MA: W. A. Benjamin.
Thomsen, L. (1986). Weak elastic anisotropy. Geophysics 51, 1954–66.
Thomson, C. J. (1989). Corrections for grazing rays in 2-D seismic modelling.Geophys. J. 96, 415–46.
Thomson, C. J. (1990). Corrections for critical rays in 2-D seismic modelling. Geophys. J. Int. 103,

171–210.
Thomson, C. J. (1996a). Notes on Rmatrix, a program to find the seismic plane-wave response of a
stack of anisotropic layers. Kingston: Queen’s University, Dept. of Geol. Sci.

Thomson, C. J. (1996b). Notes on waves in layered media to accompany program Rmatrix. Kingston:
Queen’s University, Dept. of Geol. Sci.

Thomson, C. J. (1997a). Complex rays and wave packets for decaying signals in inhomogeneous,
anisotropic and anelastic media. Studia Geoph. et Geod. 41, 345–81.

Thomson, C. J. (1997b). Modelling surface waves in anisotropic structures I. Theory. Phys. Earth
Planet. Int. 103, 195–206.



692 REFERENCES

Thomson, C. J. (1999). The ‘gap’ between seismic ray theory and ‘full’ wavefield extrapolation.
Geophys. J. Int. 137, 364–80.

Thomson, C. J. (in press). Seismic coherent states and ray geometrical spreading. Geophys. J. Int.
Thomson, C. J., and Chapman, C. H. (1985). An introduction toMaslov’s asymptotic method.Geophys.
J. R. astr. Soc. 83, 143–68.

Thomson, C. J., and Chapman, C. H. (1986). End-point contributions to synthetic seismograms.
Geophys. J. R. astr. Soc. 87, 285–94.

Thomson, C. J., Clarke, T., and Garmany, J. (1986). Observations on seismic wave equation and
reflection coefficient symmetries in stratified media. Geophys. J. R. astr. Soc. 86, 675–86.

Thomson, C. J., and Gubbins, D. (1982). Three-dimensional lithospheric modelling at Norsar: Linearity
of the method and amplitude variations from the anomalies. Geophys. J. R. astr. Soc. 71, 1–36.

Thomson, C. J., Kendall, J-M., and Guest, W. S. (1992). Geometrical theory of shear-wave splitting:
Corrections to ray theory for interference in isotropic/anisotropic transitions. Geophys. J. Int. 108,
339–63.

Thore, P. D., and Juliard, C. (1999). Fresnel zone effect on seismic velocity resolution. Geophysics 64,
593–603.

Thornburgh, H. R. (1930). Wavefront diagrams in seismic interpretation. Bull. Am. Assoc. Petrol. Geol.
14, 185–200.

Thurber, C. H. (1986). Analysis methods for kinematic data from local earthquakes. Revs Geophys. 24,
793–805.

Thurber, C. H., and Ellsworth, W. L. (1980). Rapid solution of ray tracing problems in heterogeneous
media. Bull. Seismol. Soc. Am. 70, 1137–48.
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Vavryčuk, V., 84, 152, 408, 577, 578
Veith, K. F., 136
Vermeer, G. J. O., 372
Vesnaver, A. L., 227
Vidale, J. E., 186, 187, 188, 366
Vinje, V., 187, 632
Virieux, J., 6, 136, 189, 199, 220, 227, 230
Vlaar, N. J., 156

Waltham, D. A., 220, 599
Wang, C.-Y., 84
Wang, X., 599
Wang, Y., 220
Wang, Z., 230, 603
wave
compressional, 26, 59
converted, 43
diffracted, 610–13, 621, 635
diffracted at edges and vertexes, 613
diffracted at smooth objects, 613
in a dissipative medium, 542–8, 614, 639–44
diving, 565
edge, 122, 613
elementary, 119
evanescent, 614
head, 122, 559–65, 579–82, 612, 619, 621, 635



INDEX 713

higher order, 122, 554, 558, 621, 635
inhomogeneous, 36–7, 613–15, 621
interference head, 582, 617
longitudinal, 27, 59
Love, 228
P, 26, 59
plane, see plane waves
postcritically transmitted, 614–15
in a preferred direction, 616–18
pseudospherical, 615, 620
qP, 25, 62, 505
qS, 25, 62, 505
Rayleigh, 228, 643
S, 28, 59–60
S*, 615
shear, 28, 59
slightly refracted, 565
spherical, 74–84
Stoneley, 615, 619
surface, 228, 616, 617, 643
tip, 122, 613
transverse, 28, 59
tunnel, 615, 618
unconverted, 43
vertex, 122, 613
whispering gallery, 616

wavefront, 19, 55
curvature matrix of, 326–8, 391, 406–8, 410
Gaussian curvature of, 328, 408
mean curvature of, 328
paraxial, 256
quadratic, 327
radii of curvature of, 327
relation to rays, 109

wavefront construction method, 187–8
wavefront orthonormal coordinate system, 260,

264–5
basis vectors of, 264–5
definition of, 264–5
dynamic ray tracing in, 264–7
ray propagator matrix in, 288
relation to ray-centered coordinates, 265

wave impedance, 20, 426
weakly anisotropic media, 512–27
quasi-isotropic ray theory in, 512–27
travel-time perturbation method in, 194–7
weak anisotropy matrix, 195

Weber, M., 135, 599
Weigel, F. W., 617
Weinberg, H., 229, 230

Weingarten equations, 314
Wennerberg, L., 548
Wentzel, K., 163
Wesson, R. L., 220, 356
West, G. F., 438, 601, 643
Weyl, H., 76
Weyl integral, 74, 76, 589, 615
White, B. S., 589, 599
White, J. E., 462
Whitham, G. B., 73
Whitham’s variational principle, 73
Whitmore, J. D., 643
Whittal, K. P., 135, 632
Wielandt, E., 372
Wiggins, R. A., 92, 638
Wild, A. J., 617
Will, M., 135
Witte, O., 372
WKB solution, 70
Wolf, E., 17, 643
Wong, Y. K., 230
Woodhouse, J. H., 230, 530
Wright, J., 51
Wrolstad, K. H., 51
Wu, R.-S., 95, 372, 589, 617

Yacoub, N. K., 136
Yamaguchi, K., 185
Yan, J., 140
Yanovskaya, T. B., 230, 478, 579
Yardley, G., 643
Yeatts, F. R., 84
Yedlin, M., 33, 34
Yeliseyevnin, V. A., 107
Yen, K. K., 140
Yomogida, K., 84, 230, 372, 408, 577
Young, J. B., 636

Zahradnı́k, J., 643
Zednı́k, J., 178, 631
Zelt, B. C., 187
Zhao, L., 618
Zhao, T., 548
Zheng, B. S., 579
Zhu, H., 84
Zhu, T., 56, 92, 536, 544, 566
Zillmer, M., 512, 515
Ziolkowski, R. W., 214, 601
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