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ABSTRACT

The common ray approximation considerably simplifies the numerical algorithm
of the coupling ray theory for S waves, but may introduce errors in travel times
due to the perturbation from the common reference ray. These travel–time errors
can deteriorate the coupling–ray–theory solution at high frequencies. It is thus of
principal importance for numerical applications to estimate the errors due to the
common ray approximation.

We derive the equations for estimating the travel–time errors due to the isotropic
and anisotropic common ray approximations of the coupling ray theory. These equa-
tions represent the main result of the paper. The derivation is based on the general
equations for the second–order perturbations of travel time. The accuracy of the
anisotropic common ray approximation can be studied along the isotropic common
rays, without tracing the anisotropic common rays.

The derived equations are numerically tested in three 1-D models of differing
degree of anisotropy. The first–order and second–order perturbation expansions of
travel time from the isotropic common rays to anisotropic–ray–theory rays are com-
pared with the anisotropic–ray–theory travel times. The errors due to the isotropic
common ray approximation and due to the anisotropic common ray approximation
are estimated. In the numerical example, the errors of the anisotropic common ray
approximation are considerably smaller than the errors of the isotropic common ray
approximation.

The effect of the isotropic common ray approximation on the coupling–ray–theory
synthetic seismograms is demonstrated graphically. For comparison, the effects of the
quasi–isotropic projection of the Green tensor, of the quasi–isotropic approximation
of the Christoffel matrix, and of the quasi–isotropic perturbation of travel times on
the coupling–ray–theory synthetic seismograms are also shown. The projection of
the travel–time errors on the relative errors of the time–harmonic Green tensor is
briefly presented.

Keywords : coupling ray theory, common ray approximation, travel time, per-
turbation theory, seismic anisotropy, inhomogeneous media
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1. INTRODUCTION

In the isotropic ray theory, the S–wave polarization vectors do not rotate about
the ray, whereas in the anisotropic ray theory they coincide with the eigenvec-
tors of the Christoffel matrix which may rotate rapidly about the ray. In “weakly
anisotropic” models, at moderate frequencies, the S–wave polarization tends to re-
main unrotated round the ray but is partly attracted by the rotation of the eigen-
vectors of the Christoffel matrix. The intensity of the attraction increases with
frequency. This behaviour of the S–wave polarization is described by the coupling
ray theory proposed by Coates and Chapman (1990). The coupling ray theory is ap-
plicable to S waves at all degrees of anisotropy, from isotropic models to considerably
anisotropic ones. The numerical algorithm for calculating the frequency–dependent
complex–valued S–wave polarization vectors of the coupling ray theory has been
designed by Bulant and Klimeš (2002).

There are many commonly used quasi–isotropic approximations of the coupling
ray theory (Pšenč́ık, 1998a), which diminish the accuracy of the coupling ray the-
ory both with increasing frequency and increasing degree of anisotropy. Most of
these quasi–isotropic approximations can be avoided with minimal effort (Bulant
and Klimeš, 2002; 2004 ), except for the common ray approximation for S waves. In
the common ray approximation, only one reference ray is traced for both anisotropic–
ray-theory S waves, and both S–wave anisotropic–ray-theory travel times are approx-
imated by the perturbation expansion from the common reference ray. The common
ray approximation thus considerably simplifies the coding of the coupling ray theory
and numerical calculations, but may introduce errors in travel times due to the per-
turbation. These travel–time errors can deteriorate the coupling–ray–theory solution
at high frequencies. It is thus of principal importance for numerical applications to
estimate the travel–time errors due to the common ray approximation, and then the
related error of the wavefield.

In the common ray approximation, the S–wave travel times are usually approx-
imated by the first–order perturbation expansion from the common reference ray.
The errors of S–wave travel times may then be approximated by second–order terms
in the perturbation expansion. The calculation of these estimates of travel–time er-
rors due to the isotropic common ray approximation and the anisotropic common ray
approximation (Bakker, 2002 ; Klimeš, 2003 ) is proposed and numerically demon-
strated in this paper. The equations for estimating the travel–time errors due to
the isotropic and anisotropic common ray approximations of the coupling ray theory
for S waves are derived in a form suitable for dynamic ray tracing in ray–centred
(Riemannian normal) coordinates.

Note that the perturbation expansion is the Taylor expansion with respect to the
perturbation parameters, see (17), which parametrize the Hamiltonian, see (16). We
refer here to the partial derivatives with respect to the perturbation parameters as
perturbation derivatives, in order to distinguish them from the partial derivatives
with respect to the spatial coordinates.
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2. COMMON RAY APPROXIMATIONS

For the derivation of the coupling ray theory refer to Coates and Chapman (1990)
and Červený (2001). For the description of the numerical algorithm refer to Červený
(2001) and Bulant and Klimeš (2002). Here we shall concentrate only on estimating
the travel–time errors due to the common ray approximations. The estimates are
based on the equations for the second–order perturbation derivatives of travel time
derived by Klimeš (2002).

2 . 1 . S e l e c t i o n o f t h e r e f e r e n c e r a y

The isotropic ray theory is always the limiting case of the coupling ray theory for
decreasing anisotropy at a fixed frequency. On the other hand, the high–frequency
limit of the coupling ray theory at a fixed anisotropy depends on the choice of the
reference ray, and even on the choice of the system of reference rays, because the
amplitudes are determined by the paraxial reference rays. The reference ray should
be “close to the ray of the coupled S wave under study”. Unfortunately, this is
nothing but a rough statement, because the ray of the coupled S wave has not been
defined yet.

From the point of view of the high–frequency asymptotic validity, the frequency–
independent reference ray is best represented by the anisotropic–ray–theory reference
ray, provided we choose the initial condition for the polarization vector in the cou-
pling equation given by the eigenvector of the Christoffel matrix corresponding to the
reference ray. The anisotropic–ray–theory travel time corresponding to the selected
polarization is then exact, and only the difference between the two anisotropic–ray–
theory S–wave travel times is approximate. The coupling ray theory may then also
be used at high frequencies because the approximate travel–time difference influ-
ences only the coupling due to low–frequency scattering. The coupling ray theory
then correctly converges to the anisotropic ray theory for high frequencies. For other
choices of reference rays, the high–frequency limit of the coupling ray theory at a
fixed anisotropy is incorrect, although the differences may be small at the finite fre-
quencies under consideration. Note that the anisotropic–ray–theory reference ray
can be traced only if the eigenvectors of the Christoffel matrix vary continuously
along the whole ray (Vavryčuk, 2001 ).

In the anisotropic common ray approximation, the common reference ray is traced
using the averaged Hamiltonian of both anisotropic–ray-theory S waves (Bakker,
2002 ; Klimeš, 2003 ).

In the less accurate isotropic common ray approximation, the reference ray is
traced in the reference isotropic model. Moreover, the reference isotropic model
may be selected in different ways, yielding quasi–isotropic approximations of differing
accuracies.
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2 . 2 . F i r s t – o r d e r p e r t u r b a t i o n e x p a n s i o n o f t r a v e l t i m e

Let aijkl = aijkl(xm) be the density–normalized elastic moduli describing a
smooth anisotropic model, and v0 = v0(xm) the S–wave velocity in the smooth
reference isotropic model used to trace the “isotropic” reference rays. We shall refer
to v0 briefly as the reference velocity.

Assume a phase–space reference ray, parametrized by reference travel time τ ,
with reference slowness vectors pi(τ) known at all its points xj(τ). Using the refer-
ence slowness vectors, we can calculate reference Christoffel matrix

Γjk(τ) = pi(τ) aijkl(xm(τ)) pl(τ) (1)

and its eigenvectors giα(τ), α = 1, 2, 3 along the reference ray. Whereas the Ein-
stein summation over the pairs of identical Roman indices (both subscripts and
superscripts) i, j, k, ... = 1, 2, 3 or I, J, K, ... = 1, 2 is used throughout this paper, no
implicit summation applies to Greek subscripts α, β, ... indexing the eigenvectors of
the Christoffel matrix. Assume that eigenvectors gi1(τ) and gi2(τ) correspond to the
S waves, and eigenvector gi3(τ) to the P wave. For application of the coupling ray
theory, the eigenvectors should vary continuously along the reference ray (Bulant
and Klimeš, 2002 ). This condition is not required in regions where the two S–wave
eigenvalues of the Christoffel matrix are approximately equal.

Let us denote by τα(τ) the anisotropic–ray-theory travel time corresponding to
the selected eigenvector giα(τ) of the Christoffel matrix. It may be approximated
by a quadrature along the unperturbed reference ray,

dτα

dτ
= [Γjkgjαgkα]−

1

2 . (2)

Travel–time approximation (2), suggested for the coupling ray theory by Bulant and
Klimeš (2002), would become exact for a reference ray following the path of the
exact ray. Travel–time approximation (2) can be derived as the first–order part of
perturbation expansion (17), corresponding to Hamiltonian

Hα(xm, pn) = −[Gα(xm, pn)]−
1

2 , (3)

where Gα(xm, pn) is the eigenvalue of Christoffel matrix (1), corresponding to eigen-
vector giα (Klimeš, 2002, eqs. 43 and 65).

2 . 3 . R e f e r e n c e i s o t r o p i c H a m i l t o n i a n a n d
c o r r e c t a n i s o t r o p i c H a m i l t o n i a n s

Hamiltonian (3), specified for the reference isotropic medium, is given by

H0(xm, pn) = −[v0(xm)]−1(pipi)
−

1

2 . (4)

The value of Hamiltonian (4) at the reference ray is

H0 = −1 . (5)
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The partial derivatives with respect to spatial coordinates xi, denoted by Roman
subscripts following a comma, of Hamiltonian (4) are

H0,i = v0,i (v0)
−2(pipi)

−
1

2 , (6)

which is, at the reference ray, equal to

H0,i = v0,i (v0)
−1 . (7)

The partial derivatives with respect to the components of the slowness vector, de-
noted by Roman superscripts following a comma, of Hamiltonian (4) are

H ,i
0 = (v0)

−1(pkpk)−
3

2 pi , (8)

which is, at the reference ray, equal to

H ,i
0 = (v0)

2pi . (9)

The second–order partial derivatives of Hamiltonian (4) with respect to the compo-
nents of the slowness vector are

H ,ij
0 = (v0)

−1(pkpk)−
3

2 δij − 3 (v0)
−1(pkpk)−

5

2 pipj , (10)

which is, at the reference ray, equal to

H ,ij
0 = (v0)

2 δij − 3 (v0)
4 pipj . (11)

Kronecker symbol δij denotes the components of the identity matrix.
The value of Hamiltonian (3), corresponding to unit eigenvector giα of the

Christoffel matrix, at the reference ray, is

Hα = −(aijklgiαpjgkαpl)
−

1

2 . (12)

The partial derivatives of Hamiltonian (12) with respect to the spatial coordinates
are

Hα,i = − 1
2 (Hα)3amjkl,igmαpjgkαpl . (13)

The partial derivatives of Hamiltonian (12) with respect to the components of the
slowness vector are

H ,i
α = −(Hα)3amiklgmαgkαpl . (14)

The values of phase–space derivatives (13) and (14) are calculated at the reference
ray in this paper. Partial derivatives (14) satisfy Euler’s relation

H ,i
αpi = −Hα (15)

for a homogeneous function of degree −1 with respect to pi.
The quantities enclosed above in boxes are necessary for estimating the errors

due to the common ray approximations of the coupling ray theory.
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2 . 4 . P a r a m e t r i c s y s t e m o f t h e H a m i l t o n i a n s a n d
e r r o r s d u e t o t h e c o m m o n r a y a p p r o x i m a t i o n s

We consider the two–parametric set H =H(xm, pn, fα) of Hamiltonians paramet-
rized by fα, α=1, 2 for an S wave, or the one–parametric set H =H(xm, pn, fα) of
Hamiltonians parametrized by fα, α=3 for a P wave,

H(xm, pn, fα) = H0(xm, pn) +
∑

α

[Hα(xm, pn)−H0(xm, pn)] fα . (16)

Parameters fα are called perturbation parameters (Baumgärtel, 1985 ) or model pa-
rameters (Tarantola, 1987 ; Klimeš, 2002 ). Parametric system (16) of the Hamil-
tonians then generates parametric system τ(xm, fα) of the travel–time fields corre-
sponding to the individual Hamiltonians H(xm, pn, fα).

For an S wave, we obtain the Hamiltonian corresponding to the isotropic common
ray approximation in the reference isotropic model for (f1, f2)=(0, 0), the Hamilto-
nian corresponding to the first anisotropic–ray-theory S wave for (f1, f2) = (1, 0),
the Hamiltonian corresponding to the second anisotropic–ray-theory S wave for
(f1, f2) = (0, 1), and the averaged Hamiltonian of both anisotropic–ray-theory
S waves corresponding to the anisotropic common ray approximation by Bakker
(2002) for (f1, f2)=(1

2 , 1
2 ).

For a P wave, we obtain the Hamiltonian corresponding to the reference ray in
the reference isotropic model for f3 =0, and the Hamiltonian corresponding to the
anisotropic P wave for f3 =1.

The Taylor expansion with respect to perturbation parameters fα is called per-
turbation expansion. The second–order perturbation expansion of travel time is

τ(xm, fα) ≈ τ(xm) +
∑

α

τ,α(xm)fα + 1
2

∑

α

∑

β

τ,αβ(xm)fαfβ , (17)

where the Greek subscripts following a comma denote the partial derivatives with
respect to perturbation parameters fα, called hereinafter the perturbation deriva-
tives. Note that Klimeš (2002) refers to the perturbation derivatives briefly as the
“perturbations”. Here, travel time τ(xm) and its perturbation derivatives τ,α(xm),
τ,αβ(xm), with arguments fα omitted, correspond to the reference model fα =0.

Travel–time approximation (2) corresponds to the first–order part of perturbation
expansion (17). The error of travel–time approximation (2) may thus be approxi-
mated by the quadratic term in perturbation expansion (17).

We may now express the estimates of the travel–time errors due to the isotropic
common ray (ICR) approximation of anisotropic travel times in terms of the second–
order perturbation derivatives of travel time. The errors of travel–time approx-
imation (2) from isotropic common reference ray (f1, f2) = (0, 0) to the correct
anisotropic S–wave ray (f1, f2) = (1, 0) and to the correct anisotropic S–wave ray
(f1, f2)=(0, 1) are approximately

δτ ICR
α =

τ,αα

2
, (18)
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where α=1, 2 for S waves. Equation (18) with α=3 analogously yields the estimate
of the error of travel–time approximation (2) from isotropic reference P–wave ray
f3 =0 to the correct anisotropic P–wave ray f3 =1.

We may also use the second–order perturbation derivatives of travel time, cal-
culated along the isotropic common reference ray, to estimate the accuracy of the
anisotropic common ray (ACR) approximation (Bakker, 2002 ; Klimeš, 2003 ). The
estimates of errors of travel–time approximation (2) from the anisotropic common
S–wave reference ray (f1, f2) = (1

2 , 1
2 ) to (f1, f2) = (1, 0) and to (f1, f2) = (0, 1) are

equal,

δτACR
α =

τ,11 − 2τ,12 + τ,22

8
, (19)

where α = 1, 2. Error estimates (19) represent the contributions of the quadratic
terms in perturbation expansion (17) at the distances from the anisotropic common
S–wave reference ray to the correct S–wave rays.

To calculate the first–order and second–order perturbation derivatives τ,α and
τ,αβ of travel time, we need the first–order and second–order phase–space and per-
turbation derivatives of the Hamiltonian. The phase–space and perturbation deriva-
tives of Hamiltonian (16) in the reference model fα =0 are

H,i = H0,i , (20)

H ,i = H ,i
0 , (21)

H ,ij = H ,ij
0 , (22)

H,α = Hα − H0 , (23)

H,iα = Hα,i − H0,i , (24)

H ,i
,α = H ,i

α − H ,i
0 , (25)

H,αβ = 0 , (26)

where the Greek subscripts following a comma denote the partial derivatives with
respect to perturbation parameters fα, analogously as for travel time.

2 . 5 . D y n a m i c r a y t r a c i n g a n d r a y – c e n t r e d c o o r d i n a t e s

We define the matrices of the partial derivatives of spatial coordinates xi and
of the slowness–vector components pi = τ,i with respect to 3 ray coordinates: ray
take–off parameters γ1, γ2, and independent parameter γ3 = τ along rays,

Qia =
∂xi

∂γa

, Pia =
∂τ,i

∂γa

. (27)

Matrices Qia and Pia can be calculated by numerically solving a set of linear ordinary
differential equations called the dynamic ray tracing equations (Babich and Buldyrev,
1972 ; Červený, 1972 ; Arnaud, 1973 ; Červený and Hron, 1980 ). Matrices Qia
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and Pia describe, by definition, the properties of the orthonomic system of rays
corresponding to the travel time under consideration. They may be expressed in
terms of their initial values and the paraxial ray propagator matrix (Červený, 2001 ).

The second–order spatial derivatives τ,ij of travel time can be expressed in terms
of matrices Qia and Pia. Equation

Pia = τ,ij Qja (28)

is a direct consequence of the above definitions (27).
Let us denote by hi1, hi2, hi3 the basis vectors of the ray–centred coordinate system

(Riemannian normal coordinate system) proposed by Luneburg (1944), Babich and
Buldyrev (1972) and Popov and Pšenč́ık (1978a; 1978b). The orthonormal basis
vectors of the ray–centred coordinate system are calculated along the reference ray
in the reference isotropic model. The first two basis vectors hiM of the ray–centred
coordinate system are tangent to the wavefront, the third basis vector hi3 = v0pi is
tangent to the ray. The equations for calculating the basis vectors of the ray–centred
coordinate system can be found, e.g., in the book by Červený (2001).

The quantities covariantly transformed from spatial coordinates xi to the local
Cartesian basis him of the ray–centred coordinate system are marked by a tilde .̃
In particular,

Q̃ia = hmiQma , (29)

P̃ia = hmiPma , (30)

τ̃,ij = hmiτ,mnhnj , (31)

τ̃,iα = hmiτ,mα , (32)

H̃0,i = H0,mhmi , (33)

H̃α,i = Hα,mhmi , (34)

H̃ ,i
α = H ,m

α hmi . (35)

Since we consider matrices Qia and Pia defined for γ3 = τ ,

Q̃3J = 0 . (36)

The 2×2 submatrices Q̃IJ and P̃IJ of matrices (29) and (30) are usually calculated
by the dynamic ray tracing equations in ray–centred coordinates (Červený, 2001,
eq. 4.1.65),

d

dτ
Q̃IJ = (v0)

2 P̃IJ , (37)

d

dτ
P̃IJ = −(v0)

−1 (̃v0),IKQ̃KJ , (38)

where
(̃v0),IK = hmI (v0),mn hnJ (39)

are the second–order spatial derivatives of the velocity in ray–centred coordinates.
We shall thus express the equations for estimating the travel–time errors due to

the common ray approximations of the coupling ray theory in terms of the 2×2
matrices Q̃IJ and P̃IJ in ray–centred coordinates.
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2 . 6 . F i r s t – o r d e r p e r t u r b a t i o n d e r i v a t i v e s
o f t h e t r a v e l – t i m e g r a d i e n t

To calculate the second–order perturbation derivatives of travel time, we need to
know at least the ray–normal projection

τ⊥

,iα = E⊥

ijτ,jα (40)

of the first–order perturbation derivatives τ,iα of the travel–time gradient (Klimeš,
2002, eqs. 54 and 55). The ray–normal projection matrix E⊥

ij can be expressed in
terms of the first two basis vectors of the ray–centred coordinate system,

E⊥

ij = hiMhjM . (41)

The covariant transform (Klimeš, 2002, eq. 69)

T⊥

Jα = τ⊥

,iα QiJ (42)

of ray–normal derivatives (40) into ray coordinates can be determined by numerical
quadrature (Klimeš, 2002, eq. 75)

T⊥

Jα(τ) = T⊥

Jα(τ0) +

∫ τ

τ0

dτ K⊥

iαQiJ (43)

along the reference ray, with zero initial conditions T⊥

Jα(τ0) = 0 at the point source.
The ray–normal integration kernel for the perturbation derivatives of the travel–

time gradient is (Klimeš, 2002, eq. 80)

K⊥

iα = E⊥

ia (−H,aα + H,a H ,r
,α pr) − H ,r

,α τ⊥

,ri , (44)

where
τ⊥

,ij = E⊥

iaE⊥

jbτ,ab (45)

is the ray–normal projection of the second–order spatial derivatives τ,ij of travel
time.

Inserting equations (20), (24), (25) with (9) and (15), and (45) into (44), we
arrive at

K⊥

iα = −E⊥

ia (Hα,a + HαH0,a) − H ,r
α E⊥

raτ,abE
⊥

bi . (46)

Multiplying equation (46) by the first two columns QiJ of the matrix of geometrical
spreading, inserting equation (41), and considering transforms (29), (30), (31) and
relations (28) and (36), we arrive at

K⊥

iαQiJ = −(H̃α,I + HαH̃0,I) Q̃IJ − H̃ ,I
α P̃IJ , (47)

where Q̃IJ and P̃IJ are the 2×2 submatrices of matrices (29) and (30). The 2×2

matrices Q̃IJ and P̃IJ are usually calculated by the dynamic ray tracing equations
(37) and (38) in ray–centred coordinates.

Inserting equations (40) and (41) into (42) while considering transforms (29) and
(32), we arrive at

T⊥

Jα = τ̃,Iα Q̃IJ . (48)
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The first–order perturbation derivatives of the travel–time gradient expressed in
ray–centred coordinates are then

τ̃,Iα = T⊥

JαQ̃−1
JI , (49)

where Q̃−1
JI are the components of the matrix inverse to 2×2 matrix Q̃IJ calculated

by dynamic ray tracing (37) and (38) in ray–centred coordinates.

The value of τ̃,Iα at the point source, where T⊥

Jα(τ0) = 0 and Q̃IJ(τ0) = 0, can
be obtained by the l’Hospital rule with respect to τ → τ0+,

τ̃,Iα(τ0) = −(v0)
−2H̃ ,I

α . (50)

2 . 7 . S e c o n d – o r d e r p e r t u r b a t i o n d e r i v a t i v e s o f t r a v e l t i m e

The second–order perturbation derivatives of travel time can be determined by
numerical quadrature (Klimeš, 2002, eqs. 19 and 20)

τ,αβ(τ) = τ,αβ(τ0) +

∫ τ

τ0

dτ Kαβ (51)

along the reference ray, with zero initial conditions τ,αβ(τ0) = 0 at the point source.
For Hamiltonian (3), the integration kernel for the second–order perturbation

derivatives of travel time can be expressed as (Klimeš, 2002, eq. 64)

Kαβ = −H,αβ − H ,i
,ατ⊥

,iβ − H ,i
,βτ⊥

,iα − H ,ijτ⊥

,iατ⊥

,jβ . (52)

Inserting relations (22) with (11), (25) with (9), and (26), equation (52) becomes

Kαβ = −H ,i
ατ⊥

,iβ − H ,i
β τ⊥

,iα − (v0)
2τ⊥

,iατ⊥

,iβ . (53)

Inserting relations (40) and (41), and considering transforms (32) and (35), equation
(53) can be expressed in ray–centred coordinates as

Kαβ = −H̃ ,I
α τ̃,Iβ − H̃ ,I

β τ̃,Iα − (v0)
2τ̃,Iατ̃,Iβ . (54)

Equation (51) cannot be integrated numerically in the vicinities of caustics where

Q̃IJ is singular and τ̃,Iα in integration kernel (54) thus approach infinity. Fortunately,
we may convert equation (51) analogously to Klimeš (2002, sec. 4.2), but in ray–
centred coordinates. Equation (51) with integration kernel (54) may be converted
using dynamic ray tracing equations (37) and (38) and equation (43) with (47) into

τ,αβ(τ) = τ,αβ(τ0) +
[
T⊥

IαQ̃−1
IK P̃−1

JKT⊥

Jβ

]τ

τ0
+

∫ τ

τ0

dτ Kcaust
αβ (55)

with the modified integration kernel

Kcaust
αβ =(H̃α,I + HαH̃0,I)T⊥

JβP̃−1
JI

+(H̃β,I + HβH̃0,I)T⊥

JαP̃−1
JI − (v0)

−1(̃v0),KLT⊥

IαP̃−1
IKT⊥

JβP̃−1
JL . (56)
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Combining equations (51) and (55) enables the optimization of calculating the
second–order perturbation derivatives of travel time by numerical quadrature.

The second–order perturbation derivatives of travel time, calculated by quadra-
tures (51) and (55), can be inserted into equation (18) for the travel–time errors
due to the isotropic common ray approximation, and into equation (19) for the
travel–time errors due to the anisotropic common ray approximation.

3. NUMERICAL EXAMPLE

The calculation of the first–order P–wave travel–time perturbation expansion
from a reference isotropic model to an anisotropic model and the calculation of
the S–wave coupling–ray–theory travel–time and amplitude corrections along the
isotropic reference rays have been coded and added to the Fortran 77 package CRT
(Bucha and Bulant, 2002 ). The package has been supplemented by the calculation of
the second–order perturbation derivatives of travel times, which allows (a) estimation
of the errors due to the isotropic common ray approximation of the coupling ray
theory, (b) estimation of the errors due to the anisotropic common ray approximation
of the coupling ray theory, and (c) approximate simulation of the results of the
coupling ray theory with the anisotropic reference rays for testing purposes.

3 . 1 . M o d e l Q I

A vertically heterogeneous 1-D anisotropic model QI was provided by Pšenč́ık
and Dellinger (2001, model WA rotated by 45◦) who performed the coupling–ray–
theory calculations using the programs of package ANRAY (Pšenč́ık, 1998b) and
compared the results with the reflectivity method. The density–normalized elastic
moduli aijkl in km2s−2 at the surface (zero depth) are




11 22 33 23 13 12

11 14.48500 4.52500 4.75000 0.00000 0.00000 −0.58000

22 14.48500 4.75000 0.00000 0.00000 −0.58000

33 15.71000 0.00000 0.00000 −0.29000

23 5.15500 −0.17500 0.00000

13 5.15500 0.00000

12 5.04500




, (57)

and at the depth of 1 km they are




11 22 33 23 13 12

11 22.08963 6.90063 7.24375 0.00000 0.00000 −0.88450

22 22.08963 7.24375 0.00000 0.00000 −0.88450

33 23.95775 0.00000 0.00000 −0.44225

23 7.86138 −0.26688 0.00000

13 7.86138 0.00000

12 7.69363




. (58)
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Here the rows correspond to the first couple of indices of aijkl, the columns corre-
spond to the second couple of indices. The reference isotropic model is given by

v2
P = 15.00 km2s−2 , v2

S = 5.10 km2s−2 (59)

at the surface, and

v2
P = 23.00 km2s−2 , v2

S = 7.79 km2s−2 (60)

at the depth of 1 km. All the above values are interpolated linearly with depth. The
density is constant.

The synthetic seismograms, corresponding to vertical force F = (0, 0, 100)T at
position (50, 50, 0)T, are calculated at 29 receivers (51, 50, 0.010)T, (51, 50, 0.030)T,
(51, 50, 0.050)T, ..., (51, 50, 0.570)T located in a vertical well (distances in km). The
source time function is the Gabor signal cos(2πft) exp[−(2πft/4)2] with reference
frequency f = 50 Hz, band–pass filtered by a cosine filter given by frequencies 0 Hz,
5 Hz, 60 Hz and 100 Hz.

The data for model QI may be found on the compact disk of Bucha and Bulant
(2002) together with the Fortran 77 source code of packages CRT (Červený, Klimeš
and Pšenč́ık, 1988 ) and ANRAY (Gajewski and Pšenč́ık, 1990 ; Pšenč́ık, 1998b). For
comparison with the isotropic–ray–theory and anisotropic–ray–theory seismograms
in model QI and for a more detailed discussion and description of this model refer
to Pšenč́ık and Dellinger (2001).

3 . 2 . M o d e l s Q I 2 , Q I 4 a n d Q I 8

To emphasize the effects of perturbations of travel time, new models with an
increased degree of anisotropy have been derived from the QI model.

The differences of the elastic moduli of model QI2 from the elastic moduli of the
reference isotropic model (59), (60) are exactly twice larger than the differences of
model QI. The density–normalized elastic moduli aijkl of model QI2 in km2s−2 at
the surface (zero depth) are




11 22 33 23 13 12

11 13.97000 4.25000 4.70000 0.00000 0.00000 −1.16000

22 13.97000 4.70000 0.00000 0.00000 −1.16000

33 16.42000 0.00000 0.00000 −0.58000

23 5.21000 −0.35000 0.00000

13 5.21000 0.00000

12 4.99000




, (61)

and at the depth of 1 km they are




11 22 33 23 13 12

11 21.17926 6.38126 7.06750 0.00000 0.00000 −1.76900

22 21.17926 7.06750 0.00000 0.00000 −1.76900

33 24.91550 0.00000 0.00000 −0.88450

23 7.93276 −0.53376 0.00000

13 7.93276 0.00000

12 7.59726




. (62)
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Analogously, the differences of the elastic moduli of model QI4 from the elastic
moduli of the reference isotropic model (59), (60) are exactly 4 times larger than the
differences of model QI. The density–normalized elastic moduli aijkl of model QI4
in km2s−2 at the surface (zero depth) are




11 22 33 23 13 12

11 12.94000 3.70000 4.60000 0.00000 0.00000 −2.32000

22 12.94000 4.60000 0.00000 0.00000 −2.32000

33 17.84000 0.00000 0.00000 −1.16000

23 5.32000 −0.70000 0.00000

13 5.32000 0.00000

12 4.88000




, (63)

and at the depth of 1 km they are




11 22 33 23 13 12

11 19.35852 5.34252 6.71500 0.00000 0.00000 −3.53800

22 19.35852 6.71500 0.00000 0.00000 −3.53800

33 26.83100 0.00000 0.00000 −1.76900

23 8.07552 −1.06752 0.00000

13 8.07552 0.00000

12 7.40452




. (64)

Note that the perturbation approach cannot be applied to model QI8, in which
the differences of the elastic moduli from the elastic moduli of the reference isotropic
model (59), (60) are exactly 8 times larger than the differences of model QI. Pertur-
bation expansion (17) does not seem to converge reasonably in model QI8.

The data for models QI2, QI4 and QI8 have been released on the compact disk of
Bucha and Bulant (2002). Numerical examples in this paper have been calculated
using the data by Bucha and Bulant (2002), with slightly refined parameters for
isotropic two–point ray tracing.

3 . 3 . E f f e c t s o f q u a s i – i s o t r o p i c a p p r o x i m a t i o n s
o f r e f e r e n c e r a y s

Two–point isotropic common rays have been traced from the source to the re-
ceivers using the program CRT, and the first–order and second–order perturbation
derivatives of travel time have been calculated along these rays. Equations (18) and
(19) have then been used to estimate both the travel–time errors δτ ICR

1 , δτ ICR
2 of

the isotropic common ray approximation and the travel–time errors δτACR
1 = δτACR

2

of the anisotropic common ray approximation. The projection of the travel–time
errors δτ ICR

α on the relative error of the coupled S wavefield depends on the po-
larization. For the projection of the travel–time errors on the relative errors of
the time–harmonic Green tensor refer to Section 3.5. To check the convergency
and accuracy of the second–order perturbation expansion (17) of the anisotropic–
ray–theory travel times, the perturbation expansion has been compared with the

Stud. Geophys. Geod., 48 (2004) 129
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anisotropic–ray–theory travel times calculated by the program ANRAY along two–
point anisotropic–ray–theory rays.

The individual terms in the second–order perturbation expansion (17) of both the
anisotropic–ray–theory travel times are displayed in Tables 1, 2 and 3, for models QI,
QI2 and QI4, respectively. The differences between the second–order perturbation
expansion (17) and the anisotropic–ray–theory travel times calculated by the pro-
gram ANRAY are also given. The quadratic terms (18) in perturbation expansion
(17) represent the estimates of the errors due to the isotropic common ray (ICR)
approximation of the anisotropic–ray–theory travel times. Also shown is the esti-
mate (19) of the errors due to the anisotropic common ray (ACR) approximation.
Only the results at the 1st, 8th, 15th, 22nd and 29th receivers are shown, because the
variation of the quantities along the vertical profile in models QI, QI2 and QI4 is
very moderate.

Since we are currently not able to solve the coupling equation along the aniso-
tropic–ray–theory reference rays, we simulated the corresponding coupling–ray–
theory synthetic seismograms by solving the coupling equations along isotropic com-
mon rays, with anisotropic–ray–theory travel times approximated by the second–
order perturbation expansion (17). According to Tables 1, 2 and 3, the accuracy
of the simulation should be sufficient for graphical demonstration of the effect of
the isotropic common ray approximation on the coupling–ray–theory synthetic seis-
mograms. The simulated seismograms of the coupling ray theory in model QI are
compared with the seismograms calculated by the isotropic common ray approxima-
tion in Figure 1. The alteration of the seismograms due to the isotropic common ray
approximation is scarcely visible in model QI. To make the alteration of the seismo-
grams due to the isotropic common ray approximation more visible, an analogous
comparison, but in model QI2, is shown in Figure 3. The first–order isotropic com-
mon ray approximation is considerably inaccurate in model QI4, see the seismograms
of Figure 5.

Although we have successfully applied the second–order perturbation expansion
of travel time to the estimation of anisotropic–ray–theory travel times in these sim-
ple 1-D models with constant gradients of the density–normalized elastic moduli,
we cannot recommend approximation of travel time using the second–order pertur-
bation expansion in more complex models, because the second–order perturbation
derivatives may be infinitely large in the vicinity of caustics. The second–order
perturbation expansion of travel time should be used especially for estimating and
controlling the accuracy.

The maximum travel–time error of 0.000253 seconds of the isotropic common ray
approximation in model QI corresponds to the wavefield relative error of 7.9% at
50 Hz.

The maximum travel–time error of 0.000978 seconds of the isotropic common ray
approximation in model QI2 is clearly visible in Figure 3, and corresponds to the
wavefield relative error of 31% at 50 Hz. The accuracy of the anisotropic common
ray approximation by Bakker (2002) in model QI2 would be even better than the
accuracy of the isotropic common ray approximation in model QI, see Tables 1
and 2.
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Table 1. Linear and quadratic terms in the common ray approximations of travel time in
model QI.

Rec. ICR ICR ICR ICR ACR
dep. time linear terms quadratic terms remaining terms q.terms

0.01 0.440993 -0.002392 0.003983 0.000253 0.000000 -0.000003 -0.000001 0.000066
0.15 0.438077 -0.002518 0.004003 0.000250 0.000000 0.000007 -0.000001 0.000066
0.29 0.443550 -0.002967 0.004117 0.000251 0.000001 0.000007 0.000001 0.000069
0.43 0.456339 -0.003661 0.004317 0.000253 0.000001 0.000008 -0.000002 0.000073
0.57 0.475205 -0.004520 0.004595 0.000251 0.000003 0.000020 0.000006 0.000076

Table 2. Linear and quadratic terms in the common ray approximations of travel time in
model QI2.

Rec. ICR ICR ICR ICR ACR
dep. time linear terms quadratic terms remaining terms q.terms

0.01 0.440993 -0.004746 0.011604 0.000978 0.000000 0.000001 -0.000007 0.000237
0.15 0.438077 -0.004992 0.011612 0.000967 0.000000 0.000015 0.000001 0.000233
0.29 0.443550 -0.005874 0.011837 0.000967 0.000001 0.000029 0.000005 0.000230
0.43 0.456339 -0.007234 0.012235 0.000965 0.000001 0.000047 0.000001 0.000226
0.57 0.475205 -0.008912 0.012764 0.000951 0.000002 0.000063 0.000000 0.000218

Table 3. Linear and quadratic terms in the common ray approximations of travel time in
model QI4.

Rec. ICR ICR ICR ICR ACR
dep. time linear terms quadratic terms remaining terms q.terms

0.01 0.440993 -0.009341 0.041580 0.003671 0.000492 0.000092 -0.000141 0.000367
0.15 0.438077 -0.009816 0.041343 0.003616 0.000553 0.000137 -0.000147 0.000335
0.29 0.443550 -0.011517 0.041462 0.003580 0.000718 0.000224 -0.000174 0.000273
0.43 0.456339 -0.014129 0.041796 0.003520 0.000962 0.000328 -0.000212 0.000201
0.57 0.475205 -0.017335 0.042243 0.003415 0.001234 0.000434 -0.000234 0.000136

Tables 1, 2 and 3. Rec. dep. stands for the receiver depth along the vertical profile, see
Figures 1 to 6. The ICR time is the reference travel time τ along the isotropic common
ray. The ICR linear terms are the linear terms τ,1 and τ,2 in perturbation expansion (17)
of the anisotropic–ray–theory travel times in the vicinity of the isotropic common ray, and
represent the travel–time corrections considered in the isotropic common ray approxima-
tion of the coupling ray theory. The ICR quadratic terms stand for quadratic terms (18) in
perturbation expansion (17) of travel time, and represent the estimates of the errors due to
the isotropic common ray approximation of the anisotropic–ray–theory travel times. The
ICR remaining terms stand for the difference between the exact anisotropic–ray–theory
travel times calculated by the program ANRAY version 4.40 (Gajewski and Pšenč́ık, 1990 ;
Pšenč́ık, 1998b) and the second–order perturbation expansion (17), in order to illustrate the
reliability of the error estimates. The ICR remaining terms represent both the inaccuracy
of numerical ray tracing and the third–order and higher–order terms in the perturbation ex-
pansion. The ACR quadratic terms stand for the estimate (19) of the equal quadratic terms
in the perturbation expansion of the anisotropic–ray–theory travel times in the vicinity of
the anisotropic common ray, and represent the estimate of the error due to the anisotropic
common ray approximation (Bakker, 2002 ) of the anisotropic–ray–theory travel times.
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Fig. 1. Effect of the isotropic common ray approximation on the coupling–ray–theory
synthetic seismograms in model QI. From top to bottom: the first (radial) component,
the second (transverse) component, the third (vertical) component. Note that the second
component is zero in the one–dimensional reference isotropic model. Black: No quasi–
isotropic approximation. These seismograms are simulated by the second–order perturba-
tion expansion of travel time along isotropic common rays, rather than calculated along the
anisotropic–ray–theory reference rays. The inaccuracy of this simulation cannot be seen,
see Table 1. Red: Isotropic common ray approximation. The red seismograms are mostly
obscured by the black seismograms.
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Fig. 2. Effects of the other three quasi–isotropic approximations on the coupling–ray–
theory synthetic seismograms in model QI. From top to bottom: the first (radial) com-
ponent, the second (transverse) component, the third (vertical) component. The isotropic
common ray approximation is applied to all synthetic seismograms. Black: No additional
quasi–isotropic approximation. Blue: Quasi–isotropic projection of the Green tensor. The
blue seismograms are mostly obscured by the black seismograms. A small change in polar-
ization can be seen in the second (transverse) component. Red: Quasi–isotropic approxima-
tion of the Christoffel matrix. Note that this impact of the quasi–isotropic approximation
of the Christoffel matrix on the coupling–ray–theory synthetic seismograms in model QI,
clearly visible in the second (transverse) component, has already been demonstrated by Bu-
lant and Klimeš (2002). Green: Quasi–isotropic perturbation of travel times. Negligible
impact in model QI, the green seismograms are obscured by the black seismograms.
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Fig. 3. Effect of the isotropic common ray approximation on the coupling–ray–theory
synthetic seismograms in model QI2. From top to bottom: the first (radial) component,
the second (transverse) component, the third (vertical) component. Black: No quasi–
isotropic approximation. These seismograms are simulated by the second–order perturba-
tion expansion of travel time along isotropic common rays, rather than calculated along
the anisotropic–ray–theory reference rays. The inaccuracy of this simulation cannot be
seen, see Table 2. Red: Isotropic common ray approximation. The differences between the
seismograms are small but already clearly visible.
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Fig. 4. Effects of the other three quasi–isotropic approximations on the coupling–ray–
theory synthetic seismograms in model QI2. From top to bottom: the first (radial) com-
ponent, the second (transverse) component, the third (vertical) component. The isotropic
common ray approximation is applied to all synthetic seismograms. Black: No addi-
tional quasi–isotropic approximation. Blue: Quasi–isotropic projection of the Green ten-
sor. Clearly visible in the second (transverse) component, otherwise mostly obscured by
the black seismograms. Red: Quasi–isotropic approximation of the Christoffel matrix.
Green: Quasi–isotropic perturbation of travel times. Partly obscured by the black seismo-
grams.
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Fig. 5. Effect of the isotropic common ray approximation on the coupling–ray–theory
synthetic seismograms in model QI4. From top to bottom: the first (radial) component,
the second (transverse) component, the third (vertical) component. Black: No quasi–
isotropic approximation. These seismograms are simulated by the second–order perturba-
tion expansion of travel time along isotropic common rays, rather than calculated along
the anisotropic–ray–theory reference rays. The inaccuracy of this simulation in model QI4
roughly corresponds to the line thickness, see Table 3. Red: Isotropic common ray approx-
imation. The differences between the seismograms are considerable in this quite strongly
anisotropic model QI4.
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Fig. 6. Effects of the other three quasi–isotropic approximations on the coupling–ray–
theory synthetic seismograms in model QI4. From top to bottom: the first (radial) com-
ponent, the second (transverse) component, the third (vertical) component. The isotropic
common ray approximation is applied to all synthetic seismograms. Black: No addi-
tional quasi–isotropic approximation. Blue: Quasi–isotropic projection of the Green ten-
sor. Clearly visible on the slower S wave, otherwise obscured by the black seismograms.
Red: Quasi–isotropic approximation of the Christoffel matrix. This approximation slightly
turns the polarization of the slower S wave towards the P–wave polarization (see blue seis-
mograms), and in this way strongly affects the phase velocity of the slower S wave along
the reference ray. Green: Quasi–isotropic perturbation of travel times.
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The first–order isotropic common ray approximation is considerably inaccurate
in model QI4, see Figure 5 and Table 3. The inaccuracy of the second–order per-
turbation expansion (17) of travel time in model QI4 roughly corresponds to the
line thickness in Figure 5. The first–order anisotropic common ray approxima-
tion by Bakker (2002) seems well applicable even in this quite strongly anisotropic
model QI4, and its accuracy is even better than the accuracy of the second–order
perturbation expansion (17) from the isotropic common ray, see Table 3.

3 . 4 . C o m p a r i s o n w i t h t h e e f f e c t s o f o t h e r
q u a s i – i s o t r o p i c a p p r o x i m a t i o n s

We now numerically compare the error due to the isotropic common ray (ICR)
approximation with the errors due to the quasi–isotropic projection of the Green
tensor, due to the quasi–isotropic approximation of the Christoffel matrix, and due
to the quasi–isotropic perturbation of travel times. The impact of these three quasi–
isotropic approximations on the coupling–ray–theory synthetic seismograms in mod-
els QI, QI2 and QI4 is demonstrated in Figures 2, 4 and 6, respectively.

In the quasi–isotropic projection of the Green tensor (Bulant and Klimeš, 2002,
appendix A.2; 2004, sec. 3.2), the S–wave coupling–ray–theory Green tensor is pro-
jected onto the reference polarization planes perpendicular to the reference ray. The
projection is applied at the source and receiver points. The relative wavefield error
due to the projection is frequency–independent and is roughly proportional to the
degree of anisotropy.

In the quasi–isotropic approximation of the Christoffel matrix (Bulant and
Klimeš, 2002, appendix A.3; 2004, sec. 3.3), the Christoffel matrix is approximated
by its projections onto the reference S–wave polarization plane perpendicular to the
reference ray and onto the reference P–wave polarization line tangent to the refer-
ence ray. The projection is applied along the reference ray and distorts the S–wave
travel times towards the P–wave travel time. The relative wavefield error due to
this approximation is proportional to frequency and is roughly proportional to the
square of the degree of anisotropy. The impact of the quasi–isotropic approximation
of the Christoffel matrix on the coupling–ray–theory synthetic seismograms has al-
ready been demonstrated in model QI by Bulant and Klimeš (2002) using the data
from the compact disk of Bucha, Bulant and Klimeš (2001).

In the quasi–isotropic perturbation of travel times (Bulant and Klimeš, 2002,
appendix A.4; 2004, sec. 3.4), the anisotropic–ray–theory travel times are ap-
proximated by the first–order perturbation expansion with respect to the density–
normalized elastic moduli, instead of using the more accurate travel–time approxima-
tion (2). The quasi–isotropic perturbation of travel times corresponds to substituting

Hamiltonian H = −G−
1

2 , see (3), by Hamiltonian H = 1
2G (Klimeš, 2002 ). The

relative wavefield error due to this approximation is proportional to frequency and
is very roughly proportional to the square of the difference between the anisotropic
model and the reference isotropic model, see equation (69) below.
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3 . 5 . R e l a t i v e e r r o r s o f t h e t i m e – h a r m o n i c G r e e n t e n s o r
d u e t o t h e q u a s i – i s o t r o p i c a p p r o x i m a t i o n s

We define the relative root–mean–square (r.m.s.) difference between the time–

harmonic Green tensors G
(1)
ij and G

(2)
ij as

ρG =

√√√√2
(
G

(1)
ij − G

(2)
ij

)∗ (
G

(1)
ij − G

(2)
ij

)
(
G

(1)
mn

)∗
G

(1)
mn +

(
G

(2)
mn

)∗
G

(2)
mn

, (65)

where ∗ denotes complex conjugacy. Component Gij of the time–harmonic Green
tensor between the source and receiver points represents the ith component of the
displacement at the receiver point caused by the unit time–harmonic seismic force
applied in the direction of the jth coordinate axis at the source point. Here we
consider only the S–wave part of the Green tensor.

The relative r.m.s. error of the time–harmonic Green tensor at frequency f due
to the isotropic common ray approximation can be estimated using travel–time er-
rors (18). A rough approximation is

ρG = 2 πf δτ ICR , (66)

where

δτ ICR =

√
(δτ ICR

1 )2 + (δτ ICR
2 )2

2
(67)

is the r.m.s. travel–time error of the isotropic common ray approximation. Travel–
time errors δτ ICR

α of the isotropic common ray approximation, given by equation
(18), are labelled as the ICR quadratic terms in Tables 1, 2 and 3. Note that a more
precise estimate is

ρG =
√

2{ [sin(πfδτ ICR
1 )]2 + [sin(πfδτ ICR

2 )]2} . (68)

However, the difference between estimates (66) and (68) is negligible if the relative
error is not extremely large. Even if the relative error (68) reaches 50%, estimate
(66) yields 51%.

The relative r.m.s. error of the time–harmonic Green tensor due to the quasi–
isotropic perturbation of travel times may roughly be approximated by the under-
valued estimate

ρG = 3 πf
(τ,1)

2 + (τ,2)
2

2 τ
, (69)

where τ,α are the first–order perturbation derivatives in perturbation expansion (17),
labelled as ICR linear terms in Tables 1, 2 and 3.

The relative r.m.s. errors of the time–harmonic Green tensor at frequency f =
50 Hz due to the four quasi–isotropic approximations of the coupling ray theory
are compared in Tables 4, 5 and 6. The error due to the isotropic common ray
approximation is also compared with its estimates (66) and (68). The error due to
the quasi–isotropic perturbation of travel times is compared with its estimate (69).
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Table 4. Relative r.m.s. error of the time–harmonic Green tensor at 50 Hz due to various
quasi–isotropic approximations in model QI.

Receiver ICR ICR ICR QI project. QI appr. QI travel QI t.t.
depth eq. (66) eq. (68) numeric Green t. Christ.m. times eq. (69)

0.01 0.056 0.056 0.056 0.061 0.348 0.013 0.012
0.15 0.056 0.056 0.055 0.061 0.346 0.013 0.012
0.29 0.056 0.056 0.056 0.061 0.350 0.014 0.014
0.43 0.056 0.056 0.056 0.060 0.355 0.017 0.017
0.57 0.056 0.056 0.056 0.058 0.358 0.021 0.021

Table 5. Relative r.m.s. error of the time–harmonic Green tensor at 50 Hz due to various
quasi–isotropic approximations in model QI2.

Receiver ICR ICR ICR QI project. QI appr. QI travel QI t.t.
depth eq. (66) eq. (68) numeric Green t. Christ.m. times eq. (69)

0.01 0.217 0.216 0.216 0.126 1.227 0.100 0.084
0.15 0.215 0.214 0.214 0.125 1.221 0.101 0.086
0.29 0.215 0.214 0.214 0.124 1.225 0.105 0.093
0.43 0.214 0.214 0.213 0.121 1.230 0.113 0.104
0.57 0.211 0.210 0.211 0.117 1.230 0.124 0.120

Table 6. Relative r.m.s. error of the time–harmonic Green tensor at 50 Hz due to various
quasi–isotropic approximations in model QI4.

Receiver ICR ICR ICR QI project. QI appr. QI travel QI t.t.
depth eq. (66) eq. (68) numeric Green t. Christ.m. times eq. (69)

0.01 0.823 0.779 0.779 0.256 N/A 1.036 0.970
0.15 0.813 0.771 0.771 0.255 N/A 1.033 0.971
0.29 0.811 0.771 0.771 0.249 N/A 1.031 0.984
0.43 0.811 0.773 0.773 0.241 N/A 1.030 1.005
0.57 0.807 0.773 0.773 0.230 N/A 1.031 1.034

Tables 4, 5 and 6. The receiver depth is measured along the vertical profile, see Figures 1
to 6. ICR eq. (66) stands for the relative r.m.s. error of the Green tensor due to the
isotropic common ray approximation, estimated from the r.m.s. error of travel times using
equation (66). ICR eq. (68) stands for the relative r.m.s. error of the Green tensor due to
the isotropic common ray approximation, estimated from the r.m.s. error of travel times
using equation (68). ICR numeric is the actual relative r.m.s. error of the Green tensor
due to the isotropic common ray approximation. The QI project. Green t. is the relative
r.m.s. error of the Green tensor due to the quasi–isotropic projection of the Green tensor.
The QI appr. Christ.m. means the relative r.m.s. error of the Green tensor due to the
quasi–isotropic approximation of the Christoffel matrix. Label QI travel times denotes the
actual relative r.m.s. error of the Green tensor due to the quasi–isotropic perturbation of
travel times. QI t.t. eq. (69) stands for estimate (69) of the relative r.m.s. error of the
Green tensor due to the quasi–isotropic perturbation of travel times.
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4. CONCLUSIONS

In using any kind of common ray approximation of the coupling ray theory,
the travel–time errors due to the applied common ray approximation should be
evaluated. The travel–time errors due to the common ray approximations can be
calculated using the equations proposed in this paper. If the error of the isotropic
common ray approximation exceeds an acceptable limit, we can immediately decide
whether the anisotropic common ray approximation (Bakker, 2002 ; Klimeš, 2003 )
would be sufficiently accurate, or whether the anisotropic–ray–theory rays should be
traced as reference rays for the coupling ray theory. The accuracy of the anisotropic
common ray approximation by Bakker (2002) can be studied without tracing the
anisotropic common rays. The numerical results suggest that the anisotropic com-
mon ray approximation by Bakker (2002) is worth coding and applying.

The quasi–isotropic projection of the Green tensor, the quasi–isotropic approxi-
mation of the Christoffel matrix, and the quasi–isotropic perturbation of travel times
should definitely be avoided.

For additional information, including electronic reprints, computer codes and
data, refer to the consortium research project “Seismic Waves in Complex 3-D Struc-
tures” (“http://sw3d.mff.cuni.cz”).
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