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ABSTRACT

The coupling ray theory bridges the gap between the isotropic and anisotropic
ray theories, and is considerably more accurate than the anisotropic ray theory. The
coupling ray theory is often approximated by various quasi–isotropic approximations.

Commonly used quasi–isotropic approximations of the coupling ray theory are
discussed. The exact analytical solution for the plane S wave, propagating along
the axis of spirality in the 1-D anisotropic “oblique twisted crystal” model, is then
numerically compared with the coupling ray theory and its three quasi–isotropic ap-
proximations. The three quasi–isotropic approximations of the coupling ray theory
are (a) the quasi–isotropic projection of the Green tensor, (b) the quasi–isotropic ap-
proximation of the Christoffel matrix, (c) the quasi–isotropic perturbation of travel
times. The comparison is carried out numerically in the frequency domain, compar-
ing the exact analytical solution with the results of the 3-D ray tracing and coupling
ray theory software. In the oblique twisted crystal model, the three studied quasi–
isotropic approximations considerably increase the error of the coupling ray theory.
Since these three quasi–isotropic approximations do not noticeably simplify the nu-
merical implementation of the coupling ray theory, they should definitely be avoided.
The common ray approximations of the coupling ray theory do not affect the plane
wave, propagating along the axis of spirality in the 1-D oblique twisted crystal model,
and should be studied in more complex models.

Keywords : coupling ray theory, quasi–isotropic approximation, seismic aniso-
tropy, travel time, amplitude, Green tensor

Stud. Geophys. Geod., 48 (2004), 97–116
c© 2004 StudiaGeo s.r.o., Prague

97



P. Bulant and L. Klimeš

1. INTRODUCTION

There are two different high–frequency asymptotic ray theories: the isotropic ray
theory assuming equal velocities of both S–wave polarizations and the anisotropic
ray theory assuming both S–wave polarizations strictly decoupled. In the isotropic
ray theory, the S–wave polarization vectors do not rotate about the ray, whereas
in the anisotropic ray theory they coincide with the eigenvectors of the Christof-
fel matrix which may rotate rapidly about the ray. Thomson, Kendall and Guest
(1992) demonstrated analytically that the high–frequency asymptotic error of the
anisotropic ray theory is inversely proportional to the second or higher root of the fre-
quency if a ray passes through the point of equal S–wave eigenvalues of the Christoffel
matrix.

In “weakly anisotropic” models, at moderate frequencies, the S–wave polarization
tends to remain unrotated round the ray but is partly attracted by the rotation of
the eigenvectors of the Christoffel matrix. The intensity of the attraction increases
with frequency. The isotropic and anisotropic ray theories are thus limiting cases
and the gap between them has to be filled. A ray theory providing continuous
transition between the isotropic and anisotropic ray theories was proposed by Coates
and Chapman (1990) and is called the coupling ray theory. A numerical algorithm for
calculating the frequency–dependent complex–valued S–wave polarization vectors of
the coupling ray theory has been proposed by Bulant and Klimeš (2002). For a brief
summary of the method refer to Section 2.

There are many possible modifications and approximations of the coupling ray
theory. For example, the reference ray may be calculated in different ways (Bakker,
2002 ), the Christoffel matrix may be approximated by its quasi–isotropic projec-
tions onto the plane perpendicular to the reference ray and onto the line tangent
to the reference ray (Pšenč́ık, 1998 ), travel times corresponding to the anisotropic
ray theory may be approximated in several ways, e.g., by linear quasi–isotropic per-
turbation with respect to the density–normalized elastic moduli (Pšenč́ık, 1998 ),
etc. Commonly used quasi–isotropic approximations of the coupling ray theory are
discussed in Section 3.

The results of the isotropic ray theory, anisotropic ray theory and coupling ray
theory have been compared with the exact solution in the “simplified twisted crys-
tal” model analytically by Klimeš (2004) and numerically by Bulant, Klimeš and
Pšenč́ık (1999; 2000) and Bulant et al. (2004). The coupling ray theory has been
numerically compared with the isotropic ray theory, anisotropic ray theory and re-
flectivity method in a more realistic 1-D model by Pšenč́ık and Dellinger (2001).

The effects of the anisotropic common ray approximation by Bakker (2002) and
the less accurate isotropic common ray approximation are studied by Klimeš and
Bulant (2004). The effect of the quasi–isotropic projection of the Green tensor has
been numerically demonstrated by Bulant and Klimeš (2002) on the example of
synthetic seismograms calculated by the coupling ray theory in a 1-D anisotropic
model.

The effects of the quasi–isotropic approximation of the Christoffel matrix, the
quasi–isotropic projection of the Green tensor and the quasi–isotropic perturbation
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of travel times are numerically demonstrated in this paper. In Section 4, a simple
1-D anisotropic “oblique twisted crystal” model is introduced, and the exact solution
for the one–way plane–wave propagator matrix is briefly summarized. The numer-
ical results of the coupling ray theory and of its above–mentioned quasi–isotropic
approximations are then compared with the exact solution in Section 5.

The lower–case subscripts take values i, j, k, ... = 1, 2, 3, the upper–case subscripts
take values I, J,K, ... = 1, 2; the Einstein summation over pairs of identical indices
is applied.

2. COUPLING RAY THEORY FOR S WAVES

Assume a reference ray in phase space, parametrized by reference travel time τ ,
with reference slowness vectors pi(τ) known at all its points xj(τ). The reference
ray should be close to the ray of the wave under study. From the point of view of
high–frequency asymptotic validity, the frequency–independent reference ray is best
represented by the anisotropic–ray–theory ray, provided we choose the initial con-
dition for the polarization vector in the coupling equation given by the eigenvector
of the Christoffel matrix corresponding to the reference ray. Then the anisotropic–
ray–theory travel time corresponding to the selected polarization is exact, and only
the difference between the two anisotropic–ray–theory S–wave travel times is ap-
proximate. The coupling ray theory may then also be used at high frequencies,
because the approximate travel–time difference influences only the coupling due to
low–frequency scattering.

Using the reference slowness vectors, we can calculate reference Christoffel matrix

Γjk(τ) = pi(τ) aijkl(xm(τ)) pl(τ) (1)

and its eigenvectors gi1(τ), gi2(τ), gi3(τ) along the reference ray. Assume that eigen-
vectors gi1(τ) and gi2(τ) correspond to S waves and that they vary continuously along
the reference ray. Continuity is not required in regions where the corresponding two
eigenvalues are equal. Let us denote by τ1(τ) and τ2(τ) the travel times correspond-
ing to polarizations gi1(τ) and gi2(τ), respectively. They may be approximated by
quadratures along the unperturbed reference ray,

dτ1
dτ

= [Γjkgj1gk1]
−

1

2 ,
dτ2
dτ

= [Γjkgj2gk2]
−

1

2 . (2)

The coupling–ray–theory solution ui of the elastodynamic equations may then be
expressed, for S waves, as the linear combination

ui =

2
∑

M=1

A giM aM exp(iωτ) (3)

of the anisotropic–ray–theory solutions, where

τ(τ) = 1

2
[τ1(τ) + τ2(τ)] (4)

is the average travel time, and A = A(τ) is the complex–valued scalar amplitude
in the high–frequency approximation (Červený, 1972 ), corresponding to the system
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of reference rays. The coupling–ray–theory (Coates and Chapman, 1990 ) equation
for complex–valued amplitude factors aM = aM (τ) reads (Bulant and Klimeš, 2002,
eq. 9)

d

dτ

(

a1

a2

)

=

[(

0 1
−1 0

)

dϕ

dτ
+

(

i 0
0 −i

)

ω

2

d(τ1 − τ2)

dτ

](

a1

a2

)

, (5)

where
dϕ

dτ
=

dgk1

dτ
gk2 = −gk1

dgk2

dτ
(6)

is the angular velocity of the eigenvector rotation.

2 . 1 . C o u p l i n g – r a y – t h e o r y S – w a v e p r o p a g a t o r m a t r i x

Propagator matrix Πg of equation (5), defined as

Πg
MN (τ, τ0) =

∂ aM (τ)

∂ aN (τ0)
, (7)

is a complex–valued 2× 2 matrix satisfying equation (Bulant and Klimeš, 2002,
eq. 11)

d

dτ
Πg =

[(

0 1
−1 0

)

dϕ

dτ
+

(

i 0
0 −i

)

dψ

dτ

]

Πg , (8)

directly following from equation (5). Here

ψ(τ) = 1

2
ω [τ1(τ) − τ2(τ)] . (9)

Note that propagator matrix Πg is symplectic and unitary.

It is difficult to integrate equation (8) by the Runge–Kutta or another numerical
method that requires derivative dϕ

dτ
along the reference ray to be calculated, because

this derivative is undefined in the singular regions of the two equal eigenvalues of
Christoffel matrix (1). The method of calculating propagator matrix Πg, fit for equa-
tion (8), has been proposed by Červený (2001) and Bulant and Klimeš (2002), with
emphasis on numerical implementation. The method does not require the calcula-
tion of the angular velocity dϕ

dτ
of the rotation of the eigenvectors of the Christoffel

matrix along the reference ray and does not require dϕ
dτ

to be smooth or finite along
the reference ray. This is an important property, because the angular velocity of
the rotation is undefined in the singular regions of the two equal eigenvalues of the
Christoffel matrix.

The proposed method of solving equation (8) takes advantage of the chain rule.
Since Πg is a propagator matrix satisfying the chain rule, it may be numerically
calculated as the product of propagator matrices Πg corresponding to reasonably
small segments of the reference ray (Červený, 2001 ). Frequency–dependent prop-
agator matrices along the individual small ray segments may be approximated by
the method of mean coefficients (Červený, 2001 ). The accuracy of the proposed
algorithm of numerical integration of the coupling equation has been estimated by
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Bulant and Klimeš (2002) in order to control the integration step, so that the rel-
ative error in the wavefield amplitudes due to the integration is kept below a given
limit, which is of principal importance for numerical applications.

The calculation of P–wave travel–time perturbations from a reference isotropic
model to an anisotropic model and the calculation of the S–wave coupling–ray–
theory travel–time and amplitude corrections along isotropic reference rays have
been coded and added to the Fortran 77 package CRT (Bucha and Bulant, 2002 ).

3. QUASI–ISOTROPIC APPROXIMATIONS
OF THE COUPLING RAY THEORY

The coupling ray theory by Coates and Chapman (1990) is applicable at all
degrees of anisotropy, but it is often modified by various quasi–isotropic approxima-
tions.

3 . 1 . S e l e c t i o n o f t h e r e f e r e n c e r a y

The isotropic ray theory is always the limiting case of the coupling ray theory for
decreasing anisotropy at a fixed frequency. On the other hand, the high–frequency
limit of the coupling ray theory at a fixed anisotropy depends on the choice of the
reference ray, and even on the choice of the system of reference rays, because the
amplitudes are determined by the paraxial reference rays.

If we choose the anisotropic–ray–theory reference ray and select the initial con-
dition for the polarization vector in the coupling equation given by the eigenvector
of the Christoffel matrix corresponding to the reference ray, the coupling ray the-
ory will correctly converge to the anisotropic ray theory for high–frequencies. For
other choices of reference rays, the high–frequency limit of the coupling ray theory
at a fixed anisotropy is incorrect, although the differences may be small at the finite
frequencies under consideration.

In the anisotropic common ray approximation, the common reference ray is traced
using the averaged Hamiltonian of both anisotropic–ray-theory S waves (Bakker,
2002 ; Klimeš, 2003 ). This is probably the best common ray approximation (Klimeš
and Bulant, 2004 ).

In the less accurate isotropic common ray approximation, the reference ray is
traced in the reference isotropic model. Moreover, the reference isotropic model
may be selected in different ways, yielding quasi–isotropic approximations of differing
accuracies.

A method of estimating the errors due to the isotropic common ray approximation
and anisotropic common ray approximation has been proposed by Klimeš and Bulant
(2004). The method is based on the equations for the second–order perturbations
of travel time derived by Klimeš (2002).
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3 . 2 . Q u a s i – i s o t r o p i c p r o j e c t i o n o f t h e G r e e n t e n s o r

The coupling–ray–theory solution (3) may be approximated by its projection

ũi = hiMhmMum (10)

onto the reference S–wave polarization plane, given by two orthonormal reference
polarization vectors hk1, hk2. This approximation may simplify the modification of
existing isotropic ray tracing codes for the coupling ray theory, and has been used
by Bucha, Bulant and Klimeš (2001 ) and by Bulant and Klimeš (2002). The error
of this approximation is obvious and simple to calculate.

3 . 3 . Q u a s i – i s o t r o p i c a p p r o x i m a t i o n
o f t h e C h r i s t o f f e l m a t r i x

The Christoffel matrix may be approximated by its projections onto the reference
S–wave polarization plane and onto the reference P–wave polarization line. Denote
the polarization vectors of the isotropic ray theory, or the reference polarization
vectors in general, by hk1, hk2 and hk3. If the Christoffel matrix is approximated by
its projections onto plane hj1, hk2 and onto vector hl3, namely,

Γ̃jk = hjMhmMΓmnhnNhkN + hj3hm3Γmnhn3hk3

= Γjk − (hjMhk3 + hj3hkM )hmMΓmnhn3 , (11)

then eigenvectors gk1 and gk2 become located in plane hj1, hk2 as in the zero-order
quasi–isotropic approximation of Pšenč́ık (1998). This approximation includes the
quasi–isotropic projection of the Green tensor described in Section 3.2.

The quasi–isotropic approximation of the Christoffel matrix is probably the worst
quasi–isotropic approximation. The alteration of the coupling–ray–theory synthetic
seismograms due to the quasi–isotropic approximation of the Christoffel matrix has
been demonstrated by Bulant and Klimeš (2002).

3 . 4 . Q u a s i – i s o t r o p i c p e r t u r b a t i o n o f t r a v e l t i m e s

The anisotropic–ray–theory travel times used in the coupling ray theory should
be calculated by the numerical quadrature of equations (2) along the reference ray.
In the quasi–isotropic perturbation of travel times, the anisotropic–ray–theory travel
times are calculated from the reference travel time by the linear perturbation with
respect to the density–normalized elastic moduli,

dτ1
dτ

≈ (Γ0

jkgj1gk1)
−

1

2 − 1

2
(Γjk − Γ0

jk)gj1gk1(Γ
0

jkgj1gk1)
−

3

2 . (12)

Assuming that

Γ0

jkgj1gk1 = 1 , (13)
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see Section 3.3, equation (12) becomes

dτ1
dτ

≈ 3

2
− 1

2
Γjkgj1gk1 , (14)

as in the quasi–isotropic approximation of Pšenč́ık (1998). Analogously, we obtain
dτ2

dτ
. The quasi–isotropic perturbation of travel times leads to an erroneous time

shift in synthetic seismograms but has a negligible impact on the amplitudes.

4. TWISTED CRYSTAL MODELS

The twisted crystal model is created of a homogeneous anisotropic elastic material
by uniformly helicoidally twisting the x1x2 coordinate plane about the x3 axis. It
is one of the simplest models useful for demonstrating the limits of applicability of
the zero–order isotropic and anisotropic ray theories and for testing the coupling
ray theory (Coates and Chapman, 1990 ), which is the generalization of both the
zero–order isotropic and anisotropic ray theories and provides continuous transition
between them.

The great advantage of this model is that the exact analytical solution for the
plane S wave propagating along the axis of spirality can be examined analytically
(Lakhtakia, 1994 ; Klimeš, 2004 ). The general plane–wave solution for the gen-
eral initial conditions expressed in terms of displacement and stress was derived by
Lakhtakia (1994), who also presented explicit analytical equations for the simplified
twisted crystal model with vanishing a1333 and a2333, in which the u1 and u2 dis-
placement components are strictly separated from the longitudinal u3 component.
Klimeš (2004) derived the 2×2 one–way propagator matrices in the simplified twisted
crystal model, suitable for comparison with the coupling ray theory.

In this paper, we shall modify the simplified twisted crystal model towards the
oblique twisted crystal model in order to allow the quasi–isotropic approximations of
the coupling ray theory to be studied.

The elastodynamic equation in the frequency domain reads

(̺aijkluk,l),j = −̺ω2ui , (15)

where aijkl are the density–normalized elastic moduli (stiffness tensor).

For the plane wave ui = ui(x3) propagating along the x3 axis in the 1-D
anisotropic model aijk3 = aijk3(x3) with constant density ̺, elastodynamic equation
(15) simplifies to

(ai3k3uk,3),3 = −ω2ui . (16)

Equation (16) contains only 6 elastic moduli ai3k3 = ai3k3(x3). Due to the separation
of plane waves, the 15 remaining elastic moduli aijKL may arbitrarily depend on x3.
Moreover, the 6 elastic moduli aIJKL may arbitrarily depend on all three spatial
coordinates xi.
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4 . 1 . S i m p l i f i e d tw i s t e d c r y s t a l m o d e l

In the 1-D anisotropic simplified twisted crystal model we take

aK333 = 0 . (17)

Components uK are then fully separated from u3. We choose moduli aI3K3 in the
form of





a1313 a1323 a1333

a2313 a2323 a2333

a3313 a3323 a3333



 =





v2

S
B11 v2

S
B12 0

v2

S
B21 v2

S
B22 0

0 0 v2

P



 (18)

with the symmetric 2×2 matrix B defined by
(

B11 B12

B21 B22

)

=

(

1 + ε cos(2Kx3) ε sin(2Kx3)
ε sin(2Kx3) 1 − ε cos(2Kx3)

)

. (19)

Parameter K describes the rotation of the crystal axes about the x3 axis, parameter
ε determines the relative difference between the faster and slower S–wave velocities.

Elastodynamic equation (16) for the plane S wave in the simplified twisted crystal
model then reads

(Bu′)′ = −k2

Su , (20)

where the prime denotes the derivative with respect to x3 and

u =

(

u1

u2

)

, kS =
ω

vS
. (21)

Elastodynamic equation (16) for the plane P wave in the simplified twisted crystal
model reads

v2

Pu
′′

3 = −ω2u3 . (22)

4 . 2 . E x a c t a n a l y t i c a l s o l u t i o n i n t h e
s i m p l i f i e d tw i s t e d c r y s t a l m o d e l

The 3×3 one–way propagator matrix U ij of elastodynamic equation (16) in the
simplified twisted crystal model may be decomposed into its S–wave part US

ij and

P–wave part UP
ij ,

U ij = US

ij + UP

ij . (23)

The S–wave part of the 3×3 one–way propagator matrix reads




US
11 US

12 US
13

US
21 US

22 US
23

US
31 US

32 US
33



 =





US
11 US

12 0
US

21 US
22 0

0 0 0



 , (24)

where US

IJ are the components of the 2×2 one–way S–wave propagator matrix US

of elastodynamic equation (20) for the plane S wave. The P–wave part of the 3×3
one–way propagator matrix reads





UP
11 UP

12 UP
13

UP
21 UP

22 UP
23

UP
31 UP

32 UP
33



 =





0 0 0
0 0 0
0 0 UP

33



 , (25)
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where UP
33 is the one–way P–wave propagator of elastodynamic equation (22) for the

plane P wave.
The P–wave part of the one–way plane–wave propagator matrix is very simple,

UP

33 = exp

(

± iω

vP
x3

)

. (26)

The anisotropic ray theory yields this exact solution.
In this paper, we shall study only the S–wave part of the one–way plane–wave

propagator matrix. The 2× 2 one–way propagator matrix US of elastodynamic
equation (20) may be described by four frequency–dependent coefficients F0, F1, F2

and F3 (Klimeš, 2004 ),

US =exp(iRe(F0)x3)[1 cos(Kx3) − iσ2 sin(Kx3)]

×[1 cos(Re(ϕ)x3) + iΦ sin(Re(ϕ)x3)]

× exp(−Im(F0)x3)[1 cosh(Im(ϕ)x3)−Φ sinh(Im(ϕ)x3)], (27)

where 1 is the 2×2 identity matrix,

Φ =[F1iσ1 + F2σ2 + F3σ3]ϕ
−1 , (28)

ϕ =
√

F 2
3

+ F 2
2
− F 2

1
(29)

and

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

(30)

are the Pauli matrices. The exact one–way propagator matrix has coefficients

F1 =
εKk2

S

(k2

S
−K2)

√
1−ε2

[√
1−ε2+

√

1−ε2
(

K2

k2

S
−K2

)2
] , (31)

F2 = K + εF1 , (32)

F3 = F0

[

−ε+
F1(1 − ε2)

K

]

, (33)

F 2

0 =

[

k2

S

1 − ε2
+ F 2

1

][

1 +
F 2

1 (1 − ε2)

K2

]

−1 . (34)

The sign of F0 has to be determined according to the desired direction of the one–
way plane–wave propagation and corresponds to the sign of the exponent in equation
(26). Two possible signs of F0 correspond to the two one–way propagator matrices in
opposite directions. For example, if the time factor is exp(−iωt) for positive circular
frequencies ω, positive Re(F0) corresponds to the propagation in the direction of the
positive half–axis x3, and negative Re(F0) to the propagation in the direction of the
negative half–axis x3. For “resonant frequencies” (Klimeš, 2004, sec. 3.4; Lakhtakia
and Meredith, 1999, sec. 3) within domain

(1 − |ε|)K2 ≤ k2

S ≤ (1 + |ε|)K2 , (35)
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where F0, F1, F2 and F3 are complex–valued, we may determine F1 from equation
(31), arbitrarily selecting one of the complex–conjugate roots. After inserting into
(34) and determining F0 with its real part corresponding to the desired direction of
propagation, we check for the proper sign of the imaginary part of F0. The imaginary
part of F0 has to compensate the exponential increase of the cosh in equation (27).
That is why Im(F0) should be positive for propagation in the direction of the positive
half–axis x3 and negative for propagation in the direction of the negative half–axis x3,
independently of time factor exp(±iωt). If the imaginary part does not correspond
to the direction of propagation, we replace F0 and F1 by their complex–conjugates.
Equations (32), (33) and (27) are then used as they are.

4 . 3 . O b l i q u e t w i s t e d c r y s t a l m o d e l

In the simplified twisted crystal model, S–wave polarization vectors giM of the
anisotropic ray theory are situated in the same plane as the reference S–wave polar-
ization vectors, see equations (10) and (11). Then neither the quasi–isotropic pro-
jection of the Green tensor, nor the quasi–isotropic approximation of the Christoffel
matrix has any impact on the results of the coupling ray theory. We thus modify
the model in order to demonstrate these quasi–isotropic approximations.

In the oblique twisted crystal model, we select elastic moduli

ai3k3 = EimEknam3n3 , (36)

where Eim are the components of a constant 3×3 real–valued orthogonal matrix.
Elastic moduli ai3k3, corresponding to the simplified twisted crystal model, are given
by (18). For the specification of real–valued orthogonal matrix Eim in terms of
rotation vector Ei refer to the Appendix.

4 . 4 . E x a c t a n a l y t i c a l s o l u t i o n i n t h e
o b l i q u e t w i s t e d c r y s t a l m o d e l

The exact 3×3 one–way propagator matrix Uij of elastodynamic equation (16)
in the oblique twisted crystal model is

Uij = EimEjnUmn , (37)

where Umn are the components of the 3×3 one–way propagator matrix (23) in the
simplified twisted crystal model. Indeed, elastodynamic equation (16) with elastic
moduli (36) and one–way propagator matrix (37) is equivalent to the same equation
with elastic moduli ai3k3 and one–way propagator matrix U ij .
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5. NUMERICAL COMPARISON WITH THE EXACT SOLUTION

For the numerical comparison, we define the relative (with respect to the initial
conditions) difference between one–way propagator matrices US and US

0 as

∆ =

√

1

2
tr
(

[US
0
− US]

+

[US
0
− US]

)

, (38)

where U
+

denotes the matrix Hermitian adjoined to U.

5 . 1 . M o d e l f o r t h e n u m e r i c a l c o m p a r i s o n

We use the simplified twisted crystal model designed by Vavryčuk (1999). The
relation to Vavryčuk ’s (1999) notation is

ε =
−γ sin2(ϑ)

1 + γ sin2(ϑ)
, v2

S = a44[1 + γ sin2(ϑ)] , Kx3 = ϕ . (39)

The selected numerical values in (39) are

γ sin2(ϑ) = 0.15 × 0.75 = 0.1125 , (40)

v2

S = 6.0 km2s−2 × [1 + 0.15 × 0.75] = 6.675 km2s−2 . (41)

The relative difference between the faster and slower S–wave velocities is thus about
10%. Parameter K describing the rotation of the crystal axes about the x3 axis has
the value

K = 0.032 km−1 . (42)

The source–receiver distance corresponds to the crystal axes rotated by ϕ = π

radians,

x3 =
π

K
≈ 98.17477 km . (43)

The central resonant frequency, see (35), is

F =

∣

∣

∣

∣

vSK

2π

∣

∣

∣

∣

≈ 0.0132 Hz (44)

and the coupling frequency (Klimeš, 2004, section 4.2) is
∣

∣

∣

∣

2

ε

∣

∣

∣

∣

F ≈ 0.260 Hz . (45)

The squared P–wave velocity in (18) is

v2

P = 3v2

S . (46)

The rotation vector (see Section 4.3 and Appendix) for the oblique twisted crystal
model is

E1 = 0.10 , E2 = 0 , E3 = 0 . (47)

The rotation angle (0.10 radians) thus roughly corresponds to the strength of the
anisotropy (10% difference between the S–wave velocities).
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5 . 2 . N u m e r i c a l r e s u l t s

The approximate 3×3 one–way propagator matrices of the plane S wave, cor-
responding to the coupling ray theory and its quasi–isotropic approximations, have
been numerically calculated by means of the Fortran 77 package CRT (Bucha and
Bulant, 2002 ). The relative differences of the coupling ray theory, its quasi–isotropic
approximations and their combinations from the exact analytical solution are plotted
on a log–log scale in Figure 1.

The coupling ray theory of Coates and Chapman (1990) yields excellent results
in this model, except for the resonant frequencies, which are far outside the validity
regions of the ray theories. On the other hand, the quasi–isotropic approximations
applied here generate unnecessary additional errors and should be avoided when
using the coupling ray theory.

The error of the quasi–isotropic projection of the Green tensor (Section 3.2) can
be estimated simply. It is frequency–independent, and corresponds to the rotation
angle in this model, see (47). This frequency–independent error may be expected to
be roughly proportional to the degree of anisotropy in generally anisotropic models.

The quasi–isotropic approximation of the Christoffel matrix (Section 3.3) gener-
ates the travel–time error. The wavefield error is then proportional to the frequency.
The error is proportional to the square of the angle between the correct S–wave
polarization plane and the reference S–wave polarization plane (to the square of the
rotation angle in the oblique twisted crystal model). The wavefield error, propor-
tional to the frequency, may thus be expected to be proportional to the square of the
degree of anisotropy in generally anisotropic models on average. The quasi–isotropic
approximation of the Christoffel matrix seems to be the worst quasi–isotropic ap-
proximation.

The quasi–isotropic perturbation of travel times (Section 3.4) generates the travel–
time error. The wavefield error is then proportional to the frequency. The error
is proportional to the square of the difference between the anisotropic model and
the reference isotropic model. The quasi–isotropic perturbation of travel times thus
depends on the reference velocity. The wavefield error, proportional to the frequency,
may be expected to be proportional to the square of the degree of anisotropy in
generally anisotropic models on average.

The common ray approximations (Section 3.1) have no impact on the coupling
ray theory in this model. The inaccuracy due to the common ray approximations is
studied by Klimeš and Bulant (2004).

The behaviour of the errors due to the quasi–isotropic approximations of the
coupling ray theory when decreasing rotation angle E1 in (47) towards the simpli-
fied twisted crystal model, used for comparison with the isotropic ray theory and
anisotropic ray theory by Bulant et al. (1999; 2000; 2004), is demonstrated in Fig-
ures 2 to 5.
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 0.001 Hz 0.01 Hz 0.1 Hz 1 Hz 10 Hz 

Rel.  
error 

1.000

0.100

0.010

0.001

Frequency of harmonic wave

Fig. 1. The relative differences of various approximations of the coupling ray theory
(Coates and Chapman, 1990 ) from the exact solution in the oblique twisted crystal model.
Black: No quasi–isotropic approximation. Blue: Quasi–isotropic projection of the Green
tensor. Red: Quasi–isotropic approximation of the Christoffel matrix. This includes
the quasi–isotropic projection of the Green tensor. Green: Quasi–isotropic perturba-
tion of travel times with the best reference velocity (41). Cyan: Quasi–isotropic pro-
jection of the Green tensor combined with the quasi–isotropic perturbation of travel times.
Yellow: Quasi–isotropic approximation of the Christoffel matrix combined with the quasi–
isotropic perturbation of travel times. The two vertical lines denote the central resonant
and coupling frequencies (44), (45). The relative error of 200% occurs, e.g., for an opposite
polarization or an opposite phase.
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Fig. 2. Analogous to Figure 1, but for a different oblique twisted crystal model obtained
by modifying rotation angle E1 in data (47). Whereas the model for Figure 1 is given by
E1 = 0.10, the differences plotted here correspond to E1 = 0.05.
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Fig. 3. Analogous to Figure 1, but for a different oblique twisted crystal model obtained
by modifying rotation angle E1 in data (47). Whereas the model for Figure 1 is given by
E1 = 0.10, the differences plotted here correspond to E1 = 0.02.
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Fig. 4. Analogous to Figure 1, but for a different oblique twisted crystal model obtained
by modifying rotation angle E1 in data (47). Whereas the model for Figure 1 is given by
E1 = 0.10, the differences plotted here correspond to E1 = 0.01.
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Fig. 5. Analogous to Figure 1, but for the simplified twisted crystal model obtained by
modifying rotation angle E1 in data (47). Whereas the model for Figure 1 is given by
E1 = 0.10, the differences plotted here correspond to E1 = 0.00. Only the quasi–isotropic
perturbation of travel times can be demonstrated in the simplified twisted crystal model.
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6. CONCLUSIONS

The common quasi–isotropic approximations of the coupling ray theory are listed
in Section 3. We have compared the exact analytical solution of the elastodynamic
equation in the oblique twisted crystal model with the coupling ray theory and its
three quasi–isotropic approximations, see Figures 1 to 5. The three quasi–isotropic
approximations of the coupling ray theory are (a) the quasi–isotropic projection of
the Green tensor, (b) the quasi–isotropic approximation of the Christoffel matrix,
(c) the quasi–isotropic perturbation of travel times. In the oblique twisted crystal
model, the three studied quasi–isotropic approximations considerably increase the
error of the coupling ray theory. Since these three quasi–isotropic approximations
do not noticeably simplify the numerical implementation of the coupling ray theory,
they should definitely be avoided. Although the oblique twisted crystal model is
designed for testing purposes and has no direct relation to geological structures, the
wave–propagation phenomena important in the comparison are similar to those in
the models of geological structures.

The common ray approximations of the coupling ray theory (Section 3.1) do
not affect the plane wave propagating along the axis of spirality in the 1-D oblique
twisted crystal model. The errors due to the common ray approximations are studied
by Klimeš and Bulant (2004).

For additional information, including electronic reprints, computer codes and
data, refer to the consortium research project “Seismic Waves in Complex 3-D Struc-
tures” (“http://sw3d.mff.cuni.cz”).
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Klimeš, L., 2004. Analytical one–way plane–wave solution in the 1-D anisotropic “simplified
twisted crystal” model. Stud. Geophys. Geod., 48, 75–96.
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APPENDIX

The constant 3×3 real–valued orthogonal matrix Eim, describing rotation in 3-D
space, has three independent components and may be expressed in terms of real–
valued vector Ek. The direction of vector Ek specifies the axis of rotation, while the
length

E =
√

EkEk (A1)

of vector Ek specifies the angle of rotation about the half–axis given by vector Ek.
The generating matrix of the rotation is

Iij = εijkEkE
−1 , (A2)

and the projection matrix onto the plane of rotation is

Pij = δij − EiEjE
−2 . (A3)

The generating and projection matrices satisfy relation

IijIjk = −Pik , (A4)

analogous to relation ii=−1 for the imaginary unit. Orthogonal matrix Eij is then
the exponential function of IijE,

Eij = Pij cos(E) + Iij sin(E) + δij − Pij , (A5)

i.e.
Eij = δij cos(E) + EiEjE

−2[1 − cos(E)] + εijkEkE
−1 sin(E) . (A6)
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