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ABSTRACT

Anisotropic common S–wave rays are traced using the averaged Hamiltonian of
both S–wave polarizations. They represent very practical reference rays for calcu-
lating S waves by means of the coupling ray theory. They eliminate problems with
anisotropic–ray–theory ray tracing through some S–wave slowness–surface singulari-
ties and also considerably simplify the numerical algorithm of the coupling ray theory
for S waves.

The equations required for anisotropic–common–ray tracing for S waves in a
smooth elastic anisotropic medium, and for corresponding dynamic ray tracing in
Cartesian or ray–centred coordinates, are presented. The equations, for the most part
generally known, are summarized in a form which represents a complete algorithm
suitable for coding and numerical applications.

Key words : travel time, ray tracing, dynamic ray tracing, geometrical spread-
ing, S waves, coupling ray theory, seismic anisotropy, heterogeneous media

1. INTRODUCTION

The coupling ray theory, applicable to all degrees of anisotropy, from isotropic
models to considerably anisotropic models, has been proposed by Coates and Chap-
man (1990). The numerical algorithm for calculating the frequency–dependent
complex–valued S–wave polarization vectors of the coupling ray theory has been
designed by Bulant and Klimeš (2002).

It has been demonstrated that the coupling ray theory along anisotropic–ray–
theory reference rays yields more accurate results for S waves than the anisotropic
ray theory (Bulant et al., 2004 ; Bulant and Klimeš, 2004 ). Whereas tracing the
continuous system of anisotropic–ray–theory rays may be very difficult in the vicinity
of an S–wave slowness–surface singularity, at which the S–wave slowness surfaces
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coincide (Vavryčuk, 2001, 2003 ), this problem does not occur in the common–
ray approximation for S waves. The common–ray approximation thus eliminates
problems with anisotropic–ray–theory ray tracing through some S–wave slowness–
surface singularities and also considerably simplifies coding of the coupling ray
theory and numerical calculations. In the common–ray approximation, only one
reference ray is traced for both S–wave polarizations, and both S–wave travel times
are approximated by the perturbation from the common reference ray. The linear
perturbation from the common reference ray is usually applied. The common–ray
approximation may thus introduce errors in travel times due to the perturbation.
These travel–time errors can deteriorate the coupling ray theory solution at high
frequencies. The errors depend considerably on the degree of anisotropy and on the
deviation of the reference ray path from the anisotropic–ray–theory ray paths.

In the commonly used isotropic–common–ray approximation (Pšenč́ık, 1998 ;
Pšenč́ık and Dellinger, 2001 ), the isotropic–ray–theory rays are used as reference
rays for the coupling ray theory, and isotropic–ray–theory geometrical spreading is
used in approximating the scalar S–wave amplitude. Bakker (2002) proposed the
anisotropic–common–ray approximation, in which the anisotropic common ray is
traced using the averaged Hamiltonian of both S–wave polarizations. The anisotropic
common rays then serve as reference rays for the coupling ray theory, and aniso-
tropic–common–ray geometrical spreading is used in approximating the scalar S–
wave amplitude. The anisotropic–common–ray approximation provides a better
approximation of both travel times and amplitudes than the isotropic–common–
ray approximation. Klimeš and Bulant (2004) estimated the travel–time errors due
to the isotropic–common–ray and anisotropic–common–ray approximations using
the second–order travel–time perturbations calculated along isotropic reference rays,
and demonstrated the advantages of the anisotropic–common–ray approximation on
a numerical example.

This paper is devoted to the equations required for tracing anisotropic common
S–wave rays in a smooth elastic anisotropic medium. A ray tracing algorithm is
not complete without the dynamic ray tracing equations, because the dynamic ray
tracing equations are useful for two–point ray tracing and for calculating amplitudes.
We thus supplement the ray tracing equations with the equations for anisotropic
common S–wave dynamic ray tracing, including the equations for the correspond-
ing Hamiltonians and their first–order and second–order derivatives. Considerable
attention is paid to dynamic ray tracing in ray–centred coordinates. All equations
are expressed in a form suitable for numerical coding.

In Section 2, equations for the first–order and second–order partial phase–space
derivatives of the eigenvalues of the Christoffel matrix for elastic waves are sum-
marized. In Section 3, the anisotropic–ray-theory and anisotropic–common–ray
Hamiltonians are introduced and equations for their first–order and second–order
partial phase–space derivatives are presented. Note that equations (32)–(35) for
regularizing the second–order partial phase–space derivatives of the anisotropic–
common–ray Hamiltonian are necessary for robust dynamic ray tracing. Section 4
devoted to ray tracing and Section 5 devoted to dynamic ray tracing in ray–centred
coordinates are applicable to a general Hamiltonian.
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A common S–wave dynamic ray tracing algorithm based on the presented equa-
tions and suitable for modifying the isotropic “complete ray tracing” algorithm
(Červený et al., 1988 ) is proposed. The proposed algorithm has been coded, and
two–point anisotropic common S–wave travel times have been numerically calculated
by anisotropic–common–ray tracing in a test example by Bulant and Klimeš (2006),
in which the two–point travel times calculated along anisotropic common rays have
been compared with the second–order travel–time perturbations from isotropic rays,
and vice versa. Bulant and Klimeš (2006) also estimated the travel–time errors
due to the anisotropic–common–ray approximation using the second–order travel–
time perturbations calculated along anisotropic common reference rays according
to Klimeš and Bulant (2006), and demonstrated the accuracy of the anisotropic–
common–ray approximation on their numerical example.

As a by–product, this paper also contains the equations for anisotropic–ray–
theory P–wave and S–wave ray tracing and dynamic ray tracing. The equations
can thus be used to trace both anisotropic–ray–theory rays suitable for P waves and
anisotropic common rays suitable for S waves.

The Einstein summation over the pairs of identical indices a, b, c, ... = 1, 2, 3 or
A, B, C, ... = 1, 2 is used throughout this paper. A subscript following a comma
denotes the partial spatial derivative and a superscript following a comma denotes
the partial derivative with respect to the slowness vector, e.g., H,i ≡ ∂H/∂xi,
H ,i ≡ ∂H/∂pi.

2. PARTIAL PHASE–SPACE DERIVATIVES OF THE EIGENVALUES
OF THE CHRISTOFFEL MATRIX

The Christoffel matrix reads

Γij(x
m, pn) = aikjl(x

m) pkpl , (1)

where xm are the Cartesian coordinates, aijkl(x
m) the density–normalized elastic

moduli, and pi the components of the slowness vector.
As we need to handle both the derivatives with respect to xm and pn, we denote

any partial phase–space derivative by ′ or ⋆. Both Γ′
ij and Γ⋆

ij then stand for the
first–order partial phase–space derivatives

Γij,k ≡ ∂Γij

∂xk
=

∂aimjn

∂xk
pmpn (2)

or

Γ,k
ij ≡ ∂Γij

∂pk

= (aikjm + aimjk)pm . (3)

Analogously, Γ′⋆
ij stands for the second–order partial phase–space derivatives

Γij,kl ≡
∂2Γij

∂xk∂xl
=

∂2aimjn

∂xk∂xl
pmpn (4)

or

Γ,l
ij,k ≡ ∂2Γij

∂xk∂pl

=
∂(ailjm + aimjl)

∂xk
pm (5)
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or

Γ,kl
ij ≡ ∂2Γij

∂pk∂pl

= aikjl + ailjk (6)

(Červený, 2001, eq. 4.14.8 ).
Three eigenvalues G(a) and the corresponding eigenvectors gi(a) of the Christoffel

matrix are defined by equations

gi(a)G(a) = Γijgj(a) (7)

and
gi(a)gi(a) = 1 . (8)

No implicit summation is applied to the subscripts in parentheses throughout this
paper. Note that we shall use (a) = (1) and (a) = (2) for S waves, and (a) = (3) for
the P wave.

The eigenvectors are mutually perpendicular,

gi(a)gi(b) = 0 for b 6=a . (9)

Differentiating (7) with respect to xm or pn we arrive at

g′i(a)G(a) + gi(a)G
′
(a) = Γ′

ijgj(a) + Γijg
′
j(a) (10)

and

g′⋆i(a)G(a) + g′i(a)G
⋆
(a) + g⋆

i(a)G
′
(a) + gi(a)G

′⋆
(a) = Γ′⋆

ijgj(a) + Γ′
ijg

⋆
j(a) + Γ⋆

ijg
′
j(a) + Γijg

′⋆
j(a) . (11)

Differentiating (8) with respect to xm or pn we arrive at

gi(a)g
′
i(a) = 0 . (12)

Multiplying (7) by gi(a) and considering (8),

G(a) = gi(a)Γij gj(a) . (13)

Multiplying (10) by gi(a) and considering (7), (8),

G′
(a) = gi(a)Γ

′
ijgj(a) . (14)

Multiplying (11) by gi(a) and considering (7), (8), (12),

G′⋆
(a) = gi(a)Γ

′⋆
ijgj(a) + gi(a)Γ

′
ijg

⋆
j(a) + gi(a)Γ

⋆
ijg

′
j(a) . (15)

Multiplying (10) by gi(b), b 6=a and considering (7), (9),

gi(b)g
′
i(a)G(a) = gi(b)Γ

′
ijgj(a) + gi(b)g

′
i(a)G(b) . (16)

Equations (8), (9), (12) and (16) yield (Červený, 2001, eqs. 4.14.9 and 4.14.10 )

g′i(a) =
∑

b6=a

gi(b)

gj(b)Γ
′
jkgk(a)

G(a) − G(b)
. (17)

We transform Christoffel matrix (1), its first–order phase–space derivatives (2), (3),
and second–order phase–space derivatives (4), (5), (6) into the eigenvectors,

Γ(ab) = gi(a)Γijgj(b) , (18)
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Γ′
(ab) = gi(a)Γ

′
ijgj(b) , (19)

Γ′⋆
(ab) = gi(a)Γ

′⋆
ijgj(b) . (20)

Equation (13) may then be expressed as

G(a) = Γ(aa) , (21)

equation (14) as
G′

(a) = Γ′
(aa) , (22)

and equation (15) with (17) as

G′⋆
(a) = Γ′⋆

(aa) + 2
∑

b6=a

Γ′
(ab)Γ

⋆
(ab)

G(a) − G(b)
. (23)

Equations (2)–(6), (19), (20), (22) and (23) are suitable for the numerical calculation
of the first–order and second–order partial phase–space derivatives of the eigenvalues
of the Christoffel matrix.

3. HAMILTONIAN AND ITS PARTIAL PHASE–SPACE DERIVATIVES

For arithmetic averaging of the Hamiltonians of both S–wave polarizations, we
consider homogeneous Hamiltonians of arbitrary degree N . Note that Bakker (2002)
considered N = 2, whereas Klimeš and Bulant (2004) considered N = −1, which is
better suited for travel–time perturbations as numerically demonstrated by Bulant
and Klimeš (2006, tables 7–12). The averaged Hamiltonian is then also homogeneous
and of degree N . According to Euler’s theorem on homogeneous functions, the
parameter along rays is then proportional to the travel time. We thus choose
the value of the Hamiltonian in the stationary Hamilton–Jacobi equation so that
the parameter along rays is equal to the travel time,

H(xm, τ,n) =
1

N
, (24)

where N is the degree of Hamiltonian H(xm, pn), homogeneous with respect to
slowness vector pi.

The homogeneous Hamiltonian of degree N for standard anisotropic–ray–theory
ray tracing is

H(a) = 1
N

(G(a))
N

2 , (25)

its first–order partial phase–space derivatives are

H ′
(a) = 1

2G′
(a)(G(a))

N

2
−1 , (26)

and its second–order partial phase–space derivatives are

H ′⋆
(a) = 1

2G′⋆
(a)(G(a))

N

2
−1 + N−2

4 G′
(a)G

⋆
(a)(G(a))

N

2
−2 . (27)

In the coupling ray theory, both S–wave polarizations are coupled. It is thus useful
to have common reference rays equally suitable for both S–wave polarizations. For
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common–ray tracing, we shall thus consider the averaged Hamiltonian of both S–
wave polarizations,

H = 1
2N

[
(G(1))

N

2 + (G(2))
N

2

]
. (28)

Note that we obtain different anisotropic common rays and different reference travel–
time fields for different N . The first–order partial phase–space derivatives are

H ′ = 1
4

[
G′

(1)(G(1))
N

2
−1 + G′

(2)(G(2))
N

2
−1

]
, (29)

and the second–order partial phase–space derivatives are

H ′⋆ = 1
4

[
G′⋆

(1)(G(1))
N

2
−1+G′⋆

(2)(G(2))
N

2
−1

]
+ N−2

8

[
G′

(1)G
⋆
(1)(G(1))

N

2
−2+G′

(2)G
⋆
(2)(G(2))

N

2
−2

]
.

(30)
We express the second–order derivatives of the common S–wave Hamiltonian in
terms of the derivatives of the Christoffel matrix using equations (22) and (23),

H ′⋆ =
1

4

[
Γ′⋆
(11)(G(1))

N

2
−1+Γ′⋆

(22)(G(2))
N

2
−1

]
+

Γ′
(13)Γ

⋆
(13)(G(1))

N

2
−1

2 (G(1) − G(3))
+

Γ′
(23)Γ

⋆
(23)(G(2))

N

2
−1

2 (G(2) − G(3))

+Γ′
(12)Γ

⋆
(12)

(G(1))
N

2
−1−(G(2))

N

2
−1

2 (G(1) − G(2))
+

N−2

8

[
Γ′
(11)Γ

⋆
(11)(G(1))

N

2
−2 + Γ′

(22)Γ
⋆
(22)(G(2))

N

2
−2

]
.

(31)
The term with G(1)−G(2) in the denominator is possibly singular. It is thus desirable
to carry out the division by G(1) − G(2) analytically. For N =2,

(G(1))
N

2
−1−(G(2))

N

2
−1

G(1) − G(2)
= 0 . (32)

For N =1,

(G(1))
N

2
−1−(G(2))

N

2
−1

G(1) − G(2)
= − 1

(G(1))
1

2 [(G(1))
1

2 + (G(2))
1

2 ](G(2))
1

2

. (33)

For N =−1,

(G(1))
N

2
−1−(G(2))

N

2
−1

G(1) − G(2)
= −

G(1) + (G(1)G(2))
1

2 + G(2)

(G(1))
3

2 [(G(1))
1

2 + (G(2))
1

2 ](G(2))
3

2

. (34)

For N =−2,

(G(1))
N

2
−1−(G(2))

N

2
−1

G(1) − G(2)
= −

G(1) + G(2)

(G(1))2(G(2))2
. (35)

Dynamic ray tracing is often performed in ray centred coordinates. The trans-
formation of the second–order phase–space derivatives of the Hamiltonian from
Cartesian to ray centred coordinates depends on the degree N of the homogeneous
Hamiltonian (Klimeš, 2002 ). To simplify the transformation, it may be useful to
convert homogeneous Hamiltonian H(xm, pn) of arbitrary degree N into homoge-

neous Hamiltonian H̃(xm, pn) of a fixed degree. Here we choose the second degree
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for H̃(xm, pn), similarly as Klimeš (1994). The homogeneous Hamiltonian of the
second degree is

H̃ = 1
2 (NH)

2

N , (36)

its first–order partial phase–space derivatives are

H̃ ′ = H ′ (NH)
2

N
−1 , (37)

and its second–order partial phase–space derivatives are

H̃ ′⋆ = H ′⋆ (NH)
2

N
−1 + (2−N) H ′H⋆ (NH)

2

N
−2 . (38)

For a P wave, we may directly put H̃ = 1
2G(3), H̃ ′ = 1

2G′
(3) and H̃ ′⋆ = 1

2G′⋆
(3).

4. RAY TRACING SYSTEM AND DYNAMIC RAY TRACING SYSTEM
IN CARTESIAN COORDINATES

The ray tracing equations may be expressed in the form of Hamilton’s equations

ẋk = H ,k , (39)

ṗk = −H,k . (40)

The dot stands for the derivative ∂/∂γ3 along the ray. Since we have chosen
a homogeneous Hamiltonian and have chosen its constant value to be given by (24),
we have

τ̇ = H ,kpk = 1 . (41)

The dot then represents the derivative with respect to travel time τ along the ray.

The dynamic ray tracing system in Cartesian coordinates (Červený, 1972 ) can
be obtained by differentiating ray tracing equations (39) and (40) with respect to
ray parameter γ,

Q̇i = H ,i
,jQ

j + H ,ijPj , (42)

Ṗi = −H,ijQ
j − H ,j

,i Pj , (43)

where

Qi =
∂xi

∂γ
, (44)

Pi =
∂pi

∂γ
. (45)
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5. DYNAMIC RAY TRACING SYSTEM IN RAY–CENTRED COORDINATES

Ray–centred coordinates were applied to the polarization of electromagnetic
waves by Luneburg (1944) and to dynamic ray tracing in isotropic media by Popov
and Pšenč́ık (1978a, 1978b), and then to dynamic ray tracing in anisotropic media
by Hanyga (1982), Kendall et al. (1992) and Klimeš (1994).

The q3–coordinate line of ray–centred coordinates qm is the axial ray parametrized
by parameter

q3 = q3
0 +

∫ τ

τ0

w dτ . (46)

For example, the parameter may be travel time q3 = τ if w = 1, or arclength q3 = s
if w is the ray velocity, w =

√
H ,iH ,i . In this paper, dynamic ray tracing in ray–

centred coordinates is restricted to coordinates q1 and q2 only. The choice of q3 then
does not influence dynamic ray tracing. We shall thus put w = 1.

The qA coordinates lie, for fixed q3, in the wavefront tangent plane. The Cartesian
coordinates corresponding to qm are

xi = xi
0(q

3) + hi
M (q3) qM , (47)

where xi
0(q

3) are points of the axial ray. This is both the definition of the ray–centred
coordinates, and the transformation equation from the ray–centred to Cartesian
coordinates. The transformation matrices, taken at the central ray, are

hi
m =

∂xi

∂qm
, ĥm

i =
∂qm

∂xi
. (48)

The “contravariant basis vectors” hi
1, hi

2, hi
3 and the “covariant basis vectors” ĥ1

i ,

ĥ2
i , ĥ3

i of the ray–centred coordinate system are defined by equations (Klimeš, 1994,
eq. 23 )

hi
3 = H ,i , (49)

ĥ3
i = pi , (50)

hi
aĥb

i = δb
a . (51)

The first two contravariant basis vectors hi
1, hi

2 of the ray–centred coordinate system
are tangent to the wavefront, the third contravariant basis vector hi

3 is tangent to the

ray. The first two covariant basis vectors ĥ1
i , ĥ2

i of the ray–centred coordinate system

are perpendicular to the ray, the third covariant basis vector ĥ3
i is perpendicular

to the wavefront. Whereas basis vectors hi
3 and ĥ3

i are uniquely determined by
equations (49) and (50), we may either choose the contravariant basis vectors hi

1

and hi
2 arbitrarily in the wavefront tangent plane, or choose the covariant basis

vectors ĥ1
i and ĥ2

i arbitrarily in the plane perpendicular to the ray velocity vector
hi

3.
If the contravariant basis vectors h1 and h2 are known, the covariant basis vectors

ĥ1 and ĥ2 are given by relations

ĥ1 =
h3 × h2

hT
1 (h3 × h2)

, (52)

456 Stud. Geophys. Geod., 50 (2006)



Common–Ray Tracing and Dynamic Ray Tracing for S Waves ...

ĥ2 =
h3 × h1

hT
2 (h3 × h1)

. (53)

If the covariant basis vectors ĥ1 and ĥ2 are known, the contravariant basis vectors
h1 and h1 are given by relations

h1 =
p× ĥ2

ĥT
1 (p × ĥ2)

, (54)

h2 =
p× ĥ1

ĥT
2 (p × ĥ1)

. (55)

The 4×4 dynamic ray tracing system in ray–centred coordinates reads (Klimeš,
1994, eq. 60 )

Q̇M
(q) = H

(q),M
,N QN

(q) + H ,MN

(q) P
(q)
N , (56)

Ṗ
(q)
M = −H

(q)
,MNQN

(q) − H
(q),N
,M P

(q)
N , (57)

where

QM
(q) =

∂qM

∂γ
, (58)

P
(q)
M =

∂

∂γ

(
∂τ

∂qM

)
. (59)

The second–order phase–space derivatives of the Hamiltonian in ray–centred coor-
dinates are given by relations (Klimeš, 1994, eqs. 51a, 51b, 51c; Červený, 2001,
eq. 4.2.78 ; Klimeš, 2002, eqs. 51a, 51b, 51c)

H
(q)
,AB = hj

A[H,jk − (N − 1)H,jH,k]hk
B , (60)

H
(q),N
,M = hj

MH ,k
,j ĥN

k − dN
M , (61)

H ,MN = ĥM
j H ,jkĥN

k . (62)

The four coefficients
dN

M = ĥN
i ḣi

M = −hi
M

˙̂
hN

i (63)

in equation (61) depend on the choice of basis vectors hi
1, hi

2 (or ĥ1
i , ĥ2

i ) along the
ray, which is discussed in detail by Klimeš (2006). On the other hand, the choice
of the four coefficients dN

M uniquely determines the evolution of the basis vectors of
the ray–centred coordinate system along the ray if the basis vectors are given at the
initial point of the ray (Klimeš, 2006 ).
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6. NUMERICAL IMPLEMENTATION

6 . 1 . P h a s e – s p a c e d e r i v a t i v e s o f t h e H a m i l t o n i a n

When calculating the homogeneous Hamiltonian of the second degree and its
first–order and second–order phase–space derivatives, we first calculate Christoffel
matrix (1), its eigenvalues G(a) and eigenvectors gi(a). We then calculate the P–wave
Hamiltonian H̃ = G(3) or common S–wave Hamiltonian (36) with (28), and rescale
the slowness vector according to the value of the Hamiltonian.

To calculate the first–order and second–order phase–space derivatives of the
Christoffel matrix, transformed into the eigenvectors, we insert equations (2)–(6)
into equations (19) and (20). The values of the density–reduced elastic moduli and
the values of their first–order and second–order spatial derivatives are multiplied by
factors gi(a)gj(b)pmpn, gi(a)gj(b)pm or gi(a)gj(b), which is numerically more efficient than
to code equations (2)–(6) followed by transforms (19) and (20). In this way, we
calculate the second–order phase–space derivatives Γ(aa),ij , Γ(aa)

,j
,i and Γ,ij

(aa), and the
first–order phase–space derivatives Γ(ab),i and Γ,i

(ab) with (a) 6= (b). The first–order
phase–space derivatives Γ(aa),i and Γ,i

(aa) can be calculated from Γ(aa)
,j
,i and Γ,ij

(aa),

Γ(aa),i = 1
2Γ(aa)

,j
,ipj , (64)

Γ,i

(aa) = Γ,ij

(aa)pj . (65)

The first–order and second–order phase–space derivatives of the homogeneous P–
wave Hamiltonian of the second degree are simply given by equations (22) and (23)
with (a) = (3). The first–order and second–order phase–space derivatives of the
homogeneous common S–wave Hamiltonian of degree N are given by equations (29)
and (31), with one of the equations (32)–(35). The first–order and second–order
phase–space derivatives of the homogeneous common S–wave Hamiltonian of the
second degree are then obtained from the first–order and second–order phase–space
derivatives of the homogeneous common S–wave Hamiltonian of degree N using
equations (37) and (38).

The calculation of the homogeneous Hamiltonian of the second degree and of its
first–order and second–order phase–space derivatives has been coded and placed in
file “hder.for” of the Fortran 77 package MODEL (Bucha and Bulant, 2003 ).

6 . 2 . M o d i f i c a t i o n o f t h e i s o t r o p i c r a y t r a c i n g a l g o r i t h m

For the modification of the isotropic “complete ray tracing” algorithm by Červený
et al. (1988), we have selected options which are most similar to the original isotropic
algorithm. In this way, the 4×4 paraxial ray propagator matrix is calculated by
dynamic ray tracing in ray–centred coordinates according to Section 5, and the
ray–centred coordinates are defined according to Klimeš (2006, sec. 5.4). This ray–
centred coordinate system represents one of the various possible generalizations of
the ray–centred coordinate system for isotropic media by Popov and Pšenč́ık (1978a,
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1978b). The contravariant basis vectors h1 and h2 are used in place of the isotropic
basis vectors, because they have similar properties: h1 and h2 are unit vectors,
perpendicular to the slowness vector, and mutually perpendicular (all with respect
to the Cartesian metric).

Anisotropic–ray–theory ray tracing for P waves and anisotropic–common–ray
tracing for S waves in smooth anisotropic models without interfaces and correspond-
ing dynamic ray tracing in ray–centred coordinates have been coded, added to the
Fortran 77 CRT package, debugged and numerically tested (Bucha and Bulant, 2004 ;
Bulant and Klimeš, 2006 ). For the numerical example of anisotropic–common–ray
tracing and for the application of the numerical algorithm of the coupling ray theory
by Bulant and Klimeš (2002) along anisotropic common S–wave rays refer to Bulant
and Klimeš (2006).

7. CONCLUSIONS

The coupling ray theory for S waves in anisotropic media has recently been
applied to isotropic reference rays (Pšenč́ık, 1998 ; Pšenč́ık and Dellinger, 2001 ).
The equations presented by Bakker (2002) and the equations presented in this
paper allow anisotropic common S–wave reference rays to be traced. Common–
ray tracing for S waves and corresponding dynamic ray tracing enable the coupling
ray theory to be made more accurate, while preserving the comfort of common
reference rays for both S–wave polarizations. The anisotropic common rays also
eliminate problems with anisotropic–ray–theory ray tracing through some S–wave
slowness–surface singularities.

The equations of this paper represent a complete algorithm suitable for anisotro-
pic–common–ray tracing for S waves in a smooth elastic anisotropic medium, and
for corresponding dynamic ray tracing in Cartesian or ray–centred coordinates. For
the comparison of travel–time errors of the coupling ray theory due to isotropic
reference rays and due to anisotropic common S–wave reference rays refer to Bulant
and Klimeš (2006, tables 4–9).

For additional information, including various papers, computer codes and data,
refer to the consortium research project “Seismic Waves in Complex 3–D Structures”
(“http://sw3d.mff.cuni.cz”).
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Červený V., 1972. Seismic rays and ray intensities in inhomogeneous anisotropic media.
Geophys. J. R. Astr. Soc., 29, 1–13.
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