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Ivan Pšenč́ık∗ and Joe Dellinger∗∗

∗ Geophysical Institute, Acad. Sci. of Czech Republic, Bočńı II, Praha 4, Czech Republic
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ABSTRACT

In inhomogeneous isotropic regions, S waves can be modeled using the ray method for
isotropic media. In inhomogeneous strongly anisotropic regions, the independently propa-
gating qS1 and qS2 waves can similarly be modeled using the ray method for anisotropic
media. The latter method does not work properly in inhomogeneous weakly anisotropic
regions, however, where the split qS waves couple. The zeroth-order approximation of the
quasi-isotropic (QI) approach was designed for just such inhomogeneous weakly anisotropic
media, for which neither the ray method for isotropic nor anisotropic media applies.

We test the ranges of validity of these three methods using two simple synthetic models.
Our results show that the QI approach more than spans the gap between the ray methods:
it can be used in isotropic regions (where it reduces to the ray method for isotropic media),
in regions of weak anisotropy (where the ray method for anisotropic media does not work
properly), and even in regions of moderately strong anisotropy (in which the qS waves
decouple and thus could be modeled using the ray method for anisotropic media). A
modeling program that switches between these three methods as necessary should be valid
for arbitrary-strength anisotropy.

INTRODUCTION

It is well known that the ray method for inhomogeneous anisotropic media yields distorted
results (or fails to produce any result at all) for qS waves propagating in inhomogeneous
weakly anisotropic media. It also does not work properly in the vicinity of qS -wave singu-
larities, which all qS modes possess. In both these cases the problem is caused by coupling
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between the qS -waves at inhomogeneities in the medium. The coupling violates the ray
method’s implicit assumption that each studied wave is isolated and independent. While
inhomogeneity always causes some coupling, if the elastic parameters are slowly varying
along the ray and the qS -wave phase velocities are not close, the coupling is negligible
and can be ignored, and the ray method can safely be applied. However, if the elastic
parameters vary quickly and the phase velocities are similar, the coupling is significant,
the waves cannot be treated independently, and application of the ray method leads to
incorrect results (as we demonstrate in this paper).

To avoid these problems, the so-called quasi-isotropic (QI) approach was proposed by
Kravtsov (1968). [See also Kravtsov & Orlov (1980), Pšenč́ık (1998a,b), and Červený
(2000).] In the QI approach, the asymptotic solution of the elastodynamic equation is
sought in the form of an expansion with respect to two small parameters of the same
order. The first is the same small parameter used in the standard ray method, ǫ1 ∼
c/ωL, where ω is the circular frequency, c is the phase velocity, and L is the characteristic
length (i.e., the shortest distance on which the quantities related to wave propagation
change by an amount comparable to their own magnitude). The second parameter, ǫ2 ∼
||∆aijkl||/||aijkl|| ∼ ∆c/c, characterizes the strength of the anisotropy. Here aijkl is the
tensor of density-normalized elastic stiffnesses, and ∆aijkl is the difference between aijkl and
the corresponding tensor of density-normalized elastic stiffnesses of an isotropic reference
medium.

Physically, ǫ2 is a measure of the difference between the phase velocities of the split qS
waves propagating along the ray. If ǫ2 = 0, the medium is isotropic and the ray method
for isotropic media applies. If ǫ2 is large, such that ǫ2 ≫ ǫ1, the split qS waves are well
separated and can be dealt with independently using the ray method for anisotropic media.
The QI approach was designed to handle the intermediate case, 0 ≤ ǫ2 ≤ ǫ1. [Note the
zeroth-order approximation of the QI approach is equivalent to the coupling ray theory
(CRT) of Coates & Chapman (1990); see Pšenč́ık (1998a) for a proof.]

Our goal in this paper is to test how well the QI approach actually performs in weakly
anisotropic media. In the process we will attempt to illuminate two important practical
questions left unanswered by previous (more theoretically oriented) studies: 1) What hap-
pens if we apply the QI approach to moderately anisotropic media (for which ǫ2 ≥ ǫ1, but
not ǫ2 ≫ ǫ1)? 2) How badly does the ray method for anisotropic media break down if we
attempt to apply it to qS waves in weakly anisotropic media (for which ǫ2 < ǫ1)?

To study these questions, we used an updated version of the program ANRAY (Gajewski
& Pšenč́ık, 1990) to model qS -wave propagation in two synthetic offset VSPs. In both mod-
els we considered vertically inhomogeneous weakly anisotropic HTI (Transversely Isotropic
with a Horizontal axis of symmetry) media, with the symmetry axis of the HTI anisotropy
rotated 45◦ from the plane defined by the source-receiver offsets of the VSP. The two mod-
els differed only in the strength of the anisotropy. In the first (“VWA”) the anisotropy
was so weak (0.02-0.1%) that the medium was effectively isotropic. In the second (“WA”)
the anisotropy was considerably stronger, but still “weak” (1-4%). For each model we
performed the calculation using three different asymptotic methods: the zeroth-order ap-
proximation of the ray method for isotropic media (ISO), the zeroth-order approximation
of the ray method for anisotropic media (ANI), and the zeroth-order approximation of
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the QI approach (henceforth simply called “QI”). As a “reality check”, we also calculated
the seismograms using a non-ray algorithm, the anisotropic reflectivity modeling program
AnivecTM (Mallick & Frazer, 1990).

Examination of the results for the VWA model shows that the ray method for anisotropic
media (ANI) does not properly describe qS -wave propagation in weakly anisotropic me-
dia, a result consistent with theory. Comparing the QI, ISO, and ANI results for the WA
model, we find that the QI results can resemble either the ISO or ANI results, depending
on the local strength of the anisotropy and the dominant frequency of the wavelet (and
thus on the relative magnitudes of ǫ1 and ǫ2). The comparison confirms theoretical expec-
tations that the QI approach should represent a link between the ray methods for isotropic
and anisotropic media. Although ANRAY and Anivec differ in their model-specification
options, so their respective computations could not be made precisely equivalent, we also
found there was a good fit between the full-wave-equation seismograms generated by Anivec
and the weak-anisotropy QI ray-tracing results generated by ANRAY.

METHODOLOGY OF THE QI APPROACH

To implement the QI method, we begin by defining a reference isotropic medium, ob-
taining the necessary P and S -wave velocities by averaging the qP , qS1 and qS2 phase
velocities of the true weakly anisotropic medium over a range of propagation directions
(Rasolofosaon et al., 1991). A ray connecting the source and receiver is then calculated
in the reference isotropic medium, and dynamic ray tracing is performed along this ray to
determine the geometrical spreading of the S wave in the isotropic medium. The novel part
of the algorithm is the determination of the QI amplitudes. These are obtained by solving
two coupled linear ordinary differential equations along the ray in the isotropic reference
medium (equation (A-7) in appendix A) for selected frequencies within the desired wavelet
frequency band. Using the resulting frequency-dependent QI amplitudes, a frequency re-
sponse is calculated, which is then used to construct the required wavelet for the output
vector seismogram. See Appendix A for more specific mathematical details about the QI
algorithm.

NUMERICAL TESTS

For the following tests we use the VSP configuration shown schematically in Figure 1.
The source, a vertical point force directed downwards, is situated at the point S on the
surface, 1 km from the mouth of the borehole. The effects of the free surface are neglected
throughout. The source time function, a windowed symmetric Gabor wavelet, is shown in
Figure 2. There are 29 receivers in the borehole, distributed with a uniform step size of
0.02 km, with receiver depths ranging from 0.01 km to 0.57 km. The 3-component receivers
record the vertical (positive downwards), transverse, and radial (positive away from the
source) components of the wave field. The recording system is right-handed. All calculated
seismograms and particle-motion diagrams are shown with no differential scaling between
components and traces, so true relative amplitudes can be seen.
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In both models, the medium is vertically inhomogeneous and transversely isotropic
with a horizontal axis of symmetry (HTI). In the first, taken from a study of Coates
& Chapman (1990), the anisotropy is very weak; for the frequencies used, the model is
essentially isotropic. We call this model “VWA” (Very Weak Anisotropy). The anisotropy
in the second model, “WA” (Weak Anisotropy), is stronger so that some effects of shear-
wave splitting can be observed. In both models, the symmetry axis of the azimuthally
anisotropic HTI medium is rotated 45◦ out of the vertical plane containing the source
and the borehole. (We will call this the “propagation plane”, even though the rays may
not propagate exactly within this plane because of the azimuthal anisotropy.) The HTI

symmetry axis is given by the vector (1
2

√

(2), 1
2

√

(2), 0).

The VWA model

In the coordinate system with the axis of symmetry parallel to the x−axis, the matrices
of density-normalized elastic parameters Aij , in units of (km/s)2, for the VWA model are
as follows: At a depth of 0. km,
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(A rotation of 45◦ about the z−axis has to be carried out to obtain the actual model.) The
elastic parameters between the depths of 0. and 1. km are determined by linear interpola-
tion. Since in this medium the anisotropy is factorizable (i.e., A(z) = (f(z)/f(0))A(0)),
the Thomsen parameters (here referenced to the x axis instead of the usual z) are constant
throughout: ǫ = (A33 − A11)/(2A11) = .0000494, γ = (A44 − A66)/(2A66) = .00117, and
δ = ((A13 + A66)

2 − (A11 −A66)
2)/(2A11(A11 −A66)) = −.000938. The density, 1.0 g/cm3,

is also constant throughout. Sections of the qS -wave phase-velocity surfaces in the vertical
propagation plane for depths of 0.0 and 0.6 km are shown in Figure 3. Note that although
the model is nearly isotropic, it does contain an intersection singularity. The qS anisotropy
shown in the figure (defined as (cqS1 − cqS2)/caverage, where c denotes phase velocity) varies
from 0.02% for horizontal propagation to 0.1% for vertical propagation.
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The upper part of Figure 4 shows ray diagrams, time-distance, and amplitude-distance
curves for the two qS waves in the VWA medium, calculated using the ray method for
anisotropic media (ANI). The bottom part of Figure 4 shows the same quantities for the S
wave in the isotropic reference medium, calculated using the ray method for isotropic media
(ISO). The left column in each subfigure shows, from bottom to top, two ray diagrams
(projected onto the vertical propagation plane, and onto the horizontal plane), and a
graph of traveltimes versus receiver depth. The right column shows base-10 logarithms of
the recorded ray amplitudes, generated by the vertical point-force source, as a function of
receiver depth (from bottom to top, for the vertical, transverse, and radial components).

We can see that in the isotropic medium, rays to all receivers were found and these
rays were confined to the plane of propagation. Note especially that the generated S wave
has a pure SV polarization, so the amplitude of its transverse component (shown in the
“empty box” in Figure 4) is identically zero. In contrast, in the anisotropic medium the
rays did not illuminate all the receivers. The reason is a breakdown of the ray tracer due to
the shear-wave singularity shown in Figure 3, which was encountered by the rays arriving
at the deepest receivers. At a singularity, the denominators of the right-hand sides of the
ray-tracing equations become zero (see Gajewski & Pšenč́ık, 1990), causing the calculation
to abort. The ray diagrams and traveltime curves for both qS waves are nearly identical
to the corresponding parts of the ray diagram and traveltime curve for the S wave in the
isotropic reference medium; this is due to the closeness of the anisotropic VWA medium
to the isotropic one. There is, however, a remarkable difference in the behavior of the ray
amplitudes: neither of the two qS waves in the ANI section is purely SV or SH polarized.
In a medium that is so nearly isotropic, a vertical force should have only been able to
generate a nearly purely SV -polarized shear wave. The ray method for anisotropic media
thus gave an incorrect result in this example.

Figure 5 shows synthetic seismograms for the VWA model of Figure 3 calculated in
three different ways. From left to right, they are for S waves calculated using the ray
method for isotropic media (ISO), qS waves calculated using the QI approach, and qS
waves calculated using the ray method for anisotropic media (ANI). The dominant fre-
quency of the source-time function is 50 Hz. Examining the ANI results, we again see
that the ray method for anisotropic media incorrectly yielded a wave with a rather strong
transverse component (arrowed); the transverse component is, in fact, stronger than the
radial one. Seismograms for the deeper receivers in the ANI section are missing because of
the breakdown of the ray-tracing procedure. As expected, the ISO results show an iden-
tically zero transverse component. The QI results very closely resemble the ISO results;
although some disturbances are visible on the transverse component, they have negligible
amplitudes.

Figure 6 shows hodograms calculated using the three methods for the receivers at depths
of z = 0.01 km (“shallow”), 0.29 km (“intermediate”), and 0.57 km (“deep”). Since the
particle motion at the receiver is three dimensional, three two-dimensional projections are
shown for each result. In the ISO result (left), the polarization of the S -wave arrival is
strictly linear. The bottom row of plots shows the polarization of the arriving wave in
the vertical propagation plane; note that for the shallow receiver the S wave arrives from
below, a result of the vertical velocity gradient. The top row of plots shows the polarization
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in the horizontal plane; it is purely SV polarized for all three receivers.

The center set of hodograms in Figure 6 shows the results of the QI approach. Only
small deviations from the corresponding ISO results are evident; most noticeably, the
particle motion displays a small amount of quasi-ellipticity. The polarization is, however,
still overwhelmingly SV . In contrast, the right (ANI) set of hodograms in Figure 6 differs
from the others in two significant ways. First, due to the previously mentioned breakdown
of the ray tracer, there are no observations for the deepest receiver. Second, although
the arrivals are linearly polarized, the hodograms show a significant SH component of
displacement, indicating that even before the ray method failed it was not producing
correct results. We conclude that since the QI method did correctly reproduce the ISO
results, it performed well in this very weakly anisotropic model, despite having to propagate
rays through a region containing an intersection singularity.

The WA model

In the coordinate system with the axis of symmetry parallel to the x−axis, the matrices
of density-normalized elastic parameters Aij, in units of (km/s)2, for the WA model are as
follows: At a depth of 0. km,
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As before, the elastic parameters between the depths of 0. and 1. km are determined
by linear interpolation. The density is a uniform 1.0 g/cm3. The Thomsen parameters
(referenced to the x axis) are constant throughout: ǫ = (A33 − A11)/(2A11) = .0866,
γ = (A44 − A66)/(2A66) = .0351, and δ = ((A13 + A66)

2 − (A11 − A66)
2)/(2A11(A11 −

A66)) = .0816. The orientation of the symmetry axis is exactly as in the previous (VWA)
model. Figure 7 shows vertical sections through the qS -wave phase-velocity surfaces in the
propagation plane for model depths of 0.0 and 0.6 km. Note the anisotropy is stronger
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than in the previous example, varying from 1% for horizontal propagation up to 4% for
vertical propagation.

Figure 8 shows synthetic seismograms for the WA model, again calculated using a
source with a dominant frequency of 50 Hz; the only change from Figure 5 is the stronger
anisotropy. This time the QI results more closely resemble the results of the ray method
for anisotropic media (ANI), especially for the deeper receivers, not the ray method for
isotropic media (ISO) as was the case for the VWA model in Figure 5. This is because
of the stronger anisotropy in the WA model, combined with the relatively high dominant
frequency of the source wavelet. In particular, note that in the ANI and QI results in
Figure 8, two shear-wave arrivals can be observed: first a fast shear wave with predomi-
nantly SV polarization, followed by a slower one with predominantly SH polarization. The
QI approach can thus model shear-wave splitting, even though it is based on calculations
taking place along a single ray calculated in the isotropic reference medium.

Figure 9 shows hodograms constructed for the same three receivers as those used for
the VWA experiment in Figure 6. In Figure 9, the particle motions calculated using the
QI approach (center) do not uniformly match the ISO set of hodograms (left). Instead, the
particle motions calculated by the QI method are nonlinear for the intermediate and deep
receivers, indicating the presence of interfering waves. For the deeper receivers, the particle
motions calculated using the QI method closely resemble those calculated using the ANI
method (right). For the shallow receiver, however, the QI method does still produce a
particle motion differing only slightly from its “isotropic” counterpart.

In Figure 9 the QI approach thus converged to the “isotropic” result for the shallow
receiver, while for the deeper receivers it converged to the “anisotropic” result. This
happened because for the shallow receiver the difference between the two qS -wave phase
velocities was smaller than it was for the deeper receivers (see Figure 7), and also because
the waves traveled a shorter distance from the source to get to the shallow receiver, and so
had less time to “split”. The qS waves thus propagated to the shallow receiver through a
medium that more closely resembled an isotropic one. On the other hand, the pronounced
quasi-elliptical polarization recorded by the deeper receivers is a consequence of shear-wave
splitting, indicating propagation through a more effectively anisotropic medium.

While the quasi-elliptical polarization in the ANI results in Figure 9 is a natural conse-
quence of interference between two qS waves independently propagating along two different
ray paths, its origin in the QI results is not so straightforward. The quasi-elliptical polariza-
tion in the QI results is a consequence of solving the two coupled differential equations (A-7)
along the single ray calculated for an S wave in the reference isotropic medium. Once the
split shear waves have finished separating, as they have almost done by the time they
reached the deepest receiver in Figure 9, the QI approach could, in principle, be dropped
in favor of the standard ray method for anisotropic media. From that point on, two qS
waves could be calculated along two different ray paths, even in this weakly anisotropic
medium.

Figure 10 shows the effects of reducing the dominant frequency of the source wavelet
to 10 Hz (the ISO results would look exactly the same as in Figure 9, and so are not
plotted). The hodograms for the QI approach now look more like the results of the ray
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method for isotropic media in Figure 9: the particle motions at the intermediate and
deep receivers are still slightly nonlinear, but now are (for the most part) confined to the
plane of propagation (see the transverse-vertical and transverse-radial diagrams). Reducing
the dominant source frequency even further would eventually lead to linear polarizations
indistinguishable from those in the ISO results in Figure 9. Reducing the source frequency
would also lead to linear polarizations in the ANI results on the left, but a non-negligible
transverse component would remain, which is incorrect.

Increasing the source frequency to 200 Hz leads to a closer resemblance between the QI
and the ANI results, as can be seen in Figure 11. (In this figure we finally have ǫ2 ≥ ǫ1

for most of the frequencies present; for these frequencies the assumptions underlying the
ray method for anisotropic media should be valid.) The qS waves at the intermediate
and deep receivers are now clearly separated, and the independent qS waves display linear
polarizations in both the QI and ANI results. The ISO results for this frequency would
still look exactly the same as in Figure 9.

Comparison with a non-asymptotic result

In Figure 12, the seismograms calculated for the VWA and WA models using the QI
approach are compared with the seismograms calculated by AnivecTM, a commercial im-
plementation of the reflectivity method for anisotropic media (Mallick & Frazer, 1990).
The left column shows synthetic seismograms for the VWA model, the right column seis-
mograms for the WA model. The QI synthetics are shown by the black lines, the reflectivity
synthetics by the gray lines. Since the algorithms and implementations used were entirely
distinct, there were some unavoidable differences in the specifications of the model and
the source between the reflectivity and QI calculations. For the reflectivity model, the
continuous vertical gradient used in the QI computations had to be simulated using ho-
mogeneous layers. We used one hundred layers, each 10 m-thick (about 10 times finer
than the dominant wavelength of the seismic energy of interest). A spike multiplied by a
cosine taper spanning 5 Hz to 100 Hz in the frequency domain was used for the wavelet,
to approximately match the wavelet for the QI computation shown in Figure 2.

Despite these differences, the reflectivity and QI seismograms are very similar; the
synthetics nearly coincide for most receivers. It’s not clear whether the differences that
are visible are due to the limitations of the QI approach or the reflectivity method, or
both. (The slight phase shift on the vertical and transverse components will be a sub-
ject of further study.) It should also be noted that because the model was azimuthally
anisotropic, the reflectivity method required an expensive two-dimensional integration in
the slowness domain; the reflectivity results in Figure 12 represent several thousand times
the computational effort of the corresponding QI synthetics! The QI approach is also appli-
cable to laterally inhomogeneous media, while reflectivity methods are limited to vertically
inhomogeneous media only.
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DISCUS]SION

We have demonstrated that the zeroth-order approximation of the ray method for anisotropic
media cannot properly describe the coupling of qS waves in media which are effectively
isotropic. The QI approach, however, performs well in such media. This suggests that the
QI approach might be applicable not just to waves propagating in weakly anisotropic me-
dia (such as the VWA and WA models examined in this paper), but also to waves passing
near shear-wave singularities in more strongly anisotropic media. The VWA model results
presented here did demonstrate that the QI approach can work for a ray passing through
an intersection singularity in a weakly anisotropic medium, a situation that caused the ray
method for anisotropic media to break down.

Possible applications of the QI approach to singular regions in strongly anisotropic
media is a task for another study. In strongly anisotropic media the QI approach would
not be used continuously, but only as a fallback for when the ray method was in danger
of producing an incorrect or inaccurate result. The isotropic reference medium could then
be chosen dynamically, so as to match the local qP and qS velocities associated with the
slowness direction of the current ray. The optimal choice of isotropic reference media in
the QI approach is also a subject for future study.

All the computations presented in this paper were performed using the zeroth-order
approximation of the QI approach. Since the anisotropy of the considered models was
rather weak, the absence of the first-order additional terms did not significantly affect the
results of the QI approach. The effects of the first-order terms would be most visible in
the vertical-radial plane of the particle-motion diagrams. In Figure 9, the more strongly
anisotropic model of the two considered, the projections of the particle motion onto this
plane have almost identical orientations for all three methods, indicating that the zeroth-
order approximation was sufficient for these models.

The simple models considered in this study were sufficient to demonstrate the basic
effects of frequency and strength of anisotropy on the coupling of qS waves; the qS waves
decouple both with increasing frequency and with increasing strength of anisotropy or,
equivalently, with increasing distance over which the split qS waves have propagated and
increasing difference between the split qS waves’ phase velocities. Some inhomogeneity is
necessary for qS waves to become coupled; in a completely homogeneous medium, elastic
waves can be decomposed into a sum of pure-mode waves, all of which propagate indepen-
dently. In this paper, we restricted ourselves to a simple form of inhomogeneity, a linear
variation of the elastic parameters with depth. Studies of how varying the strength of the
inhomogeneity affects the coupling of qS waves will be one of the next steps in the analysis
of the QI approach.

CONCLUSIONS

We have presented numerical results obtained using the zeroth-order approximation of
the QI approach for qS waves in inhomogeneous weakly anisotropic media. The results
confirm that the QI approach does represent a link between the ray methods for isotropic
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and anisotropic media, as was expected from theoretical studies. In a model with very
weak anisotropy, the QI approach gave results which effectively coincided with the results
of the ray method for isotropic media. When stronger anisotropy and higher frequencies
were considered, the results of the QI approach converged to the results of the ray method
for anisotropic media. The region of applicability of the QI approach thus appears to
overlap the regions of applicability of both the ray method for isotropic media and the
ray method for anisotropic media as well. Within its own region of applicability, the
zeroth-order approximation of the QI approach models the behavior of strongly coupled
qS waves, something that cannot be done using the zeroth-order approximations of either
of the ray methods. A modeling program that switches between the three methods as
necessary should be valid for arbitrary strengths of anisotropy. We plan to perform further
comparisons with wave-equation methods to test the accuracy of the QI approach.
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APPENDIX A - BASIC QI FORMULAE

We briefly review here the basic formulae used when calculating the zeroth-order ap-
proximation of the QI approach. For more details see Pšenč́ık (1998a,b). We will follow
the standard conventions of the ray-tracing literature: If a subscript is repeated, there
is an implied summation over it (e.g. xiyi →

∑

i xiyi). δij is the Kronecker delta; it is
zero unless its two subscripts have the same value, in which case it is one (e.g. δ12 = 0,
δ22 = 1). Vectors and tensors are referred to by their individual scalar components (e.g.
aijkl → A). Subscripts are reserved for components (e.g. xi → {x1, x2, x3} → x), while
superscripts in parenthesis are used to distinguish between corresponding quantities (e.g.

qS (I) → {qS (1), qS (2)}). A comma before a component indicates partial differentiation (e.g.
ui,j → ∂ui/∂xj).

Begin by considering the tensor of density-normalized stiffness parameters for a weakly
anisotropic media aijkl, such that

aijkl = a0
ijkl + ∆aijkl . (A-1)

The tensor a0
ijkl gives the stiffness parameters of a reference isotropic medium:

a0
ijkl = (α2 − β2)δijδkl + β2(δikδjl + δilδjk) , (A-2)

where α and β denote its P - and S -wave velocities, respectively. The ∆aijkl then specify
how the weakly anisotropic medium deviates from the reference isotropic medium, which
should be chosen so that |∆aijkl| is as small as possible.

In the zeroth-order approximation of the QI approach, the qS -wave Green’s function is
given by

Gin(τ, τ0, ω) = exp(iωτ)
[

Bn(τ, ω)e
(1)
i (τ) + Cn(τ, ω)e

(2)
i (τ)

]

, (A-3)
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simultaneously incorporating both shear waves; see Pšenč́ık (1998a). The subscript n spec-
ifies that the vector Green’s function Gi is for a unit-vector point-force source oriented
along the xn axis. The symbol τ0 denotes the time at the source; τ − τ0 is the traveltime

along the ray of the S wave in the reference isotropic medium. The vectors e
(k)
i define

an orthogonal ray-centered coordinate system. e
(3)
i is a unit vector tangent to the ray;

mathematically,

e
(3)
i = β τ,i . (A-4)

The unit vectors e
(1)
i and e

(2)
i represent the polarization vectors of an S wave in the reference

isotropic medium, and are perpendicular both to the ray and each other. They satisfy the
equation

de
(I)
i

dτ
= (β,k e

(I)
k ) e

(3)
i ; (A-5)

see e.g. Popov & Pšenč́ık (1978), Červený (2000).

The terms Bn(τ, ω) and Cn(τ, ω) are the amplitudes of the qS waves in the zeroth-order
approximation of the QI approach. They have the form

Bn(τ, ω) =
B̄n(τ, ω)

√

ρ(τ)β(τ)ΩM (τ)
, Cn(τ, ω) =

C̄n(τ, ω)
√

ρ(τ)β(τ)ΩM (τ)
. (A-6)

The symbol ρ denotes the density. The quantity ΩM is obtained from the dynamic ray
tracing in the background isotropic medium; its magnitude |ΩM | gives the relative geomet-
rical spreading. Equations (A-6) would represent zeroth-order ray solutions for qS waves if
the terms B̄n and C̄n were constant. In the zeroth-order approximation of the QI approach,
however, the terms B̄n and C̄n depend on τ and frequency ω, and are obtained as solutions
of two coupled linear ordinary differential equations of the first order:

dB̄n

dτ
= −

1

2
iωβ−2(B11B̄n + B12C̄n),

dC̄n

dτ
= −

1

2
iωβ−2(B12B̄n + B22C̄n) , (A-7)

with initial conditions

B̄n(τ0) =
e(1)

n (τ0)

4π
√

ρ(τ0)β(τ0)
, C̄n(τ0) =

e(2)
n (τ0)

4π
√

ρ(τ0)β(τ0)
; (A-8)

see Pšenč́ık (1998a). The initial conditions given by equation (A-8) correspond to a unit
force oriented along the coordinate axis xn. Finally, the Bmn in equation (A-7) are deter-
mined from the weak anisotropy matrix:

Bmn = ∆aijkl e
(m)
i e

(3)
j e

(3)
k e

(n)
l . (A-9)

If the medium is isotropic, ∆aijkl = 0 and equation (A-3) reduces to the formula for the
zeroth-order ray approximation of the S -wave Green’s function in isotropic media. If the
anisotropy of the medium is strong, the inhomogeneity weak, and the frequency high, the
zeroth-order approximation of the QI approach instead yields two independent qS waves
that could also be independently described using the ray method for anisotropic media
(Kravtsov & Orlov, 1980; Pšenč́ık, 1998a).

214



VSP   CONFIGURATION
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Figure 1: A schematic illustration of the model VSP geometry used for all the examples
in this paper.
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Figure 2: The source wavelet used for the examples in Figures 5, 6, and 8 through 12.
The dominant frequency of this wavelet is 50 Hz.
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Figure 3: The VWA model: Sections through the qS -wave phase-velocity surfaces in the
vertical propagation plane plotted as a function of the angle of incidence (0◦ = horizontal
propagation, 90◦ = vertical propagation) at depths of 0.0 and 0.6 km. Note the intersection
singularity at approximately 30◦.
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Figure 4: The VWA model (top) and its isotropic approximation (bottom). Ray dia-
grams and time-distance curves (left columns) and log10 amplitude-distance curves (right
columns) for the anisotropic qS waves or the isotropic S wave generated by a vertical
point-force source are shown. The results were calculated using both the anisotropic ANI
method (top two sets of plots) and the isotropic ISO method (bottom set).
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Figure 5: The VWA model: Synthetic seismograms calculated by the ray method
for isotropic media (ISO, left), by the QI approach (center), and by the ray method for
anisotropic media (ANI, right). The dominant frequency of the source for this example
is 50 Hz. The ANI method incorrectly predicts significant amplitudes on the transverse
component (see arrow).
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Figure 6: The VWA model: Particle-motion hodograms for receivers at depths z = 0.01,
0.29, and 0.57 km calculated using the ray method for isotropic media (ISO, left), the QI
approach (center), and the ray method for anisotropic media (ANI, right). The dominant
frequency of the source is 50 Hz. The QI and ISO results are very similar for all receivers.
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Figure 7: The WA model: Sections through the qS -wave phase-velocity surfaces in the
vertical propagation plane plotted as a function of the angle of incidence (0◦ = horizontal
propagation, 90◦ = vertical propagation) at depths of 0.0 and 0.6 km. The difference in
phase velocities between the two qS waves more than doubles as the propagation angle
increases from 0◦ to 90◦.
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Figure 8: The WA model: Synthetic seismograms calculated by the ray method for
isotropic media (ISO, left), by the QI approach (center), and by the ray method for
anisotropic media (ANI, right). The dominant frequency of the source is 50 Hz. The
QI approach approximates the ISO result for the shallow receiver but the ANI result for
the two deeper receivers.
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Figure 9: The WA model: Particle-motion hodograms for receivers at depths z = 0.01,
0.29, and 0.57 km calculated using the ray method for isotropic media (ISO, left), the QI
approach (center), and the ray method for anisotropic media (ANI, right). The dominant
frequency of the source is 50 Hz. The QI approach approximates the ISO result for the
shallow receiver but the ANI result for the two deeper receivers.
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Figure 10: The WA model: Particle-motion hodograms for the same receivers as in
Figure 9, calculated using the ray method for anisotropic media (ANI, left) and the QI
approach (right). The dominant frequency of the source has been lowered to 10 Hz. At this
lower frequency, the QI results appear more similar to the ISO results shown in Figure 9.
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Figure 11: The WA model: Exactly as Figures 9 and 10, but the dominant frequency
of the source has been increased to 200 Hz. The QI result is now more similar to the
corresponding ANI result for all depths. The qS waves are clearly separated at the deeper
receivers.
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Figure 12: Comparison of the synthetic seismograms calculated using the the QI ap-
proach (dark lines) and the reflectivity method (grey lines) for the VWA model (left col-
umn) and the WA model (right column). Only seismograms for even-numbered receivers
are shown, so the individual waveforms can be better seen.
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