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Summary

The determination of the slowness vector of homogeneous plane waves propagating
in an arbitrary direction in a homogeneous viscoelastic anisotropic medium is discussed.
Whereas the determination of the slowness vector of an inhomogeneous plane wave re-
quires the solution of an eigenvalue problem for a 6 × 6 complex-valued matrix, it is
sufficient to solve an eigenvalue problem for a 3 × 3 complex-valued problem for homo-
geneous plane waves. Expressions for phase velocities and for the ratios of the lengths of
attenuation and propagation vectors are derived.
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1 Introduction

We shall consider a homogeneous viscoelastic anisotropic medium, specified by complex-
valued viscoelastic moduli cijkl and by density ρ. The time-harmonic plane waves, prop-
agating in this medium, are described by the expression

uj(xk, t) = Uj exp[−iω(t − pnxn)] , (1)

where pn and Un satisfy the constraint relations

(cijkl/ρ)pjplUk = Ui , i = 1, 2, 3 . (2)

t is the time, ω a fixed, positive circular frequency, uj, pj and Uj are Cartesian com-
ponents of displacement vector u, of slowness vector p, and of polarisation vector U,
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respectively. The constraint relations (2) follow from the insertion of (1) into the elasto-
dynamic equation. Equations (2) represent a system of three linear algebraic equations
for Ui, i = 1, 2, 3. The condition of the solvability of system (2) reads

det[(cijkl/ρ)pjpl − δik] = 0 . (3)

In viscoelastic media, slowness vector p is complex-valued, p = P + iA. Here P is
the real-valued propagation vector, perpendicular to the plane of constant phases, and A

is the real-valued attenuation vector, perpendicular to the plane of constant amplitudes.
For P parallel to A, the plane wave is called homogeneous, and for P and A nonparallel,
it is called inhomogeneous. The procedures of determining the slowness vector p of a
homogeneous plane wave propagating in a viscoelastic anisotropic medium, satisfying (2)
and (3), are discussed in this paper.

An analogous problem for general inhomogeneous plane waves is discussed in Červený
(2003), included in this volume. The procedures proposed therein remain valid also for
homogeneous plane waves. As the homogeneous plane waves have been commonly con-
sidered in various seismological applications, we shall simplify the general procedures to
simpler procedures, valid specifically for homogeneous plane waves. For a more detailed
discussion of the problem, for relevant notations and references, see Červený (2003).

To determine the slowness vector p of an inhomogeneous plane wave propagating
in a viscoelastic anisotropic medium, three different specifications of the slowness vector
have been used: the directional specification, the componental specification and the mixed
specification. The procedures based on the directional specification employ 3×3 complex-
valued matrices, but the two other specifications use 6 × 6 complex-valued matrices. It
is shown in Červený (2003) that the most general and straightforward procedure for
inhomogeneous plane waves is based on the solution of an eigenvalue problem for a 6× 6
complex-valued matrix. The directional specification, based on 3 × 3 complex-valued
matrices, yields very cumbersome procedures in this case. For homogeneous plane waves,
however, the situation is considerably simpler. In this case the procedures based on the
solution of the eigenvalue problem for a 3× 3 complex-valued matrix are quite sufficient.
It will be shown in this paper that in this case also the 6 × 6 matrices of the projection
and mixed specifications reduce to 3 × 3 matrices.

In Section 2, we apply the directional specification of the slowness vector and show
that it yields the eigenvalue problem for the 3 × 3 complex-valued Christoffel matrix. In
Section 3, we show that the componental and mixed specifications yield the same 3 × 3
Christoffel matrix. We shall not repeat the derivations of the equations valid for general
inhomogeneous plane waves here, but merely adopt these equations from Červený (2003).

2 Directional specification of the slowness vector

We shall use the directional specification of the slowness vector,

p =
1

C (N + iδM) . (4)
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Here N and M are real-valued unit vectors in the direction of P and A, C is the real-
valued phase velocity, and δ the so-called attenuation amplitude ratio (also real-valued).
For homogeneous plane waves, N ≡ M, and (4) yields

p =
1 + iδ

C N . (5)

Equations (2) and (3) then yield

[Γik(Nn) − C2(1 + iδ)−2δik]Uk = 0 , i = 1, 2, 3 , (6)

det[Γik(Nn) − C2(1 + iδ)−2δik] = 0 . (7)

Here
Γik(Nn) = (cijkl/ρ)NjNl (8)

is the complex-valued Christoffel matrix. Let us emphasize that cijkl are complex-valued,
but Ni real-valued. For a known model (cijkl) and known direction of propagation N, it
is simple to calculate Γik(Nn).

Equations (6) and (7) represent a conventional 3× 3 complex-valued eigenvalue prob-
lem. We denote the complex-valued eigenvalues of the Christoffel matrix Γik(Nn) by
G(m)(Nn), m = 1, 2, 3. These eigenvalues can be determined from the characteristic equa-
tion

det[Γik(Nn) − G(m)(Nn)δik] = 0 . (9)

Using conventional approaches, we can determine eigenvalues G(1)(Nn), G(2)(Nn) and
G(3)(Nn) from (9). These eigenvalues correspond to the three homogeneous plane waves
which can propagate in the viscoelastic anisotropic medium (qS1, qS2, qP) in the direction
of N. It is simple to see from (7) and (9) that G(m)(Nn) are related to C(m) and δ(m) as
follows:

G(m)(Nn) = C(m)2(Nn)(1 + iδ(m)(Nn))−2 . (10)

Consequently, once G(m)(Nn) have been determined, we can simply determine the three
relevant phase velocities C(m)(Nn), attenuation amplitude ratios δ(m)(Nn), and slowness
vectors p(m)(Nn). C(m)(Nn) and δ(m)(Nn) can be expressed in terms of G(m)(Nn) as follows:

1

C(m)(Nn)
=

Re
√

G(m)(Nn)

|G(m)(Nn)| , δ(m)(Nn) = −
Im
√

G(m)(Nn)

Re
√

G(m)(Nn)
. (11)

Here the square root
√

G(m)(Nn) is determined in such a way that its real part is positive:

√
a + ib =

1√
2

(√√
a2 + b2 + a + i sgn(b)

√√
a2 + b2 − a

)

. (12)

The slowness vector p(m)(Nn) of a homogeneous plane wave is then given by the relation,

p
(m)
i (Nn) = Ni

[

Re
√

G(m)(Nn) − i Im
√

G(m)(Nn)
]

/|G(m)(Nn)| . (13)

Equations (11)–(13) represent the final results for homogeneous plane waves, propa-
gating in an arbitrary direction in an arbitrary viscoelastic anisotropic medium.
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3 Componental and mixed specifications of the

slowness vector

In this section, we show that the componental and mixed specifications again yield the
eigenvalue problem for the complex-valued Christoffel matrix (8) for homogeneous plane
waves.

The componental specification of the slowness vector is given by the relation

p = σn + pΣ , (14)

where n and pΣ are assumed to be known. Here n is an arbitrarily chosen real-valued
unit vector, perpendicular to plane Σ, and pΣ is an arbitrary complex-valued vector,
situated in plane Σ. Actually, it represents a normal projection of slowness vector p into
Σ. Complex-valued vector pΣ must satisfy the orthogonality relation

pΣ · n = 0 . (15)

For known n and pΣ, quantity σ is an eigenvalue of a 6 × 6 complex-valued matrix A,

A =

(

A11 A12

A21 A22

)

, (16)

where the 3 × 3 partition matrices A11, A12, A21 and A22 are given by relations

A11 = −C(1)−1C(2) , A12 = −C(1)−1 ,
A21 = −ρI + C(4) − C(3)C(1)−1C(2) , A22 = −C(3)C(1)−1 ,

(17)

and
C

(1)
ik = cijklnjnl , C

(2)
ik = cijklnjp

Σ
l ,

C
(3)
ik = cijklp

Σ
j nl , C

(4)
ik = cijklp

Σ
j pΣ

l .
(18)

In (17), I denotes the 3 × 3 identity matrix. For more details see Červený (2003, Section
5.4.7).

The mixed specification of the slowness vector is a special case of (14), in which pΣ is
purely imaginary,

pΣ = id , with d · n = 0 . (19)

The componental specification (14) corresponds to general inhomogeneous plane waves.
It reduces to the case of a homogeneous plane wave with the propagation vector along n

if we put
pΣ = 0 , (20)

where 0 denotes the null vector. In this case, Σ represents both the plane of a constant
phase and the plane of a constant amplitude. Consequently,

n = ±N ,
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where N is the unit vector in the direction of propagation. Waves propagating to both
sides of Σ are considered, so that N coincides with n, or is opposite to it. The componental
specification (14) of slowness vector p then reads

p = σn . (21)

The same equation is obtained for the mixed specification (19), if we put d = 0. For this
reason, we shall only consider the componental specification (14), with (20).

Using (20), (18) yields,

C
(1)
ik = cijklnjnl = ρΓik , C

(2)
ik = C

(3)
ik = C

(4)
ik = 0 . (22)

Here Γik are the elements of the 3 × 3 complex-valued Christoffel matrix (8). Equations
(17) then yield

A11 = 0 , A12 = −ρ−1Γ−1 , A21 = −ρI , A22 = 0 . (23)

Consequently, the 6 × 6 matrix A is given by a simple expression

A =

(

0 −ρ−1Γ−1

−ρI 0

)

(24)

The eigenvalues σ of A are solutions of the characteristic equation

det

(

−σI −ρ−1Γ−1

−ρI −σI

)

= 0 . (25)

Equation (25) represents an algebraic equation of the sixth order for eigenvalues σ. There
are six such eigenvalues; three with positive real parts, and three with negative real parts.
The eigenequation corresponding to A can then be expressed in the following form

AW = Wσ . (26)

Here σ is the diagonal 6 × 6 matrix with the individual eigenvalues σ on diagonal, and
W is the 6 × 6 matrix composed of 6 × 1 eigenvectors. The eigenequations (26) can be
partitioned in terms of 3 × 3 matrices

(

0 −ρ−1Γ−1

−ρI 0

)(

W11 W12

W21 W22

)

=

(

W11 W12

W21 W22

) (

σ
+ 0

0 σ
−

)

, (27)

where σ
+ and σ

− are 3 × 3 diagonal matrices, with positive and negative real parts of σ
in diagonal terms, respectively. Explicitly, (27) yields four equations

−ρ−1Γ−1W21 = W11σ
+ , −ρ−1Γ−1W22 = W12σ

− ,

−ρW11 = W21σ
+ , −ρW12 = W22σ

− . (28)

Eliminating 3×3 matrices W21 and W22 from (28), we obtain two 3×3 matrix equations

Γ−1W11 = W11(σ
+)2 , Γ−1W12 = W12(σ

−)2 . (29)

203



The characteristic equation for any σ then reads

det(Γ−1 − σ2I) = 0 . (30)

This is the final 3 × 3 version of the 6 × 6 characteristic equation (25), corresponding to
homogeneous plane waves propagating in a viscoelastic anisotropic medium.

Note that (30) can also be obtained directly from (25), if we expand the 6 × 6 de-
terminant in terms of 3 × 3 determinants using the Laplace method. The relevant 3 × 3
determinants in the expansion are constructed from the first three columns and from the
last three columns.

For σ 6= 0 and detΓ 6= 0, characteristic equation (30) is equivalent to the equation

det(Γ− σ−2I) = 0 . (31)

Thus, the final result is, see (9),
σ−2 = G(m) , (32)

where G(m) are the eigenvalues of the 3 × 3 complex-valued Christoffel matrix (8). Con-
sequently,

σ = ± 1√
G(m)

= ±
√

G(m)∗

|G(m)| = ±
[

Re
√

G(m)

|G(m)| − i
Im

√
G(m)

|G(m)|

]

. (33)

Using (21), we finally obtain the slowness vector of the homogeneous plane wave in the
following form:

p
(m)
i = ±ni

[

Re
√

G(m)

|G(m)| − i
Im

√
G(m)

|G(m)|

]

. (34)

Equation (34) fully agrees with (13), obtained by the directional specification of the
slowness vector. Consequently, phase velocity C(m), and the attenuation amplitude factor
δ(m) can be determined from (11).

Note. As we have shown, the eigenvalues σ of the 6×6 matrix A, given by (16)–(18),
and the eigenvalues G of the 3×3 matrix Γ, given by (8), satisfy the mutual relation (32)
for homogeneous plane waves propagating in viscoelastic anisotropic media. We have
proved the relation (32) by a direct computation of eigenvalues of matrix A. Indeed,
Equation (32) can also be proved in a considerably simpler way, if we take into account
some properties of eigenvalues σ. It was shown in Červený (2001, Section 5.4.7) that the
eigenvalues σ of the 6 × 6 matrix A satisfy the equation:

det[aijkl(p
Σ
j + σnj)(p

Σ
l + σnl) − δik] = 0 . (35)

For homogeneous plane waves, pΣ
i = 0, see (20), and Equation (35) reduces, if σ 6= 0, to

det[aijklnjnl − σ−2δik] = 0 . (36)

This directly implies the basic relation (32).
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4 Concluding remarks

The computation of the slowness vectors of plane waves propagating in a general vis-
coelastic anisotropic medium is considerably simpler in the case of homogeneous plane
waves than in the case of inhomogeneous plane waves. The conventional eigenvalue equa-
tion for the 3 × 3 complex-valued Christoffel matrix can be used in this case. Of course,
this does not mean that the eigenvalue equations for the 6 × 6 complex-valued matrix A

cannot be used. These equations, however, are numerically less efficient and do not offer
any advantages.

In a perfectly elastic, isotropic and anisotropic medium, homogeneous plane waves
(with a nonvanishing attenuation vector parallel to the propagation vector) cannot prop-
agate. The explanation is simple. The Christoffel matrix Γik(Nn), given by (8), is real
valued for real-valued cijkl. Further, it is symmetric and positive definite. Consequently,
its eigenvalues G(m)(Nn), m = 1, 2, 3, are real-valued and positive. The second equation
of (11) then implies that the attenuation amplitude factor δ(m) is zero. Consequently, also
the attenuation vector vanishes. This conclusion, of course, applies only to homogeneous
plane waves. Inhomogeneous plane waves can propagate even in perfectly elastic media.

The reflection/transmission problem of plane waves at a plane interface between two
viscoelastic anisotropic media cannot be solved in terms of homogeneous plane waves.
The reason is that the incident homogeneous plane wave generates inhomogeneous re-
flected/transmitted waves at the interface. This is well-known for isotropic viscoelastic
media, and also remains valid for anisotropic viscoelastic media. In fact, condition (20)
cannot be used at the interface for an oblique angle of incidence. The exception is only
the normal incidence.
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