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Summary

The common ray approximation considerably simplifies the numerical algorithm of the
coupling ray theory for S waves, but may introduce errors in travel times due to the
perturbation from the common reference ray. At present, the common reference rays are
routinely represented by the isotropic common rays calculated in the isotropic reference
model, but they would better be represented by the anisotropic common rays calculated
in the anisotropic model. The errors due to the anisotropic common ray approximation
of the coupling ray theory are usually considerably smaller than the errors due to the
routinely used isotropic common ray approximation of the coupling ray theory.

We numerically calculate the travel–time errors due to the anisotropic common
ray approximation in three 1-D models of differing degree of anisotropy, and compare
them with the errors due to the isotropic common ray approximation. The differences
between the isotropic and anisotropic common ray approximations of the coupling ray
theory are demonstrated on synthetic seismograms.
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1. Introduction

There are two different high–frequency asymptotic ray theories: the isotropic ray theory

assuming equal velocities of both S–wave polarizations and the anisotropic ray theory

assuming both S–wave polarizations strictly decoupled. In the isotropic ray theory, the
S–wave polarization vectors do not rotate about the ray, whereas in the anisotropic ray
theory they coincide with the eigenvectors of the Christoffel matrix which may rotate
rapidly about the ray. Thomson, Kendall & Guest (1992) demonstrated analytically
that the high–frequency asymptotic error of the anisotropic ray theory is inversely pro-
portional to the second or higher root of the frequency if a ray passes through the point
of equal S–wave eigenvalues of the Christoffel matrix.

In “weakly anisotropic” models, at moderate frequencies, the S–wave polarization
tends to remain unrotated round the ray but is partly attracted by the rotation of the
eigenvectors of the Christoffel matrix. The intensity of the attraction increases with
frequency. This behaviour of the S–wave polarization is described by the coupling ray

theory proposed by Coates & Chapman (1990). The coupling ray theory is applicable at
all degrees of anisotropy, from isotropic models to considerably anisotropic ones. The
frequency–dependent coupling ray theory is the generalization of both the zero–order
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isotropic and anisotropic ray theories and provides continuous transition between them.
The numerical algorithm for calculating the frequency–dependent complex–valued S–
wave polarization vectors of the coupling ray theory has been designed by Bulant &
Klimeš (2002).

There are many commonly used quasi–isotropic approximations of the coupling
ray theory (Bulant & Klimeš, 2004), which diminish the accuracy of the coupling ray
theory both with increasing frequency and increasing degree of anisotropy. For example,
the reference ray may be calculated in different ways (Bakker, 2002; Klimeš & Bulant,
2004), the Christoffel matrix may be approximated by its quasi–isotropic projections
onto the plane perpendicular to the reference ray and onto the line tangent to the
reference ray (Pšenč́ık, 1998a), travel times corresponding to the anisotropic ray theory
may be approximated in several ways, e.g., by linear quasi–isotropic perturbation with
respect to the density–normalized elastic moduli (Pšenč́ık, 1998a), etc. Most of these
quasi–isotropic approximations can be avoided with minimal effort (Bulant & Klimeš,
2002; 2004), except for the common ray approximation for S waves.

In the common ray approximation, only one reference ray is traced for both aniso-
tropic–ray-theory S waves, and both S–wave anisotropic–ray-theory travel times are
approximated by the first–order perturbation expansion from the common reference ray.
The common ray approximation thus considerably simplifies the coding of the coupling
ray theory and numerical calculations, but may introduce errors in travel times due to
the perturbation. At present, the common reference rays are routinely represented by
the isotropic common rays calculated in the isotropic reference model, but they would
better be represented by the anisotropic common rays, proposed by Bakker (2002).
The anisotropic common rays are traced in the anisotropic model, using the averaged
Hamiltonian of both S–wave polarizations. The algorithm of the dynamic ray tracing
corresponding to the anisotropic common rays was proposed by Klimeš (2003).

The effects of the routinely used isotropic common ray approximation and of the
more accurate anisotropic common ray approximation have been studied by Klimeš &
Bulant (2004). For more detailed description of the common ray approximations of the
coupling ray theory refer to Section 1.1

In this paper, we numerically calculate the travel–time errors due to the anisotropic
common ray approximation in three 1-D models of differing degree of anisotropy, and
compare them with the errors due to the isotropic common ray approximation. The
differences between the isotropic and anisotropic common ray approximations of the
coupling ray theory are demonstrated on synthetic seismograms.

1.1 Common ray approximations

The isotropic ray theory is always the limiting case of the coupling ray theory for
decreasing anisotropy at a fixed frequency. On the other hand, the high–frequency limit
of the coupling ray theory at a fixed anisotropy depends on the choice of the reference
ray, and even on the choice of the system of reference rays, because the amplitudes are
determined by the paraxial reference rays.

From the point of view of the high–frequency asymptotic validity, the frequency–
independent reference ray is best represented by the anisotropic–ray–theory reference

ray, provided we choose the initial condition for the polarization vector in the coupling
equation given by the eigenvector of the Christoffel matrix corresponding to the reference
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ray. The anisotropic–ray–theory travel time corresponding to the selected polarization
is then exact, and only the difference between the two anisotropic–ray–theory S–wave
travel times is approximate. The coupling ray theory may then also be used at high
frequencies because the approximate travel–time difference influences only the coupling
due to low–frequency scattering. The coupling ray theory then correctly converges to
the anisotropic ray theory for high frequencies. For other choices of reference rays,
the high–frequency limit of the coupling ray theory at a fixed anisotropy is incorrect,
although the differences may be small at the finite frequencies under consideration. Note
that the anisotropic–ray–theory reference ray can be traced only if the eigenvectors of
the Christoffel matrix vary continuously along the whole ray (Vavryčuk, 2001).

In the anisotropic common ray approximation, the common reference ray is traced
using the averaged Hamiltonian of both anisotropic–ray-theory S waves (Bakker, 2002;
Klimeš, 2003). This is probably the best common ray approximation (Klimeš & Bulant,
2004). The errors due to the anisotropic common ray approximation of the coupling
ray theory are usually considerably smaller than the errors due to the routinely used
isotropic common ray approximation of the coupling ray theory.

In the less accurate isotropic common ray approximation, the reference ray is traced
in the reference isotropic model. Moreover, the reference isotropic model may be selected
in different ways, yielding quasi–isotropic approximations of differing accuracies.

The common ray approximations considerably simplify the coding of the coupling
ray theory and numerical calculations, but introduce errors in travel times due to the
perturbation. These travel–time errors can deteriorate the coupling–ray–theory solution
at high frequencies and should be estimated. In the common ray approximations, the
S–wave travel times are usually approximated by the first–order perturbation expansion
from the common reference ray. The errors of S–wave travel times may then be approx-
imated by second–order terms in the perturbation expansion. A method of estimating
the errors due to the isotropic common ray approximation and the anisotropic common
ray approximation has been proposed and numerically demonstrated by Klimeš & Bu-
lant (2004). The method is based on the equations for the second–order perturbations
of travel time derived by Klimeš (2002).

The accuracy of the anisotropic common ray approximation can approximately be
studied along isotropic common rays, without tracing the anisotropic common rays. If
the error of the isotropic common ray approximation exceeds an acceptable limit, we can
immediately decide whether the anisotropic common ray approximation (Bakker, 2002;
Klimeš, 2003) would be sufficiently accurate, or whether the anisotropic–ray–theory rays
should be traced as reference rays for the coupling ray theory. The numerical results
by Klimeš & Bulant (2004) suggest that the anisotropic common ray approximation by
Bakker (2002) may be much more accurate than the routinely used isotropic common
ray approximation.
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2. Theory and numerical algorithm of the anisotropic common ray approxi-

mation

For the derivation of the coupling ray theory refer to Coates & Chapman (1990) and
Červený (2001). For the description of the numerical algorithm of the coupling ray
theory refer to Červený (2001) and Bulant & Klimeš (2002).

The algorithms of anisotropic common ray tracing in smooth models without in-
terfaces and of corresponding dynamic ray tracing in ray–centred coordinates were de-
scribed by Klimeš (2003). After that, the respective dynamic ray tracing computer code
(Bucha & Bulant, 2003) has been debugged and partly numerically tested.

The numerical algorithm of the coupling ray theory by Bulant & Klimeš (2002)
is independent of the reference ray. The algorithm is thus applicable to the isotropic
common rays, anisotropic common rays, and anisotropic–ray–theory reference rays.

3. Numerical example

Two–point anisotropic common rays are traced in three 1-D models QI, QI2 and QI4 of
differing degree of anisotropy. The first–order anisotropic common ray approximation
of the anisotropic–ray–theory travel times is compared with the exact anisotropic–ray–
theory travel times in order to demonstrate the accuracy of the anisotropic common ray
approximation. The coupling–ray–theory synthetic seismograms calculated using the
anisotropic common ray approximation are then compared with the synthetic seismo-
grams calculated using the isotropic common ray approximation.

3.1. Model QI

A vertically heterogeneous 1-D anisotropic model QI was provided by Pšenč́ık & Dellin-
ger (2001, model WA rotated by 45◦) who performed the coupling–ray–theory calcula-
tions using the programs of package ANRAY (Pšenč́ık, 1998b) and compared the results
with the reflectivity method. The density–normalized elastic moduli aijkl in km2s−2 at
the surface (zero depth) are















11 22 33 23 13 12

11 14.48500 4.52500 4.75000 0.00000 0.00000 −0.58000

22 14.48500 4.75000 0.00000 0.00000 −0.58000

33 15.71000 0.00000 0.00000 −0.29000

23 5.15500 −0.17500 0.00000

13 5.15500 0.00000

12 5.04500















, (1)

and at the depth of 1 km they are















11 22 33 23 13 12

11 22.08963 6.90063 7.24375 0.00000 0.00000 −0.88450

22 22.08963 7.24375 0.00000 0.00000 −0.88450

33 23.95775 0.00000 0.00000 −0.44225

23 7.86138 −0.26688 0.00000

13 7.86138 0.00000

12 7.69363















. (2)

Here the rows correspond to the first couple of indices of aijkl, the columns correspond
to the second couple of indices. The reference isotropic model is given by

v2
P = 15.00 km2s−2 , v2

S = 5.10 km2s−2 (3)
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at the surface, and

v2
P = 23.00 km2s−2 , v2

S = 7.79 km2s−2 (4)

at the depth of 1 km. All the above values are interpolated linearly with depth. The
density is constant.

The synthetic seismograms, corresponding to vertical force F = (0, 0, 100)T at
position (50, 50, 0)T, are calculated at 29 receivers (51, 50, 0.010)T, (51, 50, 0.030)T,
(51, 50, 0.050)T, ..., (51, 50, 0.570)T located in a vertical well (distances in km). The
source time function is the Gabor signal cos(2πft) exp[−(2πft/4)2] with reference fre-
quency f = 50 Hz, band–pass filtered by a cosine filter given by frequencies 0 Hz, 5 Hz,
60 Hz and 100 Hz.

The data for model QI may be found on the compact disk of Bucha & Bulant (2002)
together with the Fortran 77 source code of packages CRT (Červený, Klimeš & Pšenč́ık,
1988) and ANRAY (Gajewski & Pšenč́ık, 1990; Pšenč́ık, 1998b). For comparison with
the isotropic–ray–theory and anisotropic–ray–theory seismograms in model QI and for
a more detailed discussion and description of this model refer to Pšenč́ık & Dellinger
(2001).

3.2. Models QI2, QI4 and QI8

To emphasize the effects of perturbations of travel time, new models with increased
degrees of anisotropy have been derived from the QI model.

The differences of the elastic moduli of model QI2 from the elastic moduli of the
reference isotropic model (3), (4) are exactly twice larger than the differences of model
QI. The density–normalized elastic moduli aijkl of model QI2 in km2s−2 at the surface
(zero depth) are















11 22 33 23 13 12

11 13.97000 4.25000 4.70000 0.00000 0.00000 −1.16000

22 13.97000 4.70000 0.00000 0.00000 −1.16000

33 16.42000 0.00000 0.00000 −0.58000

23 5.21000 −0.35000 0.00000

13 5.21000 0.00000

12 4.99000















, (5)

and at the depth of 1 km they are















11 22 33 23 13 12

11 21.17926 6.38126 7.06750 0.00000 0.00000 −1.76900

22 21.17926 7.06750 0.00000 0.00000 −1.76900

33 24.91550 0.00000 0.00000 −0.88450

23 7.93276 −0.53376 0.00000

13 7.93276 0.00000

12 7.59726















. (6)

Analogously, the differences of the elastic moduli of model QI4 from the elastic
moduli of the reference isotropic model (3), (4) are exactly 4 times larger than the
differences of model QI. The density–normalized elastic moduli aijkl of model QI4 in
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km2s−2 at the surface (zero depth) are















11 22 33 23 13 12

11 12.94000 3.70000 4.60000 0.00000 0.00000 −2.32000

22 12.94000 4.60000 0.00000 0.00000 −2.32000

33 17.84000 0.00000 0.00000 −1.16000

23 5.32000 −0.70000 0.00000

13 5.32000 0.00000

12 4.88000















, (7)

and at the depth of 1 km they are















11 22 33 23 13 12

11 19.35852 5.34252 6.71500 0.00000 0.00000 −3.53800

22 19.35852 6.71500 0.00000 0.00000 −3.53800

33 26.83100 0.00000 0.00000 −1.76900

23 8.07552 −1.06752 0.00000

13 8.07552 0.00000

12 7.40452















. (8)

Note that neither the isotropic common ray approximation nor the anisotropic
common ray approximation can be applied to model QI8, in which the differences of
the elastic moduli from the elastic moduli of the reference isotropic model (3), (4) are
exactly 8 times larger than the differences of model QI.

The data for models QI2, QI4 and QI8 have been released on the compact disk of
Bucha & Bulant (2002). Numerical examples in this paper have been calculated using
the code and data by Bucha & Bulant (2004).

3.3. Effects of the common–ray approximations

Two–point anisotropic common rays have been traced from the source to the receivers
using the program CRT. To check the accuracy of the first–order perturbation expansion
of the anisotropic–ray–theory travel times along anisotropic common rays, the perturba-
tion expansion is compared in Tables 4, 5 and 6 with the anisotropic–ray–theory travel
times calculated by the program ANRAY along two–point anisotropic–ray–theory rays.
Only the results at the 1st, 8th, 15th, 22nd and 29th receivers are shown, because the
variation of the quantities along the vertical profile in models QI, QI2 and QI4 is very
moderate.

For convenient comparison with the accuracy of the isotropic common ray approx-
imation, we reproduce here Tables 1, 2 and 3 by Klimeš & Bulant (2004).

The anisotropic common ray approximation of coupling–ray–theory synthetic seis-
mograms in models QI, QI2 and QI4 is compared with the isotropic common ray approxi-
mation of coupling–ray–theory synthetic seismograms in Figures 1, 3 and 5, respectively.
Refer to Tables 1 to 6 (columns ACR remaining terms and ICR quadratic terms) for
the travel–time errors of both approximations.

Since Klimeš & Bulant (2004) were not able to solve the coupling equation along
the anisotropic–ray–theory reference rays, they simulated the corresponding coupling–
ray–theory synthetic seismograms by solving the coupling equations along isotropic
common rays, with anisotropic–ray–theory travel times approximated by the second–
order perturbation expansion. Their approximation of coupling–ray–theory synthetic
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seismograms is compared with the anisotropic common ray approximation of coupling–
ray–theory synthetic seismograms in Figures 2, 4 and 6. Refer to Tables 1 to 6 (columns
ICR remaining terms and ACR remaining terms) for the travel–time errors of both
approximations.

Although the second–order perturbation expansion of travel time has successfully
been applied to the estimation of anisotropic–ray–theory travel times in these simple
1-D models QI, QI2 and QI4 with constant gradients of the density–normalized elas-
tic moduli, we cannot recommend approximation of travel time using the second–order
perturbation expansion in more complex models, because the second–order perturba-
tions may be infinitely large in the vicinity of caustics. The second–order perturbation
expansion of travel time should be used especially for estimating and controlling the
accuracy of the common ray approximations outside caustics.

4. Conclusions

Whereas the first–order isotropic common ray approximation is considerably inaccurate
in model QI4, see Figure 5 and Table 3, the first–order anisotropic common ray approx-
imation by Bakker (2002) performs well in all three models QI, QI2 and QI4, see Tables
4, 5 and 6.
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Rec. ICR ICR ICR ICR ACR
dep. time linear terms quadratic terms remaining terms q.terms

0.01 0.440993 -0.002392 0.003983 0.000253 0.000000 -0.000003 -0.000001 0.000066
0.15 0.438077 -0.002518 0.004003 0.000250 0.000000 0.000007 -0.000001 0.000066
0.29 0.443550 -0.002967 0.004117 0.000251 0.000001 0.000007 0.000001 0.000069
0.43 0.456339 -0.003661 0.004317 0.000253 0.000001 0.000008 -0.000002 0.000073
0.57 0.475205 -0.004520 0.004595 0.000251 0.000003 0.000020 0.000006 0.000076

Table 1. Linear and quadratic terms in the common ray approximations of travel time in model QI.

Rec. ICR ICR ICR ICR ACR
dep. time linear terms quadratic terms remaining terms q.terms

0.01 0.440993 -0.004746 0.011604 0.000978 0.000000 0.000001 -0.000007 0.000237
0.15 0.438077 -0.004992 0.011612 0.000967 0.000000 0.000015 0.000001 0.000233
0.29 0.443550 -0.005874 0.011837 0.000967 0.000001 0.000029 0.000005 0.000230
0.43 0.456339 -0.007234 0.012235 0.000965 0.000001 0.000047 0.000001 0.000226
0.57 0.475205 -0.008912 0.012764 0.000951 0.000002 0.000063 0.000000 0.000218

Table 2. Linear and quadratic terms in the common ray approximations of travel time in model QI2.

Rec. ICR ICR ICR ICR ACR
dep. time linear terms quadratic terms remaining terms q.terms

0.01 0.440993 -0.009341 0.041580 0.003671 0.000492 0.000092 -0.000141 0.000367
0.15 0.438077 -0.009816 0.041343 0.003616 0.000553 0.000137 -0.000147 0.000335
0.29 0.443550 -0.011517 0.041462 0.003580 0.000718 0.000224 -0.000174 0.000273
0.43 0.456339 -0.014129 0.041796 0.003520 0.000962 0.000328 -0.000212 0.000201
0.57 0.475205 -0.017335 0.042243 0.003415 0.001234 0.000434 -0.000234 0.000136

Table 3. Linear and quadratic terms in the common ray approximations of travel time in model QI4.

Tables 1, 2 and 3. Rec. dep. stands for the receiver depth along the vertical profile, see Figures 1 to
6. The ICR time is the reference travel time along the isotropic common ray. The ICR linear terms are
the linear terms in perturbation expansion of the anisotropic–ray–theory travel times in the vicinity
of the isotropic common ray, and represent the travel–time corrections considered in the isotropic
common ray approximation of the coupling ray theory. The ICR quadratic terms stand for quadratic
terms in perturbation expansion of travel time, and represent the estimates of the errors due to the
isotropic common ray approximation of the anisotropic–ray–theory travel times. The ICR remaining

terms stand for the difference between the exact anisotropic–ray–theory travel times calculated by the
program ANRAY version 4.40 and the second–order perturbation expansion in order to illustrate the
reliability of the error estimates. The ICR remaining terms represent both the inaccuracy of numerical
ray tracing and the third–order and higher–order terms in the perturbation expansion. The ACR

quadratic terms stand for the estimate of the equal quadratic terms in the perturbation expansion of
the anisotropic–ray–theory travel times in the vicinity of the anisotropic common ray, and represent the
estimate of the error due to the anisotropic common ray approximation of the anisotropic–ray–theory
travel times. Note that these estimated ACR quadratic terms are approximately calculated along the
isotropic common rays, i.e. without tracing the anisotropic common rays. The estimated ACR quadratic
terms may be compared with the actual errors of the anisotropic common ray approximation (Tables 4,
5 and 6, column ACR remaining terms). The differences between the ACR quadratic terms calculated
along the isotropic common rays and the actual errors of the anisotropic common ray approximation
(ACR remaining terms) are mostly due to the neglected third–order terms in the perturbation expansion
along isotropic common rays.
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Rec. ACR ACR ACR anisotropic–ray–th.
dep. time linear terms remaining terms travel times

0.01 0.441850 -0.003061 0.003061 0.000062 0.000064 0.438851 0.444975
0.15 0.438880 -0.003135 0.003135 0.000071 0.000065 0.435816 0.442080
0.29 0.444183 -0.003415 0.003415 0.000073 0.000070 0.440841 0.447668
0.43 0.456721 -0.003861 0.003861 0.000079 0.000074 0.452939 0.460656
0.57 0.475296 -0.004430 0.004430 0.000090 0.000083 0.470956 0.479809

Table 4. Anisotropic common ray approximation of anisotropic–ray–theory travel times in model QI.

Rec. ACR ACR ACR anisotropic–ray–th.
dep. time linear terms remaining terms travel times

0.01 0.444667 -0.007688 0.007689 0.000247 0.000234 0.437226 0.452590
0.15 0.441634 -0.007818 0.007818 0.000251 0.000239 0.434067 0.449691
0.29 0.446788 -0.008366 0.008366 0.000250 0.000238 0.438672 0.455392
0.43 0.459093 -0.009240 0.009240 0.000263 0.000243 0.450117 0.468576
0.57 0.477392 -0.010344 0.010344 0.000259 0.000235 0.467307 0.487971

Table 5. Anisotropic common ray approximation of anisotropic–ray–theory travel times in model QI2.

Rec. ACR ACR ACR anisotropic–ray–th.
dep. time linear terms remaining terms travel times

0.01 0.458572 -0.023856 0.023856 0.000698 0.000497 0.435414 0.482925
0.15 0.455345 -0.024001 0.024001 0.000670 0.000480 0.432014 0.479826
0.29 0.460171 -0.024947 0.024947 0.000612 0.000438 0.435836 0.485556
0.43 0.472022 -0.026489 0.026489 0.000525 0.000374 0.446058 0.498885
0.57 0.489715 -0.028424 0.028424 0.000428 0.000309 0.461719 0.518448

Table 6. Anisotropic common ray approximation of anisotropic–ray–theory travel times in model QI4.

Tables 4, 5 and 6. Rec. dep. stands for the receiver depth along the vertical profile, see Figures
1 to 6. The ACR time is the reference travel time along the anisotropic common ray. The ACR

linear terms are the linear terms in perturbation expansion of the anisotropic–ray–theory travel times
in the vicinity of the anisotropic common ray, and represent the travel–time corrections considered in
the anisotropic common ray approximation of the coupling ray theory. The ACR remaining terms

stand for the difference between the anisotropic–ray–theory travel times calculated by the program
ANRAY version 4.40 and their first–order perturbation expansion in the vicinity of the anisotropic
common ray. The ACR remaining terms represent both the inaccuracy of numerical ray tracing and
the second–order and higher–order terms in the perturbation expansion. The ACR remaining terms
may be compared with their estimation calculated along isotropic common rays (Tables 1, 2 and 3,
column ACR q.terms). The differences between the ACR remaining terms and their estimation are
mostly due to the neglected third–order terms in the perturbation expansion along isotropic common
rays. The anisotropic–ray–theory travel times are denoted here by anisotropic–ray–th. travel times.
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Figure 1. Comparison of the anisotropic and isotropic common ray approximations of the coupling
ray theory in model QI. From top to bottom: the first (radial) component, the second (transverse)
component, the third (vertical) component. Black: Anisotropic common ray approximation. For the
inaccuracy of the black seismograms refer to the ACR remaining terms in Table 4. Red: Isotropic
common ray approximation. For the inaccuracy of the red seismograms refer to the ICR quadratic

terms in Table 1. The red seismograms are mostly obscured by the black seismograms.
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Figure 2. Comparison of the anisotropic common ray approximation with the quadratic pertur-
bation expansion of travel time from the isotropic common rays in model QI. From top to bottom:
the first (radial) component, the second (transverse) component, the third (vertical) component.
Black: Anisotropic common ray approximation. For the inaccuracy of the black seismograms refer
to the ACR remaining terms in Table 4. Red: Second–order perturbation expansion of travel time
calculated along isotropic common rays. This approximation was used by Klimeš & Bulant (2004) to
simulate the coupling–ray–theory synthetic seismograms without common ray approximation. For the
inaccuracy of this simulation refer to the ICR remaining terms in Table 1. The red seismograms are
obscured by the black seismograms.
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Figure 3. Comparison of the anisotropic and isotropic common ray approximations of the coupling
ray theory in model QI2. From top to bottom: the first (radial) component, the second (transverse)
component, the third (vertical) component. Black: Anisotropic common ray approximation. For the
inaccuracy of the black seismograms refer to the ACR remaining terms in Table 5. Red: Isotropic
common ray approximation. For the inaccuracy of the red seismograms refer to the ICR quadratic

terms in Table 2. The differences between the seismograms are small but already clearly visible.
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Figure 4. Comparison of the anisotropic common ray approximation with the quadratic pertur-
bation expansion of travel time from the isotropic common rays in model QI2. From top to bot-
tom: the first (radial) component, the second (transverse) component, the third (vertical) component.
Black: Anisotropic common ray approximation. For the inaccuracy of the black seismograms refer
to the ACR remaining terms in Table 5. Red: Second–order perturbation expansion of travel time
calculated along isotropic common rays. This approximation was used by Klimeš & Bulant (2004) to
simulate the coupling–ray–theory synthetic seismograms without common ray approximation. For the
inaccuracy of this simulation refer to the ICR remaining terms in Table 2. The red seismograms are
mostly obscured by the black seismograms.
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Figure 5. Comparison of the anisotropic and isotropic common ray approximations of the coupling
ray theory in model QI4. From top to bottom: the first (radial) component, the second (transverse)
component, the third (vertical) component. Black: Anisotropic common ray approximation. For the
inaccuracy of the black seismograms refer to the ACR remaining terms in Table 6. Red: Isotropic
common ray approximation. For the inaccuracy of the red seismograms refer to the ICR quadratic

terms in Table 3. The differences between the seismograms are considerable in this quite strongly
anisotropic model QI4.
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Figure 6. Comparison of the anisotropic common ray approximation with the quadratic pertur-
bation expansion of travel time from the isotropic common rays in model QI4. From top to bot-
tom: the first (radial) component, the second (transverse) component, the third (vertical) component.
Black: Anisotropic common ray approximation. For the inaccuracy of the black seismograms refer
to the ACR remaining terms in Table 6. Red: Second–order perturbation expansion of travel time
calculated along isotropic common rays. This approximation was used by Klimeš & Bulant (2004) to
simulate the coupling–ray–theory synthetic seismograms without common ray approximation. For the
inaccuracy of this simulation refer to the ICR remaining terms in Table 3.
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