We study how the perturbations of a generally heterogeneous isotropic or anisotropic structure manifest themselves in the wavefield, and which perturbations can be detected within a limited aperture and a limited frequency band. A broad-band incident wavefield with a smooth frequency spectrum is considered. Infinitesimally small perturbations of elastic moduli and density are decomposed into Gabor functions. The wavefield scattered by the perturbations is then composed of waves scattered by individual Gabor functions. The scattered waves are estimated using the first-order Born approximation with paraxial ray approximation.
Each Gabor function generates at most 5 scattered waves, propagating in specific directions. A Gabor function corresponding to a low wavenumber may generate a single broad-band unconverted wave scattered in forward or narrow-angle directions. A Gabor function corresponding to a high wavenumber usually generates 0 to 5 narrow-band Gaussian packets scattered in wide angles, but may also occasionally generate a narrow-band P to S converted Gaussian packet scattered in a forward direction, or a broad-band S to P converted wave scattered in wide angles.
For a particular source, each wave scattered by a Gabor function at a given spatial location is sensitive to just a single linear combination of 22 values of the elastic moduli and density corresponding to the Gabor function. This information about the Gabor function is lost if the scattered wave does not fall into the aperture covered by the receivers and into the legible frequency band.
The expanded abstract is available in PostScript (250 kB) and GZIPped PostScript (31 kB).