For a given stiffness tensor (tensor of elastic moduli) of a generally anisotropic medium, we can estimate the extent to which the medium is transversely isotropic, and determine the direction of its reference symmetry axis. In this paper, we rotate the given stiffness tensor about this reference symmetry axis, and determine the reference transversely isotropic (uniaxial) stiffness tensor as the average of the rotated stiffness tensor over all angles of rotation. The obtained reference transversely isotropic (uniaxial) stiffness tensor represents an analytically differentiable approximation of the given generally anisotropic stiffness tensor. The proposed analytic method is compared with a previous numerical method in two numerical examples.
Elastic anisotropy, stiffness tensor, elastic moduli, transverse isotropy, approximate transverse isotropy, reference symmetry axis, nearest media approximation.
The reprint is available in PDF (93 kB).